COMPLEMENTARY INFORMATION AND
LEARNING TRAPS*

ANNIE LIANG AND XIAOSHENG MU

We develop a model of social learning from complementary information: short-
lived agents sequentially choose from a large set of flexibly correlated information
sources for prediction of an unknown state, and information is passed down across
periods. Will the community collectively acquire the best kinds of information?
Long-run outcomes fall into one of two cases: (i) efficient information aggregation,
where the community eventually learns as fast as possible; (ii) “learning traps,”
where the community gets stuck observing suboptimal sources and information
aggregation is inefficient. Our main results identify a simple property of the un-
derlying informational complementarities that determines which occurs. In both
regimes, we characterize which sources are observed in the long run and how
often. JEL Codes: D81, D83, D62, 032.

I. INTRODUCTION

Societies accumulate knowledge over time through the efforts
of many individuals. The quality of current knowledge—for exam-
ple, about science and engineering—translates into the quality of
decisions that are made, and so the rates at which societies accu-
mulate knowledge matter for their welfare. These rates vary sub-
stantially across contexts. What helps a society efficiently refine
its knowledge over time? What, in contrast, can cause the social
process of knowledge acquisition to become trapped in slower, less
productive paths?

As a leading example, we focus on research as a channel of
knowledge accumulation. The process of research is inherently
“path-dependent,” because past research affects what current
researchers know, and thus which investigations they consider
most valuable to undertake. If research were centrally planned,
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then a planner’s directives could account for the externalities of
researchers’ activities. But researchers are often motivated by
more immediate and individual goals, such as making the biggest
possible discoveries now (rather than enabling others to make bet-
ter discoveries later). How does the socially optimal information
acquisition process compare to a decentralized one that results
from the choices of short-lived agents, who do not internalize the
externalities of their information acquisitions?

In this article, we consider a sequence of researchers working
on a shared scientific problem, which we model as acquiring infor-
mation over time about the value of an unknown parameter. We
study the rate at which the society learns about this parameter.
Our main results demonstrate that the structure of the interde-
pendencies across the available signals—more precisely, informa-
tional complementarities—is crucial in determining whether the
decentralized process is essentially efficient, or whether it gets
trapped at a learning rate inferior to the optimal one.!

To fix ideas, consider as a stylized example a particular re-
search question: whether dopamine levels are predictive of the on-
set and severity of Parkinson’s disease (PD). Each researcher can
conduct a study to learn more about the typical level of dopamine
in PD patients. A study is modeled as a Gaussian signal, whose
realization is informative about the value of the parameter. For
example, researchers have various technologies for measuring
dopamine levels, such as different imaging methods. We model
limits on researchers’ resources by restricting each researcher to
obtain one signal about the unknown parameter from a finite
but potentially large set of signals: in the example, this corre-
sponds to a choice of which measurement to use in the study.2 The

1. The basic feature that information can be complementary appears in many
settings besides research—for example, informational complementarities are rel-
evant for auctions (Milgrom and Weber 1982a, 1982b), for firms (Athey and
Schmutzler 1995), for team composition (Chade and Eeckhout 2018), and within
markets (Goldstein and Yang 2015; Chen and Waggoner 2016). We build on this
literature—which has primarily focused on one-time information acquisitions—by
asking how informational complementarities affect learning in a dynamic setting.
Prior work studying the rate of learning include Vives (1992), DeMarzo, Vayanos,
and Zwiebel (2003), Golub and Jackson (2012), Hann-Caruthers, Martynov, and
Tamuz (2017), and Harel et al. (2018) among others.

2. This feature relates to a number of recent papers also studying dynamic
information acquisition from different kinds of information—see, for example,
Che and Mierendorff (forthcoming) and Mayskaya (2019), who study learning
from two Poisson signals, and Sethi and Yildiz (2016) and Fudenberg, Strack, and
Strzalecki (2018), who study learning from multiple Gaussian signals. Although
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researcher’s goal is to maximize immediate reduction in un-
certainty about the unknown parameter. This framework is a
social learning model, but our article departs from the clas-
sic model (Banerjee 1992; Bikhchandani, Hirshleifer, and Welch
1992; Smith and Sgrensen 2000) by assuming that all informa-
tion is public, thus turning off the inference problem essential
to informational cascades in the previous literature.® In addi-
tion, we suppose that information is endogenously acquired—as in
Burguet and Vives (2000), Mueller-Frank and Pai (2016), and Ali
(2018)—with the new feature that agents choose from a finite set
of complementary signals.

In our model, the choices of successive researchers are linked
because of informational complementarities, which we now de-
scribe. Each signal observation is modeled as a linear combina-
tion of the parameter of interest, various confounding variables,
and idiosyncratic Gaussian noise.* How informative the observa-
tion is depends on what is known about the confounding vari-
ables. For example, sensors used to measure dopamine may also
be sensitive to other chemicals in the brain. The informativeness
of the sensor’s measurement is improved by a better understand-
ing of the extent to which these chemicals bias the reading. In
this sense, information about the confounding variables, and ob-
servations of measurements confounded by those variables, are
complementary.

Formally, we propose a definition for complementary sets
of signals, which builds on prior work by Borgers, Hernando-
Veciana, and Krahmer (2013). A complementary set is a set of
signals that (i) if observed infinitely often, reveals the value
of the payoff-relevant parameter, and (ii) has no proper subset
that also reveals the parameter. Removing any source from such
a set therefore makes it impossible to learn the parameter of
interest.

the framework bears some resemblance to classic multi-armed bandit models
(Gittins 1979; Easley and Kiefer 1988), the signals in our setting do not directly
produce payoffs.

3. A recent paper that also uses a social learning model to study the take-
up of new technologies is Wolitzky (2018). This model departs from the classic
herding model by assuming that agents observe the outcomes of previous agents
and not their actions, which leads to very different learning dynamics relative to
our assumption that agents observe the information of past agents.

4. Online Appendix G has a discussion of how our main results might be
extended beyond normal signals.
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Our main result is that if the smallest complementary set of
signals is of size K—where K is the number of unknown variables
(including both the parameter of interest and all of the confound-
ing variables)—then a decentralized research process achieves
efficient learning in the long run. In contrast, if the smallest com-
plementary set contains fewer than K signals, then early subopti-
mal information acquisitions can propagate across time, creating
persistent inefficiencies in information gathering. We call such
outcomes “learning traps.”

The main intuition is as follows. The tension between the
interests of short-lived agents and a patient social planner arises
because optimal learning may require investments in information
about confounding variables that will be useful only later in the
learning process. If the smallest complementary set has cardinal-
ity equal to the number of unknowns, then the payoff-relevant
parameter can only be learned if all confounds are also learned.
Thus even short-lived agents will choose to acquire information
that reveals the confounding variables, leading them to eventually
discover the best set of signals (that leads to efficient learning).
By the same logic, if there is a complementary set of size smaller
than the number of unknowns, then it is possible to learn the
payoff-relevant parameter even if some confounding variables are
never learned. This allows the wedge between short- and long-run
incentives to persist.

The main technical innovation behind our results is to es-
tablish a formal connection between society’s learning dynamics
and a limiting dynamical system (see Section VII for details). We
demonstrate that a set of signals is observed in the long run (from
some prior beliefs) if and only if it corresponds to a stable point in
this system. This connection enables us to completely characterize
the possible long-run observation sets.

Next we consider the size of welfare losses associated with
learning traps. We show that the rate of information aggrega-
tion can be arbitrarily slower than the efficient benchmark. Mea-
sured in terms of absolute discounted payoffs, inefficiency can also
be arbitrarily large in a learning trap. However, if measured on
a per period basis (i.e., considering average discounted payoffs),
the payoff loss caused by a learning trap vanishes in the patient
limit because society eventually learns (albeit slowly) the value
of the payoff-relevant parameter. We present a generalization of
our model, where the unknown variables are slowly changing over

6102 Jlequaos( G| uo 1sanb Aq 0GEH8GS/68E/1/SE | AOBISqe-ajoIuEe/alb/woo dno-olwspese//:sdpy Wwo.y papeojumoq



COMPLEMENTARY INFORMATION AND LEARNING TRAPS 393

time.? In this model, we show that even the average discounted
loss can be large. Thus, except in the special case of perfect per-
sistence, learning traps can lead not only to inefficiencies in the
rate of information aggregation but also to inefficiencies in payoff
terms.

Having shown that learning traps can exist, and that the wel-
fare loss under these traps can be large, we turn to considering
different interventions for avoiding learning traps. We show that
policy makers can restore efficient information aggregation by pro-
viding information about the relevant confounding variables (for
example, a forward-looking funding agency can support research
about confounding variables that are not of direct societal inter-
est). Another effective intervention is to reshape the payoff struc-
ture so that agents can be rewarded for information acquired over
many periods. These observations are consistent with practices
that have arisen in academic research, including the establish-
ment of third-party funding agencies (e.g., the National Science
Foundation) to support basic science and methodological research,
and the evaluation of researchers based on advancements devel-
oped across several papers (e.g., tenure and various awards).

The learning traps we demonstrate connect to a body of work
regarding dynamic investment in human capital (Jovanovic and
Nyarko 1996; Cunha and Heckman 2007; Lizzeri and Siniscalchi
2008) that studies complementarities in production technologies
(rather than complementarities in information). There are cer-
tain high-level connections. For example, this literature shows
that early investment choices affect the incentives to invest in
the future and that early misallocations potentially lead to worse
long-run outcomes (similar to our learning traps). Related to our
Section IX, interventions can push agents onto better skill-
acquisition paths. However, the specific form of long-run inef-
ficiencies we obtain follows from the structure of informational
complementarities in our setting.

Our framework, and the long-run learning patterns we iden-
tify, are particularly related to Sethi and Yildiz (2016, 2019).
These papers study a setting where individuals can learn from one

5. This is a technically challenging setting to analyze and correspondingly
prior work is limited: Jovanovic and Nyarko (1996), Moscarini, Ottaviani, and
Smith (1998), Frongillo, Schoenebeck, and Tamuz (2011), Alatas et al. (2016), and
Dasaratha, Golub, and Hak (2018) are the only social learning settings with a
dynamic state that we are aware of.
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another over time, choosing which of many individuals to listen
to in each period. A key force in Sethi and Yildiz (2016) is that re-
peatedly listening to a given individual is informative about that
individual’s “perspective,” which allows for improved (future) de-
biasing of that person’s information. This pushes individuals to
return to those they have listened to before. The same force plays
an important role in our article. Repeated acquisition of a given
signal helps agents learn not just the payoff-relevant parameter
but also all of the variables confounding that signal. Unlike in
Sethi and Yildiz (2016), we allow for different signals to share
confounding variables. Thus, observations of a given signal not
only help agents interpret future observations of signals of the
same kind; they also potentially aid in the interpretation of other
signals. It is exactly the structure of these learning spillovers
that determines whether inefficient learning can obtain in the
long run. Our finding of learning traps in the present study is re-
lated to the observation of long-run homophily in Sethi and Yildiz
(2019), where individuals eventually listen only to others whose
perspectives are correlated with their own.

Finally, in related work (Liang, Mu, and Syrgkanis 2017,
2019), we study dynamic learning from correlated Gaussian sig-
nals, focusing on informational environments with a single com-
plementary set, where agents must attend to all signals to learn
the payoff-relevant parameter. We find there that myopic infor-
mation acquisition is in some cases efficient from period 1 (Liang,
Mu, and Syrgkanis 2017), and that under conditions on the prior
belief, the optimal path of information acquisitions admits a sim-
ple and exact characterization (Liang, Mu, and Syrgkanis 2019).
The present article considers a substantially more general class
of informational environments—in particular, allowing for soci-
ety to have multiple ways for eventually learning the state—but
focuses on asymptotic efficiency. We find here a necessary and
sufficient condition for long-run efficiency, which nests the envi-
ronment considered in Liang, Mu, and Syrgkanis (2017, 2019). In
environments that do not satisfy this condition, we demonstrate
that in contrast, learning traps may obtain.

II. EXAMPLES

Our main results demonstrate that in some informational
environments, society maximizes the long-run speed of learning,
whereas in others, agents can persistently acquire information
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from inefficient sources. The examples below illustrate proper-
ties of the informational environment that differentiate these two
cases.

II.A. Existence of Learning Traps

Suppose agents sequentially acquire information to learn
about an unknown parameter w ~ N (i, 05) and have access to
three kinds of signals. The first is

X1 =3w+ b+ ey,

where b ~ N(up, 02) is a persistent and unknown bias that is in-
dependent of w. The noise term ¢; ~ N(0, 1) is independent of
and b, and is redrawn each time an agent acquires signal X;. The
second signal provides information about the bias term b:

Xo =b+ &o.

Finally, there is an unbiased signal about the parameter of
interest:

X3 =w+ s3.

Like €1, €9 and ¢3 are standard Gaussian noise terms independent
of w and b (and of one another).

Agents are indexed by discrete time and act in order. Each
agent chooses to acquire one independent observation of either
X1, Xy, or X3, where his choice is determined by which observation
would be most informative about w (i.e., maximally reduces the
uncertainty about w). This signal realization is then made public.

Repeated acquisitions of X3 suffice for agents to eventually
learn w. But acquisitions of X, if debiased via acquisitions of Xs,
can lead to much faster learning. This follows from our subse-
quent Claim 1, but one can also observe that X; — X is Blackwell
more-informative (in the sense of Blackwell (1951)) than two re-
alizations of X3; thus, agents learn faster by alternating between
X and X, than by acquiring X3 exclusively.®

Suppose that agents have large initial uncertainty about the
bias term b—specifically, the prior variance o2 > 8. In this case,

6. Note that X; — Xy = 3w + ¢, where ¢ ~ NV(0, 2), whereas two independent
realizations of X3 provide the same information as 2w + ¢, with ¢ ~ N(0, 2). The
former is clearly more informative.
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the signal X3 is initially most informative about w, as the biased
signal X is noisier due to the uncertainty about b, and the signal
X5 about b is completely uninformative (recall that b is indepen-
dent of w in the prior). The first agent’s acquisition of X3 does not
provide any information about b, so the foregoing arguments show
that X3 remains most informative for the second agent. Iterating
this logic, it follows that every agent chooses to acquire Xs.

