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Abstract— We present the first algorithm for maintaining a
maximal independent set (MIS) of a fully dynamic graph—which
undergoes both edge insertions and deletions—in polylogarith-
mic time. Our algorithm is randomized and, per update, takes
O(log® A -log®n) expected time. Furthermore, the algorithm
can be adjusted to have O(log” A - log* n) worst-case update-
time with high probability. Here, n denotes the number of
vertices and A is the maximum degree in the graph.

The MIS problem in fully dynamic graphs has attracted sig-
nificant attention after a breakthrough result of Assadi, Onak,
Schieber, and Solomon [STOC’18] who presented an algorithm
with O(m®/*) update-time (and thus broke the natural Q(m)
barrier) where m denotes the number of edges in the graph.
This result was improved in a series of subsequent papers,
though, the update-time remained polynomial. In particular,
the fastest algorithm prior to our work had O(min{y/n, m'/3})
update-time [Assadi ef al. SODA’19].

Our algorithm maintains the lexicographically first MIS over
a random order of the vertices. As a result, the same algorithm
also maintains a 3-approximation of correlation clustering. We
also show that a simpler variant of our algorithm can be used
to maintain a random-order lexicographically first maximal
matching in the same update-time.

I. INTRODUCTION

A maximal independent set (MIS) of a graph is a fun-
damental object with countless theoretical and practical
applications. It is one of the most well-studied problems in
distributed and parallel settings following the seminal works
of [26, 3]. MIS has also been studied in a variety of other
models and has diverse applications such as approximating
matching and vertex cover [28, 32], graph coloring [26, 25],
clustering [2], leader-election [18], and many others.

In this paper, we consider MIS in fully-dynamic graphs.
The graph is updated via both edge insertions and deletions
and the goal is to maintain an MIS by the end of each update.
Dynamic graphs constitute an active area of research and
have seen a plethora of results over the past two decades.
The MIS problem in dynamic graphs has also attracted a
significant attention, especially recently [15, 5, 23, 19, 30, 6].
We overview these works below.

Related Work on Dynamic MIS: In static graphs with m
edges, a simple greedy algorithm can find an MIS in O(m)
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time. As such, one can trivially maintain MIS by recomput-
ing it from scratch after each update, in O(m) time. In a
pioneering work, Censor-Hillel, Haramaty, and Karnin [15]
presented a round-efficient randomized algorithm for MIS in
dynamic distributed networks. Implementing the algorithm
of [15] in the sequential setting—the focus of this paper—
requires 2(A) update-time (see [15, Section 6]) where A
is the maximum-degree in the graph which can be as large
as Q(n) or even Q(m) for sparse graphs. Improving this
bound was one of the major problems the authors left
open. Later, in a breakthrough, Assadi, Onak, Schieber,
and Solomon [5] presented a deterministic algorithm with
O(m?3/*) update-time; thereby improving the O(m) bound
for all graphs. This result was further improved in a series
of subsequent papers [23, 19, 30, 6]. The current state-of-
the-art is a randomized algorithm due to Assadi ef al. [6],
which requires O(min{+/7, m'/3}) amortized update-time
in n-vertex graphs.

Our Contribution: In this paper, we show that it is
possible to maintain an MIS of fully-dynamic graphs in
polylogarithmic time. This exponentially improves over the
prior algorithms, which all have polynomial update-time on
general graphs. Our algorithm is randomized and requires
the standard oblivious adversary' assumption (as do all
previous randomized algorithms).

Theorem 1 (main result). There is a data structure to
maintain an MIS against an oblivious adversary in a
fully-dynamic graph that, per update, takes O(log* A -
log® n) expected time. Furthermore, the number of ad-
Justments to the MIS per update is O(1) in expectation.

Since our algorithm bounds the expected time per update
without amortization, we can use it as a black-box in a
framework of Bernstein ef al. [9, Theorem 1.1] to also get a

Tn the standard oblivious adversarial model, the adversary can feed in
any sequence of edge updates and is aware of the algorithm to be used, but
is unaware of the random-bits used by the algorithm. Equivalently, one can
assume that the sequence of edge updates is picked adversarially before the
dynamic algorithm starts to operate.
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worst-case guarantee w.h.p.> (We note that this comes at the
cost of losing the guarantee on the adjustment-complexity.)

Corollary I.1. There is a data structure to maintain an MIS
against an oblivious adversary in a fully-dynamic graph that
w.h.p. has O(log2 A -log* n) worst-case update-time.

