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Round Complexity of Common Randomness Generation: The

Amortized Setting

Noah Golowich*

Abstract

In this work we study the effect of rounds of interac-
tion on the common randomness generation (CRG)
problem. In the CRG problem, two parties, Alice and
Bob, receive samples X; and Y;, respectively, where
(Xi,Y;) are drawn jointly from a source distribution
t. The two parties wish to agree on a common ran-
dom key consisting of many bits of randomness, by
exchanging messages that depend on each party’s re-
spective input and the previous messages. In this
work we study the amortized version of the problem,
i.e., the number of bits of communication needed per
random bit output by Alice and Bob, in the limit
as the number of bits generated tends to infinity.
The amortized version of the CRG problem has been
extensively studied in the information theory litera-
ture, though very little was known about the effect
of interaction on this problem. Recently Bafna et al.
(SODA 2019) considered the non-amortized version
of the problem (so here the goal of the interaction is
to generate a fixed number of random bits): they gave
a family of sources p,, parameterized by r,n € N,
such that with r + 2 rounds of communication one
can generate n bits of common randomness with this
source with O(rlogn) communication, whereas with
roughly /2 rounds the communication complexity is
Q(n/ polylogn). Note in particular that their source
is designed with the target number of bits in mind
and hence the result does not apply to the amortized
setting.

In this work we strengthen the work of Bafna et
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al. in two ways: First we show that the results extend
to the classical amortized setting. We also reduce the
gap between the round complexity in the upper and
lower bounds to an additive constant. Specifically
we show that for every pair r,n € N the (amortized)
communication complexity to generate Q(n) bits of
common randomness from the source p,. ,, using r+2
rounds of communication is O(rlogn) whereas the
amortized communication required to generate the
same amount of randomness from r rounds is Q(1/n).
Our techniques exploit known connections between
information complexity and CRG, and the main nov-
elty is our ability to analyze the information com-
plexity of protocols getting inputs from the source

Hrmn-

1 Introduction

In this paper we study the problem of common ran-
domness generation (CRG) and the companion prob-
lem of secret key generation (SKG). In each of these
problems, there are two parties Alice and Bob, who
are given several samples of correlated randomness:
Alice is given random variables X, X5, ..., and Bob
is given random variables Y7, Y5, ..., where the pairs
(Xi,Y:) are distributed i.i.d. according to some dis-
tribution p. In the CRG problem, the goal of Alice
and Bob is to agree, with high probability, on some
shared key K of high entropy by communicating as
little as possible. In the SKG problem, they have the
additional secrecy requirement that an eavesdropper
Eve who observes their transcript of communication
cannot determine much information on K.

The problems of CRG and SKG were introduced
independently by Maurer [Mau91, Mau92, Mau93]
and by Ahlswede and Csiszar [AC93, AC98|. An
important motivation for their work was from cryp-
tography, where the posession of a shared secret key
allows parties to securely transmit information us-
ing a private-key cryptosystem. Rather than gener-
ating private keys based on computational hardness
assumptions, as in [DH76, RSA78|, these works sug-
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gested the study of secret key generation from an
information-theoretic viewpoint, under information-
theoretic assumptions such as access to a correlated
source. Subsequently techniques similar to those de-
veloped in [Mau93, AC93|, such as privacy ampli-
fication, have been used in work on quantum key
agreement [BBB*92, HAD*95]. Shared common
randomness, and the generation thereof, has also
found additional applications in identification ca-
pacity [AD89b, AD89a], communication complexity
[CGMS17, GKS16, GS17, BGI14], locality-sensitive
hashing, [GJ18] and coding theory [BBT60, CN91].

The initial introduction of CRG and SKG by
Maurer, Ahlswede, and Csiszar was in the amortized
setting, which has since been studied in many works
(such as [CN00, CN04, ZC11, Tyal3, LCV15, Liul6,
LCV17, Ye05, GA10a, GA10b]). In this setting, given
a source of correlation u, the goal is to characterize
the “achievability region”, i.e., those pairs (C, L) of
non-negative real numbers, such that if Alice and Bob
receive N i.i.d. copies of the inputs (X,Y) ~ pu, by
communicating roughly C'- N bits, they can generate
nearly L - N bits of common randomness (or secret
key) with probability approaching 1 as N — oo; a
formal definition is presented in Definitions 2.1 and
2.2.

In the theoretical computer science community
the non-amortized setting of CRG has also been
extensively studied. In this setting, Alice and Bob
still receive some number N of iid. samples from
the source g, but the communication and key length
do not have to grow linearly with the number of
samples, and the probability of agreeing on a key
need not approach 1. This problem was first studied
in its zero-communication variant, where it is also
known as non-interactive correlation distillation, and
in the setting where Alice and Bob wish only to agree
on a single bit, by Gacs and Kérner [GK73] and
Witsenhausen [Wit75], as well as later works [MOO05,
MOR™*06, Yan07]. Bogdanov and Mossel [BM11] and
Chan et al. [CMN14] study the version where Alice
and Bob wish to agree on many bits, again in the zero-
communication setting. Finally, several more recent
works [CGMS17, GR16, GJ18| have studied the non-
amortized version of CRG where communication is
allowed. These latter works generally study relatively
simple sources, such as the bivariate Gaussian source
(BGS) and the binary symmetric source (BSS).

1.1 Overview of main results: does interac-
tion help? Despite the large amount of work on
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CRG and SKG in the last several decades, until re-
cently, very little was known about the role of inter-
action in these problems. While initial work in the
area [AC93, AC98] studied only 1-round and 2-round
protocols, recent works [LCV15, Liul6, LCV17] have
generalized those initial results to multi-round proto-
cols; however, until our work, it was not known in the
amortized setting if increasing the number of rounds
of some r-round protocol can actually allow the par-
ties to communicate less (and generate random keys
of the same length).

This question of whether Alice and Bob can re-
duce the communication cost of their protocol at the
expense of increasing the number of rounds is cen-
tral to our work. Curiously, for the amortized set-
ting, the answer to this question is negative in several
cases: for instance, when (X,Y) is distributed ac-
cording to the binary symmetric source (BSS) or the
bivariate Gaussian source (BGS), Liu et al. [LCV17]
and Tyagi [Tyal3] showed that increasing the num-
ber of rounds does not help to reduce communication
cost. In terms of separation results, Tyagi [Tyal3]
presented a source on a ternary alphabet for which
a l-round protocol has smaller communication cost
than any 2-round protocol by a constant factor, and
this is the only known round-based separation in the
amortized setting.

Orlitsky [Or]90, Orl91] studied a slightly different
version of CRG in which the key K is required to be
equal to Alice’s input X; thus the problem becomes
that of Bob learning Alice’s input. Orlitsky showed
(in the non-amortized case) that 2-round protocols
can require exponentially less communication than 1-
round protocols. However, for any r > 2, he showed
that r-round protocols can save on communication
cost over 2-round protocols by at most a factor of
4. This version of the problem was also studied
in the amortized case by Ma and Ishwar [MI08],
who showed that interaction does not help at all;
in fact, the 1-round protocol that achieves minimum
communication cost is simply given by Slepian-Wolf
coding [CT12].

The most relevant work is that of Bafna et
al. [BGGS19], who showed the following in the non-
amortized setting (see [BGGS19, Theorems 1.1 &
1.2]): for any fixed r, there is sufficiently large n such
that for some source p = pr n, we have:

(1) Alice and Bob can generate secret keys of length
n with r + 2 rounds of communication and
O(logn) communication cost;
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(2) When restricted to [(r + 1)/2]| rounds, any
protocol which generates common random keys
of length m must have communication cost

n/log*M n.

Notice that the above result is not tight in the
dependence on the number of rounds; a tight result
(up to polylogarithmic factors) would state that any
(r+1)-round protocol must have communication cost
n/ log”") n. More significantly, the result does not
establish any separation in the amortized setting,
which is the main target of this paper. (In particular,
the lower bound for |(r+1)/2]-round communication
in item (2) above does not rule out the possibility
that if Alice and Bob receive NV i.i.d. copies of the
source p, there is some |(r + 1)/2|-round protocol
for generating O(N - n) bits of randomness but with
communication a lot less than O(N - n), i.e., as small
as O(N logn), or even smaller.)

Our results Our main result is an extension of
the above results of Bafna et al. [BGGS19] to the
amortized setting. Along the way we also get a nearly
tight dependence on the number of rounds (losing a
quadratic factor in communication cost and a single
additional round of communication). In particular,
we show:

e For the source p = p,, mentioned above,
any protocol with at most r rounds and which
generates common random keys of length n must
have communication cost at least /n/log“!) n.
(See Theorem 2.2 for a formal statement.)

e Moreover, an identical rounds-communication
tradeoff holds for the amortized case. (See
Theorem 2.3.)

We emphasize that the second result above gives
the first rounds-communication tradeoff for the amor-
tized case (apart from the constant-factor separa-
tion between 1-round and 2-round protocols given by
Tyagi [Tyal3]).

Technical Challenge At a very high level the
source in [BGGS19] is built around the concept
of “pointer-chasing problems” that are well-known
to lead to separations in round-complexity [NW93,
DGS84, PS82]. The main contribution in their work
is to show how the hardness of pointer chasing (or a
variation they consider) translates to the hardness of
generating common randomness in their source.

Getting an amortized lower bound turns out to
be significantly more challenging. For one thing we
can no longer build a source that is crafted around a
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targeted length of the common random string. Indeed
this ability allows Bafna et al. [BGGS19] to focus on
the case where the two players get a single copy of the
randomness (X,Y) ~ p, and the core of their nega-
tive result is showing that r/2 rounds of communica-
tion are insufficient to generate any non-trivial ran-
domness from this single copy (“non-trivial” mean-
ing more than the number of bits communicated).
In the amortized case such results are not possi-
ble: if there is a protocol with small communication
and many rounds getting some amount of random-
ness, then we can simulate the protocol with large
communication in two rounds, and then (here using
the ability to amortize) we can scale back the com-
munuication and generate proportionately less, but
non-trivial amounts of randomness. Thus no matter
how small the amortized communication budget is, it
is always possible to get some non-trivial amounts of
randomness. So our lower bounds really need to ad-
dress a “direct product” version of the pointer chasing
question.

