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ABSTRACT

Nucleic acid sequence analyses are fundamental to all aspects of biological research, spanning aging,
mitochondrial DNA (mtDNA) and cancer, as well as microbial and viral evolution. Over the past several years,
significant improvements in DNA sequencing, including consensus sequence analysis, have proven invaluable
for high-throughput studies. However, all current DNA sequencing platforms have limited utility for studies of
complex mixtures or of individual long molecules, the latter of which is crucial to understanding evolution and
consequences of single nucleotide variants and their combinations. Here we report a new technology termed
LUCS (Long-molecule UMI-driven Consensus Sequencing), in which reads from third-generation sequencing are
aggregated by unique molecular identifiers (UMls) specific for each individual DNA molecule. This enables in-
silico reconstruction of highly accurate consensus reads of each DNA molecule independent of other molecules
in the sample. Additionally, use of two UMIs enables detection of artificial recombinants (chimeras). As proof of
concept, we show that application of LUCS to assessment of mitochondrial genomes in complex mixtures from
single cells was associated with an error rate of 1X10™ errors/nucleotide. Thus, LUCS represents a major step
forward in DNA sequencing that offers high-throughput capacity and high-accuracy reads in studies of long DNA
templates and nucleotide variants in heterogenous samples.

INTRODUCTION

Every area of biological and biomedical research is
rooted one way or another in understanding the precise
order of nucleotides in DNA and RNA molecules, and
how changes in these sequences subsequently alter
downstream function and phenotype within and across
generations. These principles apply to all living
organisms, as well as to entities such as viruses that are
considered by many as non-living organisms. Nucleotide
sequence analysis has evolved considerably since Holley

and colleagues reported the first complete sequence of a
nucleic acid in 1965 [1]. This breakthrough was
followed a little over 10 years later with a report from
Sanger on the sequence the first DNA genome [2, 3].
These pioneering studies, and those of Maxam and
Gilbert [4], provided the early foundation for technology
improvements, including the dideoxy chain-termination
method or Sanger sequencing [5], which collectively
represent what is referred to as first-generation sequence
analysis. With the subsequent discovery that the use of
radioactive or fluorescent probes to infer nucleotide
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sequences could be replaced with a luciferase-based
pyrophosphate synthesis method referred to as pyro-
sequencing [6], commercial next-generation sequencing
(NGS) was born. Continued improvement in this
technology, which relied on specially designed machines
capable of performing tremendous numbers of
sequencing reactions in parallel, enabled rapid
development of high-throughput DNA sequencing that
defined the era of second-generation sequencing. Even
with these advances, however, all technologies to this
point required target DNA amplification. The ability to
perform single-molecule sequencing (SMS), and thus
minimize biases and errors inherent in DNA
amplification, heralded the transition to third-generation
sequencing [7, 8].

One of the first widely used third-generation sequencing
technologies is the single molecule real-time (SMRT)
platform from Pacific Biosciences (PacBio), which offers
both high throughput capacity and long reads (10-kb or
more). However, a significant limitation to PacBio
sequencing is the relatively high first-pass error rate,
which is around 8-11%. While the addition of ‘bell
adapters’ to sequencing templates allows the templates to
be read multiple times in a continuous circle, resulting in a
highly accurate circular consensus sequence (CCS), the
CCS approach is limited to application with short DNA
fragments due to constraints on how long the polymerase
remains active. Without an effective way to correct for
errors, PacBio cannot be used to accurately sequence long
molecules from heterogeneous DNA mixtures. Along
with the PacBio SMRT platform, nanopore sequencing,
such as that commercialized by Oxford Nanopore
Technologies (ONT), represents yet another example of
the evolution of DNA sequencing technology [9].
Coupled with considerable improvements in chemistry
and software, current versions of ONT sequencing
platforms, such as MinlON, produce consensus genome
assemblies with an error rate less than 1.0% [10]. In
parallel to this, unique molecular identifiers (UMI) —
random oligonucleotide sequences specific to individual
molecules that were first introduced to count molecules in
a sample [11], have been employed in error correction
approaches [12, 13]. However, high fidelity analysis of
single nucleotide variants (SNVs) and their combinations
in individual long molecules, especially in heterogenous
samples, still remains a significant challenge.