To prove Theorem 1, we give an algorithm that carefully
simulates the lexicographically first MIS (LFMIS) over a
random ranking of the vertices (see Section III for defi-
nition). Once this order is fixed, the LFEMIS of the graph
becomes unique. This is particularly useful for dynamic
graphs as it makes the output history-independent. That is,
the order of edge insertions and deletions by the adversary
cannot affect the reported MIS. See [15, Section 5] for more
discussion on this property and also [14, 28] for some other
useful features of random-order LFMIS.

We note that maintaining LEMIS over a random permu-
tation has been done before by Censor-Hillel er al. [15]
and also partially by Assadi et al. [6] who combined it
with another deterministic algorithm. However, as discussed
above, both these algorithms require a polynomial update-
time. The novelty of our approach is in (1) the algorithm
and data structures with which we maintain this MIS, and
(2) the analysis of why polylogarithmic time is sufficient.
The high-level intuitions behind both the algorithm and the
analysis are presented in Section II.

Independent Work: Independently and concurrently,
Chechik and Zhang [17] also came up with an algorithm for
maintaining a fully-dynamic MIS in polylogarithmic update-
time against an oblivious adversary. Similar to our algorithm,
they also maintain a random-order LFMIS. For general
graphs with arbitrary maximum degree, both our algorithm
and that of [17] take O(log4 n) worst-case expected update-
time.

A. Other Implications of our Approach

Correlation Clustering: Due to a reduction of
Ailon et al. [2], our algorithm with essentially no change
also maintains a 3-approximation of min-disagreement cor-
relation clustering using the same update-time.

Corollary L.2. There is a data structure to maintain a
3-approximation of the min disagreement variant of cor-
relation clustering on completely labeled graphs against
an oblivious adversary in a fully-dynamic graph that per
update, takes O(log” A-log® n) expected time. Furthermore,
the number of changes to the clusters per update is O(1) in
expectation.

Maximal Matching: There has been a huge body of
work on the matching problem in dynamic graphs, see
e.g. [29, 7, 27, 24, 11, 12, 31, 13, 10, 22, 16, 4, 9] and

2Here and throughout the paper, “w.h.p.” abbreviates “with high prob-
ability” and implies probability at least 1 — n~¢ for any desirably large
constant ¢ > 1 that may affect the hidden constants in the bounds.
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the references therein. Among these results, maintaining a
maximal matching (MM) has been of special interest. MIS
and MM are closely related. Despite all the similarities,
however, the known algorithms for MM were much more
efficient [7, 31, 9]. Assadi et al. [5, Section 1.1] in part
justified this by describing why the common techniques
used for maintaining MM are not applicable to MIS, hinting
also that MIS “is inherently more complicated [5]” in fully
dynamic graphs. We formalize this intuition further and
show that indeed a simpler variant of our MIS algorithm can
also maintain a lexicographically first MM (LFMM) over a
random order on the edges, with essentially the same update-
time:

Theorem 2. There is a data structure to maintain a random-
order lexicographically first maximal matching against an
oblivious adversary in a fully-dynamic graph that per up-
date, takes O(log® A - log® n) expected time. Furthermore,
per update, the adjustment-complexity is O(1) in expecta-
tion.

This also leads to the following worst-case guarantee
when used as a black-box [9, Theorem 1.1].

Corollary 1.3. There is a data structure to maintain a
maximal matching against an oblivious adversary in a fully-
dynamic graph that w.h.p. has O(log2 A-log? n) worst-case
update-time.

We emphasize that if one allows amortization, then one
can get much more efficient algorithms for MM due to the
seminal works of Baswana, Gupta, and Sen [7] and Solomon
[31]. However, our approach of maintaining random-order
LFMM significantly deviates from the prior works on MM
in dynamic graphs. We believe this is an important feature
on its own and may find further applications.

II. OUR TECHNIQUES

As pointed out earlier, our main contribution is to show
that it is actually possible to maintain the lexicographically
first MIS (LFMIS), under a random ordering of the vertices,
at an expected polylogarithmic cost per update. In this
section we attempt to explain some of the barriers and how
our work overcomes them.

The first hurdle behind maintaining the LFMIS is that
it may change a lot under updates. But it is also well-
known [15, Theorem 1] that for a random ordering, the ex-
pected alteration to the LFMIS after the insertion or deletion
of a single edge is O(1). This already shows that maintaining
random order LFMIS is sufficient to get an algorithm with
O(1) expected adjustments per update. However, it is not
clear how to detect these changes and maintain the LFMIS
efficiently: The natural algorithm to do so would do a
breadth-first-search (BFS) from the endpoints of the edge
being updated, but even exploring the neighborhood of a
single vertex of degree A might require {2(A) time which
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is prohibitively expensive for general graphs where A can
be as large as Q(n).?