This example demonstrates that although it is socially opti-
mal for agents to invest in understanding the bias b, short-sighted
agents will choose instead to repeatedly acquire X3, maximizing
immediate gains but leading to inefficiently slow long-run learn-
ing about w. We refer to the set {X3} as a “learning trap.””

I1.B. Efficient Information Aggregation

In contrast, consider the following informational environment
with signals

X1 =w+b +e,
Xo = b1 + by + &2,

X3 = by + €3,

Xy = 10w + by + 2bg + &4.

The payoff-relevant parameter » and confounding variables b1,
by are persistent and jointly normally distributed, while the (in-
dependent) noise terms &1, 9, €3, €4 are standard Gaussian and
i.i.d. across realizations.

As in the previous environment, there are multiple sets of
signals that permit long-run learning of w. Specifically, repeated
observations of signals in any of the four sets {X3, Xy, X5}, {X1, X3,
X4}, {X1, X3, X4}, and {Xo, X3, X4} will lead agents to eventually
learn w. In Section IV, we formalize the sense in which these are
“complementary” sets of signals. However, the rates of learning
permitted by each of these sets are not the same, and society’s
long-run speed of learning is strictly maximized when agents re-
peatedly acquire X, X3, and X,.8 It turns out that starting from

7. Online Appendix G contains a similar example of a learning trap with
binary states and signals.

8. This follows from the later Proposition 2: it can be checked that
val({Xe, X3, X4}) = 1—80 is largest across the four sets, so the “best set” is
S* = {Xy, X5, X4}.
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any prior belief over the unknown variables, agents will eventu-
ally discover this best set and exclusively acquire these signals.

The key difference between the two environments is that in
this example the inefficient sets {X1, Xo, X3}, {X1, Xo, X4}, and
{X1, X3, X4} share their confounding variables (b1 and b2) with the
efficient set {X», X3, X4 }. Repeated observation of signals from any
inefficient set will thus lead agents to learn b; and b9, given which
they can debias signals in the efficient set. This informational
spillover from learning about w to learning about the confounding
variables means that inefficient sets fail to be self-reinforcing—
the information they generate helps agents realize that there are
more informative signals. Put another way, the complementarities
between signals in an inefficient set are eventually outweighed by
stronger complementarities with signals outside of the set. Only
the efficient set {Xs, X3, X4} has the property that complemen-
tarities within the set remain strongest (see the discussion after
Theorem 1 for more detail).

In contrast, in our example in Section II.A, repeated acquisi-
tion of the signal X3 provides no information about the variable
b; that confounds the signals {Xj, Xy}, and so repeated observa-
tion of X3 is self-reinforcing. Our subsequent main results make
this contrast precise, and explain in general how the structure
of complementarities across signals determines the efficiency of
long-run information aggregation.

III. SETUP

III.A. Informational Environment

There are K persistent unknowns: a real-valued payoftf-
relevant state w and K—1 real-valued confounding variables
bi,..., bx_1.° We assume that the state vector 6 := (w, by, ...,
bx_1) follows a multivariate normal distribution N (1°, =°), where
1’ is a K x 1 real-valued vector, and the prior covariance matrix
% has full rank.!?

There are N (fixed) kinds or sources of information available
at each discrete period ¢ € Z,. Observation of source i in period ¢

9. Online Appendix D.3 discusses the case of multiple payoff-relevant states.

10. The full-rank assumption is without loss of generality. If there is linear
dependence across the states, the model can be reduced to a lower-dimensional
state space that satisfies full rank.
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produces a realization of the random variable
X =(c;,0) +¢ =weir +bicig+ - +bg_1cik + ¢, & ~N(O,1),

where ¢; = (¢;1,..., ¢;x) 1s a vector of constants, and the noise
terms ¢! are independent from each other and across periods. Nor-
malizing these noise terms to have unit variance is without loss
of generality because the coefficients ¢; are unrestricted. We often
drop the time indices on the random variables, associating X; =
{ci, 0) + &; with source ; and understanding that the noise term is
independently realized with each new observation. We use [N] to
denote the set {1,..., N} of all sources.

The payoff-irrelevant unknowns b1,..., bx_ 1 produce corre-
lations across the sources, and can be interpreted for example as
confounding variables. The difference between the terms b; and
the terms ¢; is that the former are persistent over time whereas
the latter are i.i.d.—so the variances of b; can be reduced over
time, but the variances of ¢; are fixed. Separating these terms
allows us to distinguish between reducible and irreducible noise
(with respect to learning about w) in the signals.

II1.B. Decision Environment

Agents are indexed by discrete time ¢# and move sequentially.
Each agent first chooses one of the N sources, observing an inde-
pendent realization of the corresponding signal. He then predicts
w, selecting an action a € R and receiving the payoff —E[(a — w)?].
The agent’s optimal prediction is the posterior mean of w, and the
payoff is the negative of the posterior variance of . We note that
the action a is not necessary for specifying the model: the analy-
sis is unchanged if we directly assume that each agent chooses to
acquire the signal that maximally reduces posterior variance of
. In some applications, the latter formulation (where the agent
acquires information but does not take an action) may be more
natural—for example, if the agent’s goal is simply to progress
scientific understanding—whereas in others, it may be natural
to suppose that the agent does take an action on the basis of
his information (e.g., recommends a treatment) and receives a
higher payoff when his belief is more precise. We also note that
the specific payoff function of quadratic loss is not crucial. Our
subsequent analysis, with the exception of the result in part (b) of
Proposition 2, goes through for arbitrary payoff functions u(a, w).
See Online Appendix D.1 for more detail.
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We assume throughout that all signal realizations are pub-
lic. Thus, each agent ¢ faces a history A/~! € ([N] x R}"! = H*"!
consisting of all past signal choices and their realizations, and his
signal acquisition strategy is a mapping from histories to sources.
At every history A'~1, the agent’s payoffs are maximized by choos-
ing the signal that minimizes his posterior variance of w.!!

II1.C. Society’s Information Acquisitions

Because the environment is Gaussian, the posterior variance
of wis a deterministic function V(qy,. . ., gy) of the number of times
q; that each signal i has been observed so far.!? Thus, each agent’s
signal acquisition is a function of the prior and past signal acqui-
sitions only (and does not depend on the signal realizations). This
allows us to track society’s acquisitions as deterministic count
vectors

mit) = (my(®), ..., my@) € ZY,

where m;(¢) is the number of times that signal i has been observed
up to and including period ¢. The count vector m(¢) evolves accord-
ing to the following rule: m(0) is the zero vector, and for each time
t > 0 there exists i* € argmin; V(m;(¢) + 1, m_;(¢)) such that

m@)+1 ifi=7*
mi(t +1) = { m; () otherwise’
That is, the count vector increases by 1 in the coordinate corre-
sponding to the signal that yields the greatest immediate reduc-
tion in posterior variance. We allow ties to be broken arbitrarily,
and there may be multiple possible paths {m(¢)}7°.

We are interested in the long-run frequencies of observation
lim;_, o, ”L‘T(t) for each source i—that is, the fraction of periods even-
tually devoted to each source. As we show in Section VI, these
limits exist under a weak technical assumption. But note that the
limit may depend on the prior belief, as already illustrated by the
example in Section II.A. Which long-run outcomes are possible is
a central question we seek to understand in this article.

11. Online Appendix D.2 shows that our results generalize to agents who are
slightly forward-looking.

12. See Appendix A.1 for the complete closed-form expression for V, which
depends on the prior £° and signal coefficient vectors {ci}f\i 1
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IV. COMPLEMENTARY SET OF SOURCES

We first introduce a definition for a complementary set of
sources. These sets will play an important role in the subsequent
results. As a preliminary step, we assign to each set of sources
S C [N]:=({1,..., N} an informational value.

IV.A. Informational Value
1

Write 1(q1,...,q9n) = Tar—av for the posterior precision
about the payoff-relevant state o given g; observations of each
source i, where the prior precision is 7y := (0, ..., 0). The infor-
mational value of S, denoted val(S), is defined to be the largest
feasible improvement on precision (averaged across many peri-

ods), when signals are acquired from S alone.!3

DEFINITION 1. The (asymptotic) informational value of the set S is
the maximal per period increase in the precision about w over
a long horizon:

ty _
val(S) = lim sup |:max (M>j| ,

t—00 q'e@s t

where
QL = {q ez : Zf\ilqi =t and supp(q) C S}

is the set of all count vectors that allocate ¢ observations
across (only) the sources in S.

The informational value is defined with respect to learning
about w, but we omit this dependence since the payoff-relevant
state is fixed throughout this article. The informational value
turns out to be prior-independent, as we show in Proposition 1. Fi-
nally, note that val(S) exceeds 0 only if it is possible to completely
learn w given infinite observations from S, as otherwise the reduc-
tion in variance is finite, and hence the average improvement of

13. This definition of informational value closely resembles the definition of
the value of a team in Chade and Eeckhout (2018), although we consider belief
precision instead of negative posterior variance. Using posterior variances in Def-
inition 1 would yield a value given by val(S) = lim sup;_, o [maxqz <q; (—tV(qt ))]
This together with Definition 2 would return a similar notion of complementar-
ity but would present the technical issue of evaluating co — oo because value as
defined this way (is always negative and) can be —oo.

6102 Jlequaos( G| uo 1sanb Aq 0GEH8GS/68E/1/SE | AOBISqe-ajoIuEe/alb/woo dno-olwspese//:sdpy Wwo.y papeojumoq



COMPLEMENTARY INFORMATION AND LEARNING TRAPS 401

each signal observation (taking the total number of observations
to infinity) must be 0.

IV.B. Complementary Set

Our definition for a complementary set is based on Borgers,
Hernando-Veciana, and Krahmer (2013); see Online Appendix H
for an extended comparison.

DEFINITION 2. The set S is complementary if val(S) > 0 and
(1) val(S) > val(§’) + val(S\S")

for all nonempty proper subsets S’ of S.

Condition (1) requires that the marginal value of having ac-
cess to the sources in any &’ C S is increased by also having access
to sources S\S'.'* We note that the first condition that val(S) > 0
is implied by condition (1) whenever S is not a singleton.'®

IV.C. Characterization of Complementary Sets

The proposition below shows that a set S is complementary
if and only if its signals uniquely combine to produce an unbiased
signal about w.

ProrosITION 1.8 is a complementary set if and only if the
first coordinate vector in RX admits a unique decomposi-
tion (1,0,...,0) =Y, s B° - ¢c;, where all coefficients g are
nonzero.

This characterization makes clear a second, equivalent way of
understanding complementary sets: they are sets with the prop-
erty that observing all signals within that set infinitely often re-
veals the value of the payoff relevant state, and moreover, all sig-
nals are crucial for this recovery—that is, removing any source(s)
from a complementary set makes recovery of the payoff-relevant
state impossible.

Proposition 1 allows us to identify complementary sets based
on their signal coefficient vectors.

14. Since val(#f) = 0, the inequality can be rewritten as val(S) — val(S\S') >
val(§’) — val(¥).

15. The condition val(S) > 0 has bite when |S| = 1. Specifically, it rules out all
singleton sets S, except those consisting of a single unbiased signal X = cw + ¢.
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ExaMPLE 1. The set {X;7, Xo, X5} consisting of signals X7 = w + b;
+ &1, Xy = b1 + by + €9, and X3 = by + €3 is complementary.
To see this, observe that (1, 0, 0) =c¢; — ¢co + c3 (where ¢; =
(1, 1, 0) is the coefficient vector associated with X7, co = (0, 1,
1) is the coefficient vector associated with X,, and c3 = (0, 0,
1) is the coefficient vector associated with X3). In contrast, the
set of signals {X4, X5} with X4 = w 4+ 1 and X5 = 2w + g2 is not
complementary, because many different linear combinations
of X4 and X5 produce an unbiased signal about w. The set {Xj,
Xy, X3, X4} is also not complementary, although it contains
two complementary subsets.

IV.D. Best Complementary Set S*

The informational value for any complementary set can be
computed using the following claim.

CLAIM 1. Let S be a complementary set. Then, val(S) = m,

where g are the ones given in Proposition 1.16

More generally, val(S) can be determined for an arbitrary set
S as follows: If S contains at least one complementary subset, then
its value is equal to the highest value among its complementary
subsets; otherwise the value of S is zero. This result will follow
from Proposition 2 part (a) in the next section.

Throughout the article, we assume that there is at least one
complementary set and that complementary sets can be com-
pletely ordered based on their informational values.

AssUMPTION 1. There is at least one complementary set S C [N].

AssUMPTION 2. Each complementary set has a distinct informa-
tional value; that is, val(S) # val(S’) for any pair of comple-
mentary sets S # S'.

Assumption 1 guarantees that the payoff-relevant parameter
w is identifiable given the available signals, and hence it is possible
to learn it eventually. Our main results extend even when this
assumption fails, and we refer the reader to Online Appendix C

16. This claim and the definition of informational value together imply that the
minimum posterior variance at time ¢ (when restricting to signals in S) vanishes

(Sies 1851)°
t

like asymptotically.
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for details and discussion of some subtleties. Assumption 2 is
generically satisfied.

Together, these assumptions imply the existence of a “best”
complementary set, whose informational value is largest among
complementary sets. This set plays an important role, and we
denote it by S* in the remainder of this article.

V. OprTiMAL LONG-RUN OBSERVATIONS

We show next that optimal information acquisitions eventu-
ally concentrate on the best complementary set S*. Specifically,
consider the distribution

185" Viest
)\.;k = ngs* |ﬁ}g*|
0 otherwise,

which assigns zero frequency to sources outside of the best set S*,
and samples sources within S* proportionally to the magnitude
of B°". That is, each signal in S* receives frequency proportional
to its contribution to an unbiased signal about w, as defined in
Proposition 1. The result below shows two senses in which A* is
the optimal long-run frequency over signals.

PROPOSITION 2.
(a) Optimal Information Aggregation: val([N]) = val(S®).
Moreover, for any sequence q(t) such that lim,_ ., =< z—m _

val([N]), it holds that lim,_ o, 22 = 2.