Here we report the development of a new DNA
sequencing tool termed Long-molecule UMI-driven
Consensus Sequencing or LUCS [14], which can be used
with either PacBio or ONT platforms. The LUCS
technology utilizes 5 and 3’ UMIs incorporated into each
DNA molecule. This enables construction of consensus
DNA sequences from analysis of individual long
molecules, as well as in-silico detection and removal of

chimeras. Use of LUCS increased sequencing accuracy of
the ONT MinlON platform from ~85% to 99.99% (i.e.,
1X10* errors/nucleotide). This vast improvement in
accuracy and resolution over current DNA sequencing
approaches, together with the inherently high resistance of
LUCS to errors introduced through PCR, represents a
significant step in the evolution of nucleic acid sequence
analysis, with immediate applications to a broad array of
critical research topics ranging from aging and cancer to
mtDNA inheritance and organismal evolution.

RESULTS

Pair-end UMI clustering

To perform proof-of-concept testing for LUCS
(Figure 1A) on a single-cell analytical level, we used
mice with an amino acid substitution (D257A) in the
nuclear-encoded DNA polymerase-y (Polg) gene [15].
Homozygous Polg mice (PolgP?7AP257A) exhibit an
elevated rate of accumulation of mtDNA mutations,
reaching ~13.6 mutations per mtDNA molecule during
early adulthood, and thus serve as an excellent model for
testing the sensitivity of SNV calling in our sequencing
strategy. We selected oocytes as a prime single-cell study
target since these cells contain an abundance of
mitochondrial genomes for analysis. In our initial
experimental design, UMIs were applied with barcoding
primers and amplified in the same reaction with synthetic
primers that capture each UMI sequence (Figure 1A; see
also Table 1). Despite a low ratio of barcoding primer
(1 uM) to synthetic (10 M) primer concentration, the
barcoding primer was sufficiently active in later stages of
PCR to reassign UMIs to molecules that had already
received them. This resulted in a complicated pair-end
network of clusters of diminishing size. The inability to
perform simple pair-end matches between the UMIs
made chimera detection and accurate data analysis nearly
impossible. Our methodology was therefore modified
into a two-step PCR that allows for a 25-fold dilution of
the barcoding primers following the four initial cycles
when the UMISs are applied (Figure 1B; see Materials and
Methods for details). This resulted in a vastly higher
resolution of pair-end clustering, which allowed for
identification of chimeras. This also supported the
accuracy of the clustering algorithm to appropriately
identify reads with matching UMIs.

Consensus sequence analysis

Following UMI-based clustering, a consensus of each
cluster was generated. Support for a variant was assessed
using reads aligned to this consensus in two ways: base-
called support and signal support. Base-called support
reports the fraction of aligned reads that support the
variant at a given position in the consensus. Meanwhile,
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signal support refers to the raw feature files (in fast5
format) that estimate the likelihood of the variant. The
distinction between base-called and signal support
fractions is particularly important here because of the
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Figure 1. Overview of the LUCS technology. (A) Each individual DNA molecule in a complex mixture, bearing its own unique mutations
(white), has a UMI applied to it via PCR (each UMI represented by a different end-color), which is specific for that molecule (Step 1). The pool
of DNA molecules is then amplified and sequenced (Step 2), during which time artefacts (i.e., PCR errors and sequencing errors) are
introduced in a random fashion across molecules (red). All reads are then clustered based on their UMI (Step 3), and a consensus read is built
for each molecule (Step 4). This final step removes random errors introduced during the process (red) but retains true mutations (white)
found in the original molecule and in all amplicons of that molecule. (B) Two-step PCR process for UMI application and dilution. In the first 4
cycles of PCR, the targeted DNA template is amplified by 125-bp oligonucleotide barcoding primers, each containing a random UMI
sequence. The initial reaction is then diluted 25-fold within a larger PCR reaction containing only synthetic primers that amplify the UMI-
containing molecules after 45 additional cycles of PCR. The resultant elimination of barcoding primer ‘re-priming’ allows for high-resolution
pair-end clustering and, in particular, the detection and removal of chimeras (artificial recombinant molecules) caused by PCR jumping.
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Table 1. Sequences of oligonucleotide primers, in 5’ to 3’ orientation, utilized for UMI-based barcoding and PCR
amplification (H=A, CorT).

