
Fully Dynamic Maximal Independent Set in Polylogarithmic Update Time

Soheil Behnezhad∗, Mahsa Derakhshan∗, MohammadTaghi Hajiaghayi∗, Cliff Stein† and Madhu Sudan‡
∗University of Maryland

{soheil,mahsa,hajiagha}@cs.umd.edu
†Columbia University

cliff@ieor.columbia.edu
‡Harvard University

madhu@cs.harvard.edu

Abstract— We present the first algorithm for maintaining a
maximal independent set (MIS) of a fully dynamic graph—which
undergoes both edge insertions and deletions—in polylogarith-
mic time. Our algorithm is randomized and, per update, takes
O(log2 Δ · log2 n) expected time. Furthermore, the algorithm
can be adjusted to have O(log2 Δ · log4 n) worst-case update-
time with high probability. Here, n denotes the number of
vertices and Δ is the maximum degree in the graph.

The MIS problem in fully dynamic graphs has attracted sig-
nificant attention after a breakthrough result of Assadi, Onak,
Schieber, and Solomon [STOC’18] who presented an algorithm
with O(m3/4) update-time (and thus broke the natural Ω(m)
barrier) where m denotes the number of edges in the graph.
This result was improved in a series of subsequent papers,
though, the update-time remained polynomial. In particular,
the fastest algorithm prior to our work had ˜O(min{√n,m1/3})
update-time [Assadi et al. SODA’19].

Our algorithm maintains the lexicographically first MIS over
a random order of the vertices. As a result, the same algorithm
also maintains a 3-approximation of correlation clustering. We
also show that a simpler variant of our algorithm can be used
to maintain a random-order lexicographically first maximal
matching in the same update-time.

I. INTRODUCTION

A maximal independent set (MIS) of a graph is a fun-

damental object with countless theoretical and practical

applications. It is one of the most well-studied problems in

distributed and parallel settings following the seminal works

of [26, 3]. MIS has also been studied in a variety of other

models and has diverse applications such as approximating

matching and vertex cover [28, 32], graph coloring [26, 25],

clustering [2], leader-election [18], and many others.

In this paper, we consider MIS in fully-dynamic graphs.

The graph is updated via both edge insertions and deletions

and the goal is to maintain an MIS by the end of each update.

Dynamic graphs constitute an active area of research and

have seen a plethora of results over the past two decades.

The MIS problem in dynamic graphs has also attracted a

significant attention, especially recently [15, 5, 23, 19, 30, 6].

We overview these works below.

Related Work on Dynamic MIS: In static graphs with m
edges, a simple greedy algorithm can find an MIS in O(m)

time. As such, one can trivially maintain MIS by recomput-

ing it from scratch after each update, in O(m) time. In a

pioneering work, Censor-Hillel, Haramaty, and Karnin [15]

presented a round-efficient randomized algorithm for MIS in

dynamic distributed networks. Implementing the algorithm

of [15] in the sequential setting—the focus of this paper—

requires Ω(Δ) update-time (see [15, Section 6]) where Δ
is the maximum-degree in the graph which can be as large

as Ω(n) or even Ω(m) for sparse graphs. Improving this

bound was one of the major problems the authors left

open. Later, in a breakthrough, Assadi, Onak, Schieber,

and Solomon [5] presented a deterministic algorithm with

O(m3/4) update-time; thereby improving the O(m) bound

for all graphs. This result was further improved in a series

of subsequent papers [23, 19, 30, 6]. The current state-of-

the-art is a randomized algorithm due to Assadi et al. [6],

which requires Õ(min{√n,m1/3}) amortized update-time

in n-vertex graphs.

Our Contribution: In this paper, we show that it is

possible to maintain an MIS of fully-dynamic graphs in

polylogarithmic time. This exponentially improves over the

prior algorithms, which all have polynomial update-time on

general graphs. Our algorithm is randomized and requires

the standard oblivious adversary1 assumption (as do all

previous randomized algorithms).

Theorem 1 (main result). There is a data structure to
maintain an MIS against an oblivious adversary in a
fully-dynamic graph that, per update, takes O(log2 Δ ·
log2 n) expected time. Furthermore, the number of ad-
justments to the MIS per update is O(1) in expectation.

Since our algorithm bounds the expected time per update
without amortization, we can use it as a black-box in a

framework of Bernstein et al. [9, Theorem 1.1] to also get a

1In the standard oblivious adversarial model, the adversary can feed in
any sequence of edge updates and is aware of the algorithm to be used, but
is unaware of the random-bits used by the algorithm. Equivalently, one can
assume that the sequence of edge updates is picked adversarially before the
dynamic algorithm starts to operate.

382

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00032

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

worst-case guarantee w.h.p.2 (We note that this comes at the

cost of losing the guarantee on the adjustment-complexity.)

Corollary I.1. There is a data structure to maintain an MIS
against an oblivious adversary in a fully-dynamic graph that
w.h.p. has O(log2 Δ · log4 n) worst-case update-time.

To prove Theorem 1, we give an algorithm that carefully

simulates the lexicographically first MIS (LFMIS) over a

random ranking of the vertices (see Section III for defi-

nition). Once this order is fixed, the LFMIS of the graph

becomes unique. This is particularly useful for dynamic

graphs as it makes the output history-independent. That is,

the order of edge insertions and deletions by the adversary

cannot affect the reported MIS. See [15, Section 5] for more

discussion on this property and also [14, 28] for some other

useful features of random-order LFMIS.

We note that maintaining LFMIS over a random permu-

tation has been done before by Censor-Hillel et al. [15]

and also partially by Assadi et al. [6] who combined it

with another deterministic algorithm. However, as discussed

above, both these algorithms require a polynomial update-

time. The novelty of our approach is in (1) the algorithm
and data structures with which we maintain this MIS, and

(2) the analysis of why polylogarithmic time is sufficient.

The high-level intuitions behind both the algorithm and the

analysis are presented in Section II.

Independent Work: Independently and concurrently,

Chechik and Zhang [17] also came up with an algorithm for

maintaining a fully-dynamic MIS in polylogarithmic update-

time against an oblivious adversary. Similar to our algorithm,

they also maintain a random-order LFMIS. For general

graphs with arbitrary maximum degree, both our algorithm

and that of [17] take O(log4 n) worst-case expected update-

time.

A. Other Implications of our Approach

Correlation Clustering: Due to a reduction of

Ailon et al. [2], our algorithm with essentially no change

also maintains a 3-approximation of min-disagreement cor-
relation clustering using the same update-time.

Corollary I.2. There is a data structure to maintain a
3-approximation of the min disagreement variant of cor-
relation clustering on completely labeled graphs against
an oblivious adversary in a fully-dynamic graph that per
update, takes O(log2 Δ·log2 n) expected time. Furthermore,
the number of changes to the clusters per update is O(1) in
expectation.

Maximal Matching: There has been a huge body of

work on the matching problem in dynamic graphs, see

e.g. [29, 7, 27, 24, 11, 12, 31, 13, 10, 22, 16, 4, 9] and

2Here and throughout the paper, “w.h.p.” abbreviates “with high prob-
ability” and implies probability at least 1 − n−c for any desirably large
constant c > 1 that may affect the hidden constants in the bounds.

the references therein. Among these results, maintaining a

maximal matching (MM) has been of special interest. MIS

and MM are closely related. Despite all the similarities,

however, the known algorithms for MM were much more

efficient [7, 31, 9]. Assadi et al. [5, Section 1.1] in part

justified this by describing why the common techniques

used for maintaining MM are not applicable to MIS, hinting

also that MIS “is inherently more complicated [5]” in fully

dynamic graphs. We formalize this intuition further and

show that indeed a simpler variant of our MIS algorithm can

also maintain a lexicographically first MM (LFMM) over a

random order on the edges, with essentially the same update-

time:

Theorem 2. There is a data structure to maintain a random-
order lexicographically first maximal matching against an
oblivious adversary in a fully-dynamic graph that per up-
date, takes O(log2 Δ · log2 n) expected time. Furthermore,
per update, the adjustment-complexity is O(1) in expecta-
tion.

This also leads to the following worst-case guarantee

when used as a black-box [9, Theorem 1.1].

Corollary I.3. There is a data structure to maintain a
maximal matching against an oblivious adversary in a fully-
dynamic graph that w.h.p. has O(log2 Δ · log4 n) worst-case
update-time.

We emphasize that if one allows amortization, then one

can get much more efficient algorithms for MM due to the

seminal works of Baswana, Gupta, and Sen [7] and Solomon

[31]. However, our approach of maintaining random-order

LFMM significantly deviates from the prior works on MM

in dynamic graphs. We believe this is an important feature

on its own and may find further applications.

II. OUR TECHNIQUES

As pointed out earlier, our main contribution is to show

that it is actually possible to maintain the lexicographically

first MIS (LFMIS), under a random ordering of the vertices,

at an expected polylogarithmic cost per update. In this

section we attempt to explain some of the barriers and how

our work overcomes them.

The first hurdle behind maintaining the LFMIS is that

it may change a lot under updates. But it is also well-

known [15, Theorem 1] that for a random ordering, the ex-

pected alteration to the LFMIS after the insertion or deletion

of a single edge is O(1). This already shows that maintaining

random order LFMIS is sufficient to get an algorithm with

O(1) expected adjustments per update. However, it is not

clear how to detect these changes and maintain the LFMIS

efficiently: The natural algorithm to do so would do a

breadth-first-search (BFS) from the endpoints of the edge

being updated, but even exploring the neighborhood of a

single vertex of degree Δ might require Ω(Δ) time which

383

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

is prohibitively expensive for general graphs where Δ can

be as large as Ω(n).3

Our first idea is to maintain not just the LFMIS, but also

the “eliminator” of every vertex v in the graph. Briefly, given

a ranking π : V → [0, 1], the eliminator of a vertex v
in a graph G under π is its neighbor in G of the lowest

rank that belongs to the LFMIS. (If v is in the LFMIS,

then its eliminator is defined to be itself.) Maintaining the

eliminators only seems to complicate our task further: (1)

Even if the MIS changes by a little, it is conceivable that

the eliminators of many more vertices might change. (2) It is

still unclear how to find the set of vertices whose eliminators

have changed in o(Δ) time.

For problem (1) we extend the classical analysis [15, 32],

which showed that the MIS changes only by a little after

each update, to show that the eliminators are also extremely

robust under updates. We stress that this extension is not

simple and requires many new ideas. Overall, we get the

following guarantee which may be of independent interest.

(It is crucial for our analysis that we prove this bound on

vertex updates—we will discuss this towards the end of this

section.)

Theorem 3 (informal—see page 7 for the formal statement).
For any arbitrary vertex addition or deletion, the expected
number of vertices whose eliminator changes is O(log n).

We now turn to problem (2), i.e., the challenge of main-

taining information such as membership in the MIS and

eliminators of vertices. Consider an edge update (a, b) with

π(a) < π(b) and suppose that this changes b’s MIS-status.

A priori, this seems to require exploring every neighbor of

b (at the very least) and checking to see if their status or

eliminator changes. But a quick examination reveals we only

need to explore those neighbors u of b whose eliminators

have rank larger than π(a). (Vertices with rank less than

π(a) don’t change their membership in the MIS, and so

vertices with eliminators of rank less than π(a) don’t change

their eliminator.) To help this prune our exploration space,

it would make sense to store all neighbors of b (and of

every vertex for that matter) in a search tree indexed by

the rank of their eliminator and indeed this is an idea we

pursue. However maintaining every neighbor of b indexed

by its eliminator-rank leads to new maintenance problems:

Up to Δ trees may need to be updated when b changes its

eliminator-rank! We overcome this barrier with the following

solution (which is essentially our final solution): We only

maintain the neighbors of low-rank in a search tree indexed

by eliminator-ranks and maintain the neighbors of high-rank

in a more static tree indexed by just their ID (i.e., their

name).

Specifically, for each vertex v, we partition its neigh-

borhood (dynamically) in two parts, N−(v) and N+(v)

3This is precisely the Ω(Δ) barrier mentioned in Section 6 of [15].

as described next. The set N−(v) includes neighbors of v
whose eliminators have smaller rank than the eliminator of

v. Each vertex u ∈ N−(v) is indexed by the rank of its

(dynamically changing) eliminator. The set N+(v) includes

the rest of neighbors of v and every vertex u ∈ N+(v) is

indexed by its (static) ID. Armed with these data structures

it turns out one can implement updates in expected time

polylog n per affected vertex, i.e., those whose eliminator

has changed. (See Lemma IV.1). A key insight behind

this analysis is that vertices whose eliminators have small

rank are not likely to change their eliminators under many

updates, allowing us to keep the cost of reindexing N−(v)
small. Another insight is that the maximum degree in the

graph induced on vertices whose eliminators have high ranks

is small. Therefore, set N+(v) will be typically small and

the fact that it is not indexed by the rank of its members’

eliminators is not troublesome.

Theorem 3 and Lemma IV.1 almost settle our analysis,

with the former asserting that the expected number of

affected nodes is small, and the latter asserting that the

expected time to maintain the data structures, per affected

node, is small. One final analytic hurdle emerges at this stage

though: These two events are not a priori independent and

so the product of the expectations is not an upper bound

on the expected running time of an update! To overcome

this, we introduce another twist in our analysis. Recall that

Theorem 3 holds even if an entire node is updated (say

deleted along with all its edges). When applied to an edge

update (a, b), this gives an upper bound of O(log n) on the

expected number of affected vertices even if we condition

on any value of π(a). (See Lemma V.1.) The reason, roughly

speaking, is that once we condition on π(a), the edge update

(a, b) can now be regarded as insertion or deletion of vertex

b.

Overall, we use the randomization in π(a) to bound

the expected time per affected vertex by polylog n and,

conditioned on this, still get an O(log n) upper bound on

the expected number of affected vertices due to Lemma V.1.

This allows us to prove an expected polylog n upper bound

on the total running time (see Section VI), thus concluding

our analysis.

III. PRELIMINARIES

In this section, we formally define lexicographically first
MIS and MM, mention some of their known properties, and

define the notion of eliminators which are all important for

the rest of paper.

Notation: For any positive integer k, we use [k] to

denote set {1, . . . , k}. For a graph G = (V,E) and a vertex

v ∈ V , we use NG(v) or, in short, N(v) to denote the

set of neighbors of v in G and use Γ(v) to denote the set

N(v) ∪ {v}. This notation also extends to any subset U of

V where we use N(U) and Γ(U) to respectively denote

384

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

∪v∈UN(v) and ∪v∈UΓ(v). We also use degG(v) to denote

the degree of vertex v, i.e., degG(v) = |NG(v)|.
Lexicographically First MIS: The lexicographically

first maximal independent set (LFMIS) of a graph G =
(V,E) according to a ranking π : V → [0, 1] over the

vertices in V is obtained as follows. Initially, every vertex

in V is alive. We iteratively take the alive vertex v with the

minimum rank π(v), add v to the MIS, and kill v and all

of its alive neighbors. We use LFMIS(G, π) to refer to the

subset of vertices that join this MIS. For each vertex v, we

define the eliminator of v, denoted by elimG,π(v), as the

(unique) vertex that kills v. More precisely, elimG,π(v) is

the lowest-rank vertex in (N(v)∪{v})∩LFMIS(G, π). Note

that if v is in the MIS, we have elimG,π(v) = v; otherwise,

elimG,π(v) �= v and π(elimG,π(v)) < π(v). When no

confusion is possible, we may write elim(v) instead of

elimG,π(v) for brevity.