Indeed, the idea of our proof is to “reduce to the
non-amortized case” by using similar types of tech-
niques that have been applied to show direct sum
and direct product results for the communication
complexity of functions [CSWYO01, JRS03, HIMRO7,
BBCR13, JPY12, BR11, BRWY13]. However, the
task of CRG is “more flexible” than that of comput-
ing a function as there is no prescribed output for
given inputs, so implementing this reduction is non-
trivial. Roughly, our results have to analyze notions
such as the internal and external information cost of
all bounded round protocols (and show that these are
close) whereas most of the previous use in communi-
cation complexity lower bounds only needed to work
with protocols that computed a specific function. We
go into further details on this in Section 2.6 after we
get more specific about the sources we consider and
the kind of results we seek.

Organization of this paper In Section 2 we
formally introduce the problems of CRG and SKG (in
both the non-amortized and amortized settings) and
state our main results. Section 3 presents the proof
of our main results in the non-amortized setting, and
Section 4 presents the proof of our main results in
the amortized setting. Section 5 collects some open
questions motivated by our work.

2 Background and Overview of Main Results

2.1 Notation We first describe some of the basic
notational conventions we use throughout the paper.
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We use capital script font, such as §, X', ), to denote
sets, and capital letters, such as X,Y,Z, to denote
random variables. We typically use the letters p,v, D
to denote distributions. &,, denotes the set of all
permutations on [n].

Basic probability If £ € X is some event,
then we will write 1[X € £] to denote the random
variable that is 1 if X € £, and 0 otherwise. We
will slightly abuse notation, e.g., if (X,Y) ~ v then
1[X = Y] is 1 when X = Y and O otherwise. If
f: X = R, then E,[f(X)] denotes the expectation
of f(X) when X is distributed according to pu. For
& C X, P,[€] :=EL[1[X € £]] is the probability that
X € £ when X ~ p. We will omit the subscript p
if the distribution is obvious. This notation extends
naturally to conditional expectations.

Total variation distance & KL divergence
For random variables X,Y distributed according to
p,v, respectively, on a finite set X, A(p,v) =
13 ex Pu[X = z] — P,[Y = | denotes the
total variational distance between X and Y. For
distributions p and v supported on a set X', the KL
divergence between p,v, denoted KL(u||lv), is given

by, for X ~ u,Y ~ v, KL(u|lv) == 3 .+ PX =

z] - log (];[[)}fi:% ) We will often abuse notation when
denoting KL divergences or total variation distances:
for X ~ p,Y ~ v supported on a set X, we will write
A(X,Y) = Au,v) and KL(X|[Y) = KL(u|]).

Information theory If X ~ p, then the en-
tropy of X is given by H,(X)=H(X) =
E,..[log(1/P,[X = z])]. Now suppose (X,Y) are
random variables with X € X,Y € Y jointly dis-
tributed according to some distribution v. Letting X,
denote the random variable distributed as X, condi-
tioned on Y = y, then H(X|Y =y) := H(X,). Then
the conditional entropy H,(X|Y) = H(X|Y) is given
by H(X|Y) =: E,,[H(X|Y = y)]. The mutual in-
formationis given by I,(X;Y) =I(X;Y) := H(X)—
H(X|Y); it is well-known that I(X;Y) = H(Y) —
H(Y|X). If (X,Y, Z) are jointly distributed accord-
ing to some distribution, then the conditional mu-
tual information I(X;Y |Z) is given by I(X;Y|Z) :=
H(X|Z)—- H(X|Y,Z).

Multiple random variables For random vari-
ables (X,Y') ~ p distributed jointly, we will often use
XY € X x Y to denote the pair. The marginals X ~
tx,Y ~ py are the distributions on X and Y, respec-
tively, given by Px.,,[X = ] == Pxy.[X = 7],
and similarly for py. Then X®Y € X' x) denotes the
random variable distributed according to the product
of the marginals px ® py. For a sequence of random
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variables X, Xs,...,X;,..., for any j > 1, we let X7
denote the tuple (Xy,...,X;), and for 1 < j < 7', let
X;q denote the tuple (X;, X;41,...,X;7). Two com-
mon usages of this notation are as follows: (1) for
N € N, and a distribution Z ~ p, the random vari-
able distributed according to N i.i.d. copies of y is de-
noted as ZN = (Z1,...,Zn) ~ p®N; (2) if 0y, ..., 1L,
denote the first ¢ messages in a communication pro-
tocol (see Section 2.2), then IT* = (II, I, ..., II;).

2.2 Communication protocols We follow the
standard setup of interactive communication proto-
cols [Yao79], and mostly follow the notational con-
ventions of [BBCR13, BR11]. There are finite sets
X,Y, and parties Alice and Bob, who receive inputs
X € X, Y € Y, respectively. Depending on the set-
ting, Alice and Bob may additionally have access to
private coins R,, Rp, respectively, and public coins
Rpy,. Formally, R,, Ry, Rpyp may be interpreted as
infinite strings of independently and uniformly dis-
tributed random bits.

An interactive r-round protocol 1l consists of a
sequence of r messages, II;,...,II, € {0,1}* that
Alice and Bob alternatively send to each other, with
Alice sending the first message II;. The messages
II;,...,II,. are also referred to as the rounds of the
protocol, and each message is a deterministic function
of the previous messages, one party’s input, and any
randomness (public and/or private) available to that
party. For 1 < t < r with ¢t odd, we will write
Alice’s message II; as II; = I1;(X, Ry, Rpu, II! 1) if
the protocol can use public and private coins (with
obvious modifications if public and/or private coins
are not available), and for ¢ even, Bob’s message II;
as II; = I,(Y, Ry, Rpw,, [I:"1).! The commaunication
cost of II, denoted by CC(II), is the maximum of
> i—1 ||, taken over all inputs X € XY € Y,
and all settings of the random coins Ry, Rp, Rpy, (if
applicable). The tuple consisting of all the messages,
ie, II" = (II4,...,II,), is referred to as the transeript
of the protocol II.

2.3 Rate regions for amortized CRG & SKG
Recall that in amortized CRG, Alice and Bob re-
ceive some large number N of copies (X, Y') from the

ITt is required that for each ¢ and each instantiation of ITt—1,

the set of possible values of II; (over all possible instantiaions
of X, Y, Ry, Rg, Rpy,) must be prefix-free. This technical detail,
which is introduced so that each party knows when to “start
speaking” when the other finishes, will not be important for
us.
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source, are allowed to communicate some number of
bits that grows linearly with IV, and must agree upon
a key whose entropy grows linearly with NV with prob-
ability tending to 1 as N — oo. The word “amor-
tized” refers to the fact that the communication and
key entropy both grow linearly with V. The parties
may use private but not public coins (as with access
to public randomness, there would be no need to gen-
erate a shared random string). Definition 2.1 below
follows the exposition of Liu et al. [LCV17].

DEFINITION 2.1. (AMORTIZED CRG) The  tuple
(C, L) is r-achievable for CRG for a source distribu-
tion (X,Y) ~ v if for every N € N, there is some
ey with ey — 0 as N — oo, a key set Ky, and a
private-coin protocol II = II(N) that takes as input
(XN YN) ~ v®N such that if II(N); € {0,1}*
denotes the message sent in the t-th round of II(N),
1<t<r, and K, = KA(N),KB = KB(N) c Kn
denote the output keys of Alice and Bob for the
protocol II(N), then:

1. limsupy_,, & - CC(II(N)) < C.
2. liminfy_ 0o % log [Cn| > L.

3. Letting Ky be the random wvariable that is uni-
formly distributed on Ky, then

A((KA(N)E5(N)), (KnK ) < en.

In particular, there exists a coupling of
K4(N)Kp(N) with Kn Ky such that P[K4(N) =
Kpg(N)=Kn]>1—ey - 1as N —oo. (To be
clear, Kn KN denotes the tuple (Kn, Kn) which
is distributed uniformly on the set {(k,k) : k €

Kn}.)

We denote the subset of pairs (C,L) C RZ, that are
r-achievable from the source (X,Y) ~v by T.(X,Y);
this set T.(X,Y) is known as the achievable rate
region for r-round CRG (or simply rate region, with
r and the task of CRG implicit) for the source p.

To interpret Definition 2.1, notice that C denotes
the communication of the protocols II = II(N),
whereas L (approximately) gives the entropy of the
key produced.

Corresponding to Definition 2.1 for CRG we have
the following Definition 2.2 for SKG in the amortized
setting:

DEFINITION 2.2. (AMORTIZED SKG) The tuple
(C, L) is r-achievable for SKG for a distribution v if
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there is some choice of a sequence ey — 0 such that
the following holds: for each N € N there is some
choice of private coin protocol’ 11 = TI(N) such that,
first, items 1 and 2 of Definition 2.1 are satisfied for
these en, II(N), N, and, second,
(2.1)

A(K(N)Kg(N)II(N)", KnKn @ II(N)") < en.

As in Definition 2.1, Ky denotes the random variable
that is uniform on on Ky; notice that (2.1) above
implies item 3 of Definition 2.1.

We denote the set of pairs (C,L) that are r-
achievable for SKG from v by §,.(X,Y).

It is clear from the definition that r-achievability for
SKG is a stronger requirement than r-achievability
for CRG; that is, for every source (X,Y) ~ v, we
have S,(X,Y) C T.(X,Y). It is also well-known
[LCV17, Han03] that both 7,.(X,Y) and S,(X,Y)

are closed subsets of R2.

2.4 Non-Amortized Setting The non-
amortized setting is similar to the amortized
setting, in that Alice and Bob receive arbitrarily
many i.i.d. samples of (X,Y’) ~ p, except the entropy
of their key and their communication no longer grow
linearly with the number of samples. Rather, the
keys lie in some fixed set K, and the goal is to use
as little communication (and rounds) as possible to
generate a single key uniformly distributed in K.
Moreover, whereas the agreement probability 1 — ey
in the amortized case was assumed to approach 1
asymptotically, in the non-amortized case, it is often
of interest to study settings in which the parties may
disagree with some probability that is bounded away
from 0. In fact, this probability of disagreement
may be arbitrarily close to 1. The non-amortized
setting has recently received much attention
among the theoretical computer science community
[BM11, CGMS17, GR16, GJ18, BGGS19], where it
is also known as the agreement distillation problem.