Secondary
Primer name Primer sequence barcode Primer location
sequence
NPb02H24m3092F CCACTACTCACACACCAATTCCTCTCATTACCACGCACTACCTAT  ATGCTGATGA 3092 Forward
(barcoding primer) TAGATGCTGATGACGCGCTHHHHHHHHHHHHHHHHHHHHH CGCGCT
HHHCTCCATTCTATGATCAGGATGAGCCTCAAACTCCAAA
NPbAdPr CCACTACTCACACACCAATTCCTCTCATTA N/A 5’-end of
(synthetic primer) NPb02H24m3092F
NPc02H24m786R CCCACACTACAAAACCCACTCATATACACTACACTCTATCAACA  TGCGAGACTA 786 Reverse
(barcoding TACTATCATGCGAGACTATCGCGAHHHHHHHHHHHHHHHHH TCGCGA
primer) HHHHHHHGCCCATTTCTTCCCATTTCATTGGCTACACCTT
NPcAdPr CCCACACTACAAAACCCACTCATATACACT N/A 5’-end of
(synthetic primer) NPc02H24m786R
3092F CTCCATTCTATGATCAGGATGAGCCTCAAACTCCAAA N/A 3092 Forward
3140F CGGAGCTTTACGAGCCGTAGCCCAAACAAT N/A 3140 Forward
3003R GACTTAATGCTAGTGTGAGTGATAGGGTAGGTGCAA N/A 3003 Reverse
3031R GGGTGTGGTATTGGTAGGGGAACTCATAGACTTA N/A 3031 Reverse

Primer location determined from the indicated position in the reference mtDNA sequence (GenBank AY172335.1).

a high base-called support but low signal support would
support that the variant is a false positive, whereas the
opposite would support a true variant despite lower
support from the read alignment. Training a mtDNA-
specific model for base calling is not possible due to the
limited training of the ONT base caller, and this would
result in over-fitting.

We filtered sites where the base-called support fraction
(viz. the percentage of reads within the cluster that
contained a given base) for the wild type variant was
less than 0.2, yielding a total of 132 putative variants
from 12 molecules. Of these, the average base-called
support across all variants was 89.4% (with average
signal support of 91.7%), and 95.7% of all variants had
raw signal support ranging between 80-100% (Figure
2). Positions with signal support lower than 80% could
be PCR artefacts from misincorporation of a nucleotide
by the Taq polymerase early in the PCR cycling. Five
such variants with signal support less than 80% showed
support on only one strand and were therefore excluded
from further analysis. Variants with low signal support,
viz. those below 80%, were randomly distributed across
consensus sequences, and no consensus contained more
than one variant with low signal support. The presence

of variants with high signal support (80% or higher)
within the same consensus sequences suggests that the
low support variants are a product of random error and
not poor-quality clustering or issues with consensus
building.

To further corroborate the sensitivity of base-called
and signal support for variants, we next compared
polymorphic  sites to heteroplasmic variants.
Polymorphic sites were defined as the variant positions
that are found in all molecules sequenced by Sanger
from the same sample. Here, "heteroplasmic variants"
refers to the frequency at which a variant occurs in the
sample, not in the cluster of reads that generate the
single molecule consensus. Both heteroplasmic and
polymorphic variants would be expected in all reads of
the same cluster, but only polymorphic variants would
be expected in all reads across all clusters. Therefore,
within a cluster of reads that represents a single
molecule, base-called support and signal support for
both heteroplasmic and polymorphic variants should
be similar. The average base-celled support fractions
for polymorphic (n = 36) and heteroplasmic (n = 96)
variants were comparable at 90.1% + 1.7% and 89.2%
+ 0.4%, respectively (mean = SEM, P = 0.39).
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Likewise, average signal support fractions were
comparable in heteroplasmic (92.1% + 0.6%) versus
polymorphic (93.5% + 0.7%) (mean + SEM, P = 0.17)
variants (Figure 2). Collectively, the consistency of
support fractions between polymorphic sites and
heteroplasmic variants strongly supports that the lower
frequency variants are of high quality.