Lexicographically First MM: All definitions above can

be extended to MM as well if we consider LFMIS over

the line-graph. The resulting lexicographically first MM of a

graph G = (V,E), which we denote by LFMM(G, π) where

π : E → [0, 1] is a ranking over the edges of G would be

as follows. Initially, all the edges are alive. We iteratively

pick the alive edge e with the minimum rank π(e), add it to

the matching, and kill e and all the alive incident edges to

e. The eliminator elimG,π(e) of an edge e in this algorithm

can similarly be defined as the lowest-rank edge incident

to e (including e itself) that is in the maximal matching

LFMM(G, π).
LFMIS and LFMM over Random Ranks: The two

algorithms above are particularly useful when the ranking π
maps to a random permutation, i.e., each entry of π is a real

chosen uniformly at random from [0, 1]. It is not hard to see

that choosing Θ(log n) bit reals is enough to guarantee no

two entries assume the same rank w.h.p. From now on, when

we use the term “random ranking” π, we indeed assume that

each entry of π has Θ(log n) bits.

One useful property of LFMIS over random rankings is

that once we, roughly speaking, process p fraction of the

vertices with the lowest ranks and remove their MIS nodes

and their neighbors, the maximum degree in the remaining

graph drops to O(p−1 · log n) w.h.p. The same also holds for

LFMM. This property is very well-known [14, 1, 21, 8, 6];

when incorporating the definition of eliminators, it would

read as follows:

Proposition III.1. Consider a graph G = (V,E), let π :
V → [0, 1] be a random ranking, and for any real p ∈ [0, 1],
define Vp as the subset of V including any vertex v with
π(elimG,π(v)) > p. W.h.p., for all O(log n) bit values of p ∈
[0, 1], the maximum degree in graph G[Vp] is O(p−1 · log n).
Proposition III.2. Consider a graph G = (V,E), let π :
E → [0, 1] be a random ranking, and for any real p ∈ [0, 1],
define Ep to be the subset of E including any edge e with

π(elimG,π(e)) > p. W.h.p., for all O(log n) bit values of
p ∈ [0, 1], every vertex has O(p−1 · log n) incident edges in
Ep.

For the minor differences between the statements of

these propositions and those in the literature, we prove

them in Appendix VIII. We emphasize that the changes are

straightforward and we claim no novelty on this part.

IV. FULLY DYNAMIC MIS: DATA STRUCTURES & THE

ALGORITHM

In this section, we present the data structures and the

algorithm required for maintaining LFMIS after each update.

We fix a random ranking π in the pre-processing step and

maintain LFMIS(G, π) after each update. Throughout the

rest of this section, we focus on the data structures required

for maintaining LFMIS(G, π) and the algorithm we use to

update them. Fix an arbitrary t and suppose that we have

to address edge update number t. We use “time t” to refer

to the moment after the first t edge updates. Moreover, we

use Gt = (V,Et) to denote the resulting graph at time t.
The following definitions are crucial both for the algorithm’s

description and its analysis.

• A := {v | elimGt−1,π(v) �= elimGt,π(v)}: The set of

vertices whose eliminator changes after the update; we

call these the affected vertices.

• F : The set of vertices w that belong to exactly one of

LFMIS(Gt, π) or LFMIS(Gt−1, π). We call these the

flipped vertices. Note that F ⊆ A.

Our main result in this section is the following algorithm.

Lemma IV.1. There is an algorithm to update LFMIS(G, π)
and the data structures required for it after in-
sertion or deletion of any edge e = (a, b) in
O
(
|A|min{Δ, logn

min{π(a),π(b)}} logΔ
)

time w.h.p.

Note that the bound on the update-time in the statement

above is parametrized by two random variables |A| and

min{π(a), π(b)} of the ranking π. To provide a concrete

bound on the update-time, we need to analyze how these

two random variables are related. We prove the necessary

tools for this analysis in Section V and finally prove that

this quantity is in fact polylog n in Section VI.

In the rest of this section, we only focus on prov-

ing Lemma IV.1. We describe the data structures in Sec-

tion IV-A, describe the algorithm in Section IV-B, and

prove the correctness and running time of the algorithm in

Section IV-C.

A. Data Structures

As described before, our algorithm starts with a pre-

processing step where we choose a random ranking π over

the n fixed vertices in V , i.e., as discussed in Section III, we

385

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

pick a Θ(log n) bit real π(v) ∈ [0, 1] for each vertex v. The

ranking π will then be used to maintain LFMIS(G, π) after

each update to graph G. To update this MIS efficiently, we

maintain the following data structures for each vertex v ∈ V .

• m(v): A binary variable that is 1 if v ∈ LFMIS(G, π)
and 0 otherwise.

• k(v): The rank of v’s eliminator, i.e., k(v) =
π(elimG,π(v)). Note that m(v) = 1 iff k(v) = π(v).

• N−(v): The set of neighbors u of v where k(u) ≤
k(v). The set N−(v) is stored as a self-balancing

binary search tree (BST) and each vertex u in it is

indexed by k(u).
• N+(v): The set of neighbors u of v where k(u) ≥
k(v). The set N+(v) is also stored as a BST, but unlike

N−(v), each member u in N+(v) is indexed by its ID.

It has to be noted that each vertex u ∈ N−(v) is indexed

by k(u), a property that may change after an edge update

and thus we may need to re-order the vertices in N−(v).
However, the vertices in N+(v) are simply indexed by their

IDs which are static. Also, observe that:

Observation IV.2. For any two neighbors u and v, u ∈
N+(v) if and only if v ∈ N−(u).

Proof: If u ∈ N+(v), then k(u) ≥ k(v); since N−(u)
includes every neighbor w of u with k(w) ≤ k(u), and

k(v) ≤ k(u), we have v ∈ N−(u). Similarly, if v ∈ N−(u),
then k(v) ≤ k(u); since N+(v) includes every neighbor w
of v with k(w) ≥ k(v) and k(u) ≥ k(v), we have u ∈
N+(v).

From now on, we use mt(v), kt(v), N
−
t (v) and N+

t (v)
to respectively refer to data structures m(v), k(v), N−(v)
and N+(v) by time t. Before describing the algorithm, we

describe the pre-processing step in more details.

Pre-processing Step: Apart from choosing random

ranking π, we initialize an array P(v) ← ∅ for every vertex v
in the pre-processing step. This array will later be used in the

update algorithm in Section IV-B. Moreover, we construct

LFMIS over the original graph G0 = (V,E0) via the trivial

approach: We iterate over the vertices according to π to

construct LFMIS(G0, π) and set m(v) for each vertex v.

Then for each vertex v, we iterate over all of its neighbors

to fill in k(v), N+(v), and N−(v). We initially spend

O(n log n) time for sorting the vertices, then for each vertex

v, we spend O(deg(v)) time to fill in its data structures. This

process, overall, takes O((|V | + |E0|) log n) time which is

clearly optimal (up to a logarithmic factor) as it is required

to read the input.

B. The Algorithm

We now turn to describe how we maintain the data

structures defined in the previous section after each edge

update. Consider update number t, and suppose that an

edge e = (a, b) is either inserted or deleted. Moreover,

assume w.l.o.g. that π(a) < π(b). We show how our data

structures can be adjusted accordingly in the time specified

by Lemma IV.1.

Since we are maintaining the lexicographically first

MIS—and not just any MIS—of a dynamically changing

graph, a single edge update can potentially affect vertices

that are multiple-hops away. To detect these vertices effi-

ciently, we use an iterative approach with which, intuitively,

we do not “look” at too many unaffected vertices. Before

formalizing this, we start with an observation. The proof is

a simple consequence of the structure of LFMIS and thus

we defer it to Section VI-B.

Observation IV.3. For any vertex v ∈ A, the following
properties hold:

1) kt−1(v) ≥ π(a) and kt(v) ≥ π(a).
2) if v �= b, then v has a neighbor u such that π(u) < π(v)

and u ∈ F .

We start with an intuitive and informal description of the

algorithm. The algorithm’s formal description and the proofs

are given afterwards.

Algorithm Outline: Observation IV.3 part 2 implies that

if a vertex u is in set A, then there should be a path from

vertex b to u where all the vertices in the path (except u)

belong to F and the ranks in the path are monotonically

increasing. This motivates us to use an iterative approach.

We start by a set S which originally only includes vertex b.
Then we iteratively take the minimum rank vertex v from

S, detect whether v ∈ F and if so, we add all the “relevant

neighbors” of v that may continue these monotone paths

to set S. Clearly, we cannot add all neighbors of v to S
since there could be as many as Ω(Δ) such nodes. Rather,

we only consider neighbors u of v where kt−1(u) ≥ π(a).
Observation IV.3 part 1 guarantees that every vertex u ∈ A
has kt−1(u) ≥ π(a) and thus this set of relevant neighbors

is sufficient to ensure any vertex in A will be added to S at

some point. Note that by definition, for any vertex u ∈ V \A,

both k(u) and m(u) will remain unchanged after the update.

Therefore, once we handle all vertices in set S, for every

vertex u in the graph, k(u) and m(u) should be updated.

However, note that the adjacency lists of vertices outside A
may require to be updated if they have a neighbor in A.

We do this at the end of the algorithm. Algorithm 1 below

formalizes the structure of this algorithm and the subroutines

used are formalized afterwards.

We use kt−1(v) and kt(v) to refer to the value k(v) should

hold before and after the update respectively. In the process

of updating k(v) from kt−1(v) to kt(v), whenever we use

k(v) without any subscript in the algorithm, we refer to the

value of this data structure at that specific time. In particular,

since we update the vertices iteratively, it could happen that

in a specific time during the algorithm, for some vertex u,

386

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Maintaining the data structures after inser-

tion or deletion of an edge e = (a, b).

1 S ← {b}
2 For each vertex v, we have an array P(v) = ∅.

// Initialized in the pre-processing step.

3 while S is not empty do
4 Let v ← argminu∈S π(u) be the minimum

rank vertex in S.

5 if ISAFFECTED(v) then // Checks whether

v ∈ A in time O(|P(v)|).
6 Hv ←

FINDRELEVANTNEIGHBORS(v, π(a))
// Hv includes neighbors u of v with

kt−1(u) ≥ π(a) and has size O(logn
π(a))

w.h.p.

7 UPDATEELIMINATOR(v,Hv) // Updates

k(v) and m(v) by iterating over Hv .

8 if v ∈ F then
9 for any vertex u ∈ Hv do

10 if π(u) > π(v) then insert u to S
and insert v to P(u).

11 Remove v from S and set P(v) ← ∅.

12 UPDATEADJACENCYLISTS() // Updates

adjacency lists N+ and N− where necessary.

k(u) = kt(u) and for another vertex w, k(w) = kt−1(w).
The same notation extends to m(v), N+(v), and N−(v) in

the natural way.

We use iteration to refer to iterations of the while loop in

Algorithm 1. The following invariants hold at the beginning

of the algorithm when S = {b} and, as we will show

in Claim VI.7 via an induction, will continue to hold

throughout.

Invariant IV.4. Consider the start of any iteration and let
v be the lowest-rank vertex in S. It holds true that k(u) =
kt(u) and m(u) = mt(u) for every vertex u with π(u) <
π(v), i.e., k(u) and m(u) already hold the correct values.
Moreover, k(u) = kt−1(u) and m(u) = mt−1(u) for every
other vertex u with π(u) ≥ π(v).

Invariant IV.5. Consider the start of any iteration and let
v be the lowest-rank vertex in S. The set P(v) includes a
vertex u iff: (1) π(u) < π(v), and (2) u ∈ F , and (3) u and
v are adjacent.

Invariant IV.6. For any vertex u, before reaching Line 12 of
Algorithm 1, adjacency lists N+(u) and N−(u) respectively
hold values N+

t−1(u) and N−
t−1(u).

We continue by formalizing all the subroutines used in

Algorithm 1.

Subroutine ISAFFECTED(v): This function returns true

if v ∈ A and returns false otherwise. We consider two cases

where v = b and v �= b individually. For the former case, we

show that b ∈ A if and only if m(a) = 1 and k(b) ≥ π(a).
For the latter case, we first scan the set P(v) to see if there

exists a vertex u ∈ P(v) with π(u) = k(v). If such vertex

u exists, then v ∈ A. Otherwise, let u be the lowest-rank

vertex in P(v) such that m(u) = 1. If π(u) < k(v), then

v ∈ A and otherwise v �∈ A. This subroutine clearly takes

O(|P(v)|) time. We also prove its correctness in Claim VI.1.

Subroutine FINDRELEVANTNEIGHBORS(v, π(a)):
The goal in this subroutine is to find the set

Hv := {u ∈ N(v) | kt−1(u) ≥ π(a)}. (1)

By definition of N+(v) and N−(v), each neighbor u ∈
N(v) is at least in one of these two sets. Therefore, to

construct set Hv , we have to find neighbors u of v with

kt−1(u) ≥ π(a) in both N+(v) and N−(v). For the former,

we simply iterate over all neighbors u of v in set N+(v)
and if kt−1(u) ≥ π(a), we add u to Hv . For the latter,

recall from Invariant IV.6 that N−(v) = N−
t−1(v); thus, the

vertices u in N−(v) are indexed by kt−1(u). To find only

those in N−(v) with kt−1(u) ≥ π(a), it suffices to search

for index π(a) and traverse over all vertices whose index is

at least π(a). The correctness and an analysis of the running

time of this algorithm is provided in Claim VI.2.

Subroutine UPDATEELIMINATOR(v,Hv): Given that

the minimum-rank vertex v ∈ S is in set A, this subroutine

updates k(v) assuming that the set Hv is already computed

and given. To do this, let u be the lowest-rank vertex in Hv

with m(u) = 1. If no such vertex exists, or if π(u) > π(v),
v has to join the MIS and thus we set k(v) ← π(v) and

m(v) ← 1. Otherwise, u has to be the new eliminator of v
and we set k(v) ← π(u) and m(v) ← 0. This subroutine

clearly takes O(|Hv|) time. We also prove its correctness in

Claim VI.3.

Subroutine UPDATEADJACENCYLISTS(): If e is

deleted, we remove a from N+(b) and N−(b), and remove

b from N+(a) and N−(a) (note that some of these sets

may not include the removing vertex). If e is inserted, we

insert a and b into each other’s “appropriate” adjacency list

according to the current values of k(a) and k(b); namely:

• If k(a) < k(b), insert a into N−(b), and insert b into

N+(a).

• If k(a) > k(b), insert a into N+(b), and insert b into

N−(a).
• If k(a) = k(b), insert a into N−(b) and N+(b), and

insert b into N−(a) and N+(a).

We also need to update the adjacency lists of any affected

vertex v, since after changing k(v), some neighbors of v
may have to move from N+(v) to N−(v) or vice versa.

Moreover, if an affected vertex v is in N−(u) of some vertex

387

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

u, we also need to recompute the position of v in N−(u),
since recall that v should be indexed by k(v) in N−(u)
which has now changed.

To address the changes above, the crucial property is

that for any vertex v ∈ A, any vertex u that has to move

between N+(v) and N−(v) or has v in its set N−(u), has

to belong to Hv (see Claim VI.4 for the proof). Therefore

in the algorithm, for any vertex v ∈ A, we only iterate over

the vertices u ∈ Hv and based on k(u) and k(v), which at

this point in the algorithm are correctly updated, determine

the membership of vertex v in adjacency lists of vertex u
and vice versa. We then update N−(v), N+(v), N−(u) and

N+(u) accordingly.

C. Overview of Correctness & The (Parametrized) Running
Time

The correctness of Algorithm 1 follows mainly from

the greedy structure of LFMIS and does not require a

sophisticated analysis. As such, we defer it to Section VI-B.

Here, we focus on the main ideas required for bounding the

running time of the algorithm stated in Lemma IV.1. A com-

plete proof of this lemma is also presented in Section VI-B.