(b) Social Planner Problem: For any §, let ds(¢) be the vector of
signal counts (up to period ¢) associated with any signal path
that maximizes the §-discounted average payoff

Us; =E |:— Z(l — 88 (ap — w)2:| )
t=1

Then there exists § < 1 such that lim;_, @ = A* for every

5> 8.

Part (a) says that the informational value of $* is the same as
the informational value of the entire set of available sources. In
this sense, having access to all available sources does not improve
on the speed of learning achievable from the best complementary
set S* alone. Moreover, this speed of learning is attainable only
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if the long-run frequency over sources is the distribution 1*.17
Part (b) of Proposition 2 says that a (patient) social planner—who
maximizes a discounted average of agent payoffs—will eventually
observe sources in the proportions described by A*. Based on these
results, we subsequently use 1A* as the optimal benchmark.

VI. MAIN RESULTS

We now ask whether society’s acquisitions converge to the op-
timal long-run frequencies A* characterized above. We show that
informational environments can be classified into two kinds—
those for which efficient information aggregation is guaran-
teed (long-run frequencies are A* from all prior beliefs), and
those for which “learning traps” are possible (there are prior
beliefs from which agents end up exclusively observing some
set of sources different from the efficient set S*). Separation of
these two classes depends critically on the size of the smallest
complementary set.

VI.A. Learning Traps versus Efficiency

Our first result uses an assumption on the signal structure,
which requires that every set of 2 < K signals are linearly inde-
pendent:

AsSSUMPTION 3 (Strong linear independence). Every £ < K signal
coefficient vectors ¢; , ¢;,, . .., ¢;, are linearly independent.

If there are at least K signals (i.e., N > K), then Assumption 3
requires every K signal coefficient vectors to be linearly indepen-
dent. If instead N < K, then all of the signal coefficient vectors
should be linearly independent.

Strong linear independence will be assumed in part (a) of
the following result, although not in part (b) or in any of our
subsequent results.

17. This result builds on Chaloner (1984), who shows that a “c-optimal simul-
taneous experiment design” exists on at most K points. Part (a) also supplies a
characterization of the optimal design itself and demonstrates uniqueness, with a
minor technical difference that we impose an integer constraint on signal counts.
We are not aware of prior work on the discounted payoff criterion studied in
part (b).

6102 Jlequaos( G| uo 1sanb Aq 0GEH8GS/68E/1/SE | AOBISqe-ajoIuEe/alb/woo dno-olwspese//:sdpy Wwo.y papeojumoq



COMPLEMENTARY INFORMATION AND LEARNING TRAPS 405

THEOREM 1.
(a) Assume strong linear independence. Then for every com-
plementary set S with |S| < K, there exists an open set of
prior beliefs given which agents exclusively observe signals
from S.
(b) If there are no complementary sets with fewer than K
sources, then starting from any prior belief, lim;_. ”L‘T(” =Af
holds for every signal i.

Part (a) of the theorem generalizes our example in
Section II.A. It says that every small complementary set (fewer
than K signals) is exclusively observed in the long run from some
set of priors.'® When that complementary set is not the best one,
it is a “learning trap.”?

In contrast, if no complementary sets are smaller than size
K,?° then a very different long-run outcome obtains: starting from
any prior, society’s information acquisitions eventually approxi-
mate the optimal frequency. Thus, even though agents are short-
lived (“myopic”), they end up acquiring information efficiently. We
mention that the conclusion of part (b) can be strengthened to
m;(t) — A} -t being bounded as ¢ — oo (see Online Appendix B).
Thus, in particular, signals outside of the efficient set S* are ob-
served only finitely often. This result provides a stronger sense
in which society’s information acquisitions will be asymptotically
efficient under the stated assumptions in part (b) of Theorem 1.

We now provide a brief intuition for Theorem 1, and in partic-
ular for the importance of the number K. Since each agent chooses
the signal whose marginal value (reduction of posterior variance
of w) is highest, any set S on which signal acquisitions concen-
trate must satisfy two properties. First, all signals in the set must
repeatedly have their turn as “most valuable,” so that agents do
not focus on a strict subset of S. This condition requires that the

18. In the example in Section II.A, the set {X3} is a complementary set of size
1, while K = 2.

19. Note that the dynamics here are deterministic. Instead of bad signal
realizations causing a failure of learning, efficient learning either fails or suc-
ceeds depending on the prior and signal structure. This is a key difference be-
tween our result and the more classic learning frictions in Banerjee (1992),
Bikhchandani, Hirshleifer, and Welch (1992), and Smith and Sgrensen (2000).
We thank an anonymous referee for pointing this out.

20. It follows from Proposition 1 that there are no complementary sets with
more than K sources, so this is equivalent to assuming that all complementary
sets are of size K.
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long-run outcome is a complementary set, where (by definition)
all sources are critical to the value of the set.

Second, the marginal values of signals in that set must be
persistently higher than marginal values of other signals. Not
all complementary sets satisfy this criterion, because the sources
within a given complementary set S could have even stronger
complementarities with sources outside of the set. If that were
the case, observation of sources within S would eventually push
agents to acquire information outside of S.

No complementary set S consisting of K sources can satisfy
this second property unless it is the best set: as observations accu-
mulate from such a set, agents learn about all of the confounding
variables and come to evaluate all sources according to “objective”
(i.e., prior-independent) asymptotic values. Repeated acquisitions
of signals from S improve the value of signals in S* over the value
of signals in S. Thus, agents eventually turn to the sources in
S*, achieving efficient information aggregation as predicted by
part (b) of Theorem 1.

In contrast, if agents observe only £ < K sources, then they
can have persistent uncertainty about some confounding vari-
ables. This may cause society to persistently undervalue those
sources confounded by these variables and continually observe
signals from a small complementary set. We saw this already in
the example in Section II.A, where agents failed to obtain any in-
formation about the confounding variable b; and thus persistently
undervalued the sources X; and Xs. The same intuition applies to
part (a) of Theorem 1.

One may argue that the condition that no complementary set
has fewer than K sources is generically satisfied. However, if we
expect that sources are endogenous to design or strategic motiva-
tions, the relevant informational environments may not fall un-
der this condition. For example, signals that partition into differ-
ent groups with group-specific confounding variables (as studied
in Sethi and Yildiz 2019) are economically interesting but non-
generic. Part (a) of Theorem 1 shows that inefficiency is a possible
outcome in these cases.

Finally, we use a few examples to illustrate some implications
of Theorem 1. First, it is possible that agents end up concentrating
on an inefficient set of higher cardinality than the optimal set.

EXAMPLE 2. Suppose the available signals are X; = o + b1 + €1,
Xg = b1 + by + e2, X35 = bg + €3, Xu = o + b3 + ¢4, and
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X5 = b3 + ¢5; strong linear independence is satisfied. There
are two complementary sets, {X7, X2, X5} and {X4, X5}, and
the set {X4, X5} is efficient. But part (a) of Theorem 1 tells
us that both complementary sets are potential long-run out-
comes (since K = 4). Thus from some set of priors, agents will
end up exclusively observing the inefficient set {X;, Xs, X3},
which is of larger size than the optimal set.

In Section I1.A, we already saw that agents may concentrate
on a set of lower cardinality than the efficient complementary set.
Thus, we cannot in general compare sizes of learning traps versus
efficient sets.

It is also straightforward to see that adding sources can
worsen overall learning.

ExAMPLE 3. Suppose the available signals are X7 = 3w + b1 + &1
and Xy = b1 + e2. Then, {X;, X5} is the only complementary
set. It follows from part (b) of Theorem 1 that agents will
achieve the efficient benchmark with a value of val({ X7, Xo}) =
%. Now suppose we add X3 = w + €3, returning the example

in Section II.A. The efficient benchmark does not change, but

now there are priors that lead to exclusive observation of X3,

achieving val({X3}) = 1.

Relatedly, worsening the information content of a signal can
improve the speed of long-run learning.?!

ExaMPLE 4. Consider the environment of Section II.A with signals
X1 =3w+ b1 +¢1and Xo = b1 + g9, and X3 = w + ¢3. Now
suppose we degrade X3 by replacing it with X, = o + b; + ¢3.
In contrast to Section II.A, once signal X3 has been degraded
in this way, all priors lead to long-run information acquisition
in the efficient frequency, which concentrates on X; and X.

We note that, in general, adjustments to the signal structure
can result in changes to the efficient speed of learning, so the
welfare comparison is not straightforward.

VI.B. General Characterization of Long-Run Outcomes

We now generalize Theorem 1, providing a complete charac-
terization of the possible long-run observations (as the prior belief

21. We thank an anonymous referee for this example.
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varies) for an arbitrary signal structure. We need a new definition,
which strengthens the notion of a complementary set.

DEFINITION 3.8 is a strongly complementary set if it is com-
plementary, and val(S) > val(S’) for all sets &’ such that
IS—-8=1|8 -8 =12

This property can be understood as requiring that the set is
complementary and also something more: These complementari-
ties are “locally best” in the sense that it is not possible to obtain
stronger complementarities by swapping out just one source. We
point out that while the definition of complementary sets does
not depend on the ambient set (i.e., [N]) of available sources, the
notion of strong complementarity does.

ExXAMPLE 5. Suppose the available signals are X; = o + b1 +
g1, Xo = b1 + €9, and X3 = 2b; + e3. Then the set {Xl,
Xy} is complementary but not strongly complementary, as
val({Xi, X3}) > val({X;, X5}).

Theorem 2 says that long-run information acquisitions con-
centrate on a set S (starting from some prior belief) if and only if S
is strongly complementary. This generalizes Theorem 1 to signal
structures that need not satisfy strong linear independence.

THEOREM 2. The set S is strongly complementary if and only if
there exists an open set of prior beliefs given which agents
eventually exclusively observe signals from S (that is, long-
run frequencies exist and have support in S).%3

When there is a unique strongly complementary set, then
all priors must eventually lead to this set. Part (b) of Theorem 1
provides a sufficient condition that implies uniqueness, and more-
over gives that the single strongly complementary set is the best
complementary set. When there are multiple strongly complemen-
tary sets, then different priors lead to different long-run outcomes,

22. In fact, the requirement that S is complementary is extraneous. One can
show using Proposition 1 that if val(S) > val(§’) for all sets &’ with |S —§'| =
|8 — 8| = 1, then S must be complementary.

23. The “if” part of this statement can be strengthened as follows. The set
S is strongly complementary if there exists any prior belief given which agents
eventually choose from S (see Appendix A.6). Thus, the regions of prior beliefs that
would lead to different strongly complementary sets cover the whole space.
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some of which are inefficient. Part (a) of Theorem 1 describes a
sufficient condition for such multiplicity.

Theorem 2 implies that learning must always end in a com-
plementary set, so that (myopic) learners will eventually recover
the payoff-relevant state, albeit potentially slowly. This is so even
in settings such as the following: Agents have access to X; =
w + b1 + &1 and Xp = {55 + &2, where the prior belief over ® and
b, is standard normal.?* Here, the initial agents will acquire X,
viewing X as less informative about w. But what Theorem 2 tells
us is that agents must eventually switch over to acquiring (the
efficient signal) Xo—this is because once agents have learned the
sum w + by very well, the marginal value to learning more about
this biased sum will be smaller than the marginal value to learn-
ing directly about w. In Section VIII.B, we revisit this observation
that agents eventually learn the state starting from all prior be-
liefs and show that this can fail when we allow for arbitrarily
small amounts of evolution in the state.

Obtaining a complete characterization of the sets of prior
beliefs associated with different long-run outcomes is challeng-
ing, since society’s signal path may in general exhibit complex
dynamics—for example, switching multiple times between differ-
ent complementary sets (including the efficient set). This makes
it difficult to relate the initial prior to long-run learning behav-
ior. In the next section we discuss the technical details that go
into the proof of Theorem 2. In particular, we explain how we are
able to determine the range of possible long-run outcomes despite
incomplete knowledge about which occurs under a given prior.%

VII. PROOF OUTLINE FOR THEOREM 2

VII.A. Limiting Dynamical System

We first introduce the following normalized asymptotic poste-
rior variance function V*, which takes frequency vectors » € AN-1
as input, where the ith coordinate of A is the proportion of total

24. We thank an anonymous referee for this example.

25. For some signal structures, such as the example in Section II.A, a partial
characterization is feasible. We showed previously that if w and b, are independent
under the prior, and the prior variance of b1 exceeds 8, then every agent observes
X3, leading to a learning trap. If instead the prior variance of b; is smaller than
8, then we can show that every agent chooses from the efficient set {X7, Xs}. See
Online Appendix E for the analysis as well as a related example.
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acquisitions devoted to source i:26

V) = tlgglot -V ().

The RHS is well defined because we can extend the domain of the
posterior variance function V' so that it takes positive real numbers
(and not just natural numbers) as arguments (see Appendix A.1).
The asymptotic variance function V*(1) is convex in A and its
unique minimizer is the optimal frequency vector A* (see Lemma 5
in Appendix A.2).

For simplicity of explanation, we assume throughout this sec-
tion that at large ¢, the signal choice that minimizes V also min-
imizes V*.27 Then, the frequency vector A(t) := @ evolves in the
coordinate direction that minimizes V*. We refer to this as co-
ordinate descent. Unlike the usual gradient descent, coordinate
descent is restricted to move in coordinate directions. This re-
striction reflects our assumption that each agent can only acquire
a discrete signal (rather than a mixture of signals).

One case where the rest point of coordinate descent coincides
with that of gradient descent is when V* is everywhere differen-
tiable, because differentiability ensures that directional deriva-
tives can be written as convex combinations of partial derivatives
along coordinate directions. In this case, evolution of A(¢) necessar-
ily ends at the global minimizer A*, implying efficient information
aggregation.

VII.B. Differentiability of V*

The function V*, however, is not guaranteed to be differen-
tiable everywhere. Consider our example from Section II.A with
signals X1 = 3w + by + €1, Xo = b1 + 69, X3 = w + &3, and fix the
frequency vector to be A = (0, 0, 1). It is easy to verify that the
asymptotic posterior variance V*(1) is increased if we perturb A
by reassigning weight from X3 to X; or from X3 to X,. But V* is
reduced if we reassign weight from X3 to both X; and X5 in an even

26. Note that the coordinates of 2 must sum to 1.

27. This is not in fact generally correct, and the potential gap is one of the
technical challenges in the proof. Nevertheless, we do show that at large ¢, the
signal choice that minimizes V approximately minimizes V*.
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manner.?® So V* is not differentiable at 1. Such points of nondiffer-
entiability are exactly why learning traps are possible: coordinate
descent can become stuck at these vectors A, so agents repeatedly
sustain an inefficient frequency of information acquisitions.?’