Verification of LUCS mutation frequency analysis
by Sanger sequencing

Mitochondrial DNA from the same oocyte was
amplified in single-molecule PCRs without UMI
primers and then Sanger sequenced to determine if
LUCS variants demonstrated a distribution similar to
variants identified by Sanger sequencing. We
observed that LUCS variants with support fractions
above 80% were 38.5% synonymous, compared to
36.0% wusing Sanger sequencing (Figure 3). A
characteristic feature of Sanger-sequenced variants
was a relatively high proportion of transversions, with
45.7% of mutated adenines converted to thymine.
While this mutational profile was not observed in
variants identified by LUCS (only 36.8% of adenines
mutated as transversions), adenine to thymine
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Figure 2. Support fraction distributions for polymorphic
and heteroplasmic variants. Average base-called support
fractions for polymorphic (blue, n = 36) and heteroplasmic
(orange, n = 96) variants were 90.1% + 1.7% and 89.2% + 0.4%,
respectively (mean + SEM). Likewise, signal support fractions
were comparable across polymorphic (93.5% * 0.7%) and
heteroplasmic (92.1% + 0.6%) variants (mean * SEM).
Distributions are Kernel Density Estimates of base-called and
signal support fractions, as determined by nanopolish for all
variants. Base-called support and signal support fraction
distributions were not significantly different (P = 0.39 and P =
0.17, respectively).

transversions were more frequently represented versus
all other transversions (Figure 4). Finally, the
mutation rate associated with variants identified using
Sanger sequencing was 8.3X10* (£ 2.11X107)
mutations/bp or ~13.60 mutations per mitochondrial
genome. Using LUCS, the mutation rate was 7.9X10~*
(+ 8.2X107%) mutations/bp or ~12.81 mutations per
mitochondrial genome (mean £ SEM) (Figure 5), in
close alignment with Sanger sequencing (P = 0.12).

DISCUSSION

Nucleic acid sequencing has seen tremendous
improvements over the last 5 decades, with current third-
generation  sequencing platforms  offering  high
throughput, single-molecule capacity [16]. However,
even the most advanced third generation sequencing
technologies (ONT and PacBio) that involve PCR
produce sequences with error rates that are not
compatible with high-resolution analysis of SNVs in long
DNA molecules. Additionally, both ONT and PacBio
sequencing rely on massive (~30-fold) consensus reads
from multiple different molecules, generating sequence
information on average genomes, not single molecules.
In other words, individual sequence reads are essentially
unrecognizable. The challenge of obtaining high-
resolution reads across long spans of DNA are
complicated even further when these analyses are
performed with complex or heterogenous nucleic acid
mixtures.

Consensus sequence building strategies are guided by
support fractions. These are the proportion of single reads
within a consensus that support the calling of a particular

LUCS sequences

o0

I Non-synonymous Il Synonymous

Sanger sequences

Figure 3. Comparison of synonymity distributions
between the LUCS and Sanger sequencing datasets.
Support fractions above 80% for LUCS and Sanger sequencing
methods were comparatively analyzed, and display similar
proportional synonymity in coding regions, indicative of low error
rate.
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variant, and thus serve as essential indicators of how
reliable a given variant is. For example, if the reference
base is adenine, and 6% of reads are adenines, 1% are
cytosines, 93% are guanines and none are a thymine, the
support fraction is 93%. Because inherent error rates in
third-generation sequencing fluctuate around 10-15%,
support fractions that are significantly lower than 80%
raise suspicion over the reliability of an identified variant.
Any given consensus sequence has a broad range of
support fractions for its identified variants. The
implication of this is that low support fractions are not
due to widespread quality issues associated with reads in