One particularly important property is that, w.h.p., the size

of set Hv for every vertex v ∈ A is O
(
min{Δ, logn

π(a) }
)
. This

is formally proved in Claim VI.2 of Section VI-B; but the

main intuition is as follows. From definition of Hv , every

vertex u ∈ Hv has kt−1(u) ≥ π(a). Moreover, since v ∈ A,

by Observation IV.3 part 1, we also have kt−1(v) ≥ π(a).
This means that if we construct LFMIS in graph Gt−1 on the

prefix of vertices with rank in [0, π(a)), then vertex v will

survive and will have a remaining degree of at least |Hv|.
Since the adversary is oblivious and the ranking π and graph

Gt−1 are independently chosen, we can use Proposition III.1

to argue that in this remaining graph, maximum degree is,

w.h.p., at most O
(
min{Δ, logn

π(a) }
)

implying the same upper

bound on |Hv|.
Observe that in the algorithm, only for vertices v ∈ F

we insert (a subset of) their relevant neighbors Hv to S.

Therefore, the total number of vertices inserted to S is at

most O
(|F|min{Δ, logn

π(a) }
)
, w.h.p. However, this is not an

upper bound on the algorithm’s running time since each

vertex in S is not simply processed in constant time. We

summarize these procedures below.

Subroutine ISAFFECTED(v): This subroutine is called

for every vertex v ∈ S . It is clear from description that

ISAFFECTED(v) takes O(|P(v)|) time. Therefore, the ag-

gregated running time of this function for all vertices in

S is
∑

v∈S |P(v)|. Observe that each vertex u ∈ P(v)
is in F . Furthermore, each vertex u ∈ F belongs to

P(v) of at most |Hu| vertices due to Line 10. There-

fore, a simple double-counting argument shows that w.h.p.,∑
v∈S |P(v)| ≤ O

(|F|min{Δ, logn
π(a) }

)
.

Subroutine FINDRELEVANTNEIGHBORS(v, π(a)):
This is called for every vertex v ∈ A. Thanks to the fact

that N−(v) is indexed by kt−1(.) and that N+(v) has size at

most O(|Hv|) (we show this in the proof of Claim VI.2) this

subroutine takes O(|Hv| logΔ) time where the extra logΔ
factor is for iterating over BST N−(v). Thus, the aggregated

running time is O
(|A|min{Δ, logn

π(a) } logΔ
)
.

Subroutine UPDATEELIMINATOR(v,Hv): This sub-

routine is only called for vertices v ∈ A and takes

O(|Hv|) time. Clearly, the aggregated running time is

O
(|A|min{Δ, logn

π(a) }
)
, w.h.p.

Subroutine UPDATEADJACENCYLISTS(): As

described in the subroutine, for any vertex v ∈ A, v
has to be re-indexed or moved in adjacency lists of at

most |Hv| of its neighbors. Each such operation requires

O(logΔ) time. Therefore, the aggregated running time is

w.h.p. O
(|A|min{Δ, logn

π(a) } logΔ
)
.

The total running time of the algorithm is the sum of

the aggregated running time of each of the procedures

above which is O
(|A|min{Δ, logn

π(a) } logΔ
)

as required by

Lemma IV.1.

V. AN ANALYSIS OF AFFECTED VERTICES: PROOF OF

THEOREM 3

In this section, we prove Theorem 3 which we briefly

highlighted in Section II. In this regard, for any two graphs

G = (V,E) and G′ = (V ′, E′) with V ′ ⊆ V and a

ranking π over V , we define Aπ(G,G′) := {v ∈ V |
elimG,π(v) �= elimG′,π(v)} to be the set of vertices with

different eliminators in the two graphs. Note that this is

analogous to the definition of “affected vertices” in the

previous section and hence the choice of notation. A more

formal statement of Theorem 3 reads as follows:

Theorem 3. Fix an arbitrary graph G = (V,E) and let
G′ = G[V \ {v}] be obtained by removing an arbitrary
vertex v from G. If π is a random ranking over V ,
Eπ[|Aπ(G,G′)|] ≤ O(log n).

The fact that Theorem 3 bounds the number of affected

vertices as a result of a vertex update can be used to bound

the affected vertices by O(log n) as a result of an edge

update e = (a, b), even when we condition on any value
for min{π(a), π(b)}.

Lemma V.1. Fix an arbitrary graph G = (V,E) and let
G′ = (V,E′) be the graph obtained by adding or removing
an arbitrary edge e = (a, b) to G. If π is a random ranking
over V , then for any value of λ ∈ [0, 1], it holds that
Eπ[|Aπ(G,G′)| | min{π(a), π(b)} = λ] ≤ O(log n).

Lemma V.1 is crucial for our analysis as it implies that

the two random variables |Aπ(G,G′)| and min{π(a), π(b)},

which recall are used in the statement of Lemma IV.1, can

be regarded as “almost” independent. We elaborate more on

this in Section VI.

We first prove Lemma V.1 given the correctness of The-

orem 3. The bulk of analysis is then concentrated around

388

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

proving Theorem 3.

Proof of Lemma V.1: Suppose w.l.o.g. that π(a) <
π(b), i.e., π(a) = λ by the conditional event. Let U be the

subset of V containing vertices w with π(w) ≤ π(a). We

prove the lemma even when the set U , and the rank of the

vertices in it are chosen adversarially.

We have G′[U] = G[U] since u �∈ U and the only

difference of the two graphs G′ and G which is in edge

(a, b) does not belong to either of the two induced graphs.

Therefore, we have LFMIS(G′[U], π) = LFMIS(G[U], π);
let IU be this MIS. Furthermore, let H ′(V ′

H , E′
H) and

H(VH , EH) be the residual graphs after we remove vertices

in IU and their neighbors from G′ and G respectively. It

is not hard to see that either H = H ′ (if a �∈ IU or if b
has another neighbor w with π(w) < π(a) in IU) or H ′

has exactly one extra vertex than H which has to be b, i.e.,

H = H ′[V ′
H \{b}]. In the former case, since the two graphs

are equal, no matter how π is chosen, the eliminators of all

vertices will be the same. In the latter case, the two graphs

H and H ′ differ in only one vertex and no information

about the relative order of the vertices in VH or V ′
H in π is

revealed. Therefore, by Theorem 3, the expected number of

vertices whose eliminators are different in H and H ′ is at

most O(log n).
We now, turn to prove Theorem 3 and start with some

notation. Throughout the rest of this section, vertex v should

be regarded as fixed. We use I and I ′ to respectively denote

independent sets LFMIS(G, π) and LFMIS(G′, π). Also, for

brevity, we use Aπ instead of Aπ(G,G′). Furthermore, we

define Fπ as the subset of vertices in Aπ whose MIS-status

is flipped, i.e., u ∈ Fπ if and only if u belongs to exactly

one of I or I ′.
Instead of rankings, it will be more convenient to consider

permutations for the arguments of this section. That is, we

assume that a permutation π : V → [n] from the set Π of

all n! possible permutations is drawn uniformly at random

and the LFMIS is constructed according to this permutation.

It is clear that LFMIS according to a random rank follows

exactly the same distribution as that according to a random

permutation.4

The following observation is very similar to Observa-

tion IV.3 of the previous section and will be very useful

here too.

Observation V.2. If Aπ is non-empty, then v ∈ I and v ∈
Fπ . Furthermore, for every vertex u ∈ Aπ \ {v}, there is
another vertex w ∈ Fπ that is adjacent to u and π(w) <
π(u).

Proof: We first prove that if Aπ �= ∅ then v ∈ I .

Assume for contradiction that v �∈ I and Aπ �= ∅. Since

v does not belong to G′, we also have v �∈ I ′, i.e., v is

4To see this, observe that to draw a random permutation π : V → [n],
one can first draw a random rank ρ : V → [0, 1] and then sort the vertices
based on ρ.

in neither of the two maximal independent sets I and I ′.
Now take the minimum rank vertex u in Aπ (which exists

since Aπ �= ∅). Since u ∈ Aπ , by definition, its eliminators

should be different in I and I ′. Therefore, there should exist

a vertex w with π(w) < π(u), that is in exactly one of the

two maximal independent sets. Since v is in neither of I
and I ′, w �= v. However, in this case, w would also belong

to Aπ , contradicting that u is the minimum rank vertex in

Aπ , and completing the proof of this part.

For the second part, fix a vertex u ∈ Aπ and let x and x′

be its eliminators in I and I ′ respectively. Note that x and

x′ cannot be the same vertex or otherwise u �∈ Aπ . Suppose

that π(x) < π(x′). The fact that x is an eliminator of u in

I means that x ∈ I . On the other hand, the fact that x′,
instead of x, is the eliminator of u in I ′ means that x �∈ I ′.
This means that x has to belong to Fπ . A similar argument

holds for the case where π(x′) < π(x).

For a vertex u ∈ Aπ \ {v}, we define the parent
of u, denoted by pπ(u), as its neighbor in Fπ (which

exists by observation above) with the lowest rank, i.e.,

pπ(u) = argminw∈N(u)∩Fπ
π(w). Furthermore, we define

the propagation path Pπ(u) of each vertex u ∈ Aπ as:

Pπ(u) =

{
(v) if u = v,

(Pπ(pπ(u)), u) otherwise.

With a slight abuse of notation, Pπ(u) can be denoted by

a sequence (w1, . . . , wk) where w1 = v, wk = u, and for

every i ∈ [k−1], wi = pπ(wi+1). Note that this sequence is

a valid path of the graph because by definition each vertex

is a neighbor of its parent and π(pπ(u)) is strictly smaller

than π(u) by Observation V.2, thus, no vertex can be visited

twice in the sequence. Furthermore, w1 = v because every

vertex w ∈ Aπ has a parent pπ(w) except v.

Claim V.3. Fix an arbitrary permutation π, an arbitrary
vertex u ∈ Aπ , and let Pπ(u) = (w1, . . . , wk). For odd
i ∈ [k − 1], wi ∈ LFMIS(G, π) and for even i ∈ [k − 1],
wi �∈ LFMIS(G, π).

Proof: Since u ∈ Aπ and thus Aπ �= ∅, we already

know from Observation V.2 that vertex v = w1 has to belong

to LFMIS(G, π), proving the claim for i = 1. To complete

the proof, we show that for any i ∈ [k − 2], exactly one of

wi and wi+1 is in LFMIS(G, π).

First, observe that since LFMIS(G, π) is an independent

set, no two adjacent vertices can belong to it. Therefore, we

only have to show that for any i ∈ [k − 2], it cannot be

the case that neither of wi and wi−1 are in LFMIS(G, π).
Suppose for contradiction that this holds. By definition

of propagation paths, and since i ∈ [k − 2], we get

that wi is the parent of wi+1 and wi+1 is the parent of

wi+2. Every vertex that is a parent of another vertex has

to be in Fπ by definition. Therefore, both wi and wi+1

belong to Fπ . Combined with the assumption that neither

389

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

of wi and wi+1 are in LFMIS(G, π), both have to belong

to LFMIS(G′, π) (by definition of Fπ) which cannot be

possible since LFMIS(G′, π) is also an independent set.

Let Π denote the set of all permutations over V . We say

a permutation π ∈ Π is unlikely, if for some vertex u ∈ V ,

|Pπ(u)| > β log n where β is a constant that we fix later,

and likely otherwise. Denoting the set of likely and unlikely

permutations by ΠL and ΠU respectively, we have

Eπ[|Aπ|] =Pr[π ∈ ΠL] · Eπ∼ΠL
[|Aπ|]

+ Pr[π ∈ ΠU] · Eπ∼ΠU
[|Aπ|]. (2)

We prove Eπ[|Aπ|] = O(log n) by bounding the two terms

in (2) individually.

Lemma V.4 ([14, 20]). If β is a large enough constant,
Pr[π ∈ ΠU] ≤ n−2.

Lemma V.5 (likely permutations). Eπ∼ΠL
[|Aπ|] =

O(log n).

Lemma V.4 almost directly follows from the earlier works

of [14, 20] on bounding parallel round complexity of LFMIS

over a random permutation; we provide the details in Sec-

tion V-C. Lemma V.5, which is proven in Section V-A,

constitutes the novel part of the proof and is indeed where

bulk of the whole analysis is concentrated on. Below, we

first show why Lemmas V.5 and V.4 are sufficient to prove

Theorem 3.

Proof of Theorem 3: By Lemma V.5, we have

Eπ∼ΠL
[|Aπ|] = O(log n). Since Pr[π ∈ ΠL] ≤ 1 for being

a probability, we get Pr[π ∈ ΠL] ·Eπ∼ΠL
[|Aπ|] ≤ O(log n),

i.e., the first term in (2) is bounded by O(log n). On the other

hand, by Lemma V.4, we have Pr[π ∈ ΠU] ≤ n−2. Using

this, we can bound the second term in (2) to be as small

as n−1 even if Aπ includes all n vertices for any π ∈ ΠU .

Therefore overall, we get Eπ[|Aπ|] ≤ O(log n) + n−1 =
O(log n), which is the desired bound.

A. Handling Likely Permutations: Proof of Lemma V.5

In the rest of this section, we focus on proving

Lemma V.5. The overall plan is as follows. For each permu-

tation π ∈ ΠL, we blame a set of permutations B(π) ⊆ Π
such that:

(P1) |B(π)| ≥ |Aπ|.
(P2) For each permutation π′ ∈ Π, there are at most β log n

permutations π ∈ ΠL where π′ ∈ B(π).

We first prove that having such blaming sets satisfying

properties P1 and P2 is sufficient for proving Lemma V.5

and then describe how the blaming sets are constructed.

Proof of Lemma V.5: Defining X as the sum

∑
π∈ΠL

|Aπ|, we have:

Eπ∼ΠL
[|Aπ|] =

∑
π∈ΠL

Pr[drawing π | π ∈ ΠL] · |Aπ|

=
1

|ΠL|
∑

π∈ΠL

|Aπ|

=
X

|ΠL| . (3)

By property P1, |B(π)| ≥ |Aπ| for every π ∈ ΠL. Thus,

Y :=
∑

π∈ΠL

|B(π)| ≥
∑

π∈ΠL

|Aπ| = X.

On the other hand, since by property P2, each permuta-

tion π′ ∈ Π belongs to B(π) of at most β log n other

permutations π, a simple double counting argument gives

Y ≤ |Π|β log n; implying also that X ≤ |Π|β log n. More-

over, since ΠL = Π \ΠU and by Lemma V.4,
|ΠU |
|Π| < n−2,

it holds that
|ΠL|
|Π| > 1−n−2, thus, |Π| = O(|ΠL|). For this,

X ≤ |Π|β log n implies X = O(|ΠL| log n). Plugging this

into (3), we get Eπ∼ΠL
[|Aπ|] ≤ O(|ΠL| logn)

|ΠL| = O(log n) as

desired.

For every permutation π ∈ ΠL, and each vertex u ∈ Aπ ,

we construct a permutation ϕπ,u ∈ Π. The blaming set of

π will then be the set B(π) =
⋃

u∈Aπ
{ϕπ,u}. For a vertex

u ∈ Aπ , with Pπ(u) = (v = w1, w2, . . . , wk = u), we

construct permutation ϕπ,u as follows:

• For each vertex w �∈ Pπ(u), ϕπ,u(w) ← π(w).
• ϕπ,u(w1) ← π(wk).
• For any 2 ≤ i ≤ k, ϕπ,u(wi) ← π(wi−1).

In other words, permutation ϕπ,u on all vertices outside

Pπ(u) is exactly the same as π, however for the vertices

in Pπ(u), ϕπ,u is obtained by rotating the π ranks by one

index towards u. An example is shown in the figure below.

2
w1

v u

w2 w3 w4 w5

4 6 8 9

9
w1

v u

w2 w3 w4 w5

2 4 6 8

As captured by the following observation, it is not hard

to show that with this construction, property P1 is indeed

satisfied:

Observation V.6. By construction above, property P1 is
satisfied.