In the below definition we assume that (X,Y) ~
v and v is supported on a set A x ).

DEFINITION 2.3. (NON-AMORTIZED CRG) For

r,C € N, and L,e € R>o, we say that the tuple
(C,L,e) is r-achievable from the source v (for
CRG) if there is some N € N and an r-round
protocol 11 with private randomness that takes as
input (XN, YN) ~ v®N  such that at the end of
II, Alice and Bob output keys K,,Kp € K given

2As for CRG, the protocol II cannot use public coins.
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by deterministic functions K, = K,(XV, R, 1I"),
Kp= Kp(YN,Rp,1I"), such that:

1. cc(m) < C.
2. |K| > 2F.

3. There is a random variable K wuniformly dis-
tributed on KC such that P,[K = Ky = Kg| >
1—e.

As in the amortized case, for tuples (C, L, €), observe
that C' denotes communication and L denotes en-
tropy.

Definition 2.3 differs slightly from the definition
of achievable rates for non-amortized CRG in [BM11,
CGMS17, GR16, GJ18, BGGS19], which do not limit
the size of the key space K, but rather require a
lower bound on the min-entropy of each of K,, Kj.
In the full version of this paper [GS19, Appendix A],
we present this latter definition and show that it is
essentially equivalent to Definition 2.3.

As in the amortized setting, in the non-amortized
setting secret key generation is the same as common
randomness generation except the key is additionally
required to be “almost independent” from the tran-
script of the protocol:

DEFINITION 2.4. (NON-AMORTIZED SKG) For
r,C € N and L € R>q, €,6 € [0,1), we say that the
tuple (C,L,¢€,8) is r-achievable from the source v
(for SKG) if the tuple (C,L,€) is r-achievable for
CRG from the source v, and if there exists a protocol
Il = (I1Y,...,[I") achieving the tuple such that

(2.2) I(II"; K,Kz) < 6.

Notice that condition (2.2) is quite strong: it implies,
for instance, that A(II" K, K, [I" ® K3 K3) < 1/4/2,
by Pinsker’s inequality.

2.5 Main Results: Analogue of Pointer-
Chasing Separations for CRG & SKG In this
section we present our main results. We first state
formally the main result of [BGGS19| discussed in
Section 1.1, which establishes an exponential sepa-
ration in communication cost between |(r + 1)/2]-
round protocols and (r + 2)-round protocols in the
non-amortized setting:

THEOREM 2.1. (THMS. 1.1 & 1.2 oF [BGGS19])
For each r € N,e € [0,1), there existsn > 0, § < oo,
ng € N such that for any n > ng and any £ € N, there
is a source [i,n, such that, in the non-amortized
setting:

1081 Unauthorized reproduction o

(1) The tuple ((r + 2)[logn]|,£,0,0) s (r + 2)-
achievable for SKG from p,,, (and thus ((r +
2)[logn|,£,0) is (r + 2)-achievable for CRG).

(2) For any L € N and C < min{nL — 3,n/log’ n},
the tuple (C,L,¢€) is not |(r 4+ 1)/2]-achievable
for CRG (and thus the tuple (C,L,€,d) is not
| (r + 1)/2|-achievable for all 5 > 0).

The interpretation of the parameters n, £ in The-
orem 2.1 is described in detail in Definition 3.1 of the
source frn¢. We remark that the proof of item (1)
of the theorem is immediate once this definition is
made, and so the main content of Theorem 2.1 is in
the second item (i.e., the lower bound).

To aid understanding of Theorem 2.1, fix any r €
N,e € [0,1), and consider parameters £ = n — oo;
the length of Alice’s and Bob’s inputs under p,,n
are O(n?). The theorem gives that with only O(log n)
communication, n bits of entropy can be generated in
r—+2 rounds, but if we have only roughly half as many
rounds (i.e., [(r+1)/2] rounds) then generating n bits
of entropy takes at least n/ poly log n communication,
which is exponentially larger than logn. It follows
that for some 7’ with |(r+1)/2] <’ < r+2, the ratio
in communication cost between the best r’-round
protocol and the best (7' + 1)-round protocol is at
least n/(+[(+1)/21) /166“() 1y Our first main result

improves this ratio to n!/4/ log“M n_and moreover
shows that such an 7’ lies in {r,r + 1}:

THEOREM 2.2. (TIGHTER ROUND; NON-AMORTIZED)
For each r € N,e € [0,1), there exists n > 0, 5 < oo,

ng € N such that for any n > ng and any £ € N, the

source [, ¢ of Theorem 2.1 satisfies:

(1) The tuple ((r + 2)[logn]|,£,0,0) s (r + 2)-
achievable for SKG from p,,, (and thus ((r +
2)[logn],£,0) is r-achievable for CRG).

(2) For any L € N, C < min{nL — §,/n/ log? n},
the tuple (C,L,€) is not r-achievable for CRG
from p.,, ¢ (and thus for any § > 0, the tuple
(C,L,€,6) is not r-achievable for SKG).

Our second main result provides an exact ana-
logue of Theorems 2.1 and 2.2 for the amortized set-
ting:

THEOREM 2.3. (AMORTIZED SETTING) For  each
r € N,y € (0,1), there is a constant ¢y > 0 such that
for n > co, the source prn ¢ of Theorem 2.1 satisfies:

(1) The tuple ((r + 2)[logn],£) is (r + 2)-achievable
for SKG (and thus CRG) from iy ns.
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(2) Set{ =n. For any C,L € R with C <n/log®n
and L > ~f = ~n, the tuple (C,L) is not
|(r 4+ 1)/2|-achievable for CRG (and thus for
SKG) from prnn for n> co.

(3) Again set £ = n. For any C,L € R with
C < /n/log”n and L > vn, the tuple (C,L)
is not r-achievable for CRG (and thus for SKG)
from p, 5 forn > cg.

Notice that parts (2) and (3) of Theorem 2.3 only
provide a lower bound on the communication rate C
for protocols when the entropy rate L is at least a
constant factor times n. The problem of determining
such a result for L that grow sublinearly with =,
or even those L that do not grow at all (such as
L = 0,(1)) remains open. Such a problem boils
down to showing a rounds-communication tradeoff
for the r-round common random bits per interaction
bit (CBIB) of the source pirn¢, or equivalently, for
the r-round strong data processing constant (SDPC)
[LCV17]; see Problem 5.1. As we discuss in Section
4.4, this problem seems to be quite difficult as a proof
of it would immediately imply Theorem 2.3.

2.6 Discussion and overview of proof of The-
orems 2.2 & 2.3 The source p, ¢ referred to in
Theorems 2.1, 2.2 and 2.3 is a variant of the well-
known pointer chasing distribution from communi-
cation complexity [NW93, DGS84, PS82]. This dis-
tribution was introduced to show a similar type of
rounds/communication tradeoff as in the above the-
orems, except for the task of computing functions
rather than generating a shared string.

Alice’s and Bob’s inputs from .. ,, » are given as
follows: for an integer n and odd r, Alice receives per-
mutations indexed by odd integers X1, ¥a,...,%, :
[n] = [n], and Bob receives permutations indexed by
even integers Yo, X4,...,2,_1 : [n] = [n], as well as
an integer Ip € [n]|. Let Jo = Xn(X,_1(---X1(lo))) €
[n]. Alice and Bob also receive strings Aj,..., A, €
{0,1}¢ and By,..., B, € {0,1}*, respectively, which
are distributed uniformly at random conditioned on
Ay, = Byj,. If Alice and Bob have r + 2 rounds,
then the following protocol generates secret keys
distributed uniformly on {0,1}*: Alice sends Bob
Iy, who responds with ¥1(lp), Alice responds with
¥2(21({p)), and so on, until both parties possess Jy,
at which point they can output A;, = By,.

To prove that Alice and Bob cannot generate
shared common random strings with high entropy
and communication n/log”! n (item (2) of Theo-
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rem 2.1), the following approach was used: Bafna
et al. [BGGS19] first reduced the problem to show-
ing that Alice and Bob cannot succeed with high
probability on a distributional version of the fol-
lowing communication problem: Alice receives per-
mutations Xi,¥s,...,%, : [r] — [n], an Bob re-
ceives permutations Xg,¥4,...,%,_1 : [n] — [n]
and indices Iy, Jy € [n]. Their task is to determine
if ¥,(3¥r—1---Xi(lo)) = Jo. This problem, called
pointer verification, has a protocol with (r + 5)/2
rounds and communication O(logn), given by Alice
and Bob chasing the pointers forwards and backwards
simultaneously. Bafna et al. [BGGS19] showed how-
ever that there is no protocol with (r + 3)/2 rounds

and communication n/ log“!) n, and this led to item
(2) of Theorem 2.1. We are able to prove Theorem 2.2
by employing a reduction from the CRG/SKG prob-
lem to the pointer verification problem with indices in
[n?] (as opposed to in [n]) and with 2r permutations
(as opposed to r permutations).

The proof of Theorem 2.3 (in particular, of the
lower bounds (2) and (3) in the theorem, as (1) is
immediate) is somewhat more involved. The overall
goal is to reduce to the non-amortized case (Theo-
rems 2.1 and 2.2), and to do this, three main ingre-
dients are needed. The first ingredient is a charac-
terization of the achievable rate region 7,.(X,Y’) for
CRG in terms of the internal information cost and
external information cost [BBCR13] of private-coin
communication protocols, which has been referred to
many times in the literature (e.g., [STW19, GJ18]).
This characterization shows that that if for L < ¢,
the pair (C,L) is r-achievable for CRG from p,., ¢
(i.e., belongs to 7.(X,Y)), then there is an r-round
private-coin protocol II with inputs (X,Y) ~ pyne
with internal information cost at most C' and external
information cost at least L (see Corollary 4.1).