A

Proportion of mutations (%)

a given consensus or with errors in clustering, but instead
arise from more localized problems such as PCR error
(e.g., comparable representation of two nucleotides at a
given site) or context-specific alignment and base-calling
errors (e.g., homopolymer tracts are challenging to base-
call, and can also offset alignments if mutations occur
within or near such tracts). By setting our consensus
support fraction threshold with LUCS to 80%, it is
possible that some genuine mutations were lost, but this
comes with high confidence in the variants retained.
Additionally, intermediate variants can always be
processed for manual inspection to make the final call of
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Figure 4. Proportional mutational spectra for the LUCS and Sanger sequencing datasets. (A, B) The mutation spectrum was
determined for each reference nucleotide for the LUCS (A) and Sanger sequencing (B) datasets. Each bar represents the proportion of a
variant for a given reference base. For example, the A>G bar is the number of A>G mutations divided by the number of mutated positions
that are adenines in the reference sequence. For cytosine, guanine and thymine positions, both LUCS and Sanger mutations exhibited a
strong bias towards transitions. Adenine positions were more likely to mutate as a thymine transversion than as a transition in the Sanger
dataset, which was reflected to a slightly lesser degree in the LUCS dataset.
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Figure 5. Mutation rates estimated for single molecules from Sanger sequencing and LUCS datasets. Violin plots showing that
mutation rates per molecule sequenced, determined by dividing the number of mutations by the coverage of a given molecule, were similar

between the two technologies (P = 0.12; see text for details).
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whether to keep or drop a given variant. For variants
identified with an 80% or greater support fraction, it
would be nearly impossible for an error at any step in the
process to accumulate into such a high support fraction.
The only exception to this is first-cycle PCR errors;
however, at present there is no PCR-dependent
sequencing method that can detect or eliminate this
source of potential error.

Molecule-by-molecule sequencing has been performed
using the PacBio circular consensus sequencing (CCS)
technology, in which a dsDNA molecule capped with
two hairpins (‘bell adapters’) is sequenced several times
in a rolling or circle fashion to produce several reads of
the same molecule. These reads are then combined into
a single consensus sequence. The total read length of
CCS plateaus around 50-kb. However, to obtain the
accuracy needed for high resolution studies of
individual DNA molecules, ~10 reads need to be
obtained from each molecule. Some scientists have
claimed that this limits the length of the original
molecule to no more than 5-kb [17, 18]. On the other
end of the fragment length spectrum, next generation
sequencing (NGS) platforms, such as Illumina, are
based on the high-fidelity sequencing of short DNA
fragments (<300-bp). The “deep sequencing” or high-
coverage version of Illumina can be used to explore
microheterogeneity, but this approach yields simply a
list of variants and their frequencies. It does not
generate reliable information on linkage between
variants or “phase”, viz. which variants are positioned
on the same DNA molecule.

The development of LUCS offers a solution to all
limitations outlined above that exist with current third-
generation sequencing platforms dependent on PCR,
which we believe will have a major impact on enabling
high-resolution analysis of both nuclear and
mitochondrial genomes in the context of numerous
research directions, including evolution, cancer, aging
and non-cancer disease pathogenesis. As an example,
we will close with a discussion of why a tool such as
LUCS could revolutionize approaches to an area that is
of high relevance and priority across the world at the
present time. The COVID-19 pandemic has sparked
unprecedented efforts to contain the spread of the virus,
and to characterize genetic variants of SARS-CoV-2. A
global consortium is collecting genetic sequence
information on a large scale in an attempt to determine
mutational hotspots and the genetic trajectory of the
virus. However, sequence data generated thus far that
are available in public datasets are limited by
incomplete genome coverage and sequencing-associated
errors. With policy decisions, diagnostic procedures and
treatment protocols rooted heavily in this type of
information, the need for high resolution single-

molecule analysis, which accurately depicts viral
evolution at the level of both individuals and the
pandemic, could not be clearer.