A sufficient condition for V* to be differentiable at a frequency
vector turns out to be that the signals receiving positive frequen-
cies at that vector span all of RX. This explains the result in
part (b) of Theorem 1: when each complementary set consists
of K signals, society has to observe K signals to learn the
payoff-relevant state w. Thus, driven by learning about w, agents
end up observing signals that span RX, which leads to efficient
information aggregation.

VII.C. Generalization to Arbitrary Subspaces

Now observe that our arguments above were not special to
considering the whole space RX. If we restrict the available sources
to some subset of [N], and look at the subspace of RX spanned
by these sources, our previous analysis applies to this restricted
space.

Specifically, given any prior belief, define S to be the set of
sources that agents eventually observe. Let S be the available
signals that can be reproduced as linear combinations of signals
from S—these sources belong to the “subspace spanned by S.” We
can consider the restriction of the function V* to all frequency
vectors with support in S. Parallel to the foregoing discussion,
the restricted version of V* is both convex and differentiable in
this subspace (at frequency vectors that assign positive weights to

28. This follows from the formula V*(i1, Ao, A3) = A3 + %. The derivative
of V* in either direction (1, 0, —1) or (0, 1, —1) is positive, while its derivative in
the direction (%, % —1) is in fact negative.

29. The above intuition connects to a literature on learning convergence
in potential games (Monderer and Shapley 1996; Sandholm 2010). Define an

N-player game where each player i chooses a number ); € R, and receives pay-
off — (Zﬁvzl Aj) SVEL) = =V* (W) Then, we have a potential game with
j=1%J

(exact) potential function —V*, and our long-run observation sets correspond to
equilibria of this game. This is an infinite potential game with a nondifferentiable
potential function. It is known that Nash equilibria in such games need not occur
at extreme points, and this is consistent with our observation of learning traps.
Nonetheless, we note that the connection to potential games is not sufficient to
derive our main results, because our agents receive payoff —V(\¢) rather than its
asymptotic variant V*.
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signals in S). Thus, coordinate descent must lead to the minimizer
of V* in this subspace.

Just as the overall optimal frequency vector A* is supported
on the best complementary set S*, the frequency vector that min-
imizes V* in the restricted subspace is also supported on the best
complementary set within S. So agents can eventually concentrate
signal acquisitions on the set S only if S is best in its subspace;
that is, val(S) = val(S).

VII.D. An Equivalence Result

Next we demonstrate that a set is “best in its subspace” if and
only if it is strongly complementary.

LEMMA 1. The following conditions are equivalent for a comple-
mentary set S:
(a) val(S) = val(S).
(b) S is strongly complementary.
(¢c) Foranyi € Sandj ¢ S, 9;V*(1°) < 9;V*(1%), where 1° (pro-
portional to |°|) is the optimal frequency vector supported
on S.

This lemma states that a strongly complementary set S
is “locally best” in three different senses. Condition (a) says
such a set has the highest informational value in its subspace.
Condition (b) says its informational value is higher than any set
obtained by swapping out one source. Condition (c¢) says that start-
ing from the optimal sampling rule over S, reallocating frequen-
cies from signals in S to any other signal increases asymptotic
posterior variance and reduces speed of learning. The rest of this
subsection is devoted to the proof of Lemma 1.

The implication from (a) to (b) is straightforward. Suppose S is
best in its subspace, and S’ is obtained from S by removing signal
i and adding signal j. Then the informational value of S’ is either 0
or equal to the highest value among its complementary subsets. In
the latter case, such a complementary subset necessarily includes
signal j, and Proposition 1 implies that j belongs to the subspace
spanned by S. Thus S’ ¢ S, and val(S') < val(S) = val(S). The in-
equality is in fact strict, because complementary sets have differ-
ent values by Assumption 2.

We show that (b) implies (c). Suppose condition (c) fails, so
some perturbation that shifts weight from source i € S to source
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J ¢ S decreases V*. Then, by definition of informational value,
we would have val(S U {j}) > val(S). But as Proposition 2 part (a)
suggests, the value of S U {j} is equal to the highest value among
its complementary subsets. Strong complementarity of S ensures
that S is the best complementary subset of S U {j}. Thus we obtain
val(S U {j}) = val(S), leading to a contradiction.

Finally, condition (c) implies that AS is a local minimizer of
V* in the subspace spanned by S (where the restriction of V* is
differentiable at 1°). Because V* is convex, the frequency vector
1° must in fact be a global minimizer of V* in this subspace. Hence
S is best in its subspace and (a) holds.

VIL.E. Completing the Argument

These arguments tell us that information acquisitions even-
tually concentrate on a strongly complementary set, delivering
one direction of Theorem 2: S is a long-run outcome only if S is
strongly complementary.

To prove the “only if” direction, we directly construct pri-
ors such that a given strongly complementary set S is the long-
run outcome. The construction generalizes the idea in the exam-
ple in Section II.A, where we assign high uncertainty to those
confounding variables that do not afflict signals in S and low
uncertainty to those that do. This asymmetry guarantees that
signals in S have persistently higher marginal values than the
remaining signals. Last, we use part (c) of the above Lemma 1
to show that agents focus on observing signals from S, rather
than the potentially larger set S. Indeed, if the historical fre-
quency of acquisitions is close to A°, then signals in S have higher
marginal values than the remaining signals in their subspace;
and as these signals in S continue to be chosen, society’s fre-
quency vector remains close to A°. This completes the proof of
Theorem 2.

VIII. WELFARE LOSS UNDER LEARNING TRAPS

The previous sections demonstrate that long-run learning is
sometimes inefficient; how large can this inefficiency be? In this
section, we study the welfare loss under learning traps and, in
the process, develop a generalization of our model in which the
unknown states evolve over time.
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VIII.A. Welfare Criteria

Two classic welfare criteria are (1) the speed of information
aggregation and (2) the discounted average payoff achieved by
agents within the community.

According to the first criterion, the welfare loss under learn-
ing traps can be arbitrarily large. Specifically, as the following
example shows, the informational value of the best complemen-
tary set can be arbitrarily large compared to the set that agents
eventually observe (and thus, the achieved speed of learning can
be arbitrarily slow compared to what is feasible, see footnote 16).

ExAMPLE 6. There are three available sources: X7 = w + b1 + ¢1,

Xo =b1 + &9, and X3 = %a) + e3, where L > 0 is a constant.

In this example, the ratio % = %2 increases without
bound as L — oo. But for every choice of L, there is a set of

priors given which X3 is exclusively observed.?’

For the second criterion, define

Ut = EM|:_ Y (1-88" (o - w)z}

t=1

to be the §-discounted average payoff across agents who follow a
“myopic” signal acquisition strategy with optimal predictions a;.
Also define U,SSP to be the maximum §-discounted average payoff,
where the social planner can use any signal acquisition strategy.
Note that both payoff sums are negative, since flow payoffs are
quadratic loss at every period.

Again from Example 6, we see that for every constant ¢ > 0,
there is a signal structure and prior belief such that the limiting
payoff ratio satisfies®!

UM
liminf% >c.
§—1 US

30. The region of inefficient priors (that result in suboptimal learning) does
decrease in size as the level of inefficiency increases. Specifically, as L increases,
the prior variance of b1 has to increase correspondingly for the first agent to choose
X3.

31. Example 6 implies the ratio of flow payoffs at late periods can be arbitrarily
large. As § — 1, these later payoffs (see footnote 16) dominate the total payoffs from
the initial periods (since the harmonic series diverges). So the ratio of aggregate
discounted payoffs is also large.
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Thus, the payoff ratio can be arbitrarily large. Note that because
M

payoffs are negative, larger values of the ratio % correspond to
8

greater payoff inefficiencies.
On the other hand, the payoff difference vanishes in the pa-
tient limit, that is,

lim (U7 ~U) =0

in all environments. To see this, note that agents eventually
learn w even while in a learning trap, albeit slowly. Thus flow
payoffs converge to 0 at large periods, implying lim; .; US? =
lim; ., UM = 0.

In what follows, we show that this conclusion critically
depends on the assumption that unknown states are per-
fectly persistent. We outline a sequence of autocorrelated mod-
els that converge to our main model (with perfect state per-
sistence). At near perfect persistence, welfare losses under
learning traps can be large according to all of the above
measures.

VIII.B. Extension: Autocorrelated Model

In our main model, the state vector 0 = (w, b1,..., bg_1) is
persistent across time. Consider now a state vector 6° that evolves
according to the following law:

0 ~N(0,2%; 0= u-0'+V1—a-n,
where 1 ~ N(0, M).

Above, means are normalized to 0, and the prior covariance matrix
of the state vector at time ¢ = 1is ©°. We restrict the autocorrela-
tion coefficient /o to belong to (0,1). Choice of « = 1 returns our
main model, and we will be interested in approximations where
«a is close to but strictly less than 1. The innovation n' ~ N(0, M)
captures the additional noise terms that emerge under state evo-
lution, which we assume to be i.i.d. across time.?? Fixing signal

32. The coefficient +/1 — « in front of 5’ is chosen so that when no signals are
observed, society’s posterior covariance matrix about 6/ will converge to M. This
allows us to meaningfully consider the limit as « — 1 while keeping M fixed.
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coefficients {c;}, every autocorrelated model is indexed by the
triple (M, =°, ).
In each period, the available signals are

X! = (c;,0") + ¢!, & ~N(,1).

The signal noises ¢! are i.i.d. and further independent from the
innovations in state evolution. The agent in period ¢ chooses the
signal that minimizes the posterior variance of «’, and the social
planner seeks to minimize a discounted sum of such posterior
variances.

We have the following result.

THEOREM 3. Suppose S is strongly complementary. Then there ex-
ist M and X° such that for every ¢ > 0, there is an a(s) < 1
with the following property: in each autocorrelated model
M, =°, o) with a > a(e),

(a) all agents only observe signals in S;
(b) the resulting discounted average payoff satisfies

limsup UY < —(1—8)-\/(1—04)( My > ,

51 val(S)

while it is feasible to achieve a patient payoff of

M
. . SP _ . — 1
liminf USF > ~(1+e) \/(1 “’<va1(3*))

by sampling from S*.

Part (a) generalizes Theorem 2, showing that every strongly
complementary set is a potential long-run observation set given
imperfect persistence. This suggests that the notion of strong com-
plementarity and its importance extend beyond our main model
with unchanging states.

Part (b) shows that whenever S is different from the
best complementary set S*, then social acquisitions result in
significant payoff inefficiency as measured by the payoff ra-

tio. Indeed, for « close to 1 the ratio limtg%lg—gﬁ is at least
8

val(S*)
val(S) ?

structure.

which can be arbitrarily large depending on the signal
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The following proposition strengthens this statement, using
Example 6 to show that the payoff difference between optimal and
social acquisitions can also be arbitrarily large.

ProPOSITION 3. For every ¢ > 0, there exists a signal structure
as in Example 6 and a corresponding autocorrelated model
(M, %°, o) such that

lim inf USSP > —¢;
§—1

. 1
lim sup USM < ——.
§—1 3

From this analysis, we take away that learning traps can re-
sultin (potentially large) average payofflosses as long as unknown
states are not perfectly persistent over time.

IX. INTERVENTIONS

We have shown that learning traps are possible and can lead
to large welfare loss. This naturally suggests a question of what
kinds of policies could preclude learning traps, or break agents
free from an inefficient path of learning. We compare several pos-
sible policy interventions in this section: increasing the quality
of information acquisition (so that each signal realization is more
informative); restructuring incentives so that agents’ payoffs are
based on information obtained over several periods (equivalent
to acquisition of multiple signals each period); and providing a
one-shot release of free information, which can guide subsequent
acquisitions.

IX.A. More Precise Information

Consider first an intervention in which the precision of each
signal draw is uniformly increased. We model this intervention
by supposing that each signal acquisition now produces B inde-
pendent observations from that source (where the main model is
nested as B = 1). The result below shows that providing more in-
formative signals is of limited effectiveness: all potential learning
traps for B = 1 remain potential learning traps under arbitrary
improvements to signal precision.

COROLLARY 1. Suppose that for B = 1, there is a set of priors given
which signals in S are exclusively viewed in the long run.
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Then, for every B € Z., there is a set of priors given which
these signals are exclusively viewed in the long run.??

This corollary follows directly from Theorem 2.34

IX.B. Batches of Signals

Another possibility is to restructure the incentive scheme
so that agents’ payoffs are based on information acquired from
multiple signals. In practice, this might mean that payoffs
are determined after a given time interval: For example, re-
searchers may be evaluated based on a set of papers, so that
they maximize the impact of the entire set. Alternatively, agents
might be given the means to acquire multiple signals each pe-
riod. For example, researchers may be arranged in labs, with
a principal investigator directing the work of multiple people
at once.

Formally, suppose that each agent can allocate B observations
across the sources (where B = 1 returns the main model). Note
the key difference from the previous intervention: It is now possi-
ble for the B observations to be allocated across different signals.
This distinction enables agents to take advantage of the pres-
ence of complementarities, and we show that efficient information
aggregation can be guaranteed in this case:

ProPOSITION 4. For sufficiently large B, if each agent acquires B
signals every period, then society’s long-run frequency vector
is A* starting from every prior belief.

33. However, the set of prior beliefs that yield S as a long-run outcome need
not be the same as B varies. For a fixed prior belief, subsidizing higher quality ac-
quisitions may or may not move society out of a learning trap. To see this, consider
the signal structure and prior belief from the example in Section II.A. Increasing
the precision of signals is ineffective there: as long as the prior variance on b is
larger than 8, each agent still chooses signal X3 regardless of signal precision.
In Online Appendix F, we provide a contrasting example in which increasing the
precision of signals indeed breaks agents out of a learning trap from a specified
prior.