The second ingredient of the proof is a result of
Jain et al. [JPY12] (which is implicit in the earlier
work of Braverman and Rao [BR11]) stating that for
any r-round protocol I1 with internal information cost
I, there exists an r-round protocol II’ that simulates
il up to some accuracy loss € and has communication
cost at most @ (see Theorem 4.3). Applying this

to IT = II, one might hope to show that II leads to a
protocol with communication O(C') and key length
QL) for non-amortized CRG. However, the error
€ introduced in the information-to-communication
compression result of Jain et al. [JPY12] makes this
conclusion nontrivial, which necessitates the third
ingredient: a delicate argument that makes use of
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the specific structure of u,.,, ¢ is needed to complete
the reduction (see Lemmas 4.1 and 4.2).

3 Proof of Theorem 2.2; non-amortized

setting

In this section we prove Theorem 2.2. To prove
this theorem we need to introduce the pointer chas-
ing source of [BGGS19], and also recall the notion
of “indistinguishability” of two distributions to low-
round low-communication protocols. We then state
our main technical theorem (Theorem 3.1) about the
indistinguishability of the pointer chasing source from
an “independent source” (where Alice and Bob get in-
puts that are independent of each other). Section 3.1
is devoted to the proof of Theorem 3.1.

We begin by formally defining the pointer-
chasing source pi, , ¢ that the theorem uses to achieve
the rounds-communication tradeoff.

DErFINITION 3.1. ([BGGS19], DEFINITION 2.1)
For positive integers v, n and ¢, the support of p =
frm e s (SE7 % {0,137) x ([n] x S/ x {0,1}).
Denoting X = (21, Ya,..., EQF,—./Q]_],A]_, ceey An)
and Y = (Ia221241---322|_r/‘2JaBla---an); a
sample (X,Y) ~ p is drawn as follows:

el € [n] and %4,...,%, € S, are sampled
uniformly and independently.

o Let J =%, (S,_1(---S1(I)---)) € [n].

e A; = B; € {0,1}* is sampled uniformly and
independently of I and X’s.

o For every k # J, A € {0,1}* and By, € {0,1}*

are sampled uniformly and independently.

We use the following notational convention for sam-
ples (X,Y) ~ pyne. We write Iy := I, and for
1 <t <wr Iy = %(;_y). Similarly, we write
Jyo:=J,andfor1 <t<r, J = Et_l(J}_l). Over
the distribution g, ¢, we thus have I; = J,_; for
0 <t < r with probability 1.

We establish the following basic property of the
pointer chasing source p,.,, ¢ for future reference:

LeMMA 3.1. When (X,Y) ~ pirne, I(X;Y) =L

We defer the proof of Lemma 3.1 to the full version
of this article [GS19].

It is immediate from the definition of p, . ¢ that
part (1) (i.e., the upper bound) of Theorem 2.2 holds:
in particular, the parties “chase the pointers”, i.e.,
alternatively send I;, 0 < t < r, and finally output
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A;. = Bj, as their keys. The main content of
Theorems 2.1 and 2.2 is then in part (2) (i.e., the
lower bound) of each; its proof, for both theorems,
proceeds via arguments about indistinguishbility of
inputs to protocols, which we will now define. For
r,C € Ry, we say that a communication protocol II
is an (r, C') protocol if II has at most |r| rounds and
communication cost at most |C].

DEFINITION 3.2. ([BGGS19], DEFINITION 3.1)
Let 0 < € < 1. Two distributions w1, p2 on pairs
(X,Y) are e-indistinguishable to a protocol 11 if the
distribution of the transeript II" when (X,Y) ~ py
has total wvariation distance at most € from the
distribution of II" when (X,Y) ~ pa.

Two  distributions  py,pe  are  (e,7,C)-
indistinguishable 1if they are e-indistinguishable
to every (r,C) protocol. The distributions pi,p2
are (e,r,C)-distinguishable if they are not (e,r,C)-
indistinguishable. If 11 is a protocol such that the
total variation distance of the transcript between
inputs (X,Y) ~ py and inputs (X,Y) ~ po is at
least €, then we say that 11 distinguishes between piy
and po with advantage €.

Proposition 3.1 reduces the problem of showing
that certain tuples (C, L) are not achievable for CRG
from fi, ¢ to that of showing indistinguishability of
Lrne from the product of its marginals (prn¢)x ®
(HT,n,E)Y-

ProrposiTION 3.1. ([BGGS19], Prop. 3.3 & 3.4)

There are positive constants n,& such that the fol-
lowing holds. Suppose p,C,L € N and 0 < v < 1.
Suppose that C < nL — 3/2 -logl/y — & and that
the tuple (C,L,1 — =) is p-achievable for CRG
from the source pirne¢. Then there is some N € N
such that pirnnNe and (UrnNe)x @ (Hrn,Ne)y are
(7/10,C + €log 1/7, p + 1)-distinguishable.

Our main theorem for this section is the following
indistiguishability result for p = prn ¢ versus px ®
py . In contrast to the analogous result in [BGGS19,
Lemma 4.5], our result shows indistinguishability for
protocols with 7 4+ 1 rounds albeit with a smaller
communication budget.

THEOREM 3.1. For every € > 0 and r € N there
erists [3,ng such that for every n > ng and £, the
distributions p = pi.ne and px @ py are (e,7 +
1,v/n/ log? n)-indistinguishable.

The proof of Theorem 2.2 is immediate from
Proposition 3.1 and Theorem 3.1; we refer the readers
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to the full version of this paper [GS19] for the details.
To complete the proof of Theorem 2.2 it therefore
suffices to prove Theorem 3.1. We do so in the
following subsection.

3.1 Disjointness and Proof of Theorem 3.1
Next we work towards the proof of Theorem 3.1;
the proof parallels that of a corresponding result
of Bafna et al., which shows that the distributions
p=tirne and px @ py are (¢, | (r+3)/2],n/log" n)-
indistinguishable (see [BGGS19, Lemma 4.5]). A
central ingredient in the proof of [BGGS19] is a
“pointer verification problem” (see Definition 3.3
below) and an indistinguishability result they show
for this problem (see Theorem 3.2). We use the same
notion and indistiguishability result, with the main
difference being that we are able to reduce a “2r”-
round pointer verification problem to our problem
whereas the proof in [BGGS19| could only reduce
an r-round pointer verification problem to the same.
This factor of 2 leads to the gain in this section.
We remark here that a somewhat similar problem to
pointer verification was considered in [GO13], though
with quite different applications.?

The proof proceeds by eliminating each of two
possible strategies Alice and Bob can use to distin-
guish piy ¢ and (fypn o) x @ (firne)y: first, they can
try to follow the chain of pointers, compute I, and
check if A7, = By, (which is true with probability
1 under p,,, but only with probability 1/2¢ un-
der (frmne)x ® (Hrmne)y). Computing I, however,
with fewer than r 4+ 2 rounds requires communica-
tion Q(n) by standard results for the pointer chasing
problem [NW93]. Alternatively, Alice and Bob can
ignore the chain of pointers and try to determine if
there is any i such that A; = B; (under the product
distribution the probability that such an i exists is
at most n/2¢ < 1). As observed in [BGGS19], de-
termining the existence of such an i is no easier than
solving the set disjointness problem [Raz92], which
requires communcation §2(n). However, combining
" 3In the pointer verification variant of [GO13], there are 2r
players, each holding a single function f : [n] — [r], and the
players are given a total of » — 1 rounds to communicate.
Due to our application of showing lower bounds on CRG,
we need to use lower bounds on pointer verification for
particular distributions in which Alice’s and Bob’s inputs are
not independent (unlike the work of [GO13], which considered
a distribution in which the parties’ inputs are independent).
There are additional minor differences between our work and

theirs, such as the fact that we work with permutations ¥ :
[n] = [n] whereas [GO13] work with functions f : [n] = [n].
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the pointer chasing and set disjointness lower bounds
takes some care, and ultimately leads to the fact that
we are only able to lower-bound the communication
cost of r-round (as opposed to (r + 1)-round) proto-
cols, and get a bound of £2(1/n) (as opposed to 2(n)).
We begin by recalling the Q(n) lower bound on the
distributional communication complexity of disjoint-
ness with respect to a particular distribution:

We will use the following result that establishes
the hardness of disjointness for a distribution under
which the parties’ sets are either disjoint or have
intersection size y/n.

LEMMA 3.2. For every € > 0 there exists § > 0
such that for all n the following holds. Let Disj};ﬁ

(respectively, DisjE, s ) denote the uniform distribu-
tion on pairs (U,V) with U,V C [n| and |U| =
V| = n/4 such that (U NV| = |\/n] (respectively,
[UNV|=0). Then if Alice gets U and Bob gets V
as inputs, Disj};\/ﬁ and Disj:,\/?—m are (€,0+/n,dy/n)-
indistinguishable to Alice and Bob.

The proof of Lemma 3.2 uses standard reductions to
the the result of [Raz92] and is deferred to the full
version of the paper [GS19].

Next we state the second main ingredient in the
proof of Theorem 3.1, which is a hardness result
for the pointer verification problem introduced in
[BGGS19, Definition 4.1]. The inputs to pointer
verification are similar to those of the standard
pointer chasing problem, except that Bob receives
as input a final pointer Jy in addition to the initial
pointer Iy, and the goal is to determine if ¥, 0---0

1 (Io) = Jo:

DEFINITION 3.3. ([BGGS19], DEFINITION 4.1)
Let r,n € N with r odd. Then the distributions
DY, = D¥,(r,n) and DY, = DX(r,n) are both
supported on ((S,Eﬁﬂ) x ([n]? x S,llrﬂj), and are
defined as follows:

e DY, is the uniform distribution on ((S,Erfﬂ) X
([n)? x SE7?).

o (X,Y) ~ DY, with X = ($1,%3,...,%,),Y =
(Io, Jo, X2, X4, ...,2,_1) is sampled by letting
¥1,%9,..., 5, be independent and uniform over

Sp, letting Iy € [n] be uniform and independent
of the ¥, and setting Jo = X, 0 --- 0 Xy (Ip).