Proof: The reason is that we indeed construct |Aπ|
permutations to include in B(π): ϕπ,u for each u ∈ Aπ .

390

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Note, however, that we still need to argue that for any two

vertices u and w in Aπ , permutations ϕπ,u and ϕπ,w are not

the same so that the set containing them has size |Aπ|. This

follows because ϕπ,w(v) = π(w) and ϕπ,u(v) = π(u) but

π(u) �= π(w), implying that ϕπ,w(v) �= ϕπ,u(v) and thus

the two permutations ϕπ,w and ϕπ,u are not equal.

The harder part is to show that our construction also

satisfies property P2:

Claim V.7. By construction above, property P2 is also
satisfied.

Suppose that a permutation ρ is blamed by permutations

π and π′, i.e., ρ ∈ B(π) ∩ B(π′). This means that there

should exist vertices u ∈ Aπ and u′ ∈ Aπ′ where

ϕπ,u = ϕπ′,u′ = ρ. To prove Claim V.7, we analyze the

circumstances under which this may occur. Consider the

propagation paths Pπ(u) = (w1, w2, . . . , wk) and Pπ′(u′) =
(w′

1, w
′
2, . . . , w

′
k′) and recall that wk = u, w′

k′ = u′ and

w1 = w′
1 = v. Let j be the largest integer where for any

i ∈ {1, . . . , j}, we have wi = w′
i. Note that clearly j ≥ 1

since w′
1 = w1 = v. We call wj (or equivalently w′

j) the
branching vertex and analyze the following scenarios which

cover all possibilities individually (see Figure 1):

• Scenario 1: j is odd, wj �= u, and wj �= u′.
• Scenario 2: j is even, wj �= u, and wj �= u′.
• Scenario 3: at least one of u or u′ is the same as wj .

w1'

w4'

w5'

v u

u'

u'

u'

Scenario 1

v u Scenario 2

v u Scenario 3

w1

w2'

w2

w3'

w1' w2' w3' w4'

w1' w2' w3' w4'

w3 w4 w5

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

Figure 1: The grey vertex in each scenario, denotes the

corresponding branching vertex wj .

The claim below unveils several important structural prop-

erties of propagation paths and will be our main tool to prove

Claim V.7. See Figure 2 for an illustration of some of these

properties.

Claim V.8. Consider two different permutations π and
π′ in ΠL and two (possibly the same) vertices u and
u′. Let wj be the branching vertex for propagation paths
Pπ(u) = (w1, . . . , wk) and Pπ′(u′) = (w′

1, . . . , w
′
k′). If

ϕπ,u = ϕπ′,u′ and π′(wj) ≥ π(wj), then:

1) for every vertex w that does not belong to either of
Pπ(u) and Pπ′(u′), π(w) = π′(w).

2) π(w) = π′(w) for every vertex w with π(w) < π(wj).
3) π(wk) = π′(w′

k′).
4) k ≥ j + 1 (i.e., vertex wj+1 should exist) and

π′(wj+1) = π(wj).
5) wj+1 ∈ LFMIS(G, π′).

wj+1 wk

...

wj+1' wk''

... u'w1'
v
w1

w2'

'

w2

wj'

wj wj+1 wk

w3'

w3

wj−1'

wj−1

... ...

w1'
v
w1

w2'

w2

wj'

wj

w3'

w3

wj−1'

wj−1

...

wk''

...
wj+1'

u'

u

u

a vertex not in the MIS

a vertex with unspecif
MIS status

permutation

a vertex in the MIS

the branching vertex

same rank (see the f
description below)

permutation

ied

igure

Figure 2: Illustration of some of the properties obtained from

Claims V.3 and V.8 for vertices in Pπ(u) = (w1, . . . , wk)
and Pπ′(u′) = (w′

1, . . . , w
′
k′) given that ϕπ,u = ϕπ′,u′

and π′(wj) ≥ π(wj) where wj is the branching vertex. A

dashed line between vertices x on the top and y on the

bottom implies π(x) = π′(y). Note that for the illustration

purpose, this figure models only scenarios 1 and 2; however,

Claims V.3 and V.8 are general and hold for all three

scenarios.

We first show how these properties can be used to prove

Claim V.7, then prove Claim V.8.

Proof of Claim V.7: Suppose that a permutation ρ is

blamed by two permutations π and π′, and let u and u′

be the vertices where ϕπ,u = ϕπ′,u′ (we note that u and u′

may be the same vertex). We show that if these assumptions

hold, then scenarios 1 and 2 defined above would lead to

contradictions, implying that scenario 3 is the only case for

which this may occur. To show this, we assume w.l.o.g. that

π′(wj) ≥ π(wj) so that all conditions of Claim V.8 are

satisfied.

391

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Scenario 1. Since in this scenario wj �= u′, we get j < k′;
more precisely, j ∈ [k′ − 1]. Furthermore, recall that

j is assumed to be odd in scenario 1. Combining the

two conditions, Claim V.3 implies wj ∈ LFMIS(G, π′).
On the other hand, by Claim V.8 part 5, wj+1 ∈
LFMIS(G, π′). However, this is a contradiction since

by definition of Pπ(u), wj = pπ(wj+1) and thus wj

and wj+1 are neighbors; meaning that they both cannot

belong to independent set LFMIS(G, π′).
Scenario 2. The assumption wj �= u′ implies that there

is a vertex w′
j+1 and that wj = pπ′(w′

j+1); thus by

definition of pπ′(w′
j+1), wj ∈ Fπ′ . It also implies

that j ∈ [k′ − 1] (as argued in scenario 1). But

since j is even in this scenario, Claim V.3 implies

wj �∈ LFMIS(G, π′). Let us use H to denote the graph

G[V \ {v}] obtained by removing vertex v from G.

Recall that by definition, wj is in Fπ′ iff its MIS-

status is different in LFMIS(G, π′) and LFMIS(H,π′).
Therefore, since wj �∈ LFMIS(G, π′) we have to

have wj ∈ LFMIS(H,π′). This also implies that

wj+1 �∈ LFMIS(H,π′) since as argued in scenario

1, wj and wj+1 are neighbors in G and thus H . On

the other hand, similar to scenario 1, we should have

wj+1 ∈ LFMIS(G, π′) by Claim V.8 part 5. Therefore,

since wj+1 has a different MIS-status in LFMIS(G, π′)
and LFMIS(H,π′), we have wj+1 ∈ Fπ′ . By definition,

Fπ′ ⊆ Aπ′ thus by Observation V.2,

there exists a vertex x ∈ NH(wj+1) such that

x ∈ Fπ′ and π′(x) < π′(wj+1).

Furthermore, by Claim V.8 part 4, π′(wj+1) = π(wj);
combined with π′(x) < π′(wj+1), this implies π′(x) <
π(wj). Observe that by Claim V.8 part 2 the two

permutations π and π′ are exactly the same on the

set of vertices with rank less than π(wj). Therefore,

x ∈ LFMIS(G, π′) iff x ∈ LFMIS(G, π), and x ∈
LFMIS(H,π′) iff x ∈ LFMIS(H,π). As a result,

x ∈ Fπ′ implies that x ∈ Fπ .

Finally, recall that pπ(wj+1) is by definition the lowest-

rank neighbor of wj+1 in Fπ . Therefore, since x ∈ Fπ

and π(x) < π(wj), we have pπ(wj+1) �= wj . This

contradicts the definition of Pπ(u) which guarantees

wj = pπ(wj+1).

As shown above, the only case for which we might get

ϕπ,u = ϕπ′,u′ is scenario 3 as the other two scenarios lead

to contradictions. We now show that because of the very

specific structure of scenario 3, each permutation is blamed

by at most β log n permutations.

Fix a permutation ρ and let Cρ be a set that includes

every pair (π, u) with π ∈ ΠL and u ∈ V for which

ϕπ,u = ρ. Clearly, |Cρ| is an upper bound on the number

of permutations that blame ρ, thus it suffices to bound |Cρ|
by β log n.

First, we show that for any two different pairs (π, u)
and (π′, u′) in Cρ, we have |Pπ(u)| �= |Pπ′(u′)|. Suppose

for the sake of contradiction that |Pπ(u)| = |Pπ′(u′)|. Let

Pπ(u) = (w1, . . . , wk) and Pπ′(u′) = (w′
1, . . . , w

′
k) be

the vertices in the two paths and let wj be the branching

vertex. We know that ϕπ,u = ϕπ′,u′ = ρ since the pairs

belong to Cρ. Therefore, scenario 3 has to occur and thus

either wj = u′ or wj = u. In either case, we get j = k
since u = wk and u′ = w′

k. Furthermore, by definition of

the branching vertex we have wi = w′
i for any i ∈ [j].

Moreover, by Claim V.8 parts 2 and 3, for any i ∈ [j], we

have π(wi) = π′(w′
i). Meaning that the set of vertices and

their ranks in the two permutations are exactly the same on

the propagation paths. On the other hand, for any vertex

x that does not belong to the propagation paths, we also

have π(x) = π′(x) due to Claim V.8 part 1. Combining

these, we get that π = π′. We also showed that wk = w′
k

and thus u = u′. Therefore, the two pairs (π, u) and

(π′, u′) are identical, which is in contradiction with our

initial assumption that they are different.

Now we show that |Cρ| ≤ β log n. Suppose for contra-

diction that there are at least β log n + 1 pairs in Cρ. As

shown in the previous paragraph, for each pair (π, u) ∈ Cρ,

|Pπ(u)| is unique. Therefore, if |Cρ| > β log n, there should

be at least a pair (π, u) with |Pπ(u)| ≥ β log n+1. However,

by definition, the propagation-path of every vertex in every

permutation π ∈ ΠL, has size at most β log n which is a

contradiction. Therefore, |Cρ| ≤ β log n for any permutation

ρ, thus every permutation ρ is blamed by at most β log n
other permutations. This means that property P2 is also

satisfied by our mapping, as desired.

B. The Mapping’s Structural Properties: Proof of Claim V.8

In what follows, we prove the parts of Claim V.8 one by

one. Note that the proof of each part may depend on the

correctness of the previous parts.

Proof of Claim V.8 part 1: For any vertex w that does

not belong to the propagation paths Pπ(u) and Pπ′(u′),
we have ϕπ,u(w) = π(w) and ϕπ′,u′(w) = π′(w) by

construction of permutations ϕπ,u and ϕπ′,u′ ; hence, to have

ϕπ,u = ϕπ′,u′ it should hold that π(w) = π′(w).
Proof of Claim V.8 part 2.: Consider a vertex w with

π(w) < π(wj), we prove π(w) = π′(w).
Case 1: w �∈ Pπ(u) and w �∈ Pπ′(u′). In this case, by

Claim V.8 part 1 we have π(w) = π′(w).
Case 2: w ∈ Pπ(u). By definition of propagation-path

Pπ(u), we have π(w1) < . . . < π(wk). Therefore,

since w ∈ Pπ(u) and π(w) < π(wj), we should have

w = wi for some i < j. Since wj is the branching

vertex, this means wi+1 = w′
i+1 and wi = w′

i. By

construction of ϕπ,u and ϕπ′,u′ , we have ϕπ,u(wi+1) =
π(wi) and ϕπ′,u′(w′

i+1) = π′(w′
i). Combined with

wi+1 = w′
i+1, wi = w′

i, and ϕπ,u = ϕπ′,u′ , this means

π(wi) = π′(wi).

392

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Case 3: w �∈ Pπ(u) and w ∈ Pπ′(u′). We show that it is

essentially impossible to satisfy the property’s condition

π(w) < π(wj) in this case, implying that the property

holds automatically. First, observe that w = w′
i should

hold for some i > j, or otherwise w ∈ Pπ(u) by

definition of the branching vertex wj . By construction

of ϕπ′,u′ , this implies ϕπ′,u′(w) ≥ π′(w′
j) = π′(wj).

Combined with assumption π′(wj) ≥ π(wj), we get

ϕπ′,u′(w) ≥ π(wj). Moreover, since w �∈ Pπ(u), we

get ϕπ,u(w) = π(w). Thus, to have ϕπ,u = ϕπ′,u′ ,

it should hold that π(w) = ϕπ′,u′(w). Since we

just showed ϕπ′,u′(w) ≥ π(wj), this would imply

π(w) ≥ π(wj) which as outlined at the start of this

case, is sufficient for our purpose.

The cases above clearly cover all possibilities; thus the proof

is complete.

Proof of Claim V.8 part 3.: Recall that w1 = w′
1 = v.

We have ϕπ,u(v) = π(wk) and ϕπ′,u′(v) = π(w′
k′) simply

by construction of these permutations. Therefore, to have

ϕπ,u(v) = ϕπ′,u′(v), we should have π(wk) = π′(w′
k′).

Proof of Claim V.8 part 4.: Suppose for contradiction

that k ≤ j, i.e., vertex wj+1 does not exist. Since wj is the

branching vertex, it has to belong to Pπ(u) by definition,

thus, k ≥ j. Combined with k ≤ j, the only possibility

would be k = j. By Claim V.8 part 3, we have π(wk) =
π′(w′

k′) and since j = k, we get

π(wj) = π′(w′
k′). (4)

On the other hand, by definition of Pπ′(u′), we have

π′(w′
k′) > π′(w′

k′−1) . . . > π′(w′
1). (5)

Moreover, recall from the claim’s assumption that π′(wj) ≥
π(wj). Combining this with (4) and (5), the only option is

if j = k′. To see this, observe that j ≤ k′ by definition

of the branching vertex; now, if j < k′, then from (5) we

obtain π′(w′
k′) > π′(wj) which due to (4) would imply

π(wj) > π′(wj) contradicting the claim’s assumption that

π(wj) ≤ π′(wj); thus, j = k′. Recall that we also assumed

j = k at the beginning of the proof, therefore j = k =
k′. This implies by definition of the branching vertex that

wi = w′
i for any i ∈ [k] (or equivalently [k′]), i.e., the two

paths Pπ(u) and Pπ′(u′) are exactly the same. Moreover,

due to j = k = k′ and Claim V.8 parts 2 and 3, for any

vertex wi in the propagation paths, π(wi) = π′(wi). On

the other hand, for any vertex x outside the two paths, we

have π(x) = π′(x) by Claim V.8 part 1. Therefore, overall,

the two permutations π and π′ have to be exactly the same

on all vertices, which is a contradiction with the claim’s

assumption that π and π′ are different. Therefore, our initial

assumption that k ≤ j cannot hold and vertex wj+1 should

exist.

Finally, by construction of ϕπ,u, we have ϕπ,u(wj+1) =
π(wj). Now, since wj+1 �∈ Pπ′(u′) (otherwise wj+1

would be be the branching vertex instead of wj), we

have ϕπ′,u′(wj+1) = π′(wj+1). From ϕπ,u = ϕπ′,u′ , we

get ϕπ,u(wj+1) = ϕπ′,u′(wj+1). Combining these three

equalities, we get π(wj) = π′(wj+1) as desired.