34. To see this, observe that B independent observations reduce the noise
variance of each signal to %. Thus the model with signal coefficient vectors {c;}
and B > 1 observations is equivalent to our main model (B = 1) with scaled
coefficient vectors {+/B - ¢;}. Because scaling does not change the family of strongly
complementary sets, this model produces the same set of learning traps as in our
main model.
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Thus, given sufficiently many observations each period, agents
will allocate observations in a way that approximates the optimal
frequency.

The number of observations needed for long-run efficiency,
however, depends on details of the informational environment. In
particular, the required B cannot be bounded as a function of the
number of states K and number of signals N.3?> See Appendix A.7.1
for further details.

IX.C. Free Information

Finally, we consider provision of free information to the
agents. We can interpret this either as release of information that
a policy maker knows, or as a reduced form for funding specific
kinds of research, the results of which are then made public.

Formally, the policy maker chooses several signals Y; =
(pj,0) + N(0,1), where each |pjllo < y so that signal precisions
are bounded by y2. At time ¢t = 0, independent realizations of
these signals are made public. All subsequent agents update their
prior beliefs based on this free information in addition to the his-
tory of signal acquisitions thus far.

We show that given a sufficient number of (different kinds
of) signals, efficient learning can be guaranteed. Specifically, if
k < K is the size of the best set S*, then 2—1 precise signals are
sufficient to guarantee efficient learning.

PROPOSITION 5. Let & := |S*|. There exists a y < oo, and £—1 signals
Y; = (p;,0) + N(0, 1) with ||p;|l2 < y, such that with these free
signals provided at ¢ = 0, society’s long-run frequency vector
is A* starting from every prior belief.

The proof is by construction. We show that as long as agents
understand those confounding variables that appear in the best
set of signals (these variables have dimension £—1), they will come
to acquire information from this set.%

35. The required B depends on two properties. First, it depends on how well
the optimal frequency A* can be approximated by B (discrete) observations. Sec-
ond, it depends on the difference in learning speed between the best set and the
next best complementary set, which determines the slack that is permitted in the
approximation of 1*.

36. This intervention requires knowledge of the full correlation structure as
well as which set §* is best. An alternative intervention, with higher demands on
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We point out the following converse to Proposition 5: when-
ever agents begin with sufficiently low prior uncertainty about
the confounding variables that afflict the signals in S*, it is im-
possible for a malevolent third party to provide free information
and induce a learning trap as the long-run outcome.

X. CONCLUSION

We conclude with brief mention of additional directions and
interpretations of the model. First, although we have focused on a
sequence of decision-makers with a common prior, we might alter-
natively consider multiple communities of decision makers, each
seeded with a different prior belief. For example, in the absence
of a global research community, researchers in different countries
may share different prior beliefs and pass down their information
within their country. Under this setup, our results can be inter-
preted as answering the question: will individuals from different
communities end up observing the same (best) set of sources, or
will they persistently acquire information from different sources?
Our main results show that when there is a unique strongly com-
plementary set of sources, then different priors wash out. Other-
wise, different priors can result in persistent differences across
communities in what sources are listened to and consequently
differences in beliefs.?’

Second, although we have focused on research as the leading
interpretation of the framework, the model is relevant to other
settings of knowledge acquisition where (i) information is passed
down across time/generations, and (ii) information acquisition is
myopic at each period. For example, we may consider a sequence
of managers within a company (or politicians within a state)
who seek only to maximize profits during their tenure, but
acquire information that has externalities for future managers.
Alternatively, we may consider knowledge acquisition by a single
decision maker over time, for example, an aspiring computer
programmer’s choices of what classes to take or blogs to read.

information provision but lower demands on knowledge of the environment, is to
provide K—1 (sufficiently precise) signals about all of the confounding variables.

37. In our main model with persistent states, beliefs about » end up converg-
ing across the population to the truth. However, beliefs about other confounding
variables need not converge. And when states are not fully persistent (as in Section
VIIL.B), even beliefs about » can diverge across communities.
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Here, too, investment in certain skills (e.g., abstract math classes)
may not be immediately useful but may allow the individual to
learn faster in future courses (e.g., an algorithms course). Our
article characterizes the cases in which a student who “only
learns things that are useful right now” will nevertheless end up
developing his abilities as fast as a student who recognized in
advance the complementarities across courses.

Finally, although we consider choice between information
sources, a more general model may consider choice between com-
plementary actions. The concepts of efficient information aggrega-
tion and learning traps have natural generalizations (i.e., actions
that maximize society’s long-term welfare, versus those that do
not). Relative to the general setting, we study a class of comple-
mentarities that are micro-founded in correlated signals. It is an
interesting question of whether and how the forces we find here
generalize to other kinds of complementarities.

UNIVERSITY OF PENNSYLVANIA
CoLuMBIA UNIVERSITY

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The
Quarterly Journal of Economics online.

APPENDIX A: PROOFS FOR THE MAIN MODEL

The structure of the appendix follows that of the article. We
provide proofs for the results in our main model, where states are
perfectly persistent. Appendix B provides proofs for the autocor-
related model as discussed in Section VIIL.B. The only exception
is that the proof of part (b) of Proposition 2 is more technical, so
it is given in a separate Online Appendix, which also contains
additional results and examples.

A.1. Preliminaries

1. Posterior Variance Function. Throughout, let C denote
the N x K matrix of signal coefficients, whose ith row is the vector
c; associated with signal i. Here we review and extend a basic
result from Liang, Mu, and Syrgkanis (2017). Specifically, we show
that the posterior variance of » weakly decreases over time and
the marginal value of any signal decreases in its signal count.
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LEMMA 2. Given prior covariance matrix £° and ¢; € Z, observa-
tions of each signal i, society’s posterior variance of w is

(2) V(ql, ...,(IN)= [((20)71+C/QC)71]11’

where @ = diag(q, ..., gn). This function V admits an exten-
sion to the larger domain of nonnegative real numbers g; (be-
yond integers), and the extended function is decreasing and
convex in each q;.

Proof Note that (£°)~! is the prior precision matrix and
C'QC =YV g -leic)l is the total precision from the observed
signals. Thus equation (2) simply represents the fact that for
Gaussian prior and signals, the posterior precision matrix is
the sum of the prior and signal precision matrices. The RHS of
equation (2) can be evaluated for any ¢; € R, providing an exten-
sion of the function V to noninteger arguments.

To prove the monotonicity of V, consider the partial order >
on positive semidefinite matrices where A > B if and only if
A — B is positive semidefinite. As g; increases, the matrix @ and
C’'QC increase in this order. Thus the posterior covariance matrix
(29! 4+ C'QC)! decreases in this order, which implies that the
posterior variance of w decreases.

To prove that V is convex, it suffices to prove that V is
midpoint-convex because the function is clearly continuous.?®
Takeqi,...,qn,71,...,ry € R, and lets; = ‘I’T”". Define the corre-
sponding diagonal matrices to be @, R, S. Note that @ + R = 2S.
Thus by the AM-HM inequality for positive-definite matrices, we
have

(@) +00) T+ ()T +CRO) T = 2020 + €SO

Using equation (2), we conclude that V(q4,..., qn) + V(rq,...,rN)
> 2V(s1,..., sy). This proves the (midpoint) convexity of V. O

2. Inverse of Positive Semidefinite Matrices. For future use,
we provide a definition of [X~!];; for positive semidefinite ma-
trices X. When X is positive definite, its eigenvalues are strictly
positive, and its inverse matrix is defined as usual. In general, we
can apply the spectral theorem to write X = UDU’, where U is a

38. A function V is midpoint-convex if the inequality V(a) + V(b) > 2V(#)
always holds. Every continuous function that is midpoint-convex is also convex.
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K x K orthogonal matrix whose columns are eigenvectors of X, and
D = diag(dy, ..., dg) is a diagonal matrix consisting of nonnega-
tive eigenvalues. When these eigenvalues are strictly positive, we
have

K
1
X'=UDU) ! =UDU' =} — - [,
j=1"7

where u; is the jth column vector of U. In this case

K A 2
(3) [Xil]n:ell'Xil'elzzw

d:
j=1 !

is well defined. Even if some d; are 0, we can still use the RHS to
define [X~']11, applying the convention that g =0and § = oo for
any z > 0. Note that by this definition,

K
T = dim 30O i (x4 e,
e—0, = dj + & )

e—0,

since the matrix X + ¢Ix has the same set of eigenvectors as X
(with eigenvalues increased by ¢). Hence our definition of [X~1];; is
a continuous extension of the usual definition to positive semidef-
inite matrices.

3. Asymptotic Posterior Variance. We can approximate the
posterior variance as a function of the frequencies with which
each signal is observed. Specifically, as mentioned in Section VII,
we can define

V) = tlirglot -V (x)

for any A € RY. The following result shows V* to be well defined
and computes its value.
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LEMMA 3. Let A = diag(rq, ..., Ay). Then3®
4 V*() = [(C'AC) 3.

The value of [(C’AC)~!]1; is well defined, see equation (3).

Proof Recall that V(q1,..., qn) = [(ZV)~! + C'QC)~'11; with
Q = diag(ql, ey qN). Thus

-1
t~V(/\1t,...,/\Nt)=|:(%(EO)1+C’AC) ] .
11

Hence the lemma follows from the continuity of [X '];; in the
matrix X. O

A.2. Key Object ¢

We now define an object that will play a central role in
the proofs. For each set of signals S, consider writing the first
coordinate vector e; € RX (corresponding to the payoff-relevant
state w) as a linear combination of signals in S:

el =Zﬂf.ci.

€S
DEFINITION 4. ¢(S) :=ming Y ;s B

That is, ¢(S) measures the size of the “smallest” (in the 5
norm) linear combination of the signals in S to produce an unbi-
ased estimate of the payoff-relevant state. In case w is not spanned
by S, this definition sets ¢(S) = oc.

When S minimally spans o (so that no subset spans), the
coefficients B are unique and nonzero. In this case ¢(S) is easy to
compute. In general, we have the following characterization:

LEMMA 4. For any set S that spans w, ¢(S) = miny s ¢(7) where
the minimum is over subsets 7 that “minimally span” w.

This lemma is a standard result in linear programming, so
we omit the proof.

39. Note that C’ AC is the Fisher information matrix when signals are observed
according to frequencies A. So this lemma can also be seen as an application of the
Bayesian central limit theorem.
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As a corollary, ¢(IN]) = ¢(S*) where S* is the set of signals
that minimize ¢ among all sets that minimally span ». The fol-
lowing proposition, which generalizes Claim 1, makes clear that
this set S* also has the greatest informational value.
PrOPOSITION 6. For any set of signals S, val(S) = qﬁ

In what follows (before Proposition 6 is proved), we abuse def-
inition and let S* denote the minimal spanning set of signals that
minimizes ¢. Accordingly, A* denotes the frequency vector sup-
ported on S* that is proportional to |8°'|. Once we prove Proposi-
tion 6 and Proposition 1, it will follow that S* is exactly the best
complementary set defined in the main text, and there will be no
confusion.

The proof of Proposition 6 uses the following three lemmata:

LEMMA 5. 1* is the unique minimizer of V*(1) as A varies in AN~1,
LEMMA 6. V*(1*) = ¢(S*)%.
LEMMA 7. Suppose Lemma 5 and Lemma 6 hold. Then val([N]) =
1
#(S*)2 "

To see why these lemmata imply Proposition 6, recall that
Lemma 4 gives ¢(S*) = ¢(IN]). So Lemma 7 implies

1

More generally, if we take any set of signals S that span w as the
set of all available signals “[N],” then the same analysis yields

1

val(S) = W

This proves Proposition 6 whenever S spans w. But in case S does
not span o, the posterior variance of w is bounded away from 0
when agents are constrained to observe from S. Thus the posterior
precision t(g’) is bounded above and val(S) = lim sup, . ., g _

t
0, which is also equal to ﬁ because in this case ¢(S) = oo by
definition.

1. Proof of Proposition 1. We can use Proposition 6 to show
Proposition 1. Take any set of signals S. If these signals do not
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span w, then Proposition 6 implies val(S) = 0 and S is not com-
plementary by Definition 2. If a proper subset of S spans w, then
Proposition 6 together with Lemma 4 implies that the informa-
tional value of S is equal to the highest value among its subsets
that minimally span w. Let &’ denote this subset that achieves
this highest value. For this &’ the inequality in Definition 2 is
violated, and S is again not complementary.

Finally, suppose S itself minimally spans . In this case any
nonempty proper subset of S does not span w and has zero in-
formational value, whereas S has positive value. So Definition 2
is satisfied and such sets S are complementary, as described in
Proposition 1.

2. Proof of Lemma 6. It remains to establish Lemmata
5-7. Here we prove Lemma 6; that is, V*(1*) = ¢(S*). This proof
will illustrate why the ¢ function (i.e., the £; norm of 8) plays an
important role.

Without loss of generality we assume S* = {1, ..., k}, which
minimally span o (so £ < K). For 1 < i < k, define a “trans-
formed state” §; = (c;, 8). Then the signals in S* are individual
; plus standard normal noise. The payoff-relevant state » can
be written as

Because we are currently interested in the value of V*(1*) and A*
is supported on S*, only the k£ signals in §* matter. Thus we can
work with this transformed model and focus on the beliefs about
the transformed states. Note that the prior covariance matrix
%9 of the original state vector 6 € RX induces a prior covariance
matrix £° of the transformed state vector § € R*. £° has full rank
because X’ does and the signal coefficient vectors in S* are linearly
independent.

Working in this transformed model, we have that the poste-
rior covariance matrix of 6 is given by

[(20)*1 + diag(qs, . . ., Qk)]_l :
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where q; is the number of observations of signal i. Thus the pos-
terior variance of w is

. -1
V(g 0,....0) = § - [(E)! + diaglar, ... B
It follows that for any frequency vector A supported on S*,

. -1
V() =lim¢- V() = lim¢ - 5 [(20)—1 + diagOuit, .. ., kkt)] B

-1

= }Eg B - [(20)1 + diag(nq, .. ., Ak)] -B
=g - [diagthy, ..., )] "B
i g
o M
By the Cauchy-Schwartz inequality, whenever A4,..., A; are

nonnegative and sum to 1, it holds that

k

g (&
>z (Z |ﬁi|) = p(S")%
t i=1

=1

Moreover, equality holds if and only if each A; is proportional to
|Bi|; that is, when A = A*. We thus deduce that

V(%) = ¢(S*)?,

and that A* uniquely minimizes the value of V* when the frequency
vector is restricted to be supported on S*. Later we prove Lemma 5,
which shows that A* remains the unique minimizer without the
restriction.