Notice that with (7 +5)/2 rounds of communica-
tion, by communicating at most 1+ (r+1)[log n| bits,
Alice and Bob can distinguish between D, (r, n) and
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DY, (r,n) with advantage 1 — 1/n. In particular, Al-
ice sends Bob an arbitrary bit in the first round, Bob
sends Iy, Jy in the second round, Alice responds with
I =%i(lp) and J; = E;I(Ju), Bob responds with I
and Js, and so on. After (r+3)/2 rounds either Alice
or Bob will know both I(,_1)/o and J(,_1)/2, and this
person sends 1[X,41y/2(l(r—1)/2) = J(r—1)/2] (Which
is 1 with probability 1 under Djy; and only with prob-
ability 1/n under D};) as the final bit.

Theorem 3.2 states that if Alice and Bob are only
allowed 1 fewer round, then they must communicate
exponentially more bits to distinguish D%, and DY,

THEOREM 3.2. ([BGGS19]|, THEOREM 4.2) For
every € > 0 and odd r there exists (3,ng such
for every n > ng, DX;(r,n) and DY (r,n) are
(€, (r + 3)/2,n/ log? n)-indistinguishable.

Using Theorem 3.2 and Lemma 3.2, we now
prove Theorem 3.1. We do so using a sequence of
hybrid distributions: the first distribution in this
sequence is [, ¢ and the last distribution in this
sequence is (fiyn.¢)x @ (Krn,e)y. We will show that
any two distributions in this sequence are nearly
indistinguishable to (r+1,n/ log”? n)-protocols, which
implies by the triangle inequality that the same holds
for Hrmn,e and (;U“r,ﬂ.,f)X ® (Hr,n,E)Y-

Proof. (of Theorem 3.1) We first introduce a hybrid

distribution which we denote by i (or firn.e when
we want to emphasize dependence on r,n,f); i is

a distribution supported on (S,Erj 21 x ({0,1}5)™ x
(S,Erm x [n] x ({0,1}¥)™). We denote a sample from
£ by (X,Y), with

X = (213233 ceey E?[rf?]—laAla . . -1An)a
Y = (IOa Y9, g, - - -=EZ|_W'2J=BD .- -1Bn)a

which is distributed as follows:

e Ip € [n] and X4,...,%, € S, are sampled

uniformly and independently. Let I, = ¥X,.0---0
Y1(Ip).

e Let P C [n] be a uniformly random subset of size
|v/n], conditioned on the event that it contains
I,.

e For every j € P, A; = B; € {0,1}* is sampled
uniformly and independently of Iy, ¥’s, and P.

e For every j ¢ P, A;,B; € {0,1}F are sam-
pled uniformly and independently (and indepen-
dently of all ¥’s, Iy, and P).
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CLAIM 3.1. For every € > 0, there erists § >

0 such that the distributions p,,, and fi,,, are
(€, 84/n, d+/n)-indistinguishable.

The proof of Claim 3.1 proceeds by showing that any
protocol IT with CC(II) < C distinguishing 1 = py. ¢
and i = flrn¢ with advantage € can be converted
into a protocol II' with CC(Il') < C and which
distinguishes Disjz? Jm and Disj:? S and applying
Lemma 3.2. It is quite similar to that of [BGGS19,
Lemma 4.5], and is deferred to the full version of the
paper [GS19].

Next, notice that the two distributions
(ﬂr,n,E)X ® (HT,n,E)Y and (ﬂr,n,E)X ® (ﬂr,n,E)Y
are identical. Thus by Claim 3.1 and the triangle
inequality for total variation distance, Theorem 3.1
follows from the following claim:

CLAIM 3.2. For every € > 0 and r € N there
erists [3,ng such that for every n > ng and £, the
distributions i = firne and fix ® fiy are (2,7 +
1,v/n/ log? n)-indistinguishable.

To prove Claim 3.2, we introduce another hybrid
distribution p™d = uv‘f‘?:ld,g, which is the same as fi, ¢,
except the distribution of the uniformly random
subset P C [n] with |P| = |/n] is not conditioned
on the event that it contains I. (i.e. it is drawn
uniformly at random from the set of all | \/n|-element
sets, independent of Ip,X4,...,%,). Thus, with
probability at least 1 — 1/y/n, I, ¢ P under p™i.
Now Claim 3.2 follows directly from the triangle
inequality and Claims 3.3 and 3.4 below.

CLAIM 3.3. For every € > 0 and r € N there
erists ,no € Ry such that for all integers n > ng
and ¢, the distributions fi,n ¢ and ,uﬁ:ld,g are (e,r +
1,v/n/ log? n)-indistinguishable.

CLAIM 3.4. For every € > 0, there exists § > 0 such

that iy and (fir.n,e) x @ (firn,e)y are (€,6+/n,6v/n)-
indistinguishable for all n € N.

We prove Claim 3.3 below, and defer the proof of
Claim 3.4 to the full version.

Proof. (of Claim 3.3) The proof of Claim 3.3 proceeds
by using Theorem 3.2. In particular, we will show
how Alice and Bob can distinguish between samples
from DY (2r — 1,n) and DY (2r — 1,n) by using
a protocol that can distinguish between fi,,, and
e

’ ,{?Ve assume for simplicity that n is a perfect
square (see [GS19] for the case that this is not so). Fix
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r,n, £, and suppose that IT is a p-round protocol (p €
N) with communication at most C that distinguishes
between fi,. ,2 ; from ,uﬂig y with advantage €. (Notice
that we are replacing n with n? in the notation.)

We now construct a protocol II" with the same
number of rounds and communication as IT and which
distinguishes between DY, (2r — 1,n) and D}, (2r —
1,n) with advantage at least e. Suppose Alice
and Bob are given inputs X = (¥1,%3,...,X2._1)
and Y = (lp,Jo,Y2,%4,...,82,_2), respectively,
which are distributed according to DX (2r — 1,n)
or DY, (2r — 1,n). Next, for 1 < t < r—1, let
Y, =Y, andforr+2 <t < 2r let ¥ = %;_;.
Finally let ¥7,%] | € S, be uniformly random con-
ditioned on X, o ¥ = X,. Notice that each X,
1 < t € 2r may be computed by either Alice or
Bob. Next, interpret [n2] ~ [n] x [n], so that any pair
0,7 € S, of permutations on [n] determines a per-
mutation on [n?], which we denote by o||r, so that
(a||I7)((i,7)) = (o(i),7(5)). (Note that the vast ma-
jority of permutations on [n?] cannot be obtained in
this manner, however.) The protocol I’ proceeds by
taking the chain of permutations ¥},...,%, € S,
“folding it in half” to construct a chain of permuta-
tions f]l, .. .,EA]QL(V_F]_)X‘QJ € S,2, and then running II
on this “folded” chain of permutations. Formally, IT’
is given as follows:

1. Alice and Bob use their common ran-

domness to  generate  uniformly  ran-
dom permutations TOsT1s---sTr €
Sp2 and uniformly random strings

Ala---aA'n.z—nsBla---1-8?12—11.1011---3011 €
{0,1}¢.

2. Fc;l]a computes [y = 10((Lo, Jo)) € [n] X [n] =~

3. For t = 1,3,...,2|(r + 1)/2], Alice computes

~

Y =1 0 (Bf||(Bhry1_¢) ") 0 Tt_—ll € Sp2.

4. For t = 2,4,...,2|r/2], Bob computes S =
Tt © (Egll(zér—l-l—t)_l) © Tt_—ll € Sn2-

5. For 1 < i < n, Alice and Bob set }Alrr((m)) =

~

B:, (i) = Ci-

6. For the n? — n pairs (i, 5) € [n] x [n] with i # j,
Alice sets }i(i?j) to be equal to one of the Ag,
1 < k < n? —n so that each A is used once.
Bob does the same with B(i,j) with respect to
the By.
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7. Alice and Bob now run the protocol II on the in-

puts X = (213233 <o 22[(’:‘—]—1){%11411 cee sA'n.z)
and f/ = (fl]a ﬁg, flih .. -af;2|_rf2ja Bla .- -sgn.?)-

Certainly the communication cost and number of
rounds of I’ are both the same as the communication
cost and number of rounds, respectively, of II.

It is not hard to see that (1) if (X,Y) ~ D& (2r—
1,n), then (X,Y) ~ fi,n24, and (2) if (X,Y) ~
DNy (2r — 1,n), then (X,Y) ~ H,T:ldz,g-
be found in [GS19].

Thus the distribution of the transcript of II’
(excluding the additional public randomness used
by I in the simulation above) when run on DY,
(respectively, DY) is the same as the distribution of
the transcript of II when run on f,. ,2 ¢, (respectively,
uv‘f‘?:ldg?f). It then follows from Theorem 3.2 and the
fact that ((2r — 1) + 3)/2 = r + 1 that for every
€ > 0, there exists ,ng € Ry such that for all £ € N
and perfect squares n > ng, the distributions f, , ,

and p™d, are (e,r+1,/n/ log? n)-indistinguishable.
0

We have now verified Claims 3.3, 3.4, which estab-
lishes Claim 3.2, which completes the proof of Theo-
rem 3.1, and thus of Theorem 2.2. O

Details can

4 Proof of Theorem 2.3; amortized setting

In this section we work towards the proof of Theorem
2.3; recall that part (1) is immediate, so the main
work is in proving parts (2) and (3). As discussed in
Section 2.6, there are 3 main steps in the proof, which
proceeds by initially assuming that the tuple (C, L)
is r-achievable for appropriate values of C,L and
eventually deriving a contradiction. The first step
is to establish a single-letter characterization® of the
achievable rate region 7,.(X,Y’) for amortized CRG,
which we explain in Section 4.1. This single-letter
characterization will show that if the tuple (C, L) is
r-achievable for CRG from any source v, then there is
an r-round protocol with internal information cost at
most C' and external information cost at least L. In
Section 4.2, we show how to convert this protocol into

TThe term “single-letter characterization” is used relatively

loosely in the literature. Following [CK81], for any k € N
and a closed subset S C RF, we call a characterization of S
a single-letter characterization if it implies, for any n > 0,
the existence of an algorithm that decides whether a point
x € R¥ is of Euclidean distance at most i to S. Moreover, this
algorithm must run in time at most Ts(n), for some function
Ts : Ry — N. This is related, for instance, to ideas on the
computability of subsets of R* considered in [Bra05].
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a nearly equivalent protocol whose communication
cost is at most C (recall that in general, CC(II) >
ICint (IT), so upper bounding communication cost is
more difficult). Finally, in Section 4.3 we show how
to use the fact that the external information cost is
at least L to obtain a protocol that can distinguish
between the pointer-chasing distribution pu, ¢ and
the product of the marginals (fypne)x ® (firn.e)y -
At this point we will obtain a contradiction for
appropriate values of C, L by Theorems 3.1 and 4.4,
which were the key ingredients in the proof for the
corresponding lower bounds in the non-amortized
setting (i.e., item (2) of Theorems 2.1 and 2.2).