Proof of Claim V.8 part 5.: Suppose for the sake

of contradiction that wi+1 �∈ LFMIS(G, π′) and let x :=
elimG,π′(wj+1) be the eliminator of wj+1 in LFMIS(G, π′).
Since wj+1 �∈ LFMIS(G, π′), it holds that π′(x) <
π′(wi+1). Moreover, by Claim V.8 part 4, π′(wj+1) =
π(wj); combined with inequality π′(x) < π′(wj+1), this

implies that π′(x) < π(wj). Note also that, by Claim V.8

part 2, the two permutations π and π′ are exactly the same

on the set of vertices with rank less than π(wj); since x is

among such vertices,

π(x) = π′(x) < π(wj). (6)

Another implication of the equivalence of the two permu-

tations on vertices with rank less than π(wj) is that since

x ∈ LFMIS(G, π′) (which holds since x is the eliminator

of wj+1 in LFMIS(G, π′)) we also have x ∈ LFMIS(G, π).
This in turn, implies that x is the eliminator of wj+1 in

LFMIS(G, π) as well. On the other hand, since wj+1 is a

vertex in path Pπ(u), by definition of the propagation-paths,

it should hold that wj+1 ∈ Aπ . Moreover, by definition of

Aπ , we have elimG,π(wj+1) �= elimG′,π(wj+1) where G′ is

defined as G[V \ {v}]. Denoting elimG′,π(wj+1) by y and

noting that x = elimG,π(wj+1), we get y �= x. Therefore,

one of the following cases should occur:

Case 1: π(y) < π(x). In this case, the fact that x is

the eliminator of wj+1 in LFMIS(G, π) even though

π(y) < π(x) means y �∈ LFMIS(G, π). On the other

hand, y ∈ LFMIS(G′, π) since y = elimG′,π(wj+1),
therefore y ∈ Fπ by definition. However, this contra-

dicts wj = pπ(wj+1) since by (6), π(y) < π(x) <
π(wj) , thus, y should be the parent of wj+1 instead

of wj .

Case 2: π(y) > π(x). Similarly, in this case, the fact that

x is not the eliminator of wj+1 in LFMIS(G′, π) even

though π(x) < π(y) implies that x �∈ LFMIS(G′, π).
This means that x ∈ Fπ and again, since π(x) <
π(wj), x has to be the parent of wj+1 instead of wj .

To wrap up, wj+1 �∈ LFMIS(G, π′) leads to a contradiction,

thus wj+1 ∈ LFMIS(G, π′).

C. Unlikely Permutations: Proof of Lemma V.4

The LFMIS over a permutation π can be parallelized in

the following way. In each round, each vertex that holds

the minimum rank among its neighbors joins the MIS and

then is removed from the graph along with its neighbors

(note that this, in parallel, happens for several vertices in

each round). Fischer and Noever [20], building on an earlier

approach of Blelloch et al. [14], showed that if permutation

π is chosen randomly, with probability at least 1 − n−2, it

393

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

takes O(log n) rounds until the graph becomes empty.5 This

result as a black-box does not prove Lemma V.4. However,

to prove this upper-bound on round-complexity, they indeed

upper bound the maximum size of dependency-paths which

are structures that are very close to propagation-paths:

Definition V.9 ([20, Definition 2.1]). A path w1, w2, . . . , wk

in the graph is a dependency-path according to permutation
π, if for any odd i ∈ [k], vertex wi is in LFMIS(G, π)
and for any even i ∈ [k], wi �∈ LFMIS(G, π) and wi−1 =
elimG,π(wi).

Recall that indeed, if u1, . . . , uk is a propagation-path,

then for every i ∈ [k−1], ui = elimG,π(ui+1) by definition.

Moreover, by Claim V.3, except for the last vertex in the

propagation-path, the odd vertices are in the MIS and the

even vertices are not. Therefore:

Observation V.10. If there exists a propagation-path of size
� in the graph, then its first �−1 vertices form a dependency-
path.

Fischer and Noever [20] prove that with probability

1 − n−2, every dependency-path has size O(log n) if π is

chosen at random. Therefore, from Observation V.10, we

get that the probability of having a propagation-path with

size β log n, if β is a large enough constant, is at most n−2,

which completes the proof of Lemma V.4.

VI. FULLY DYNAMIC MIS: PUTTING EVERYTHING

TOGETHER

A. The (Concrete, Non-Parametrized) Running Time

In this section, we show how combining Lemma IV.1 with

Lemma V.1 proves the main claim of this paper that MIS

can be maintained in polylogarithmic update-time.

Theorem 1 (restated). There is a data structure to maintain
an MIS against an oblivious adversary in a fully-dynamic
graph that, per update, takes O(log2 Δ · log2 n) expected
time. Furthermore, the number of adjustments to the MIS
per update is O(1) in expectation.

Proof of Theorem 1: Consider insertion or deletion of

an edge e = (a, b). As before, we use λ to denote random

variable min{π(a), π(b)} and use A to denote the set of

vertices whose eliminators change as a result of this edge

update. By Lemma IV.1, we have

E[update-time for an edge e = (a, b)]

= E
[
O
(|A| · logΔ ·min

{
λ−1 · log n,Δ})]

= O(logΔ) · E[|A| ·min
{
λ−1 · log n,Δ}]

= O(logΔ · log n) · E[min
{
λ−1 · log n,Δ}]

. (7)

5We note that the success probability of these works is actually 1−n−c

for any desirable constant c > 1 affecting the hidden constants in the
round-complexity. For our purpose, c = 2 is sufficient.

The third equation follows from E[|A| | λ] ≤ O(log n)
which was proved in Lemma V.1, combined with the fact

that if for two possibly dependent random variables y1 and

y2, E[y1|y2] ≤ β, then E[y1 · y2] ≤ βE[y2]. To bound the

random variable inside the expectation, suppose we partition

the [0, 1] interval into Δ sub-intervals I1, . . . , IΔ where

Ii = [i−1
Δ , i

Δ] for any i ∈ [Δ]. Note that if λ ∈ Ii then at

least one of π(a) and π(b) is in Ii. Therefore, a simple union

bound implies that Pr[λ ∈ Ii] ≤ Pr[π(a) ∈ Ii] + Pr[π(b) ∈
Ii] = 2/Δ. We, thus, have:

E
[
min

{
λ−1 · log n,Δ}]

=
Δ∑
i=1

Pr[λ ∈ Ii] · E
[
min

{
λ−1 · log n,Δ} | λ ∈ Ii

]
≤

Δ∑
i=1

2

Δ

(
min

{ Δ

i− 1
log n,Δ

})
= O(log n)

Δ∑
i=1

1

i
= O(logΔ · log n).

Replacing this into (7) suffices to bound the expected update-

time by O(log2 Δ·log2 n). Furthermore, as mentioned before

in Section II, we already know from [15, Theorem 1] that

the expected adjustment complexity of random order LFMIS

is O(1), completing the proof.

B. Deferred Proofs

We start by proving Observation IV.3 which is crucial for

the algorithm’s correctness.

Observation IV.3 (restated). For any vertex v ∈ A, the
following properties hold:

1) kt−1(v) ≥ π(a) and kt(v) ≥ π(a).
2) if v �= b, then v has a neighbor u such that π(u) < π(v)

and u ∈ F .

Proof of Observation IV.3 part 1: Let U denote the set

of vertices v in V with π(v) < π(a). Observe that the two

induced subgraphs Gt[U] and Gt−1[U] are identical since

the only difference between Gt and Gt−1 is insertion/dele-

tion of edge e = (a, b) whose endpoints both have rank at

least π(a) (recall that π(a) < π(b)) and thus neither belongs

to U . Since the MIS is constructed greedily on lower rank

vertices first, the set of MIS vertices in Gt[U] and Gt−1[U]
according to π are exactly the same. Let IU denote these

MIS nodes. Note that any vertex v with kt−1(v) < π(a)
should have a neighbor in IU . Since both end-points of edge

e are in V \ U , the set of neighbors of IU in both graphs

Gt and Gt−1 are also identical. Therefore for each vertex v
with kt−1(v) < π(a), we have kt(v) = kt−1(v) and thus v
cannot be in A by definition. By a similar argument, for any

vertex v with kt(v) < π(a) we also have kt−1(v) = kt(v)
and thus v �∈ A.

394

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Proof of Observation IV.3 part 2: The assumption v ∈
A implies that the eliminator of v has changed after the

update. Let w be the eliminator of v before the update. If

the MIS-status of no neighbor u of v with π(u) ≤ π(w)
changes, since v �= b and the set of neighbors of v are the

same before and after the update, then w remains to be the

eliminator of v. Therefore, to have v ∈ A, the MIS-status

of at least one of v’s neighbors changes and this vertex is

in F by definition.

We first prove the correctness of each of the subroutines

and then that of the overall algorithm. These subroutines are

proven to be correct by the end of any iteration i conditioned

on the assumption that Invariants IV.4-IV.6 (or a subset of

them) hold at the start of iteration i. We later inductively

prove that these invariants hold and that indeed the whole

algorithm is correct.

Claim VI.1. By the end of any iteration i, subroutine
ISAFFECTED(v) correctly decides whether the lowest-rank
vertex v ∈ S is in set A in time O(|P(v)|) given that
Invariants IV.4-IV.6 hold by the start of iteration i.

Proof: The algorithm clearly takes O(|P(v)|) time

since it only iterates over the vertices in P(v) to decide

on the output. In what follows, we prove its correctness. As

in the algorithm’s description, we consider two cases where

v = b and v �= b individually.

Case 1 v = b: In this case, the algorithm decides b ∈ A
if and only if m(a) = 1 and k(b) ≥ π(a). We show that

this is indeed correct.

The if part. We show that if m(a) = 1 and k(b) ≥ π(a),
then b ∈ A. Observe from Invariant IV.4 that at this point

in the algorithm, we have k(b) = kt−1(b). Therefore, the

k(b) ≥ π(a) assumption implies kt−1(b) ≥ π(a). Moreover,

the MIS-status of vertex a cannot change as it is the

lower-rank vertex of the updated edge, thus, it holds that

mt(a) = mt−1(a) and consequently m(a) = 1 implies

a ∈ LFMIS(Gt−1, π). Combining these, the eliminator of b
has to be a iff there is an edge between a and b. Therefore,

updating edge e = (a, b) definitely changes b’s eliminator

and thus b ∈ A.

The only if part. Suppose that one of the conditions do

not hold, we show b �∈ A. First, if k < π(a), then by

Observation IV.3 part 1, b �∈ A as desired. Moreover, if

m(a) = 0, as before, we should have mt−1(a) = mt(a) = 0
since a is the lower-rank vertex of the update. As a result,

insertion or deletion of e cannot have an effect on the

eliminator of b and thus b �∈ A.

Case 2 v �= b: In this case, the eliminator of v changes

if and only if at least one of the following conditions hold:

(1) the eliminator of v in time t− 1 leaves the MIS, (2) at

least a vertex u adjacent to v with π(u) < k(v) joins the

MIS. If none of these conditions hold, then elimGt−1,π(v)
remains to be the smallest-rank vertex in {b} ∪ N(b) that

is in the MIS after the update; therefore by definition of

eliminator, kt−1(v) = kt(v) and thus v �∈ A.

Our algorithm precisely checks these conditions. For

condition (1), if the eliminator u := elimGt−1,π(v) leaves

the MIS after the update, it should by definition belong to

F . Note that by invariant IV.5, P(v) exactly contains the

neighbors w of v with w ∈ F and π(w) < π(v). Therefore

if u ∈ P(v), then condition (1) holds and v ∈ A. Our

algorithm also checks condition (2) by finding the lowest-

rank vertex w in P(v) with m(w) = 1 and then comparing

its rank with kt−1(v).

Claim VI.2. At any iteration i, with probability at least 1−
n−(c+1), set Hv has size O(min{Δ, logn

π(a) }). Furthermore,
subroutine FINDRELEVANTNEIGHBORS(v, π(a)) correctly
finds the set Hv in time O(|Hv| · logΔ), given that Invariant
IV.6 holds by the start of iteration i.

Proof:
Size of Hv: Observe that if Hv is defined, then as

assured by the condition in Line 5 of Algorithm 1, v ∈ A
thus by Observation IV.3, kt−1(v) ≥ π(a). Furthermore, by

definition, every vertex u ∈ Hv has kt−1(u) ≥ π(a). This

means that if we take LFMIS of Gt−1 induced on vertices

with rank in [0, π(a)) and remove them and their neighbors

from the graph, v and all of its neighbors in Hv will survive.

Recall that the adversary is oblivious and the graph Gt−1 and

random permutation π are chosen independently. Therefore,

applying Proposition III.1 on graph Gt−1 with p = π(a)
bounds |Hv| by O(π(a)−1 log n) w.h.p. Moreover, clearly

|Hv| ≤ Δ since they are neighbors of v, concluding the

bound on the size of Hv .

Correctness: The assumption that Invariant IV.6 holds

implies that N−(v) = N−
t−1(v) and N+(v) = N+

t−1(v).
Therefore, FINDRELEVANTNEIGHBORS(v, π(a)) correctly

finds Hv .

Running time: Since the vertices u ∈ N−(v) are

indexed by kt−1(u) and the algorithm iterates only over the

neighbors u of v in this set with kt−1(u) ≥ π(a), the running

time of this part is O(|Hv| logΔ) where the logΔ factor

comes from searching in this BST which has size Δ at most.

However, note that the algorithm iterates over all vertices

in N+(v) since it is not indexed by kt−1(.). Therefore,

we have to prove |N+(v)| cannot be larger than |Hv|. We

know from Invariant IV.6 that for any vertex u ∈ N+(v),
we have kt−1(u) ≥ kt−1(v). Moreover, since v ∈ A, by

Observation IV.3, kt−1(v) ≥ π(a). Combining the two, we

get that kt−1(u) ≥ π(a). This means that every vertex

u ∈ N+(v) that is still a neighbor of v after the update,

should be in set |Hv|. Since at most one edge is removed

from the graph at time t, we have |N+(v)| ≤ |Hv| + 1,

completing the proof.

Claim VI.3. Let v be the lowest-rank vertex at the start of an
arbitrary iteration. Subroutine UPDATEELIMINATOR(v,Hv)
correctly updates k(v) and m(v) of vertex v in time O(|Hv|)

395

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

assuming that Invariant IV.4 holds by this iteration.

Proof: It is clear that the algorithm takes O(|Hv|) time,

here we prove its correctness. Note that at the time of using

subroutine UPDATEELIMINATOR(v,Hv), we know v ∈ A.

Therefore, from Observation IV.3 part 1, we know kt(v) ≥
π(a) and kt−1(v) ≥ π(a). We consider the two cases where

mt(v) = 1 and mt(v) = 0 differently.

Suppose that mt(v) = 0 and let w be the elimina-

tor of v after the update, i.e., π(w) = kt(v) (note that

since mt(v) = 0, w �= v). We first show w ∈ Hv by

proving that kt−1(w) ≥ π(a). Suppose for contradiction

that kt−1(w) < π(a). Then by Observation IV.3 part 1,

w �∈ A and consequently w �∈ F since F ⊆ A. Since

w is the eliminator of v in Gt, we have mt(w) = 1.

Moreover, for w �∈ F , we also get mt−1(w) = 1 which,

by definition, means w has to be its own eliminator in Gt−1

and thus kt−1(w) = π(w). Combined with kt−1(w) < π(a),
this would mean π(w) < π(a). This, however, contradicts

kt−1(v) ≥ π(a) since v has a neighbor w in MIS of Gt−1

with rank smaller than π(a) and thus it should hold that

kt−1(v) < π(a). This contradiction implies that indeed

kt−1(w) ≥ π(a) and thus w ∈ Hv . Furthermore, in this case,

since π(w) < π(v), by Invariant IV.4, m(w) = mt(w) = 1
and indeed the lowest-rank vertex u in Hv with m(u) = 1
should be vertex w and the algorithm is correct.

On the other hand, if mt(v) = 1, then no lower-rank

neighbor of v should be in the MIS. In this case, once we

scan the set Hv , we will not find any vertex u with a lower-

rank than π(v) and m(u) = 1, thus we correctly decide that

v is in the MIS and update m(v) and k(v) correctly.

Claim VI.4. Subroutine UPDATEADJACENCYLISTS() cor-
rectly updates the adjacency lists and with probability at
least 1 − n−c, takes O(|A| · min{Δ, logn

π(a) } · logΔ) time
given that for any vertex v, k(v) = kt(v).