3. Proof of Lemma 7 and Proposition 2 Part (o). We now prove
Lemma 7. Intuitively, maximizing average increase in precision is
equivalent to minimizing asympototic posterior variance, leading

to the relation val[N] = =75, which is in turn equal to M;*)Z
by Lemma 5 and 6.
Toward Lemma 7, we first show val([N]) > M;)Z By Defini-

tion 1, val([N]) is the maximal average increase in the precision
about w given all of the available signals. Choose a sequence of
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count vectors ¢’ such that lim;_, o th = A*, then by definition of the
function V* and by Lemma 6,

tlirglot SV(gh) = V*(¥) = ¢(S)>2.

Thus ©(¢") = yin = S5~ It follows that

: t@)—wn 1
valND > lipoup 2 = Gy

In thtta opposite direction, take any sequence ¢’ with
lim sup, T(qtﬂ = val([N]). Because t1( is a constant, we equiva-

lently have lim sup, "2 = val([N]), which gives

1

. . . t - -
h{gglft V(g") val( IV

Passing to a subsequence if necessary, we may assume the fre-
t

quency vector A := lim;_,, % exists. Then by definition of V*, the
LHS of the above display is simply V*(1). We therefore deduce
val([N]) = V;m for some A € AV-1. Since A* minimizes V*, we con-

clude that

1 1 1

valND = 3255 < 7o = s

This proves Lemma 7.

The second half of the analysis proves part (a) of
Proposition 2. Indeed, the inequality in val(IN]) = 5 <
holds equal only if A = A*, since A* is the unique minimizer of V*
by Lemma 5.

A.3. Proof of Lemma 5

1. Case 1: |S*| = K. In this subsection, we prove that A* is
the unique minimizer of V* whenever the set S* contains exactly
K signals. Later we prove the same result even when |S*| < K, but
that proof requires additional techniques.

First, we assume S* ={1,..., K} and let C* be the K x K
submatrix of C corresponding to the first K signals. Replacing c;
with —c; if necessary, we can assume [(C*)"!]y; is positive for 1 <
i < K. The following technical lemma is key to the argument.
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LEMMA 8. Suppose S* ={1, ..., K} uniquely minimizes ¢. Define
C* as above and further suppose [(C*)~1]y; is positive for 1 <
i < K. Then for any signal j > K, if we write c; = ZLK:1 Q- ¢
(which is a unique representation), then | Y% | ;| < 1.

Proof of Lemma 8. By assumption, we have the vector
identity

K
=> Bi-ci with g =1[CH 'y > 0.

i=1

Suppose for contradiction that ZZKZ 1a; > 1 (the opposite case
where the sum is < —1 can be similarly treated). Then some «;
must be positive. Without loss of generality, we assume 7 is the
largest among such ratios. Then «; > 0 and

K K 5 5 K
elZZﬂi~Ci = (Z<'Bl__1 a) 'Ci)'f‘i'(Zai'ci)-
i=1 i=2 i=1

This represents e; as a linear combination of the vectors

c2,..., ck and c;, with coefficients o — B, . Br — ¢ ﬂ—l
and ﬂl . Note that these coefficients are nonnegatwe for each
2<i<K, B -2 ois clearly positive if «; < 0 (since 8; > 0).
Ifo; >0,8 -2 ozl is again nonnegative by the assumption that
o 0(1

B

By definition, ¢({2,.. ., K, j}) is the sum of the absolute value
of these coefficients. ThlS sum is

i(ﬂl—ﬁ—i w) sl ZﬂL (1 Z%)\Z .

=2 =1

But then ¢({2,..., K, j}) < ¢({1, 2,..., K}), contradicting the
unique minimality of ¢(S*). Hence the lemma must be true. O

Proof of Lemma 5 using Lemma 8. Because V(q;,..., gn) is
convex in its arguments, V*(1) = lim; , o ¢ - V(A1¢,. .., Ant) is also
convex in A. To show A* uniquely minimizes V*, we only need to
show A* is a local minimum. In other words, it suffices to show
V*(A*) < V*(1) for any A that belongs to an e-neighborhood of A*.
By definition, S* minimally spans w, and so its signals are linearly
independent. Under the additional assumption that S* has size
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K, we deduce that its signals span the entire space RX. From this
it follows that the K x K matrix C' A*C is positive definite, and by
equation (4) the function V* is differentiable near A*.

We claim that the partial derivatives of V* satisfy the follow-
ing inequality:

(5) IkV* (W) <9;V*(W") < 0,Vj > K.

Once this is proved, we will have, for A close to A*,

N
VO, ooy A AR 1, -2y AN) = VT (Al, e AK 1 Zxk,o,...,o)
k=K

(6) > V.

The first inequality is based on inequality (5) and differentiability
of V*, whereas the second inequality is because A* uniquely mini-
mizes V* when restricting to the first K signals.*° Moreover, when
A # 1%, one of these inequalities is strict so that V*(A) > V*(\*)
holds strictly.

To prove inequality (5), we recall that

V(1) = e[ (C'AC) ey,
Because A = diag(hq, ..., An), its derivative is 9; A = A;;, which is
an N x N matrix whose (i, i)th entry is 1 with all other entries
equal to 0. Using properties of matrix derivatives, we obtain

3 V(W) = —ej(C'AC)IC'A;C(C'AC) ey.

As the ith row vector of C is ¢;, C'A;C is the K x K matrix c;c;].
This simplifies to

3 V* (W) = —[e)(C'AC) 112
At A=A* the matrix C'AC further simplifies to (C*) -

diag(A], ..., %) - (C*), which is a product of K x K invertible ma-
trices. We thus deduce that

1 1 2
RV = — [e’l (C*)7' . diag (A—*, s T*) N -ci] )
1 K

40. See the proof of Lemma 6 before.
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Crucially, note that the term in the brackets is a linear function

of ¢;. To ease notation, we write v' =e] - (C*)~1. diag (% . %) .
1 K

(C*Y)tand y; = (v, ¢;). Then

(7 »V* ) =—-y?% 1<i<N.

For1<i<K,((C*))"!.¢;isjuste;. Thus, using the assumption
[(C*)11y; > 0, Vi, we have

/ *\— . 1
yi =e]-(C") 1~d1ag<)\—i,...,g

(8) =p1+- -+ Brx = ¢(SY).

1 > o — [(CH 'y Bi
v X A

1

On the other hand, choosing any signal j > K, we can uniquely
write the vector c¢; as a linear combination of ¢i,..., cx. By
Lemma 8,

K K

K
@ yi=we)=) a-(ve)=Y ay=¢E) )Y o,
i=1 i1

i=1

where the last equality uses equation (8). Since | ZLKZ 10| < 1, the
absolute value of y; is strictly smaller than the absolute value
of yk for any j > K. This together with equation (7) proves the
desired inequality (5), and Lemma 5 follows. O

2. A Perturbation Argument. We have shown that when ¢ is
uniquely minimized by a set S* containing exactly K signals,

min V*(1) = V(W) = ¢(S)? = ¢(IN])2.

reAN-1

We now use a perturbation argument to show this equality holds
more generally.

LeEmMA 9. For any coefficient matrix C,

(10) min1 V(L) = ¢(IND2.

reAN-

Proof. In general, the set §* that minimizes ¢ may not be
unique or involve exactly K signals. However, we always have
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(by Lemma 4 and Lemma 6)

min V*(X) < V(W) = ¢(S*)? = ¢([N])2.

reAN-1

It remains to prove V*(1) > ¢([N])? for every » € AN~1. Below we
fix ». By Lemma 3, we need to show [(C'AC) 1111 > ¢(IN])2.

Note that we already proved this inequality for generic coef-
ficient matrices C: specifically, when ¢ is uniquely minimized by
a set of K signals, Lemma 5 holds and we have V*(1) > V*(A*) =
#(S*)? = ¢(IN])?. But even if C is “nongeneric,” we can approx-
imate it by a sequence of generic matrices C,,.*! Along this se-
quence, we have

[(C,/nACm)il] 11 2 ¢m( [M )2 s

where ¢,, is the analogue of ¢ for the coefficient matrix C,,.
As m — oo, the LHS approaches [(C'AC) '];;. We show that
on the RHS

lim sup ¢,,([N]) > ¢([N]),

m— 00

which then implies [(C'AC) 111 > ¢(IN])? and the lemma. Indeed,
suppose ey =) ; ,Bi(’") -ci’”) along the convergent sequence, then
e1 = Y ifi - ¢; for any limit point B of 8. Using the definition of
¢, this enables us to conclude liminf,, . o, ¢,,([N]) > ¢([N]), which
is more than sufficient. O

3. Case 2: |S§*| < K. We now consider the case where S* =
{1,...,k} with £ < K. We will show that 1* is still the unique
minimizer of V*(-). Because V*(1*) = ¢(S*)? = ¢([N])?, we know
from Lemma 9 that A* does minimize V*. It remains to show A* is
the unique minimizer.

To do this, we consider a perturbed informational environ-
ment in which signals 2 + 1,..., N are made slightly more

41. First, we may add repetitive signals to ensure N > K. This does not affect
the value of min ; V*(1) or ¢(IN]). Whenever N > K, it is generically true that every
set that minimally spans o contains exactly K signals. Moreover, the equality
d(S) = ¢(S) for S # S induces a nontrivial polynomial equation over the entries
in C. This means we can always find C,, close to C such that for each coefficient
matrix C,,, different subsets S of size K attain different values of ¢, so that ¢ is
uniquely minimized.
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precise. Specifically, let n > 0 be a small positive number. Con-
sider an alternative signal coefficient matrix C with ¢; = ¢; for i <
k and ¢; = (14 n)c; for i > k. Let $(S) be the analogue of ¢ for this
alternative environment. It is clear that ¢(S*) = ¢(S*), while ¢(S)
is slightly smaller than ¢(S) for S # §*. Thus with sufficiently
small 5, the set S* remains the unique minimizer of ¢ (among sets
that minimally span ) in this perturbed environment, and the
definition of A* is also maintained.

Let V* be the perturbed asymptotic posterior variance func-
tion; our previous analysis shows that V* has minimum value
#(S*)? on the simplex. Taking advantage of the connection
between V* and V*, we thus have

. A py
V*(Al,...,AN)zV*(Al,...,kk, kil N )

1+n2" "7 (A +n)?
#(S*)?
Yick M+ gp Lisk M

The equality uses equation (4) and C'AC =), Aicic, =
Yoicrhicic; + X qrpGi¢i. The inequality follows from the
homogeneity of V*.
The display implies that at any frequency vector A,
(11) *)2 *)2
V) > d(S*) > d(S*)

2n+ _ . .
(1n+r;7)2 Zl>k Ai n Zl>k Ai

for some #n > 0.

Hence V*(1) > ¢(S*)? = V*(1*) whenever A puts positive weight
outside of S*. But as shown already, V*(1) > V*(1*) also holds
when A is supported on S* and different from A*.

We conclude that A* is the unique minimizer of V* over
the whole simplex. This proves Lemma 5, which also completes
the proof of Proposition 6 and Proposition 1 as we showed
before.

A.4. Proof of Theorem 1

We show here that Theorem 1 follows from Theorem 2,
which we prove in the next appendix. Indeed, as we explained
in Lemma 1, the set S is strongly complementary if and only
if it has the greatest informational value among signals in its
subspace. Under the assumption of Theorem 1 part (a), every
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complementary set S of size less than K is strongly comple-
mentary because no other signal is in that subspace (otherwise
there would be linear dependence). Thus by the “only if” part of
Theorem 2, there exist prior beliefs that lead to exclusive observa-
tion of signals from S. As for Theorem 1 part (b), the assumption
implies that the subspace spanned by every complementary
set is the whole space, and thus the only strongly complemen-
tary set is S*. Hence the “if” part of Theorem 2 implies that
long-run efficiency is guaranteed.

A.5. Proof of Theorem 2: “Only If” Part

Let signals 1,.. ., k (with & < K) be a strongly complementary
set; by Lemma 1 in the main text, these signals are best in their
subspace. We demonstrate an open set of prior beliefs with the
property that starting from any prior in this set, all agents only
observe these & signals. Because these signals are complementary,
Proposition 1 implies they must be linearly independent. Thus we
can consider linearly transformed states 61, . .., 9k such that these
k signals are simply 61, . .., 6}, plus standard Gaussian noise. This
linear transformation is invertible, so any prior over the original
states is bijectively mapped to a prior over the transformed states.
Thus it is without loss to work with the transformed model and
look for prior beliefs over the transformed states.

The payoff-relevant state » becomes a linear combination
1301 4 - - + A;0, (up to a scalar multiple). Since the first & signals
are best in their subspace, Lemma 8 implies that any other signal
belonging to this subspace can be written as Zle a;0; + N(0,1)
with | Zle a;| < 1. On the other hand, if a signal does not belong
to this subspace, it must take the form of Zlel B:0; + N(0, 1) with
Br+1,..., Bg not all equal to 0.

Now consider any prior belief with precision matrix P; the
inverse of P is the prior covariance matrix (in terms of the
transformed states). Suppose ¢ is a very small positive number,
and P satisfies the following conditions:

1) for1 <i<
(i) for 1 <i#j<

(Gii) fork +1<i <K, P; € [¢, 2¢];
(iv) for 1 <i#j <

<
<

6102 Jlequaos( G| uo 1sanb Aq 0GEH8GS/68E/1/SE | AOBISqe-ajoIuEe/alb/woo dno-olwspese//:sdpy Wwo.y papeojumoq



COMPLEMENTARY INFORMATION AND LEARNING TRAPS 435

Clearly any such P is positive definite, since on each row the
diagonal entry has dominant size.*> Moreover, P contains an open
subset. Below we show that given any such prior, the myopic signal
choice is among the first & signals, and that the posterior precision
matrix also satisfies the same four conditions. As such, all agents
will choose from the first % signals.