4.1 Single-letter characterization of 7,(X,Y)
It follows immediately from Definitions 2.1 and 2.2
that the r-round rate region for amortized CRG
and SKG is completely characterized by, for each
communication rate C, the maximum real number

L, known as the capacity, such that (C,L) is r-
achievable for CRG or SKG:

DErFINITION 4.1. (CR & SK CAPACITY) Suppose a
source (X,Y) ~ v s fired. Then forr e N,C € Ry,

define the CR capacity with communication C to be

€ (C) = sup L,
(C,L)ET-(X,Y)

and the SK capacity with communication C to be

€k (C) = sup L.
(C,L)ES,(X,Y)

The single-letter characterization of 7,(X,Y) re-
lies on the concepts of internal information cost and
external information cost of a protocol II [BBCR13,
BR11, BRWY13, BGPW13, Bral2|. The external in-
formation cost of a (multiple-round) protocol II de-
scribes how much information II reveals about the
inputs X,Y to an external observer who only sees
the transcript of the protocol, while the internal in-
formation cost describes how much information Alice
and Bob reveal to each other about their own inputs:

DEFINITION 4.2. (INFORMATION COSTS) Given any
communication protocol 11 with a mazimum of r
rounds, public randomness Rpy,, and a distribution
(X,Y) ~ v of inputs, the external information cost

IC™*(IT) is given by:
ICO(TI) := I(IT", Rpuy; X, Y).

If 11 does mnot wuse public randomness, then

ICSY(IT) := I(II"; X, Y).
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The internal information cost IC"™(II) is given
by

ICPY(IT) := I(I", Rpus; X|Y) + I(IT", Rpwp; Y| X).

If 11 does mnot wuse public randomness, then

ICI () := [(I"; X|Y) + I[(TI"; Y| X).

REMARK 4.1. [t is well-known that for any distribu-
tion v, and any protocol I, IC™(IT) < ICT*(I) <
CC(II).

An original motivation behind the introduction
of internal and external information costs was to un-
derstand the possibility of proving direct sum results
for communication complexity [CSWYO01, JRS03,
HJIJMRO7, BBCR13]. In light of the connection with
direct sum results, the fact that internal and exter-
nal information costs appear in characterizations for
amortized CRG and SKG is not surprising. In par-
ticular, the amortized CRG and SKG problems can
be viewed as the task of solving N independent in-
stances of CRG or SKG from a source v, with an
additional requirement that each of Alice’s N out-
put strings must agree with each of Bob’s N output
strings simultaneously with high probability.

An additional ingredient in the single-letter
chararcterization of 7,.(X,Y) is the minimum r-round
interaction for mazimum key rate (i.e., the r-round
MIMK). Ahlswede and Csiszar showed in their sem-
inal work [AC93] that the maximum key rate L that
Alice and Bob can generate from a source (X,Y) ~ v,
without restricting communication, is I,,(X;Y). In
other words, we have: supy-, %> =(C) = I(X;Y).
The r-round MIMK describes the minimum amount
of communication needed to obtain this key rate of

I(X;Y):
DEFINITION 4.3. If (X,Y) ~ v is a source and r >
1, Then the r-round MIMK is defined as

Ir(X5Y) = cgo:%:w-s}zl(]é)=1(x;y){c}'

Tyagi [Tyal3] proved the following single-letter char-
acterization of the r-round MIMK .#,.(X;Y):

THEOREM 4.1. ([Tyal3], THEOREM 4) For a
source (X,Y) ~ v, the r-round MIMK is the infi-
mum of all C > 0 such that there exists an r-round
private-coin protocol TI such that ICP*(IT) < C and
ICEYID) > C + I(X;Y).

Using Theorem 4.1, we finally can state the
single-letter characterization of achievable rates for
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r-round CRG. It is stated most precisely in [STW19],
but similar results are shown in [LCV17, GJ18, Liul6,
Ye05, GA10a, GA10b].

THEOREM 4.2. ([STW19], THEOREM III.2) For
C >0, define

(43)

C < 7(X;Y)
C > Z.(X;Y),

Sam-cr e Supg {Icixt (H) }
O = I(X;Y)+C

where the supremum is over all r-round private-coin
protocols T1 = (I1y, ..., I1,) with ICI'(IT) < C.
Then for a source (X,Y) ~ v, the r-round CR

capacity is given by
(4.4 Gomer(C) = Gomer(C).

For the purpose of proving Theorem 2.3, we will only
need the inequality €2*°*(C)) < €2 r(C) (which is
often called the converse direction of the equality in
Theorem 4.2). As a full proof of Theorem 4.2 (and
in particular, of this inequality) does not appear to
have been collected in the literature, we provide one
in the full version of this paper [GS19, Section 5].
The following is an immediate consequence of this
inequality:

COROLLARY 4.1. For a source (X,Y) ~ v, for each
tuple (C,L) € T.(X,Y) with L < I(X;Y), there is
some protocol 1 = (14, ... ,II,)) such that IC(IT) <
C and ICJ*(I) > L.

See [GS19] for a proof.

4.2 Using the compression of internal infor-
mation to communication A crucial technical in-
gredient in doing so is the use of an “compression
of internal information cost to communication” re-
sult for bounded round protocols, saying that for any
protocol with a fixed number r of rounds and inter-
nal information cost I, there is another protocol with
the same number r of rounds and communication cost
not much larger than I. As we discussed in Section
2, these types of theorems were originally proved in
order to establish direct sum and direct product re-
sults for communication complexity. Our use of these
compression results may be interpreted as a roughly
analogous approach for the setting of amortized CRG
and SKG, which can be thought of as the “direct sum
version of non-amortized CRG and SKG”.

THEOREM 4.3. (LEMMA 3.4, [JPY12]) Suppose
that (X,Y) ~ v are inputs to an r-round com-
munication protocol 11 with public randomness
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Rpyy (and which may use private coins as well).
Then for every € > 0, there is a public coin pro-
tocol L with r rounds and communication al most
10, U+5r O(rlog(1/€)) such that at the end

3
of the protocol the parties possess random vari-

ables ((TIy)1,..., (1)), ((TIe)1.-..,(Mg),), each

representing a transcript for 11, which satisfy

A((Rpup, X, Y, (L)1, . .., (T1,),),

(RPubaXa Ya Hls---aﬂr)) < Ger
A((RPubs X: Ys (f[B)la ey (ﬂB)r)1
(RPubaXa Ya Hls---aﬂr)) < Ger
P[((ﬁn‘?)l: cees (ﬂﬂ)r) # ((ﬁﬁ)ls cee (ﬂfl)r)] < Ger.

Our first lemma, Lemma 4.1, uses Theorem 4.3
to show that for any protocol II which satisfies
ICS (M) > ICL“t(H) for the source = p,.,, 1, then
there exists another protocol II with communication
cost not much greater than ICLnt (IT) and which
satisfies some additional properties (which arise from

ext . .
IC;*(II) being large):

LEMMA 4.1. Fiz any r,n, £ € N, and let p = pi, , 4.
Suppose p € N and C,L € R,. Suppose 1l is a p-
round protocol with ICS*(I) = L and ICM(II) = C
and public randomness Rpy, (and which may use pri-
vate randomness as well). Then for every e > 0 there
is some p-round protocol II' with inputs (X,Y) ~ p,
public randomness Rpy,, with communication at most
% + O(plogl/e) and which outputs keys K, K,
such that

1. P,[Ky = Kj] > 1—6ep.

2. When inputs (X,Y) are drawn from p,
I(Ky;Br,) =1(Kj;Ar,) > L—(C+1+2logn+
36epl).

3. When inputs (X,Y) are drawn from px ® py,
Iixouy (Kg Rpuy, (IT')?; By, ..., By,)

C+5p
€

(45) < + O(plog1/e)

and

Ly ouy (Kp, Rews, (IT')P; A1, ..., Ay)
< C+5p
€

(4.6) + O(plog1/e).
Proof. Let I’ be the protocol given by Theorem 4.3

for the protocol II and the given €. Then the com-
munication of IT’ is at most @ +O(plogl/e)). At
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the end Pf Ir, A]jge and BcA)b possess Arandom vari-
ables ((ILa)1,...,(1I),), ((1Ls)1,...,(1ls),), respec-
tively, such that, when (X,Y) ~ p,

A((Rpuba X: Y1 (ﬂﬁ)la seey (ﬁﬁ)p)a
(47) (Rpub,X, Y,Hl, =HP)) < 66,‘3

(Notice that 1§ = ((I)1,...,(II4),) and I are
different from the transcript (II')? = (II3,...,IL}) of
II".) Now Alice sets K] = IT{ and Bob sets K}, = I,
which immediately establishes item (1) of the lemma
(by Theorem 4.3).

To establish point (2), we will first argue that
it holds for II; in particular we show that when

(XaY) ~ M,
(4.8) H(Bq, [II) < £+ C — L + 2logn.