Proof: The only edge update is between vertices a
and b and the algorithm first accordingly addresses this

change by updating N+(a), N−(a), N+(b), and N−(b).
For the rest of the vertices, we do not have an edge update

but the changes to the adjacency lists are resulted by the

changes to the eliminators. For a vertex v, these changes

are limited to moving its neighbors between N+(v) and

N−(v) or possibly re-indexing its neighbors in N−(v)
whose eliminator has changed.

We say an edge (v, u) causes an update iff position of u
and v or their indexing in each others’ adjacency lists (N+

or N−) needs to be updated. Let T denote the set of these

edges. Note that by definition of N+ and N−, if u /∈ A
and v /∈ A, then (v, u) /∈ T . This means that at least one

end-point of any edge in T is in A.

Āssume w.l.o.g. that for edge (v, u) ∈ T , we have v ∈
A. We claim that u ∈ Hv should hold. To show this, we

assume that u /∈ Hv and obtain a contradiction. Recall that

we have u /∈ Hv iff k(u) < π(a). By Observation IV.3 part

1, this would imply kt−1(u) < kt−1(v), kt(u) < kt(v), and

u /∈ A. Because of kt−1(u) < kt−1(v) and kt(u) < kt(v),
the position of vertices u and v in each others adjacency

lists remains unchanged. That is, we have v ∈ N+(u), v /∈
N−(u), u ∈ N−(v), and u /∈ N−(v) at both times t and

t − 1. Moreover, since u �∈ A, we have kt−1(u) = kt(u)
and thus u is already correctly indexed in N−(v). This is,

however, a contradiction since position of u and v and their

indexing in each others’ adjacency lists is already updated

and as a result (v, u) /∈ T . Therefore, it should indeed hold

that u ∈ Hv .
In subroutine UPDATEADJACENCYLISTS(), for any ver-

tex v ∈ A we go over its neighbors u ∈ Hv and determine

the membership of vertex v in adjacency lists of vertex u
and vice versa. To do so, by definition of N+ and N− we

only need values of kt(v) and kt(u) which are assumed to

be updated (in the statement of the claim). We then update

N−(v), N+(v), N−(u) and N+(u) accordingly; thus the

algorithm correctly updates the adjacency lists.
To analyze the running time, using Claim VI.2, we know

that for any vertex v ∈ A, set Hv has size O(min{Δ, logn
π(a) })

with probability at least 1−n−(c+1). Also, each update takes

O(logΔ) time since it consists of at most four insertions

and deletions in adjacency lists which are stored as BSTs.

Overall, this means that the running time can be bounded

by O(|A| · min{Δ, logn
π(a) } · logΔ) with probability at least

1− n−c.

Claim VI.5. If Invariant IV.4 holds by some iteration i, then
Invariant IV.5 also holds by iteration i.

Proof: Let u be any vertex adjacent to v with π(u) <
π(v) and u ∈ F . In other words, any vertex that should be in

set P(v) for the Invariant IV.5 to hold. Assuming that Invari-

ant IV.4 holds, we know that m(u) = mt(u) and m(u) �=
mt−1(u). Observe that in the algorithm, updating m(u) only

happens in subroutine UPDATEELIMINATOR(v,Hv) which

is followed by adding u to set P(.) of any vertex in set Hu

if u is flipped. Set Hu by definition includes vertex v since

k(v) ≥ π(a) and π(v) > π(u). This proves that set P(v)
satisfies Invariant IV.5.

Claim VI.6. Let v be the lowest-rank vertex in S in
an arbitrary iteration i of the algorithm. Assuming that
Invariant IV.4 holds at the start of iteration i we have:

1) If S = ∅ at the end of iteration i, for any vertex u ∈ V ,
m(u) = mt(u) and k(u) = kt(u).

2) If S �= ∅ at the end of iteration i, then Invariant IV.4
holds at the start of iteration i+ 1 as well.

Proof: Let S ′ denote set S at the end of iteration i
and let v′ be the lowest-rank vertex in that. Throughout the

proof, by S we mean set S at the start of iteration i and we

use v to refer to its lowest-rank vertex. Let us first review

Invariant IV.4. It states that for any vertex u, if π(u) < π(v)

396

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

then k(u) = kt−1(u), and m(u) = mt−1(u) hold and

otherwise we have k(u) = kt−1(u), and m(u) = mt−1(u).
We first show that k(v) and m(v) are updated at the end

of iteration i. By claim VI.5, we know that Invariant IV.5

holds at the start of iteration i and by Claim VI.1, we

know that holding Invariant IV.5 means that subroutine

ISAFFECTED(v) correctly detects if v ∈ A or not. Moreover,

by Claim VI.3 if v ∈ A, in the next step, algorithm correctly

updates k(v) and m(v). At this point of the algorithm, we

know that for any vertex u with π(u) ≤ π(v), we have

k(u) = kt(u) and m(u) = mt(u).
Now, let u be the vertex with the lowest-rank among

the vertices in A whose rank is greater than π(v). To

complete the proof it suffices if we show that if such a

vertex exists, then u ∈ S ′. This means that if S′ = ∅,

then for any vertex u ∈ V , we have m(u) = mt(u)
and k(u) = kt(u). Moreover, for the case of S′ �= ∅, it

results that for any vertex u, with π(u) < π(v′) we have

m(u) = mt(u) and k(u) = kt(u) or in the other words that

Invariant IV.4 holds at the start of iteration i + 1. We use

proof by contradiction by assuming that there exists a vertex

u in set A but not in S′ such that for any vertex u′ with

π(u′) < π(u) we have m(u′) = mt(v
′), and k(u′) = kt(u

′).
By Observation V.2, any vertex in A has a neighbor in F
with a lower rank. Let u′ be such a neighbor of u. By the

assumption that all neighbors of u with a lower rank has

updated m(.), we have m(u′) �= mt−1(u
′). Observe that in

the algorithm, updating m(u′) only happens in subroutine

UPDATEELIMINATOR(v,Hu′) which is followed by adding

vertices in Hu to S. Set Hu, by definition, includes vertex u
since k(u) ≥ π(a) (otherwise by Observation IV.3, u /∈ A)

and π(u) > π(u′). Thus, we obtain a contradiction and the

proof is completed.

Claim VI.7. Invariants IV.4, IV.5, and IV.6 hold throughout
the algorithm with probability 1.

Proof: First, observe that Invariant IV.6 holds since

Line 12 is the only part of the algorithm that we modify the

adjacency lists. Moreover, by Claim VI.5, the correctness of

Invariant IV.5 results from Invariant IV.5. Thus, we only

need to show that Invariants IV.4 holds throughout the

algorithm. We do so using induction. As the base case,

in the first iteration of the algorithm we have S = {b}
(or S = ∅ which does not need a proof). We need to

show that for any vertex u if π(u) < π(b) we have

k(u) = kt(u), and m(u) = mt(u) and if π(u) > π(b)
we have k(u) = kt−1(u), and m(u) = mt−1(u). Before the

start of this iteration we have not changed k(u) and m(u)
of any vertex u thus for all of them k(u) = kt−1(u) and

m(u) = mt−1(u). Moreover, by Observation V.2, updating

edge e does not affect a vertex u with π(u) < π(b) which

means that for any such vertex we have kt(u) = kt−1(u).
Therefore, we conclude that Invariants IV.4 holds for the

base case. This completes the proof since the induction step

is a direct result of Claim VI.6.

We continue with a simple observation and then turn to

formally prove the running time.

Observation VI.8. Let vi and vj respectively denote the
lowest-rank vertices of S in two arbitrary iterations i and j
of Algorithm 1. If i < j then π(vi) < π(vj).

Proof: We show that this claim holds for j = i + 1
which can be inductively used to generalize it to any

arbitrary i and j. Let Si and Si+1 respectively denote set

S at the beginning of iteration i and set S at the beginning

of iteration i + 1. We know that vi+1 is either inserted to

S in iteration i or that it is in set Si. Observe that any

vertex added to S in the i-th iteration has rank lower than

π(vi) and that vi is the lowest-rank vertex in Si. As a result

π(vi) < π(vi+1).

Claim VI.9. With probability at least 1 − n−c, the total
running time of the algorithm until the set S becomes empty
is at most O(|A| · logΔ ·min{ logn

π(a) ,Δ}).
Proof: To prove this claim, we first show that |S| and∑

v∈S |P(v)| are both O(|A| · logΔ · min{ logn
π(a) ,Δ}) with

probability at least 1− n−c. Observe that in the algorithm,

we only add vertices to these sets in Line 10. Moreover,

by Observation VI.8, each vertex is removed from S at

most once. Thus, the algorithm runs this line for any vertex

v ∈ A and any vertex u in its Hv only once. Therefore, by

Claim VI.2, the number of times the algorithm adds a vertex

to these sets adds up to O(|A| · logΔ ·min{ logn
π(a) ,Δ}) with

probability at least 1 − n−c. Note that |S| is equal to the

number of iterations in the algorithm and
∑

v∈S |P(v)| is

the overall time that the subroutine ISAFFECTED(v) takes

over all iterations. Moreover, for any vertex v ∈ A we

run Lines 5-10 of the algorithm which by Claim VI.3 and

Claim VI.2 take O(logΔ · min{ logn
π(a) ,Δ}) time. To sum

up, the total running time of the algorithm until the set

S becomes empty is O(|A| · logΔ · min{ logn
π(a) ,Δ}) with

probability at least 1− n−c.

We are now ready to prove Lemma IV.1.

Lemma IV.1 (restated). There is an algorithm to up-
date LFMIS(G, π) and the data structures required for
it after insertion or deletion of any edge e = (a, b) in
O
(
|A|min{Δ, logn

min{π(a),π(b)}} logΔ
)

time w.h.p.

Proof: By Claim VI.9, with probability at least 1−n−c

it takes O(|A| · logΔ · min{ logn
π(a) ,Δ}) time until set S

becomes empty. We further show that when this happens

we have m(v) = mt(v) and k(v) = kt(v). This is a direct

result of Claim VI.7 and Claim VI.6. The former stated that

Invariant IV.4 holds throughout the algorithm and the latter

states that if Invariant IV.4 holds in the last iteration of the

algorithm, then for any vertex u we have m(v) = mt(v) and

k(v) = kt(v). Moreover, using Claim VI.4 we know that

397

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

subroutine UPDATEADJACENCYLISTS() correctly updates

the adjacency lists and with probability at least 1 − n−c,

it takes O(|A| · logΔ · min{Δ, logn
π(a) }) time given that for

any vertex v we have k(v) = kt(v). This completes the

proof and we obtain that with probability at least 1− n−c,

Algorithm 1 correctly updates all the data structures in

O(|A| · logΔ ·min{ logn
π(a) ,Δ}) time.

VII. EXTENSION TO FULLY DYNAMIC MAXIMAL

MATCHING

What is Different: It is well-known that MM of a

graph can be found by first taking its line-graph and then

constructing an MIS on it. Doing so, the edges in the original

graph that correspond to the MIS nodes in the line-graph will

form an MM. However, the line-graph may be much larger

than the original graph and thus expensive to construct and

maintain. Nonetheless, because of the very specific structure

of line-graphs, we can indeed implement (a simpler variant

of) the same algorithm for MM without going through an

explicit construction of the line-graph. In what follows, we

highlight the main differences between our MIS algorithm

and its MM implementation.

The first difference is that for LFMM, the random ranking

π has to be drawn on the edges instead of the vertices and

thus we cannot fix π in the pre-processing step. However,

this is easy to handle: We draw the rank π(e) ∈ [0, 1] of any

edge e randomly upon its arrival.

The second difference is where the specific structure of

line-graphs helps significantly. The set of edges whose MM-

statuses change as a result of an edge update form a single

path or a single cycle. In fact, this holds true for any arbitrary

ranking π over the edges. This is in sharp contrast with

MIS, where the propagations may branch (consider a star

and assume that the center leaves the MIS). This branching

is precisely what complicates the proof of Theorem 3 for

MIS. Since we do not have this problem for MM, we can

directly bound the set of edges with different MM-statuses

by O(log n), w.h.p., using a reduction to the parallel round

complexity of random-order LFMM [14, 20]. Therefore, the

analog of Theorem 3 for MM is significantly easier to prove.

It also simplifies the algorithm we use to detect the changes

to MM (compared to MIS).

The third difference is simple, but plays a crucial role in

both adapting the MIS algorithm to MM and also simplify-

ing it. Instead of storing the adjacency lists on the edges,

which is the natural idea if one constructs the line-graph

explicitly, we can simply store them on the vertices. In fact,

because of this difference, it also turns out that for MM,

we do not need to partition the adjacency lists into N+

and N−. That is, we can afford to keep an adjacency list

N(v) on each vertex v including all incident edges to v,

where each edge e ∈ N(v) is indexed by its eliminator’s

rank. The main reason that this is feasible, here, is that if

the eliminator of an edge e = (u, v) changes, we only need

to re-index e in N(u) and N(v). However, for MIS, if the

eliminator of a vertex u changes, we may have to re-index

u in the adjacency lists of all of its neighbors.

Algorithm Setup: Suppose that we have fixed the

ranking π on the edges. As described above, we can draw

π(e) ∈ [0, 1] for any edge e in the graph at the time of its

arrival. In what follows, considering update number t, which

can be an edge insertion or deletion, we describe how to

address it and update LFMM(Gt−1, π) to LFMM(Gt, π) in

polylog n time.

Analogous to the MIS algorithm, we define A := {w |
elimGt,π(w) �= elimGt−1,π(w)} to be the set of edges

whose eliminator changes after the update and call these

the affected edges. Moreover, we define F to be the set of

edges whose MM-status changes after the update; we call

these the flipped edges. Note that F ⊆ A. We first provide

the following algorithm.

Lemma VII.1. There is an algorithm to update
LFMM(G, π) and the data structures required for it
after insertion or deletion of any edge f = (a, b) in
O
(
|F|min{Δ, logn

π(f) } logΔ
)

time, w.h.p.

Note a subtle difference between Lemma VII.1 and the

similar Lemma IV.1 we had for MIS: Here, the running

time is parametrized by |F| whereas in Lemma IV.1 it is

parametrized by |A|.
We will later prove in Section VII-D that the running time

in Lemma VII.1 is actually bounded by O(log2 Δ log2 n) in

expectation, thus, proving Theorem 2.

A. Data Structures

We maintain the following data structures on each edge

e in graph G.

• m(e): A binary variable that is 1 if edge e ∈
LFMM(G, π) and 0 otherwise.

• k(e): The rank of e’s eliminator, i.e., k(e) =
π(elimG,π(e)). Note that m(e) = 1 iff k(e) = π(e).

Furthermore, for any vertex v, we maintain the following

data structures.

• k(v): If an edge e ∈ LFMM(G, π) is connected to v,

then k(v) = π(e); otherwise, k(v) = ∞.

• N(v): The set of edges connected to vertex v. The set

N(v) is stored as a self-balancing binary search tree

and each edge e in it is indexed by k(e).

Similar to MIS, in the pre-processing step, we can simply

construct the LFMM of the original graph G0 = (V,E0)
and fill in the data structures above in O((|V |+ |E0|) log n)
time.

398

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Maintaining the data structures after inser-

tion or deletion of an edge f = (a, b).

1 S ← {f}
2 while S is not empty do
3 Let e = (u, v) ← argmine′∈S π(e′) be the

minimum rank edge in S.

4 UPDATEDATASTRUCTURES(e) // Updates

k(e), m(e), k(v), k(u), A, and F .

5 if e ∈ F then
6 He ← {e′ ∈ N(v) ∪N(u) | kt−1(e

′) ≥
π(f)}

// It can be found in time O(logΔ · |He|)
since N(v), and N(u) are indexed by

k(.).
7 for any edge e′ ∈ He with π(e′) > π(e)

do
8 insert e′ to S.

9 Remove e from S .

10 UPDATEADJACENCYLISTS() // Updates

adjacency lists where necessary.