Let V = P! be the prior covariance matrix. Applying
Cramer’s rule for the matrix inverse, the above conditions on P
imply the following conditions on V:

() for1 <i <k, V; <26e%
(i) for 1 <i#j <k, Virl <1+ Le)- Vj2%;
(iii) fork +1<i <K, Vi € [+, 2];

(iv) for 1 <i#j <K, |Vy| < Le - Vy.

Here L is a constant depending only on K (but not on ¢). For ex-
ample, the last condition is equivalent to det(P_;;) < Le - det(P_;;).
This is proved by expanding both determinants into multilinear
sums and using the fact that on each row of P the off-diagonal
entries are at most e-fraction of the diagonal entry.

Given this matrix V, the variance reduction of w = Y¥_, A6;
by any signal Zle a;0; + N(0, 1) can be computed as

% N
(Zi,j:l “i)‘jVij)
1+ 37 o Vi

where the denominator is the variance of the signal and the nu-
merator is the covariance between the signal and w. By the first
and last conditions on V, the denominator here is 1 + O(¢?). By

42. Suppose P is a symmetric matrix s.t. P; > ;.| P;j|, then for any vector
x € RE it holds that

K K
x'Px = ZPiixiz + Z 2P;jx;xj > Pi,-xi2 — Z |Pij|(xi2 +xJ2)
i=1 1<i<j<K i=1 1<i<j<K
K
= (P =X 1Psl)a? >0,
i=1 i

with equality only if x is the zero vector. This shows P is positive definite.
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the second and last condition, the numerator is

A 2
((Z o + 0(8)) . )MTVH) .
=1

Because |Zf:1 a;| < 1, we deduce that any other signal belonging

to the subspace of the first £ signals is myopically worse than
. . . . (V)2

signal 1, whose variance reduction is T,

Meanwhile, take any signal outside of the subspace. The vari-

ance reduction by such a signal ZLK: 1 Bibi + N(0,1) is

2
(ZiK=1 Z§=1 ﬂi}‘j’Vij)
1+ 5 8BV

By the second and last condition on V, the numerator here is
O((ATVH)Q). If we can show that the denominator is very large,
then such a signal would also be myopically worse than signal 1.
Indeed, since V;; = O(g?) whenever i < k orj < k, it is sufficient to
show ) ; ;. BiB;V; is large. This holds by the last two conditions
on V and the assumption that 8, , 1,..., fx are not all 0.43

Hence, we have shown that given any prior precision matrix
P satisfying the foregoing conditions, the myopic signal choice is
among the first & signals. It remains to check whether the result-
ing posterior precision matrix P also satisfies those four condi-
tions. If the signal acquired is signal i (1 <i <k),then P = P + A;;.
Therefore we only need to show the second condition holds for P;
that is, P"if <(1+e)- I;’! for each 1 < j < k. To this end, we
note that since signal i is myopically best given V, the following
must hold:

Vil W5V
1+Vy 1+ ij '

43. Formally, we can without loss assume ﬂI%VKK is largest among ,Bl-z Vii for
i > k. Then for any i # j, the last condition implies

BiB;iVij = —Le - BiBj\/ViiVj; > —Le - 2Vkk.

This trivially also holds for i = j # K. Summing across all pairs (7, j) yields
> ok BiBjVij > (1 — KZLs)/S?{VKK, which must be large by the third condition
onV.
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As 0 <V, V; < 2¢2, this implies 47 Vi; > (1 — ¢*)A%V;. Now apply-

ing Cramer’s rule to V = P~! again, we can deduce V;; = %@2).
So for ¢ small it holds that I;— <@+35)- % As Pj; > Elz, we also
i J

1 e By
have 7 <5 %

ond condition for P and completes the proof.

. Adding up these two inequalities yields the sec-

A.6. Proof of Theorem 2: “If” Part

1. Restated Version. Given any prior belief, let A C [N] be
the set of signals that are observed by infinitely many agents.
Our goal is to show that A is strongly complementary. Toward
that goal, we first show A spans w.

Indeed, by definition we can find some period ¢ after which
agents exclusively observe signals from .A. Note that the variance
reduction of any signal approaches 0 as its signal count gets large.
Thus, along society’s signal path, the variance reduction is close
to 0 at sufficiently late periods. If A does not span w, society’s
posterior variance remains bounded away from 0. Thus in the limit
where each signal in A has infinite signal counts, there still exists
some signal j outside of A whose variance reduction is strictly
positive.** By continuity, we deduce that at any sufficiently late
period, observing signal j is better than observing any signal in
A. This contradicts our assumption that later agents only observe
signals in A.

Now that A spans w, we can take S to be the best complemen-
tary set in A, which is the subspace spanned by A. By Lemma 1, S
is strongly complementary. To prove Theorem 2 “if” part, we show
that long-run frequencies are positive precisely for the signals in
S. By ignoring the initial periods, we can assume without loss
that only signals in A are available. It thus suffices to show that
whenever the signals observed infinitely often span a subspace,
agents eventually focus on the best complementary set S in that
subspace. To ease notation, we assume this subspace is the entire
RE and prove the following result.

44. To see this, let s1,..., sy denote the limit signal counts, where s; = oo if
and only if i € A. We need to find some signal j such that V(s; + 1, s_;) < V(s;j,
s_;). If such a signal does not exist, then all partial derivatives of V at s are 0.
Since V is always differentiable (unlike V*), this would imply that all directional
derivatives of V are also 0. By the convexity of V, V must be minimized at s.
However, the minimum value of V' is 0 because there exists a complementary set.
This contradicts V(s) > 0.
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Theorem 2 “If” Part Restated. Suppose that the signals ob-
served infinitely often span RX. Then society’s long-run frequency
vector is 1*.

The next sections are devoted to the proof of this restatement.

2. Estimates of Derivatives. We introduce a few technical
lemmata:

LEMMA 10. For any q1,...,gy and any 1 < j < N, we have

8ij(ql, e ,qN) < 2

Proof. Recall that V(gi,...,qn) =€, - [(E) 1+ C'QCI ! -e.
Thus

0V = =€ ()1 +C'QCI 1 e ()T +C'QCT ey,

and
9;;V =2e] - (=9 t+ceCt -Cj ~c; =9t

+C'QCI " cj- ¢ (T +C'QCI e

Let y; =€, - (%1 4+ C'QC]1 ! - ¢}, which is a number. Then
the above becomes

o,V ==y}  0;V=2y7-¢-[(Z)"+C'QCI" ¢

Note that (£%)! + C'QC = g, - ¢;¢ in the matrix norm. Thus the
number ¢ - [(£°)' +C'QC1™ " - ¢; is bounded above by q—lj.45 This
proves the lemma. O

Since the second derivative is small compared to the first
derivative, we deduce that the variance reduction of any discrete
signal can be approximated by the partial derivative of V. This
property is summarized in the following lemma.

45. Formally, we need to show that for any ¢ > 0, the number ¢;[c;¢; + elgl~tc;

is at most 1. Using the trace identity tr(AB) = tr(BA), we can rewrite this number
as

tr([ejc; + EIK]’ICjc}) = tr(Ig — lejc; + elgl Lelx) =K — ¢ - tr(lejc’; + elgl™).

The matrix cjc’; has rank 1, so K—1 of its eigenvalues are 0. Thus the matrix [cjc’; +
eIx]~! has eigenvalue él with multiplicity K—1, and the remaining eigenvalue is
positive. This implies ¢ - tr([c jcj- +elgl™!) > K—1, and then the above display
yields c}- (Z9"1+C'QCI! -¢j < 1 as desired.
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LeEMMA 11. For any q1,..., gy and any 1 < j < N, we have?*6
q;
Vig) —Vig;,+1,q9_;) > a;V(q)|.
(@) —-Vig;+1,q9-)) qj+1l V(g

Proof. We show the more general result:

q;%

Vig)—Vigj+x,q-j) > 18;V (@], Yx > 0.

q; +x

This clearly holds at x = 0. Differentiating with respect to x, we
only need to show

2

q.
—9:-Vig: » >—J 9.V Vx> 0.
VG 8 ) > g 10V @ v

Equivalently, we need to show
—(g; +x)-0;V(g; +x.9-;) > —q; - 3;V(q), ¥x > 0.

Again, this inequality holds at x = 0. Differentiating with respect
to x, it becomes

—2(q; +x)-0;V(gj +x.q ;) —(qj +x)*-0;;V(g; +x.q ;) > 0.
This is exactly the result of Lemma 10. |

3. Lower Bound on Variance Reduction. Our next result
lower bounds the directional derivative of V along the “optimal”
direction 1*.

V(g)?

LEMMA 12. For any q1, ..., gy, we have [9,-V(q)| > o

Proof: To compute this directional derivative, we think of
agents acquiring signals in fractional amounts, where a fraction of
a signal is just the same signal with precision multiplied by that
fraction. Consider an agent who draws A realizations of each
signal i. Then he essentially obtains the following signals:

Y = (c;,0) +/\f<0, A_l’k> , Vi.

46. Note that the convexity of V gives V(g) — Vig; + 1, q_j) < |9;V(qg)|. This
lemma provides a converse that we need for the subsequent analysis.
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This is equivalent to

XY, = (e, 0) + N0, A)), Vi.

12

Such an agent receives at least as much information as the sum
of these signals:

DAY= 300 0) + FINO.2]) = Sres £ MO 1),

Hence the agent’s posterior precision about o (which is the in-
verse of his posterior variance V) must increase by at least M;)‘
along the direction 1*. The chain rule of differentiation yields the
lemma. [

We can now bound the variance reduction at late periods.

LeEmma 13. Fix any q;, . . ., qn. Suppose L is a positive number such
that (£%)"! + C'QC > Lc;c’; holds in the matrix norm for each
signal j € §*. Then we have

. L Vi(g)?

. )< -

minVig; +1.¢-) < Vig) L1 o5

Proof Fix any signal j € S*. Using the condition (£°)~1 +

C'QC > Lc jc}, we can deduce the following variant of
Lemma 11:47

L
Vg —Vigj+1,9-;) > L—+1|ajV(q)|'

Since V is always differentiable, 9,V (q) is a convex combination
of the partial derivatives of V.*® Thus maxcs- [9;V(q)| = 19,-V(q)|.
These inequalities, and Lemma 12, complete the proof. O

47. Even though we are not guaranteed g; > L, we can modify the prior and
signal counts such that the precision matrix (£°)~1 + C’QC is unchanged, and
signal j has been observed at least L times. This is possible thanks to the condition
(9 14+C'QC = Le j¢;- Then, applying Lemma 11 to this modified problem yields
the result here.

48. Although this may be a surprising contrast with V*, the difference arises
because the formula for V always involves a full-rank prior covariance matrix,
whereas its asymptotic variant V* corresponds to a flat prior.
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4. Proof of the Restated Theorem 2 “If” Part. We show
t- V(m(t) — ¢(S*)?, so that society eventually approximates the
optimal speed of learning. Because 1* is the unique minimizer of
V*, this will imply the desired conclusion m“) — M\* via the second
half of Proposition 2 part (a).

To estimate V(m(¢)), we note that for any fixed L, society’s ac-
quisitions m(t) eventually satisfy the condition (£°)~! + C'QC >
Lcjc;. This is due to our assumption that the signals observed
infinitely often span RX, which implies that C'QC becomes arbi-
trarily large in the matrix norm. Hence, we can apply Lemma 13
to find that

L V(m@)?

for all ¢ > ¢y, where t; depends only on L.
We introduce the auxiliary function g(¢) = ‘;gg“;;) Then the
above simplifies to

L
gt+1) < gt)— —g(t)2
Inverting both sides, we have

1 1 1 = 1 L
> =+ >y
gt+1) " g1 - Zhg) 8B 1- tog) " g@®)  L+1
(12)

This holds for all ¢ > ¢7. Thus by induction, @ I +1(t to) and
L1

so g(t) < £75- Going back to the posterior variance function V,
this implies

L+1¢6W

(13) Vino) < == T

Hence, by choosing L sufficiently large and then considering
large ¢, we find that society’s speed of learning is arbitrarily close
to the optimal speed ¢(S*)2. This completes the proof.

We comment that the above argument leaves open the possi-
bility that some signals outside of S* are observed infinitely often,
yet with zero long-run frequency. In Online Appendix B, we show
this does not happen.
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A.7. Proofs for Interventions (Section IX)

1. Proof of Proposition 4. Given any history of observations,
an agent can always allocate his B observations as follows: he
draws | B- 1| realizations of each signal i, and samples arbitrar-
ily if there is any capacity remaining. Here | | denotes the floor
function.

Fix any ¢ > 0. If B is sufficiently large, then the strategy ac-
quires at least (1 — ¢) - B- 1} observations of each signal ;. Adapt-
ing the proof of Lemma 12, we see that the agent’s posterior preci-
sion about w must increase by %&iz‘? under this strategy. Thus the
same must hold for his optimal strategy, so that society’s poste-

rior precision at time ¢ is at least (;( Si)ﬁt This implies that average

precision per signal is at least =55 Wthh can be arbitrarily close

¢(S*)Z’
to the optimal precision val([N]) =
of e.

Because A* is the unique minimizer of V*, society’s long-
run frequencies must be close to A*. In particular, with ¢ suf-
ficiently small, we can ensure that each signal in S* is ob-
served with positive frequencies. The restated Theorem 2 “if”
part extends to the current setting and implies that soci-
ety’s long-run frequency vector must be A*. This yields the
proposition.*®

¢(S*)g with appropriate choice

2. Proof of Proposition 5. Suppose without loss that the best
complementary set S* is {1,..., k}. By taking a linear transfor-
mation, we further assume each of the first £ signals only involves
 and the first £—1 confounding terms b4, ..., b;_1. We show that
whenever k—1 sufficiently precise signals are provided about each
of these confounding terms, the long-run frequency vector con-
verges to A* regardless of the prior.