(Since H(B; ) = ( it will follow from (4.8) that
I,(I17;Br.) > L — C — 2logn, though we will not
use this directly.) To see this, first notice that

I(X;Y|IIP) = I(Y;X,II°) — I(II*;Y)

= I(X;Y)+I(II";Y]X) +
(1% X|Y) — I(T1°; X,Y)
I(X;Y) + ICM(ID) — ICS(10)
(+C—L.

(4.9)

[A

Recalling the notation I, = X, o --- o X;(lp),
we observe by [GS19, Lemma 6.2] and the data
processing inequality that

I(X;Y|r’)y > I(X;Y|[I?, 1) —logn
> I(Ar; B |lI?,I,) —logn
> I(Ar;Br |II?) —2logn

H(A; |II?) — 2logn
= H(Br|II?) —2logn,

since H(AIJBI‘_,HP) = H(AI,-IBL-) =0 as AI,.. =
By, for all inputs in the support of g. It then
follows that H(By, |II?, Rpw) < £+ C — L 4 2logn,
establishing (4.8).

Next, (4.7) and the data processing inequality
give us that A((Rpuw, Br,,11?), (Rpw, By, , (I1})?)) <
6ep. [GS19, Corollary 6.5] and (4.8) then give that

H(Br, |({1x)?, Rew)
< H(Br,|(ILn)*)
<0+ C—L+2logn+ 36epf + 1.
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Since K, = 117, we get that
I(Br,;K;) > L — (C+1+2logn + 36ept),

which establishes point (2).

Finally, to establish point (3), first notice that
some inputs (X,Y) ~ px ® py may not be in the
support of u. We may extend the protocol II' to
be defined for all pairs of inputs (X,Y) € & x ),
by choosing an arbitrary behavior (e.g., terminating
immediately) whenever there is a partial transcript
(IT')*~! for which the distribution of the next message
IT; has not been defined.

Recall that (IT1, . .., IT})) denotes the transcript of
communication of II' and Rp,, is the public random-
ness of I', so that when (X,Y) ~ px ® py,

I.ux®.uv ((H—")P" X: RPub; Y)

= ux@uy((H’)p;Y|X1 RPub)
C+5p

< H#x@#‘r ((Hl)p) <

€

+ O(plog1/e).

Recalling that Ky = f[f , by construction of II' (and
II}) from Theorem 4.3, it follows that

(K, Reun, (I')°) — (X, (I)*, Rew) —Y

is a Markov chain. It then follows from the data
processing inequality that
Lixouy (Kia Rpup, (H!)p; By,...,By)
< Ly ouy (K, Bows, (IT)7;Y)
C +5p
€

< +O(plog 1/e),
which gives (4.5); (4.6) follows in a similar manner.
0

Roughly speaking, the next lemma, Lemma 4.2,
shows how the protocol II' constructed in Lemma
4.1 can use the properties (2) and (3) of Lemma 4.1
to distinguish between the distributions g = prn 1
(which corresponds to v4 in the below statement) and
px @ py (corresponding to vz in the below state-
ment). This, in combination with the result from
Theorem 3.1 stating that 4 and px ® py are indis-
tinguishable to protocols with little communication,
will ultimately complete the proof of Theorem 2.3.

LEMMA 4.2. Suppose v1,v2 are distributions over tu-
ples of random variables (Z1,...,Zn, 1, K, K), where
Ziy.oyZnp € {0,1}¢, T € [n], and K € K, where K

18 a finite set. Suppose that the marginal distribution

Copyright © 2020 by SIAM
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of Z4,...,Z,,1 over each of v{,vy is uniform over
{0,1}" x [n]. Finally suppose that 0 < ¢ < 1 and C

3
satisfy logn < C < (11_6% £ as well as:

1. I (K; Zy,..., %) < C.

2. I,(K;Z) > £(1—¢).

3. min {P,,[K =K],P,,[K=K]} > 1 - (1 -
&)2/72.

Then there is some function f : K x {0,1}"* — {0,1}
such that

]Eyl[f(j%:zln"':z“)] _EV2[f(I%)Zl1"')Zn)]| Zp/z':

where p = (1 — £)?/18.

The idea of the proof of Lemma, 4.2 is as follows. The
second condition of the lemma can be shown to imply
that H,,(Zr|K) is small, which means that for each
value of k € K, there is a small subset T of {0,1}¢ to
which Z; belongs with high probability conditioned
on the event K = k. Then the function f can be
chosen to be 1 whenever any Z; belongs to Ty . That
f is 1 with high probability under 5 follows from
construction of f, and that f is 1 with not too high
probability under v, follows from the fact that all 7,
are small.

We first establish some basic lemmas before
proving Lemma 4.2 rigorously. Lemma 4.3, an
immediate consequence of Markov’s inequality, states
that for a random variable with low entropy, it
belongs to some small set with high probability.

LEMMA 4.3. Suppose W € {0,1}* is a random vari-
able, and H(W) = e¢. For any 6 € (0,1] there
is some set S C {0,1}¢ such that |S| < 2°/% and
PW ¢ S] <é.

Proof. Set
S = {w e {0,1}* : P[W = w] > 27/},

We know that ¢ = H(W) = Eywllog(1/PW =
w])], so the probability that P[W = w] < 27¢/¢,
i.e. that log(1/P[W = w|) > ¢/d, over w ~ W is
at most . Thus P[W ¢ 8] < 4. Clearly, by the
definition of S, we have that |S| < 2¢/°. O

Lemma 4.4, a sort of converse to Lemma 4.3,
states that for a random variable with high entropy, it
does not belong to any small set with high probability.

LEMMA 4.4. Suppose that W € {0,1}* is a random
variable with HW) = h < 0. Let S C {0,1}* be
a subset with size |S| < 2¢, for some ¢ < €. Then
PW € 8] < H412h.

Proof. Write p = PIW € S]|. Let J = 1[W € §].
Then pe + (1 — p)¢ > pe + (1 — p)log(2f — 2°) >

H(W|J) > HW)—-1=h—1. Hence p(c—¥¢) >
h—l—f,sopggﬁ. a

Lemma 4.5 is needed in order to reason about the
random variable Z; in Lemma 4.2.

LEMMA 4.5. Suppose that random  variables
I1.7Zy,...,Z, are distributed jointly so that the
marginal of Zi,...,Z, € {0,1}* is uniform on
{0,1}*. Then H(Z;) > £ —logn.

Proof. Notice that

H(Zr,Zry1,-- s Z1yn_1)
> H(Zr,...,Z14n-1|I)
= E;o1 [H(Z@, .. .,Z,;+n_1|f = 1)]
i~ T [H(Zla---sznu':i)]
= H(Zy,...,Zn|I)
(410) > fn—logn,

=

where addition of subscripts is taken modulo n. Since
(Zrs1y-- s Zrin—1) € {0,1}"¢ we get that

H(Zr) > H(Z1|Z141, -+, Z14n—1)
> H(Z}, .. .,Z1+n_1) — (fn — f)
> {—logn,

as desired. O

Now we prove Lemma, 4.2.

Proof. (of Lemma 4.2) We will first define f and
determine a lower bound on E,,[f(K, Z1,...,Z,)].
By assumption, H,,(Zr) = ¢, so Hy,,(Z1|K) < &L.
For each k € K, let v, = H(Z;|K = k)/{, so that
Er~k[yk] < €. Pick some n > 1,{ > 1 to be specified
later. By Lemma 4.3, for each k € K, there is a set
Tr € {0,1}* of size at most 27** such that P,,[Z; ¢
Ti|K = k] < 1/n. Next, set S = {k € K : v, < (£}
By Markov’s inequality, P,,,[K € §] > 1 —1/(. Thus
P, [K € S| P,,[Z; € Tk|K € §] > (1-1/¢)-(1-1/7),
and for all k € S, |Ty| < 27688 < 2m¢t,
We now set

1 1Z; € Kes
f(K,Zy,....Z,) = vﬁE[n] [Z: € Tk]
0 : else.
COfP{;right © 2020 by SIAM
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Since PIK € S8] - P[Z;
E [Viem1[Z:i € Tk]],

E,[f(K,Zy,...,2Z,)] > (1 —1/n)- (1 —1/C).

S TK|K € S] <

Next we determine an upper bound on
E,,[f(K,Zi,...,Z,)]. Define a random variable I =
f(Zl, oy Zn, K), by I = min{i : Z; € Tk }, if the set
{i : Z; € Tk} is nonempty, else ] = 1. Thus H(I) <
logn. Consider the random variable Z; € {0,1}%.
It follows that f(K,Z1,...,2Zn) < 1[Z; € Tk]. By
[GS19, Lemma 6.2] and the data processing inequal-
ity, we have that

L,(K;Z;) —logn < I, (K; Z;|T)
<I,(K;Z,...,Z,|I)

<L, (K;Z,...,Z,) +logn

< C +logn.

Lemma 4.5 gives that H, (Z;) > f — logn, so
H,,(Z;|K) > £—C—3logn. Foreach k € K, let hy, =
H,, (Z;|K = k), so that E,, [hgx]| > £ — C — 3logn.
By Lemma 4.4, for each k € K with ny < 1,
PZ; € Tk|K = k] < é%, by our upper bound
[Te] < Dyl

Recall that E,,[yx] < & For i € {1,2}, let K,,
be the marginal distribution of K according to v;.
We must have that A(K,,,K,,) < p, else we could
choose f to be a function of only K and would get
that |E,, [f]-E.,[f]| > p. Thus1-1/{—p <P, [K €
8] < 1. Next notice that E,, [ — hx| < C + 3logn,
and that £ — hx > 0 with probability 1. Therefore,
E [l — hi|K € 8] < %2, Since yx < (¢ for all
k € 8, it follows that

]Evl[f(Kazla---szn)]
E, [f(K,Zi,...,Z.)|K € 8]
]P,,I[Zf = TKIK c S]

CH4+3logn
1+ 1-1/¢—p

qa—nce)

A IA

[

Thus

Evg[f(Kszls---aZn)] _EV1[f(K1Z].1"‘1Zﬂ.)]