To this end, variants of a virus present in an individual
are referred to as quasispecies [19, 20]. Identification of
quasispecies is considered vitally important for
successful development of diagnostic tests, vaccines and
drugs, as well as for elucidating complexities in variation,
adaptation and infection patterns. The task of exploring
quasispecies and the population genomics associated with
acute progression of a viral infection in the human body
in real time is a daunting one. Ideally, one would like to
know the sequences of the entire genomes of a
representative subset of the intrapatient viral population,
sampled at several time points during the infection. This
can be accomplished with great precision by cloning
individual viral particles and then sequencing the clones
by any convenient sequencing method. This precision,
however, comes at a huge financial cost and with very
high risks: most notably for the latter, a BSL-3/4
laboratory is needed for handling and cloning of live
virus. Additionally, this is a time-consuming process in
that, even with a dedicated production line, analytical
outcomes are not available for many days.

Together, these issues make current strategies for
exploration of viral population genomics within
individuals impractical on a large scale; and, they are not
rapid enough to adequately address and understand viral
evolution throughout the infection process. Accurate
analysis of wviral variation, and the emergence of
quasispecies, during the course of infection may offer
new insights into, among other things, the wide-range of
patient susceptibility currently observed with SARS-
CoV-2, and the role of aging in this, with some patients
having no or mild symptoms while others develop severe
complications. Indeed, precedent for this exists, with a
very recent report of hepatitis-C treatment failure in a
subset of patients linked to the emergence of HCV
mutations in quasispecies that confer, in those patients,
resistance to treatment with conventional therapies [21].
Therefore, detailed sequence information is essential for
elaborating the basis of viral adaptive responses in
individual hosts during the course of the disease, which
will help define the transmission, pathogenicity and
treatment strategies for viruses, especially those that are
new like SARS-CoV-2, in real time.

It is important to note that a modified CCS strategy was
reported recently, with an average accuracy of individual
reads of ~0.2%, which increases to ~0.01% if indels in
homopolymer tracts are excluded [22]. However, a
critical difference between LUCS and this modified CCS
approach is that the latter is restricted to analyses of
genomic DNA samples that do not require PCR
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amplification [22, 23]. Hence, this new approach, while
accurate, is not feasible with current DNA sequencing
platforms that require PCR. This fundamental difference
underscores the advantage of using LUCS for high-
throughput studies of molecular targets-like mtDNA and
viral nucleic acid sequences. In addition to the fact that
LUCS can be used with either of the two existing third-
generation sequencing platforms (PacBio or ONT), its
greatest strength is that LUCS is resistant to the
introduction of PCR-based errors. Thus, in sequencing
situations where PCR amplification is obligate (e.g.,
genomic analysis of single cells, or of pathogens in
clinical samples where the number of pathogen
genomes is limiting), LUCS is superior for achieving
the high resolution needed for studies of such complex
mixtures.

In closing, LUCS is a tool that dramatically improves the
single-molecule sequencing accuracy of whatever base
technology it is used with, and its accuracy will only
increase as the accuracy of the base sequencing
technologies are increased. For example, ONT has
recently released a new R10 chemistry, which delivers
95% accuracy in a single read. Testing of LUCS with
R10 chemistry is currently underway, and we are
confident that our current error rate of 1X10*
errors/nucleotide will be improved further. Of final note,
long DNA molecules are highly prone to artificial
recombination, or PCR jumping, during amplification. If
left unaccounted for, PCR jumping fully compromises
any attempts to sequence individual long molecules of
DNA. The use of two UMIs for each DNA molecule
analyzed by LUCS, one at the 5’-end and the other at the
3’-end, enables in-silico detection and removal of
chimeras prior to final genome assembly.