Fix any positive real number L. Since the 2—1 free signals
are very precise, it is as if the prior precision matrix (after taking

49. This proof also suggests that how small ¢ (and how large B) need to be
depends on the distance between the optimal speed of learning and the “second-
best” speed of learning from any other complementary set. Intuitively, to achieve
long-run efficient learning, agents need to allocate B observations in the best set
to approximate the optimal frequencies. If another set of signals offers a speed of
learning that is only slightly worse, we need B sufficiently large for the approxi-
mately optimal frequencies in the best set to beat this other set.
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into account these free signals) satisfies
k
== L2 A,
i=2

where A;; is the K x K matrix that has 1 at the (i, {) entry and
0 otherwise. Recall also that society eventually learns w. Thus at
some late period ¢, society’s acquisitions must satisfy

C,QC > LZAH.

Adding up the displays, we have

k
(=914 C'QC = L* Z Aji = Lejel, V1< j <k
i—1

The last inequality uses the fact that each c; only involves the first
k coordinates.

This is exactly the condition we need to apply Lemma 13:
crucially, whether the condition is met for signals j outside of S*
does not affect the argument there. Thus we can follow the proof
of the restated Theorem 2 “if” part to deduce inequality (13). That
is, for fixed L and corresponding free information, society’s long-
run precision per signal is at least m This can be made
arbitrarily close to the optimal average precision. Identically to
the previous proof, we deduce that for large L, society’s long-run
frequency vector must be close to A*. The restated Theorem 2 “if”
part allows us to conclude that the frequency is exactly A*.

APPENDIX B: PROOFS FOR THE AUTOCORRELATED MODEL
(SEcTION VIII.B)

B.1. Proof of Theorem 3

We work with the transformed model such that the sig-
nals in S become the first %2 transformed states 61, ..., 8,. The
payoff-relevant state becomes a certain linear combination
B161 + - - - + B0, with positive weights B1,..., Br. Choose M so
that the innovations corresponding to the transformed states are
independent from each other. Specifically, M (the transformed
version of M) is given by diag(%, e %,ykﬂ, ..., yk). Here x is
a small positive number, whereas y;, , 1, ..., yx are large positive
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numbers. We further choose £° = M, which is the stable belief
without learning.

With these choices, it is clear that if all agents only sample
from S, society’s beliefs about the transformed states remain in-
dependent at every period. Let v!~' denote the prior variance of
6! at the beginning of period ¢ (before the signal acquisition in
that period). Then as long as agent ¢ continues to sample a signal

0; + N (0 1) in S, these prior variances evolve as follows: v) = £

Bi
for 1 < kandv =y, fori > k.Fort > 1,

. a- vt A - )M, ifi #
T = t—1 ~
Vi o s+ ()M ifi= .

The particular signal j maximizes the reduction in the posterior
(Bivf 12
ﬁiJrvf’l

By induction, it is clear that v} < M;; holds for all pairs i,
t, with equality for i > k. Thus at the beginning of each pe-
riod ¢, assuming that all previous agents have sampled from S,
agent #’s prior uncertainties about 6, ..., §, are small while his
uncertainties about 6,1, ..., 0x are large. As such, our previous
proof for the existence of learning traps with persistent states
carries over, and we deduce that agent ¢ continues to observe
from S.

Note that for o close to 1, agents sample each signal i
with frequency close to ﬁ = A;. It follows that the prior

variances v approximately satisfy the following fixed-point

equation (see the above display):

variance of of = Zle ,Biéf . That is, j € argmax; ;¢

) 2
vi=a~(vi— Bi . Yi >—‘r(1—0{)£
Bit+--+ B 1+ Bi
A/ (A=a)x-(B1++PBr)

This yields the first-order approximation v} ~ % as
a — 1 and ¢ — oo. The posterior variance of ' is therefore

approximated as
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This is exactly /(1 — o)(2LL) because My = Zf;l ,BL»Q M; =x-

val(S)
Zf;l Bi and val(S) = dﬁ = m We thus deduce the first pay-
off estimate in the theorem.

It remains to prove the second payoff estimate. For that we
just need to show society can achieve posterior variances smaller

than(1+¢)-,/(1 — a)(vfl/fg*)) at every late period. In fact, we show

that myopically choosing from the best set S* achieves this.

Let V* denote society’s prior covariance matrix at the begin-
ning of period ¢ + 1, under this alternative sampling strategy. Note
that for o close to 1, each signal in S* is observed with positive
frequency. Thus, for any L > 0 we have

VIt = L.-cic, Vjes*
for « close to 1 and ¢ large.

Now take v(t) := [V’]1; to be the prior variance of »/*!. Then
myopic sampling together with Lemma 13 implies the posterior

variance of »'*! is bounded above by
L v()?
) — ———. .
VO T s

Together with the innovation terms given by M, the next prior
variance v(t + 1) admits the following upper bound:

L v(t)?
v+ 1D <a- (U(t)— L—-}-l . (15(8*)2) +(1—a) M.
Clearly, this implies
L v(t)?
vE+1D) <v@®)+ 1 —a) My — I+1 (ﬁ(S—*)Q

As aconsequence, lim sup,_, , v(#) <,/1+ % . \/(1 —a)Mi1 - $(S*)2.

Because val(S§*) = this yields the desired estimate if we

1
¢($ﬁ<)2 b
choose L > % in the first place. We have thus completed the proof

of Theorem 3.

B.2. Proof of Proposition 3

The environment in Example 6 is equivalent to one with

three signals “’T”’, “’T‘b and %w, each with standard Gaussian noise
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(ust let b = @ + 2b1). We assume L is large, so that the best
complementary set consists of the former two signals.

For the autocorrelated model, we choose M = %° = diag(x, x)
with x > L? (this is the covariance matrix for the innovations
associated with w and ). Then assuming that all previous agents
have chosen the third (unbiased) signal, agent ¢’s prior variance of
b’ remains x > L?. As such, he (and in fact each agent) continues
to observe the third signal. In this case the prior variance v’ about
o'+ 1 evolves according to

L2 . Ut—l
12 +pi-1

t

V=« +(1 - a)x.

It is not difficult to show that v’ must converge to the
(positive) fixed point of the above equation. Let us in particu-

lar take « =1 — 24 and x = L?, then the long-run prior vari-

LS
+ 1. This yields exactly that v = /L.

(L*— 1)
L2y ﬁ

L2+v
Hence long-run posterior variance is 7z > 3, which implies

limsup;_, UM < —4.

Let us turn to the optimal sampling strategy. Write 6; = ‘”T*b
and f = 25°. In this transformed model, ]\Z~ =30 = diag(}, 3),
and the payoff-relevant state is the sum of §; and 6,. Consider
now a strategy that observes the first two signals alternatively.
Then the beliefs about §; and f; remain independent (as in M
and £°), and their variances evolve as follows: v{ = v) = £; in odd

periods ¢

ance v solves v =

t-1
¢ V1 x ¢ t-1 x
Vi =« Tl +( 05)2 and vy = a - vy +( 05)2

and symmetrically for even ¢.
These imply that for odd ¢, v{ converges to v; and v}, converges
to vy below (while for even ¢ v{ — vy and vl — v1):

avy + (1 — )3 1wt
V1 =0 - —o)—;
! T+avg+(1-a)l 2’
2, V2 2y X
=a?. 1—a?). 2,
Ve =« 1+v2+( a”) 5
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From the second equation, we obtain (1 — a?)(% — vg) = a? - ifi

With @ = 1 — % and x = L?, it follows that

1
7=

where 0(1) is a term that vanishes as L — oo. Thus we also have

vg = (1 +0(1))

U2

1
1+ vy '

VL

Hence under this alternating sampling strategy, long-run pos-
terior variances about ; and 6, are both bounded above by %Z

v =« +<1—a)’§‘=(1+o<1))

Since w = ;1 + b9, we conclude that liminfs_.; U SSP > —%. Choos-
ing L large proves the proposition.

REFERENCES

Alatas, Vivi, Abhijit Banerjee, Arun Chandrasekhar, Rema Hanna, and Ben Olken,
“Network Structure and the Aggregation of Information: Theory and Evidence
from Indonesia,” American Economic Review, 106 (2016), 1663—1704.

Ali, Nageeb, “Herding with Costly Information,” Journal of Economic Theory, 175
(2018), 713-720.

Athey, Susan, and Armin Schmutzler, “Product and Process Flexibility in an In-
novative Environment,” RAND Journal of Economics, 26 (1995), 557-574.

Banerjee, Abhijit, “A Simple Model of Herd Behavior,” Quaterly Journal of Eco-
nomics, 107 (1992), 797-817.

Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch, “A Theory of Fads, Fash-
ion, Custom, and Cultural Change as Information Cascades,” Journal of Po-
litical Economy, 100 (1992), 992-1026.

Blackwell, David, “Comparison of Experiments,” in Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability (Berkeley:
University of California Press, 1951), 93-102.

Borgers, Tilman, Angel Hernando-Veciana, and Daniel Krahmer, “When Are Sig-
nals Complements or Substitutes?,” Journal of Economic Theory, 148 (2013),
165-195.

Burguet, Roberto, and Xavier Vives, “Social Learning and Costly Information,”
Economic Theory, 15 (2000), 185-205.

Chade, Hector, and Jan Eeckhout, “Matching Information,” Theoretical Economics,
13 (2018), 377-414.

Chaloner, Kathryn, “Optimal Bayesian Experimental Design for Linear Models,”
Annals of Statistics, 12 (1984), 283-300.

Che, Yeon-Koo, and Konrad Mierendorff, “Optimal Dynamic Allocation of Atten-
tion,” American Economic Review (forthcoming).

Chen, Yiling, and Bo Waggoner, “Informational Substitutes,” in proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
New Brunswick, NJ, 2016.

Cunha, Flavio, and James Heckman, “The Technology of Skill Formation,” Ameri-
can Economic Review, 97 (2007), 31-47.

Dasaratha, Krishna, Ben Golub, and Nir Hak, “Social Learning in a Dynamic
Environment,” Harvard University Working Paper, 2018.

6102 Jequieosq G| uo 3senb Aq 0SEY8SS/BSE/L/SE L ARISqR-aILE/Bb/WOoo dno-oIwepeoe//:sdRy WOl pepeojumoq



448 THE QUARTERLY JOURNAL OF ECONOMICS

DeMarzo, Peter, Dimitri Vayanos, and Jeffrey Zwiebel, “Persuasion Bias, Social In-
fluence, and Unidimensional Opinions,” The Quarterly Journal of Economics,
118 (2003), 909-968.

Easley, David, and Nicolas M. Kiefer, “Controlling a Stochastic Process with Un-
known Parameters,” Econometrica, 56 (1988), 1045-1064.

Frongillo, Rafael, Grant Schoenebeck, and Omer Tamuz, “Social Learning in a
Changing World,” WINE’11 Proceedings of the 7th International Conference
on Internet and Network Economics, (2011).

Fudenberg, Drew, Philip Strack, and Tomasz Strzalecki, “Speed, Accuracy, and the
Optimal Timing of Choices,” American Economic Review, 108 (2018), 3651—
3684.

Gittins, dJ. C., “Bandit Processes and Dynamic Allocation Indices,” Journal of the
Royal Statistical Society, Series B (1979), 148-1717.

Goldstein, Itay, and Liyan Yang, “Information Diversity and Complementarities
in Trading and Information Acquisition,” Journal of Finance, 70 (2015), 1723—
1765.

Golub, Benjamin, and Matthew Jackson, “How Homophily Affects the Speed of
Learning and Best-Response Dynamics,” Quarterly Journal of Economics, 127
(2012), 1287-1338.

Hann-Caruthers, Wade, Vadim Martynov, and Omer Tamuz, “The Speed of Sequen-
tial Asymptotic Learning,” Journal of Economic Theory, 173 (2018), 383—409.

Harel, Matan, Elchanan Mossel, Philipp Strack, and Omer Tamuz, “Groupthink
and the Failure of Information Aggregation in Large Groups,” Caltech Working
Paper, 2018.

Jovanovic, Boyan, and Yaw Nyarko, “Learning by Doing and the Choice of Tech-
nology,” Econometrica, 64 (1996), 1299-1310.

Liang, Annie, Xiaosheng Mu, and Vasilis Syrgkanis, “Optimal and Myopic Infor-
mation Acquisition,” University of Pennsylvania Working Paper, 2017.

, “Dynamically Aggregating Diverse Information,” University of Pennsylva-
nia Working Paper, 2019.

Lizzeri, Alessandro, and Marciano Siniscalchi, “Parental Guidance and Supervised
Learning,” Quarterly Journal of Economics, 123 (2008), 1161-1195.

Mayskaya, Tatiana, “Dynamic Choice of Information Sources,” Higher School of
Economics Working Paper, 2019.

Milgrom, Paul, and Rober J. Weber, “A Theory of Auctions and Competitive Bid-
ding,” Econometrica, 50 (1982a), 1089-1122.

, “The Value of Information in a Sealed-Bid Auction,” Journal of Mathemat-
ical Economics, 10 (1982b), 105-114.

Monderer, Dov, and Lloyd Shapley, “Potential Games,” Games and Economic Be-
havior, 14 (1996), 124-143.

Moscarini, Giuseppe, Marco Ottaviani, and Lones Smith, “Social Learning in a
Changing World,” Economic Theory, 11 (1998), 657—665.

Mueller-Frank, Manuel, and Mallesh Pai, “Social Learning with Costly Search,”
American Economic Journal: Microeconomics, 8 (2016), 83—109.

Sandholm, William, Population Games and Evolutionary Dynamics (Cambridge,
MA: MIT Press, 2010).

Sethi, Rajiv, and Muhamet Yildiz, “Communication with Unknown Perspectives,”
Econometrica, 84 (2016), 2029-2069.

, “Culture and Communication,” MIT Working Paper, 2019.

Smith, Lones, and Peter Sgrensen, “Pathological Outcomes of Observational
Learning,” Econometrica, 68 (2000), 371-398.

Vives, Xavier, “How Fast Do Rational Agents Learn?,” Review of Economic Studies,
60 (1992), 329-347.

Wolitzky, Alex, “Learning from Others’ Outcomes,” American Economic Review,
108 (2018), 2763-2801.

610z Joqusoaq G| uo 1sanb Aq 0SEY8SS/68E/1/SE L AORISGR-8Jo1LE/elb/W0D dNO"DILBPESE//:SARY WO POPEOJUMOQ