1 1+ S
1-1/¢ €1 —nce)

> (1-1/¢)- ((1 —1/n) -

Now, choose p = ¢ = £~1/3 and let & = 1—¢, so that

_ _eny1/3 _
p<{/6< 1-( 25 )71 21fc_ Using the inequality
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ax<1—(1l—z)*<zfor0<a<1l,ze]l0]1]and
C > logn gives

EVQ[f(Kszls---aZn)]_Evl[f(KaZIa---azn)]

, ) 1 15C
> € (8- i == ¥ )
> /3 (€/3- )

> (¢£)/18=p,

(€)%
. 1620 -
Since K, K are nonequal with probability at most

p/4 over each of v1,vs, it follows that

where the last inequality follows from C' <

Evz[f(}%azla .. sZn)] _Evl[f(}%szls .. -1Z‘n.)] 2 p/za
as desired. O

4.3 Proof of Theorem 2.3 Theorem 2.3 is
proven as follows: Theorem 4.2 (see also Corollary
4.1) states that if the rate (C, L) is achievable under
the source & = iy n ¢, then there is a protocol II with
internal information cost bounded above by C and
bounded below by L under p. Lemma 4.1 implies
that such a protocol II can be compressed to a proto-
col II" with communication not much more than C,
with the same number of rounds as II, and for which
Alice and Bob can output keys at the end which “give
some information” about the strings Ay, By, under
p. Lemma 4.2 shows how this information can be
used to distinguish g and px ® py. Theorems 3.1
and 4.4 state that unless C is sufficiently large, this is
impossible, thus establishing the desired lower bound.

Proof. (of Theorem 2.3) The first part of Theorem
2.3 follows in the same way as the non-amortized
case. To prove the second part, first suppose r is
odd. We take p = pyn ¢ and set € = min{~y/(54(r +
1)), v2/(2692 - 6r)}-

We argue by contradiction. Suppose the theorem
statement is false: namely, that for some C <
n/log®™ n and L > «£, the tuple (C,L) is | (r+1)/2]-
achievable from p. We can assume without loss of
generality that L < ¢. By Theorem 4.2 (and in
particular, Corollary 4.1), since I,,(X;Y) =£ > L,
there is a |(r + 1)/2]-round protocol II such that
ICIM™(II) < C and IC*(IT) > L.

By Lemma 4.1, there is an |(r + 1)/2]-round
public-coin protocol II" with inputs (X,Y) ~ p and
communication at most %1’5?"(—2 +O(rlog 1/¢) such
that at the end of II' with inputs (X,Y) ~ pu, Alice

Copyright © 2020 by SIAM
fptﬁs article is prohibited



Downloaded 12/04/20 to 173.48.195.193. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

and Bob output keys K,, K}, respectively, which
satisfy P,[K, # Kj| < 6er and I,(K3;Br.) >
L—(C+1+2logn+ 18¢(r + 1)£). Moreover, when
(X,Y) ~ px @ py,

max{l, , gu, (K3:B1,...,By),
I#X@#Y (Klga A11 ceey Aﬂ.)}

< w + O(rlog1/e).

Next, let II” be the protocol where the parties run
I', and the last party (suppose it is Alice, for
concreteness) to speak in II' sends over a random
hash h(K}) of length O(log1/v), so that for any
Ki # Kb, Palh(K}) — h(Ky) < /1296, and
the other party, Bob, outputs a final bit equal to
1[h(K}) = h(Ky)]. For sufficiently large n, we have
that

co(r)
< C+3+5r/2 + O(rlog1/e) + O(log1/7)

€
(4.11) < n/logl®=Yn,

CramM 4.1. I1” distinguishes p and px ® py with
advantage at least 2 /2592.

Proof. To prove Claim 4.1, we consider two cases.

The first case is that P, g, [K, # K] >
72/648. 1In this case, the last bit output by Bob
will be 0 with probability at least 72/1296 when
(X,Y) ~ px®puy . Since K, = K with probability at
least 1—6er > 1—+2/2592 when (X,Y) ~ p, it follows
that IT” distinguishes between the two distributions
with advantage at least 42/2592 in this case.

The second case is that Py, gy [Ky # Kg] <
72/648. Here we will use Lemma 4.2. Since 18¢(r +
1) < /3, and since for sufficiently large n, C' + 1 +
2logn < yn/3 = ~£/3, we see that I,(Kg;Br.) >
ve—2vE/3 =~E/3.

We apply Lemma 4.2, with (Zy,...,2,) =
(Bla---aBn)aI =I,,K = KLK = Kéayl = px @
py ,vo=p,{=1—v/3and L =n/ log(®®=1) p. Here
we use that n/ logl®Vn < % for sufficiently
large n (depending on 7), as well as P, ouy [K} #
K} < ~4%/648 = (1 — ¢)2/72. Then Lemma 4.2 gives
that Bob can output a bit as a deterministic function
of Ky, Bi,..., By (all of which Bob holds at the con-
clusion of IT"), that distinguishes p and px ® gy with
advantage at least 72/324. a
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By Theorem 4.4 below (which is analogous to
Theorem 3.1), with € = 42/2592, and as long as ¢ is
large enough so that (4.11) holds for n > ¢, and such
that ¢g—1 > 8 (where S is chosen from Theorem 4.4,

. 9 . _r
given € = y*/2592), we arrive at a contradiction.

THEOREM 4.4. ([BGGS19], LEMMA 4.5) For ev-
ery € > 0 and odd r there exists B > 0 such that for
every n > 3 and {, the distributions p = prn ¢ and
px ®@uy are (e, (r+3)/2,n/log? n)-indistinguishable.

The case of even r and the proof of part (3) of the
theorem are handled similarly; details may be found

in [GS19]. O

4.4 Separations in MIMK In this section we use
Theorem 2.3 to derive separations in the MIMK for
the pointer chasing source i, ¢ (recall Definition
4.3). The below Theorem 4.5 generalizes a result
of Tyagi [Tyal3], which established a constant-factor
separation in the MIMK for 2-round and 1-round
protocols for a certain source.

THEOREM 4.5. For each r € N, there is a ¢y such
that for each n > ¢y, the pointer chasing source j, ,
satisfies:

1. Zro(X5Y) < (r+2)[logn].
2. ﬂL(ﬂH_l)ng (X; Y) > n/ 10g€[J mn.
3. Z.(X;Y) > v/n/log™ n.

Theorem 4.5 is a consequence of Theorem 2.3 and the
proof is given in [GS19].

5 Discussion: CBIB, KBIB

Notice that the MIMK deals with very large rates
of communication; in particular, communication at
rates larger than the MIMK is no longer interesting,
as, for instance, the entropy rate L for SKG is fixed
at I(X;Y). One can ask, on the other hand, whether
Theorem 2.3 allows us to determine a separation
in some measure that determines the efficiency of
CRG and SKG at very small rates of communication.
Formally, we consider the common random bits per r-
round interaction bit (r-round CBIB) and the secret
key bits per r-round interaction bit (r-round KBIB):

DEFINITION 5.1. ([LCV17], COROLLARY 2°) Fora
source (X,Y) ~v and r € N, define:

Ief(X,Y) =sup {g :(C,L) e T.(X,Y),C > 0}
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and
sk L
IY*(X,Y) =sup E:(C,L)ES,»(X,Y),C>U :

Notice that T'*(X,Y’) and I'S*(X,Y’) can be infinite,
if, for instance, there are functions fy : X — {0,1}
and fz: Y — {0,1} such that P,[f,(X) = fa(Y)] =1
and L := H(fi(X)) = H(fz(Y)) > 0. In such
a case, (0,L) € T.(X,Y). It is easy to see that
whenever I'*¥(X,Y) or I'&(X,Y) is finite, we have
Ie(X,Y)=1+TI%(X,Y).

Intuitively, the r-round CBIB (KBIB, respec-
tively) can be roughly interpreted as the maximum
number of additional bits of common randomness (se-
cret key, respectively) that Alice and Bob can obtain
by communicating an additional bit, where the max-
imum is over “all protocols and any communication
rate”.

We also remark that it follows from Theorem
4.2 and [GS19, Lemma 5.4] that I'"(X,Y) is the
derivative of the function € <*(C) at C = 0.

Next we would like to derive similar separations
for the r-round interactive CBIB and KBIB to that in
Theorem 4.5 for the r-round MIMK. Notice that from
the first item of Theorem 2.3 we have immediately
that I'75(X,Y) > m. We might hope to use
the second and third items of Theorem 2.3 to derive
upper bounds on I'[f, ., 5 (X,Y) and TS (X,Y)
that grow as log®n and /nlog®n, respectively.
However, such upper bounds do not immediately
follow from Theorem 2.3 since Theorem 2.3 requires a
lower bound on L in order to show that certain tuples
(C,L) are not achievable. In particular, Theorem
2.3 leaves open the possibility that tuples such as
(logn,+/n), oreven (27", 1) are | (r+1)/2|-achievable
for CRG from p,. , ,,. This limitation of Theorem 2.3
results from the fact that Lemmas 4.1 and 4.2 give
vacuous bounds on the disintuishability of p = py n.n
and px ® py when the tuple (C, L) is such that L
is small compared to n. We leave the problem of
remedying this issue for future work:

PROBLEM 5.1. For each r € N, show (perhaps using
Theorem 2.3) that there is a ¢y, such that for each
n > co, the pointer chasing source (X,Y) ~ firnn
satisfies:

1. Tl y1)2)(X,Y) <log® n.
2. F:T‘(X,Y) < \/T_llogco n.

It seems that in fact the even stronger result

[ (X,Y) <1+ 0,(1) holds.
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Problem 5.1 seems to be quite difficult; a result
that I'ST(X,Y) < f(n), for (X,Y) ~ iy, some
r’ € N, and some function f(n) would imply, since the
function C — €2 (C) is concave ([GS19, Lemma
5.4]), that for any C > 1, the tuple (C, f(n) - C)
is not r’-achievable for CRG from pypn,,. For v’ =
[(r+1)/2] and f(n) = polylog(n), this would imply
part (2) of Theorem 2.3, and for v’ = r and f(n) =
v/n poly log(n), this would imply part (3) of Theorem
2.3.
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