B. The Algorithm

The following observation is analogous to Observa-

tion IV.3 for MIS and motivates the same iterative approach

in determining the changes in MM.

Observation VII.2. For any edge e ∈ A, the following
properties hold:

1) kt−1(e) ≥ π(f) and kt(e) ≥ π(f).
2) if e �= f , then e has a neighbor e′ such that π(e′) <

π(e) and e′ ∈ F .

Algorithm 2 formalizes how our data structures can be up-

dated after each edge insertion/deletion. The subroutines not

formalized in the algorithm will be formalized subsequently.

We use iteration to refer to iterations of the while loop in

Algorithm 2. The following invariants will hold throughout

the algorithm.

Invariant VII.3. Consider the start of any iteration and let
e be the lowest-rank vertex in S. It holds true that k(e′) =
kt(e

′) and m(e′) = mt(e
′) for any edge e′ with π(e′) <

π(e), i.e., k(e′) and m(e′) already hold the correct values.
Moreover, k(e′) = kt−1(e

′) and m(e′) = mt−1(e
′) for every

other edge e′ with π(e′) ≥ π(e).

Invariant VII.4. Consider any vertex v in an arbitrary iter-
ation of the algorithm, and let Mv = {e ∈ E | m(e) = 1}.
Throughout the algorithm, it holds that if Mv �= ∅, then
k(v) = mine∈Mv

π(e), and otherwise k(v) = ∞.

We continue by formalizing all subroutines used in Algo-

rithm 2.

Subroutine UPDATEDATASTRUCTURES(e): Let u and

v denote the two end-points of edge e. This function updates

k(e), m(e), k(v), and k(u) which also determines the

membership of e to sets A and F . Let x = min(k(v), k(u)).
We show that e joins the matching iff x ≥ π(e) which results

in m(e) ← 1, k(e) ← π(e), k(v) ← π(e), and k(u) ← π(e).
Otherwise, we have m(e) ← 0 and k(e) ← x. Note that if e
was previously in the matching and is flipped now, we need

to update k(v) and k(u) if they are equal to π(e). We show

that if e is removed from the matching and k(v) = π(e)
then we should set k(v) ← ∞ and the same for vertex u.

Subroutine UPDATEADJACENCYLISTS(): We first up-

date N(a) and N(b). We remove f from both these sets if f
is deleted and add it otherwise. Also, for any affected edge

e = (u, v) we need to update its index in sets N(v) and

N(u). We do so by a single iteration over set A. Due to

the fact that adjacency lists are BSTs with size O(Δ), this

takes O(|A| logΔ) time.

C. Correctness & (Parametrized) Running Time

The correctness of Algorithm 2 follows from basic ar-

guments and the greedy structure of LFMM and hence we

defer it to Section VII-E. Here, we discuss why the running

time of the algorithm is O
(|F|min{Δ, logn

π(f) } logΔ
)

as

claimed in Lemma VII.1. The complete proof of both the

correctness and running time of the algorithm is presented

in Section VII-E.

Using a similar argument used for MIS, we can use

Proposition III.2 to prove (see Section VII-E):

Claim VII.5. At any iteration i, with probability at least
1− n−(c+1), set He has size O(min{Δ, logn

π(f) }) and can be
constructed in time O(|He| logΔ).

Let us first analyze the running time before the last

line where we update adjacency lists. Observe that any

edge e′ that is added to set S belongs to He of an edge

e ∈ F . Therefore, at most O
(|F|min{Δ, logn

π(f) }
)

edges

are added to S. Note that, if an edge e′ ∈ S is not

in set F , we only spend O(1) time for it in subroutine

UPDATEDATASTRUCTURES(e′). Thus, the total time spent

on all edges not in F is indeed O
(|F|min{Δ, logn

π(f) }
)
. On

the other hand, for each edge e ∈ F , the most expensive

operation is to find set He which Claim VII.5 shows can

be done in O(|He| logΔ) time. Therefore, the total running

time before UPDATEADJACENCYLISTS() can be bounded

by O
(|F|min{Δ, logn

π(f) } logΔ
)
.

Next, in the UPDATEADJACENCYLISTS(), we only iterate

over all edges in A and update their position in their

end-points. This takes O(|A| logΔ) time. Note that by

Observation VII.2, any edge e′ ∈ A is adjacent to an edge

e ∈ F and kt−1(e
′) ≥ π(f). This means that e′ ∈ He and

by Claim VII.5:

399

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Observation VII.6. W.h.p., |A| ≤ O
(|F|min{Δ, logn

π(f) }
)
.

Therefore, the overall running time is indeed

O
(|F|min{Δ, logn

π(f) } logΔ
)

as claimed in Lemma VII.1.

D. Putting Everything Together: Proof of Theorem 2

Before proving Theorem 2 we need the following high

probability bound of O(log n) on |F| which we prove in

Section VII-E.

Claim VII.7. Let G and G′ be two graphs that differ in only
one edge and let π be a random ranking on their edges.
Then, w.h.p., there are at most O(log n) edges that have
different MM-statuses in LFMM(G, π) and LFMM(G′, π).

Now, we are ready to prove Theorem 2.

Theorem 2 (restated). There is a data structure to maintain
a random-order lexicographically first maximal matching
against an oblivious adversary in a fully-dynamic graph
that per update, takes O(log2 Δ · log2 n) expected time.
Furthermore, per update, the adjustment-complexity is O(1)
in expectation.

Proof: We use Algorithm 2. Combination of

Lemma IV.1, and the fact that |F| ≤ O(log n) w.h.p.

due to Claim VII.7, bounds the update-time of this

algorithm, w.h.p., by

O(logΔ log n)min

{
Δ,

log n

π(f)

}
= O(logΔ log2 n)min

{
Δ,

1

π(f)

}
.

Since π(f) is chosen from [0, 1] uniformly at random,

E
[
min

{
Δ, 1

π(f)

}]
= O(logΔ). Thus, the total running

time is O(log2 Δ log2 n) in expectation, as required by the

theorem.

For the adjustment-complexity, similar to MIS, it is shown

in [15, Theorem 1] that LFMIS over random rankings

requires O(1) expected adjustments under vertex updates.

On the line-graph, this implies that if an edge is added or

removed, the number of changes to LFMM over a random

ranking is O(1) in expectation; concluding the proof.

E. Deferred Proofs

Observation VII.2 (restated). For any edge e ∈ A, the
following properties hold:

1) kt−1(e) ≥ π(f) and kt(e) ≥ π(f).
2) if e �= f , then e has a neighbor e′ such that π(e′) <

π(e) and e′ ∈ F .

Proof of part 1: Let U denote the set of edges

e in E with π(e) < π(f). Consider the subgraph only

containing these edges. Since the matching is constructed

greedily on the lower rank edges first, the set of matching

edges in U does not change after the update. Let MU

denote the matching edges in U . Note that any edge e with

kt−1(e) < π(f) is incident to an edge e′ in MU . Since e
and e′ are still incident after the update and that updating

f does not change k(e′) we have kt(e) = kt−1(e). This

means that for each edge e with kt−1(e) < π(f), we have

kt(e) = kt−1(e) and thus e cannot be in A by definition.

By a similar argument, for any edge e with kt(e) < π(f)
we also have kt−1(e) = kt(e) and thus e �∈ A.

Proof of part 2:
The fact that e ∈ A means that eliminator of edge e

changes after the update. Let e′ be its eliminator before the

update. By definition of the eliminator, for e �= f we have

e ∈ A iff the matching status of at least an edge incident to

e with rank at most π(e′) changes. This means that if e is

not incident to any edge in F , then e /∈ A.

Claim VII.8. Let e = (u, v) be the lowest-rank edge
in S at the start of an arbitrary iteration. Subroutine
UPDATEDATASTRUCTURES(e) correctly updates k(e) and
m(e) in constant time assuming that Invariants VII.3 and
VII.4 hold by this iteration.

Proof: By definition, we know that eliminator of edge e
is its lowest-rank edge in N(v)∪N(u) that is in the matching

after the update. By Invariants VII.4 min(k(u), k(v)) is

the rank of an edge who has the lowest-rank amongst the

edges e′ in N(v) ∪ N(u) with m(e′) = 1. Moreover,

by Invariants VII.3, we know that for any edge e′ with

π(e′) < π(e), we have m(e′) = mt(e
′). This means

that min(k(u), k(v)) < π(e) iff there is at least one edge

adjacent to e that is in the matching after the update. In

the subroutine UPDATEDATASTRUCTURES(e), we use this

condition to determine m(e). Further in the subroutine if

m(e) = 1 we set k(e) = π(e) and otherwise set it to

min(k(u), k(v)) which is correct by definition of elimina-

tor. To sum up, subroutine UPDATEDATASTRUCTURES(e)
correctly updates k(e) and m(e) for edge e the lowest-rank

edge in S.

Observation VII.9. Let e and e′ respectively denote two
edges removed from S in two consecutive iteration of the
algorithm in Line 9. We have π(e) < π(e′).

Proof: Let Si and Si+1 respectively denote set S at the

beginning of iteration i and set S at the beginning of iteration

i+ 1 and let ei and ei+1 be the lowest-rank edges in these

sets. We know that ei+1 is either inserted to S in iteration

i or that it is in set Si. Observe that any edge added to S
in the i-th iteration has rank lower than π(ei) and that ei is

the lowest-rank vertex in Si. As a result π(ei) < π(ei+1).

Claim VII.10. Let e be the lowest-rank edge in S in
an arbitrary iteration i of the algorithm. Assuming that
Invariants VII.3, and VII.4 hold at the start of iteration i
we have:

400

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

1) If S = ∅ at the end of iteration i, then for any edge e
we have k(e) = kt(e), and m(e) = mt(e) and for any
vertex v we have k(v) = kt(v).

2) If S �= ∅ at the end of iteration i, then Invariants VII.3
and VII.4 hold at the start of iteration i+ 1 as well.

Proof: By Claim VII.8, we know that by the end of

iteration i, for any edge e′ with π(e′) ≤ π(e) we have

m(e′) = mt(e
′), and k(e′) = kt(e

′). Let g be the lowest-

rank edge in A whose k(g) or m(g) are not updated at the

end of iteration i. We show that if such an edge exists it

is in set S. Note that by Observation VII.2, edge g has at

least one incident edge g′ where π(g′) < π(g) and g′ ∈ F .

Since g is the lowest-rank edge whose k(g) or m(g) are not

updated, we get that k(g′) or m(g′) are updated. This means

that there was an iteration j < i of the algorithm in which

g′ was the lowest-rank edge in S since kt(g
′) = kt−1(g

′)
and that in each iteration we only update kt() for the lowest-

rank edge in S. Since g′ is in F in iteration j, the algorithm

adds all the edges in He to set S in that iteration. By

definition of He, this set includes edge g. Also, note that

by Observation VII.9, the rank of vertices removed from set

S is increasing; thus g is still in set S in iteration i. This

means that if set S is empty then for all edges g, we have

m(g) = mt(g) and k(g) = kt(g) and if it is nonempty

Invariants VII.3 holds in the next iteration.

To complete the proof it suffices to show that if S is

empty at the end of iteration i, for any vertex v we have

k(v) = kt(v) and that otherwise Invariants VII.4 still holds

at iteration i + 1. Note that in the i-th iteration we do not

change m(e′) if e′ �= e. Thus, given that Invariants VII.4

holds at the beginning of iteration i, for any vertex v that is

not incident to e we have k = kt(v) at the end of the iteration

as well. Now consider vertex u that is incident to e. If e is

not flipped or if k(u) < π(e) the algorithm does not change

k(u) which is correct by definition of k(u). Therefore, we

only need to consider the case that e is flipped and k(u) ≥
π(e). In this case, if mt(e) = 1, the it is be the lowest-

rank edge adjacent to u with m(.) = 1. Algorithm correctly

detects this and sets k(u) = π(e) in this scenario. Further,

if mt(e) = 0 (which means mt−1(e) = 1), then there is no

other edge adjacent to u with m(.) = 1 in which case, as

well, the algorithm correctly sets k(u) = ∞. We achieved

this from the fact that each vertex has at most one edge

with mt−1(.) = 1 and by Invariants VII.3 any edge u1 with

a higher rank than u has k(u1) = kt−1(u1). To sum up,

Invariant VII.4 still holds at the end of iteration i and the

proof of the claim is completed.

Claim VII.5 (restated). At any iteration i, with probability
at least 1−n−(c+1), set He has size O(min{Δ, logn

π(f) }) and
can be constructed in time O(|He| logΔ).

Proof:

Size of He: Observe that if He is defined, then as as-

sured by the condition in Line 5 of Algorithm 2, e ∈ F ⊆ A
thus by Observation IV.3, kt−1(e) ≥ π(f). Furthermore, by

definition, every edge e′ ∈ He has kt−1(e
′) ≥ π(f). This

means that if we take LFMM of Gt−1 induced on edges

with rank in [0, π(f)) and remove them and their neighbors

from the graph, e and all of its neighbors in He will survive.

Recall that the adversary is oblivious and the graph Gt−1 and

random permutation π are chosen independently. Therefore,

applying Proposition III.2 on graph Gt−1 with p = π(f)
bounds |He| by O(π(f)−1 log n) w.h.p. Moreover, clearly

|He| ≤ 2Δ − 2 since all edges in it are incident to e,

concluding the bound on the size of He.
Construction of He: Note that we do not change the

adjacency lists N(.) stored on the vertices until the very

last line of Algorithm 2. Therefore, for any vertex v, we

have N(v) = Nt−1(v) before this line. This means that

throughout the algorithm, for any edge e = (u, v) we can

iterate over edges in N(u) and N(v) and find all edges

e′ with kt−1(e
′) ≥ π(a); all these edges will belong to

He. Thus the total time required is O(|He| logΔ). Note that

this is possible since N(v) and N(u) are BSTs indexed by

kt−1(.) of the elements in them but comes at the cost of an

extra O(logΔ) factor as these BSTs can have size up to Δ.

Combining all these claims, we can prove Lemma VII.1.

Lemma VII.1 (restated). There is an algorithm to up-
date LFMM(G, π) and the data structures required for
it after insertion or deletion of any edge f = (a, b) in
O
(
|F|min{Δ, logn

π(f) } logΔ
)

time, w.h.p.

Proof:
Correctness: We first show that when set S becomes

empty, for any edge e we have k(e) = kt(e), and m(e) =
mt(e) and for any vertex v we have k(v) = kt(v). To

do so, we will use proof by induction and show that

Invariants VII.3 and VII.4 hold throughout the algorithm.

This proves our claim since by Observation VII.9 if both

invariants hold in the last iteration of the algorithm, then

when set S becomes empty the data structures k(.) and m(.)
are updated for all edges and vertices. By Observation VII.2,

for any edge e′ with π(e′) < π(f) we have m(e′) = mt(e
′)

and k(e′) = kt(e
′) which means that Invariant VII.3 holds

in the first iteration. Further, Invariant VII.4 holds since m(.)
of none of the edges has changed yet. This gives us the base

case of the induction. Moreover, the induction step is a direct

result of Claim VI.5 which states that if both invariants hold

in an arbitrary iteration they hold in the next iteration given

that S is nonempty.
To complete the prove of correctness, we need to show

that when the algorithm terminates, for any vertex v, we have

N(v) = Nt(v). Subroutine UPDATEADJACENCYLISTS()
first modifies the adjacency lists of vertices a and b by

adding e to them if e is to be added or deleting it otherwise.