MATERIALS AND METHODS
Animals and sample collection

All studies with animals reported herein were reviewed
and approved by the institutional animal care and use
committee of Northeastern University. Heterozygous
mice with a single amino acid substitution (D257A) in
the nuclear-encoded DNA  polymerase-y  gene
(PolgP>7A'*) were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA) and bred to generate
homozygous mtDNA mutator mice (PolgP?374D2574) 15,
24]. Oocytes were collected after superovulation of
young adult (2-month-old) homozygous female mice and
denuded of all adherent somatic cells, as detailed
previously [24]. Individual oocytes were incubated in 1
ul of lysis buffer (10 mM EDTA, 0.5% SDS, 0.1 mg/ml
Proteinase-K) for 3 hours at 37° C and then stored under
mineral oil at —80° C.

Barcoding PCR

For barcoding primers, we used 125-bp oligonucleotides
with three distinct regions. The 5’-end was designed as a
64-73-bp synthetic code devoid of guanines, followed by
a random 24-bp barcode also devoid of guanines, and
ending with a 28-37-bp 3’-end complementary to the
target DNA sequence. The synthetic primers were
comprised of the first 29-bp of the 5’-end of the
corresponding barcoding primer (Table 1). The initial 4
cycles of PCR were conducted in 2-pl reactions
containing 1X-concentrated LA Taq reaction buffer
(Takara Bio USA, Mountain View, CA, USA), 0.2 mM
of each ANTP, 2.5 uM of each barcoding primer, 10 pM
of each synthetic primer, and 0.1 units of Hot Start Ex
Taq DNA Polymerase (Takara Bio USA), along with
lysate prepared from individual oocytes as follows: lysate
(1-pl frozen stock; see above) was diluted 10,000-fold in
ultrapure water, resulting in an estimated 10 mtDNA
molecules per reaction well. Reactions were cycled at 95°
C for 30 sec of denaturation followed by 14 min of
combined annealing and extension at 68° C. After 4
cycles, reactions were held at 68° C while 48-pul of
additional barcoding primer-free PCR mix was added,
bringing the final 50-pl reaction to 1X-concentrated LA
Taq reaction buffer, 0.2 mM of each dNTP, 0.1 uM of
each barcoding primer, 10 pM of each synthetic primer,
and 1.25 units of Hot Start Ex Taq DNA Polymerase.
Reactions were continued for an additional 45 cycles as
described above.

Library preparation and sequencing

For this experiment, 10 wells of barcoding PCR product
were pooled and sequenced. Based on mtDNA copy
number estimates from mtDNA content per mouse
oocyte [25], this yielded ~100 unique molecules per
sample. Products were cleaned using SPRIselect beads
(Beckman Coulter Life Sciences, Indianapolis, IN, USA)
at 1:4 ratio of product to bead-buffer to diminish the
retention of short, non-target by-products. The
QuantiFluor dsDNA System (Promega, Madison, WI,
USA) was used to quantify DNA concentrations, and 1.5
pg of cleaned DNA was prepared using the 1D
amplicon/cDNA by Ligation SQK-LSK-109 protocol
(ACDE 9064 v109 revD 23May2018; Oxford
Nanopore Technologies, Oxford, United Kingdom) for
sequence analysis using a MinlON R9 flow cell and
MinlON software version 19.10.1 (Oxford Nanopore
Technologies). Sequence data were base called using
Guppy  software  (version 2.3.7) and  the
dna 19.4.1 450bps_{flipflop.cfg model (Oxford Nanopore
Technologies).
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Single-molecule PCR and Sanger sequencing