401

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

Note that as we showed, when the algorithm runs this

subrutine, for any edge e we already have k(e) = kt−1(e),
thus set A is also updated. Therefore, Algorithm 2, correctly

updates the adjacency lists by iterating over edges in A and

updating their index in the adjacency lists of their end-points.
Running Time: First, note that by Claim VII.5, with

probability at least 1 − n−c, the size of He for any edge

e is O(min{Δ, logn
π(f) }) and constructing that takes time

O(logΔ ·min{ logn
π(f) ,Δ}). Moreover, by Observation VII.9,

we know that each edge is the lowest-rank edge in set

S in at most one iteration. Putting these facts together

gives us that the number of iterations of the algorithm is

O(|F| · min{ logn
π(f) ,Δ}) with probability at least 1 − n−c.

We also know by Claim VII.8 that subroutine UPDATE-

DATASTRUCTURES(e) takes O(1) time. Therefore, the total

running time of the algorithm until set S becomes empty

is O(|F| · logΔ · min{ logn
π(f) ,Δ}) with probability at least

1 − n−c. Further, subroutine UPDATEADJACENCYLISTS()
takes O(|A| logΔ) time which by Claim VII.6 is bounded

by O(logΔ·min{ logn
π(f) ,Δ}) with probability at least 1−n−c.

Claim VII.7 (restated). Let G and G′ be two graphs that
differ in only one edge and let π be a random ranking
on their edges. Then, w.h.p., there are at most O(log n)
edges that have different MM-statuses in LFMM(G, π) and
LFMM(G′, π).

Proof: Assume without loss of generality that G′ is

obtained by removing an edge e from G and let F be the

set of edges with different MM-statuses in LFMM(G, π)
and LFMM(G′, π). We first show that: (1) Each edge e ∈ F
with e �= f , has a lower-rank neighboring edge in F . (2)

The edges in F form either a single path or a single cycle.
Proof of (1) directly follows from Observation VII.2 part

2. For (2), observe that each edge in F is in at least

one of the two matchings LFMM(G, π) and LFMM(G′, π).
Therefore, each vertex has at most two incident edges in

F ; meaning that each connected component in F is indeed

either a cycle or a path. To see why there cannot be more

than one such connected component, observe that in this

case, at least one connected component does not include f .

Let g be the minimum-rank edge in this component. For g,

(1) cannot hold which is a contradiction.
Now, we show that |F| = O(log n). To do this, we

provide a reduction to the parallel round complexity of

LFMM over random orders.
LFMM can be parallelized, just like LFMIS as described

in Section V-C, in the following way: In each round, all

edges that hold the locally minimum rank among their neigh-

bors join MM, then we remove them and their neighboring

edges. It is known from [20, Corollary B.1] that if ranking

π over the edges is chosen randomly, then it takes O(log n)
rounds until we find a maximal matching, with probability

1− n−c for any constant c > 1.

We prove that the parallel round-complexity of random-

order LFMM is at least Ω(|F|), implying that w.h.p. |F| =
O(log n) as desired. To do this, observe that by properties

(1) and (2) above, there should be a monotone path P =
(e1, . . . , ek) in F where π(ei) < π(ei+1) for any i ∈ [k−1]
and where k = Ω(|F|). (Just take the longest path in F \
{f}, by (1) it has size Ω(|F|) and by (2) it is monotone.)

Furthermore, since each edge in P is in F and the edges in

F belong to exactly one of LFMM(G, π) and LFMM(G′, π),
the edges in P have to alternate between the two matchings.

Suppose w.l.o.g. that the odd ones belong to LFMM(G, π).
Now, take edge w2i+1 for any i. We show that it takes at

least i parallel rounds until this edge joins LFMM(G, π).
For w2i+1 to join the matching, its lower rank neighbor

w2i should be removed so that w2i+1 becomes the local

minimum edge. This does not happen until w2i−1 joins the

matching since w2i−1 and w2i+1 are the only incident edges

to w2i that are in LFMM(G, π). Now, a simple induction

implies that it takes at least i rounds until w2i+1 joins the

matching, and thus the parallel round complexity is at least

Ω(k) = Ω(|F|), which as described, implies |F| = O(log n)
w.h.p.

VIII. PROOFS OF PROPOSITIONS III.1 AND III.2:

DEGREE PRUNING

Proposition III.1 (restated). Consider a graph G = (V,E),
let π : V → [0, 1] be a random ranking, and for any real
p ∈ [0, 1], define Vp as the subset of V including any vertex
v with π(elimG,π(v)) > p. W.h.p., for all O(log n) bit values
of p ∈ [0, 1], the maximum degree in graph G[Vp] is O(p−1 ·
log n).

Proof: Let us use LFMISp(G, π) to denote the subset

of vertices in LFMIS(G, π) with rank in [0, p]. Any vertex v
with elimG,π(v) ≤ p is in set Γ(LFMISp(G, π)). Therefore,

the set Vp is precisely equal to set V \ Γ(LFMISp(G, π)).
Therefore, we have to show that once we remove all vertices

in Γ(LFMISp(G, π)) from the graph, the maximum remain-

ing degree drops to O(p−1 log n) w.h.p.

Fix an arbitrary O(log n) bit real p ∈ [0, 1] and an

arbitrary vertex v ∈ V . Let us use H = (VH , EH) to

denote the residual graph G[V \ Γ(LFMISp(G, π))] and

use dv to denote the residual degree of v in H . That is,

dv = 0 if v �∈ VH and dv = degH(v) otherwise. The

main part of the proof is to show that for any parameter

β ≥ 1, it holds that Pr[dv ≥ p−1β] ≤ e−β . Then setting

β = α lnn, for some large enough constant α would

imply Pr[dv ≥ p−1α log n] ≤ n−α. Combining this with

a simple union bound over the poly(n) many possible pairs

of v and p will conclude the proof of the proposition that

dv = O(p−1 log n) for all v and p w.h.p.

We first describe a random process for generating an

independent set I . Then we prove that distribution of

LFMISp(G, π) and I is exactly the same and thus both

402

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

have the same probabilistic behavior. We then prove that I
significantly prunes the vertex degrees in the residual graph.

The random process is as follows: A permutation ψ over

all vertices in V is fixed uniformly at random and we

initialize I to be ∅. We then iterate over the vertices in the

order of ψ. Once we encounter a vertex v in the process, if

v has a neighbor in I , we discard v and call it irrelevant.
Otherwise, v is relevant and we draw a Bernoulli random

variable xv which is 1 with probability p. If xv = 0, we call

v unlucky and discard it and if xv = 1, we add v to I and

call it lucky.

It is easy to verify that the random process above in de-

termining I is precisely equivalent to the following process:

First sample each vertex of V into a set S independently with

probability p, then fix a random permutation ψ over the ver-

tices in S and let I be the independent set LFMIS(G[S], ψ).
On the other hand, recall that LFMISp(G, π) is the LFMIS

obtained once we only process the vertices v with rank

π(v) in [0, p]. Since π is a random ranking, the probability

that for a vertex v, π(v) ∈ [0, p] is p and is independent

from the rank of the other vertices. Furthermore, once we

condition on the set of vertices with rank within [0, p], their

internal ordering will be completely at random. Therefore,

the two independent sets I and LFMISp(G, π) have the same

distribution and thus the same probabilistic behavior.

Finally, we prove the promised claim that Pr[dv ≥
p−1β] ≤ e−β for any vertex v and any parameter β > 1 by

considering the pruning effect of I , which we showed above

is equivalent to that of LFMISp(G, π). To have dv ≥ p−1β,

v should survive to the residual graph, i.e., v �∈ Γ(I). This

means that in the original process for constructing I , anytime

that we encounter a relevant neighbor u of v, it should turn

out to be unlucky. Furthermore, the irrelevant neighbors of

v do not survive to the residual graph. Therefore, to have

dv ≥ p−1β, we should encounter at least p−1β relevant

neighbors of v. The probability that all these neighbors turn

out to be unlucky is (1− p)β/p ≤ e−β as desired.

Proposition III.2 (restated). Consider a graph G = (V,E),
let π : E → [0, 1] be a random ranking, and for any real
p ∈ [0, 1], define Ep to be the subset of E including any
edge e with π(elimG,π(e)) > p. W.h.p., for all O(log n) bit
values of p ∈ [0, 1], every vertex has O(p−1 · log n) incident
edges in Ep.

Proof: This simply follows by applying Proposi-

tion III.1 to the line-graph of G.

Consider the line-graph L = (V L, EL) of graph G, i.e.,

V L is equivalent to E. Note that ranking π on E is a

random ranking on the vertices of L. Moreover, for any

edge e ∈ E and its equivalent vertex ve ∈ VL, their

eliminators elimG,π(e) and elimL,π(ve) are also equivalent

(due to the well-known equivalence of MM and MIS on

the line-graph). This means that e ∈ Ep, iff ve ∈ V L
p

where V L
p = {v ∈ V L | π(elimL,π(v)) > p}. By

Proposition III.1 we know the maximum degree in L[V L
p] is

at most O(p−1 log n) w.h.p. Therefore, each edge e ∈ Ep is

incident to at most O(p−1 log n) other edges in Ep and thus

every vertex in V has at most O(p−1 log n) incident edges

in Ep.

ACKNOWLEDGEMENTS

Soheil Behnezhad, Mahsa Derakhshan, and Mohammad

Hajiaghayi were supported in part by NSF CAREER award

CCF-1053605, NSF AF:Medium grant CCF-1161365, NSF

BIGDATA grant IIS-1546108, and NSF SPX grant CCF-

1822738. Soheil Behnezhad was also supported in part by a

Google PhD Fellowship.

Cliff Stein was supported by NSF Grants CCF-1714818

and CCF-1822809.

Madhu Sudan was supported in part by a Simons Inves-

tigator Award and NSF Award CCF 1715187.

REFERENCES

[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha, An-

drew McGregor, and Anthony Wirth. Correlation

Clustering in Data Streams. In Proceedings of the 32nd
International Conference on Machine Learning, ICML,

pages 2237–2246, 2015.

[2] Nir Ailon, Moses Charikar, and Alantha Newman.

Aggregating inconsistent information: Ranking and

clustering. J. ACM, 55(5):23:1–23:27, 2008.

[3] Noga Alon, László Babai, and Alon Itai. A Fast

and Simple Randomized Parallel Algorithm for the

Maximal Independent Set Problem. J. Algorithms,

7(4):567–583, 1986.

[4] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein,

and David Wajc. Dynamic Matching: Reducing Inte-

gral Algorithms to Approximately-Maximal Fractional

Algorithms. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 7:1–

7:16, 2018.

[5] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and

Shay Solomon. Fully Dynamic Maximal Independent

Set with Sublinear Update Time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 815–826, 2018.

[6] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and

Shay Solomon. Fully Dynamic Maximal Independent

Set with Sublinear in n Update Time. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1919–1936, 2019.

[7] Surender Baswana, Manoj Gupta, and Sandeep Sen.

Fully Dynamic Maximal Matching in O(log n) Up-

date Time (Corrected Version). SIAM J. Comput.,
47(3):617–650, 2018.

403

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

[8] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and

David G. Harris. Exponentially Faster Massively Par-

allel Maximal Matching. CoRR, abs/1901.03744, 2019.

[9] Aaron Bernstein, Sebastian Forster, and Monika Hen-

zinger. A Deamortization Approach for Dynamic Span-

ner and Dynamic Maximal Matching. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1899–1918, 2019.

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, and

Monika Henzinger. Deterministic Fully Dynamic Ap-

proximate Vertex Cover and Fractional Matching in

O(1) Amortized Update Time. In Integer Programming
and Combinatorial Optimization - 19th International
Conference, IPCO 2017, Waterloo, ON, Canada, June
26-28, 2017, Proceedings, pages 86–98, 2017.

[11] Sayan Bhattacharya, Monika Henzinger, and

Giuseppe F. Italiano. Deterministic Fully Dynamic

Data Structures for Vertex Cover and Matching. SIAM
J. Comput., 47(3):859–887, 2018.

[12] Sayan Bhattacharya, Monika Henzinger, and Danupon

Nanongkai. New deterministic approximation algo-

rithms for fully dynamic matching. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 398–411, 2016.

[13] Sayan Bhattacharya, Monika Henzinger, and Danupon

Nanongkai. Fully Dynamic Approximate Maximum

Matching and Minimum Vertex Cover O(log3 n) Worst

Case Update Time. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 470–489, 2017.

[14] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun.

Greedy sequential maximal independent set and match-

ing are parallel on average. In 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’12,
Pittsburgh, PA, USA, June 25-27, 2012, pages 308–317,

2012.

[15] Keren Censor-Hillel, Elad Haramaty, and Zohar S.

Karnin. Optimal Dynamic Distributed MIS. In Pro-
ceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016, pages 217–226, 2016.

[16] Moses Charikar and Shay Solomon. Fully Dynamic

Almost-Maximal Matching: Breaking the Polynomial

Worst-Case Time Barrier. In 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic,

pages 33:1–33:14, 2018.

[17] Shiri Chechik and Tianyi Zhang. Fully Dynamic Max-

imal Independent Set in Expected Poly-Log Update

Time. In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2019, to appear, 2019.

[18] Sebastian Daum, Seth Gilbert, Fabian Kuhn, and

Calvin C. Newport. Leader election in shared spectrum

radio networks. In ACM Symposium on Principles of
Distributed Computing, PODC ’12, Funchal, Madeira,
Portugal, July 16-18, 2012, pages 215–224, 2012.

[19] Yuhao Du and Hengjie Zhang. Improved Algorithms

for Fully Dynamic Maximal Independent Set. CoRR,

abs/1804.08908, 2018.

[20] Manuela Fischer and Andreas Noever. Tight Analysis

of Parallel Randomized Greedy MIS. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 2152–2160, 2018.

[21] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad,

Slobodan Mitrovic, and Ronitt Rubinfeld. Improved

Massively Parallel Computation Algorithms for MIS,

Matching, and Vertex Cover. In Proceedings of the
2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 129–138, 2018.

[22] Anupam Gupta, Ravishankar Krishnaswamy, Amit Ku-

mar, and Debmalya Panigrahi. Online and dynamic

algorithms for set cover. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-
23, 2017, pages 537–550, 2017.

[23] Manoj Gupta and Shahbaz Khan. Simple dynamic

algorithms for Maximal Independent Set and other

problems. CoRR, abs/1804.01823, 2018.

[24] Manoj Gupta and Richard Peng. Fully Dynamic (1+ε)-
Approximate Matchings. In 54th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages

548–557, 2013.

[25] Nathan Linial. Distributive Graph Algorithms-Global

Solutions from Local Data. In 28th Annual Symposium
on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 331–335,

1987.

[26] Michael Luby. A Simple Parallel Algorithm for the

Maximal Independent Set Problem. In Proceedings
of the 17th Annual ACM Symposium on Theory of
Computing, May 6-8, 1985, Providence, Rhode Island,
USA, pages 1–10, 1985.

[27] Ofer Neiman and Shay Solomon. Simple determin-

istic algorithms for fully dynamic maximal matching.

In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages

745–754, 2013.

[28] Huy N. Nguyen and Krzysztof Onak. Constant-Time

Approximation Algorithms via Local Improvements.

In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 327–336, 2008.

404

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

[29] Krzysztof Onak and Ronitt Rubinfeld. Maintaining

a large matching and a small vertex cover. In Pro-
ceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 457–464, 2010.

[30] Krzysztof Onak, Baruch Schieber, Shay Solomon, and

Nicole Wein. Fully Dynamic MIS in Uniformly

Sparse Graphs. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 92:1–

92:14, 2018.

[31] Shay Solomon. Fully Dynamic Maximal Match-

ing in Constant Update Time. In IEEE 57th An-
nual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 325–334, 2016.

[32] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An

improved constant-time approximation algorithm for

maximum matchings. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2,
2009, pages 225–234, 2009.

405

Authorized licensed use limited to: Harvard Library. Downloaded on December 04,2020 at 16:49:38 UTC from IEEE Xplore. Restrictions apply.