Lysate from individual oocytes was serially diluted in
order to perform single-molecule PCR, wherein each
amplicon originates from a single mtDNA template, as
described [26]. In brief, lysate was diluted 300,000-
fold in ultrapure water, with approximately 1/3 of the
wells being positive and 2/3 being negative for
mtDNA. Mitochondrial DNA was initially amplified
with primers 3092F and 3031R (Table 1) in 15 pl
reactions using Q5 Hot Start Polymerase (New
England Biolabs, Ipswich, MA, USA), with final
reagent concentrations of 1X-concentrated Q5 reaction
buffer, 0.2 mM of each dNTP, 10 uM of each primer
and 0.3 units of Q5 Hot Start Polymerase. Reactions
were cycled 45 times (30 sec of denaturation at 95° C
followed by 16 min of combined annealing and
extension at 68° C). Following the initial cycles of
PCR, amplicons were re-amplified for 15 additional
cycles with Hot Start Ex Taq Polymerase using
primers 3140F and 3003R (Table 1) and the following
reagent concentrations: 1X-concentrated LA Taq
reaction buffer, 0.2 mM of each dNTP, 10 uM of each
synthetic primer and 0.15 units of Hot Start Ex Taq
DNA Polymerase. Amplicons were sequenced across
24 sequencing reactions on a 3720x] DNA Analyzer
(Applied Biosystems, Foster City, CA, USA). Reads
were assembled and aligned against the C57BL/6
mouse mtDNA  reference genome (GenBank
AY172335.1).  CodonCode  Aligner  software
(CodonCode Corporation, Centerville, MA, USA) was
used for assemblies and alignments, and each mutation
identified was manually confirmed. Sequences with
overlapping peaks were discarded as mixed molecules
derived from multiple, rather than single, templates.

Data processing and analysis

Short reads were removed with Filtlong
(https://github.com/rrwick/Filtlong) to a minimum
size of 13.7-kb, which is 300-bp shorter than expected
length of a UMI-labelled PCR fragment. Reads
were then processed in Porechop (https://github.com/
rrwick/Porechop) to remove residual ONT adapters.
Forward and reverse reads were sorted using Cutadapt
(http://journal.embnet.org/index.php/embnetjournal/ar
ticle/view/200) in paired-end mode. The reverse
complement of the reverse reads (https://github.com/
1h3/seqtk) and the forward reads were concatenated
into a single FASTQ file. Read UMIs were extracted
using the template sequence in Cutadapt, leaving two
FASTA files: forward-read UMIs and reverse-read
UMIs. Read UMIs were clustered in python using a
network-based approach, which leverages the
repetitiveness of read UMIs and the linkage
information between forward- and reverse-read UMIs.

Chimeric clusters were pruned by removing read
UMIs if metric longest common subsequence (LCS)
exceeded 0.125 from the largest UMI in the cluster.
This limit was chosen because it allows for no more
three differences between read and centroid, in line
with the expected error rate of ONT-based reads.
Metric longest common subsequence is defined for
two sequences, a and b, of length |a| and |b|, where:

| LCS(a,b)|
max(|a |,/ b1)

metric LCS =

Filtered clusters were written to separate FASTQ files.
Reads were aligned to the mtDNA reference sequence
(GenBank AY172335.1) using minimap2 (https:/
github.com/lh3/minimap2) and were polished with
medaka (https://github.com/nanoporetech/medaka).
Genotypes were called using nanopolish (https:/
github.com/jts/nanopolish) on all medaka alignments
to confirm that no chimeras were present, and to
generate base-called and raw signal support fractions
for all variants. Compiled data (mean = SEM) were
analyzed by ANOVA and Student’s #-test.

For this study, a total of 548,000 reads were sequenced,
of which 78,105 (14.25%) met the hard length threshold
of 13,700-bp. Forward and reverse reads sorted in
Cutadapt yielded 31,367 forward reads and 15,036
reverse reads that had adapters on both ends, for a total
of 46,403 reads remaining at this stage. Only 11,588
reads had UMIs at both ends that met the length and
quality cut off for UMIs. Of these UMIs, 1,001 5'-UMIs
and 892 3'-UMIs repeated more than once in the dataset,
which accounted for 5,208 and 5,732 reads averaging
5.2 and 6.4 repetitions, respectively. In clustering, 1,147
reads were clustered by their 5'-UMIs and 1,645 reads
were clustered by their 3-UMlIs. After filtering
for chimeras, 12 clusters remained at a minimum depth
of 20 reads, with an average depth of 42.1 reads/
consensus.
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