Our first idea is to maintain not just the LFMIS, but also
the “eliminator” of every vertex v in the graph. Briefly, given
a ranking m : V. — [0,1], the eliminator of a vertex v
in a graph G under 7 is its neighbor in G of the lowest
rank that belongs to the LEMIS. (If v is in the LFMIS,
then its eliminator is defined to be itself.) Maintaining the
eliminators only seems to complicate our task further: (1)
Even if the MIS changes by a little, it is conceivable that
the eliminators of many more vertices might change. (2) It is
still unclear how to find the set of vertices whose eliminators
have changed in o(A) time.

For problem (1) we extend the classical analysis [15, 32],
which showed that the MIS changes only by a little after
each update, to show that the eliminators are also extremely
robust under updates. We stress that this extension is not
simple and requires many new ideas. Overall, we get the
following guarantee which may be of independent interest.
(It is crucial for our analysis that we prove this bound on
vertex updates—we will discuss this towards the end of this
section.)

Theorem 3 (informal—see page 7 for the formal statement).
For any arbitrary vertex addition or deletion, the expected
number of vertices whose eliminator changes is O(logn).

We now turn to problem (2), i.e., the challenge of main-
taining information such as membership in the MIS and
eliminators of vertices. Consider an edge update (a, b) with
m(a) < w(b) and suppose that this changes b’s MIS-status.
A priori, this seems to require exploring every neighbor of
b (at the very least) and checking to see if their status or
eliminator changes. But a quick examination reveals we only
need to explore those neighbors u of b whose eliminators
have rank larger than 7(a). (Vertices with rank less than
m(a) don’t change their membership in the MIS, and so
vertices with eliminators of rank less than 7(a) don’t change
their eliminator.) To help this prune our exploration space,
it would make sense to store all neighbors of b (and of
every vertex for that matter) in a search tree indexed by
the rank of their eliminator and indeed this is an idea we
pursue. However maintaining every neighbor of b indexed
by its eliminator-rank leads to new maintenance problems:
Up to A trees may need to be updated when b changes its
eliminator-rank! We overcome this barrier with the following
solution (which is essentially our final solution): We only
maintain the neighbors of low-rank in a search tree indexed
by eliminator-ranks and maintain the neighbors of high-rank
in a more static tree indexed by just their ID (i.e., their
name).

Specifically, for each vertex v, we partition its neigh-
borhood (dynamically) in two parts, N~ (v) and Nt (v)

3This is precisely the Q(A) barrier mentioned in Section 6 of [15].
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as described next. The set N~ (v) includes neighbors of v
whose eliminators have smaller rank than the eliminator of
v. Bach vertex v € N~ (v) is indexed by the rank of its
(dynamically changing) eliminator. The set N*(v) includes
the rest of neighbors of v and every vertex v € N*(v) is
indexed by its (static) ID. Armed with these data structures
it turns out one can implement updates in expected time
polylogn per affected vertex, i.e., those whose eliminator
has changed. (See Lemma IV.1). A key insight behind
this analysis is that vertices whose eliminators have small
rank are not likely to change their eliminators under many
updates, allowing us to keep the cost of reindexing N~ (v)
small. Another insight is that the maximum degree in the
graph induced on vertices whose eliminators have high ranks
is small. Therefore, set N*(v) will be typically small and
the fact that it is not indexed by the rank of its members’
eliminators is not troublesome.

Theorem 3 and Lemma IV.1 almost settle our analysis,
with the former asserting that the expected number of
affected nodes is small, and the latter asserting that the
expected time to maintain the data structures, per affected
node, is small. One final analytic hurdle emerges at this stage
though: These two events are not a priori independent and
so the product of the expectations is not an upper bound
on the expected running time of an update! To overcome
this, we introduce another twist in our analysis. Recall that
Theorem 3 holds even if an entire node is updated (say
deleted along with all its edges). When applied to an edge
update (a, b), this gives an upper bound of O(logn) on the
expected number of affected vertices even if we condition
on any value of 7(a). (See Lemma V.1.) The reason, roughly
speaking, is that once we condition on 7(a), the edge update
(a,b) can now be regarded as insertion or deletion of vertex
b.

Overall, we use the randomization in 7(a) to bound
the expected time per affected vertex by polylogn and,
conditioned on this, still get an O(logn) upper bound on
the expected number of affected vertices due to Lemma V.1.
This allows us to prove an expected polylog n upper bound
on the total running time (see Section VI), thus concluding
our analysis.

III. PRELIMINARIES

In this section, we formally define lexicographically first
MIS and MM, mention some of their known properties, and
define the notion of eliminators which are all important for
the rest of paper.

Notation: For any positive integer k, we use [k] to
denote set {1,...,k}. For a graph G = (V, E) and a vertex
v € V, we use Ng(v) or, in short, N(v) to denote the
set of neighbors of v in G and use I'(v) to denote the set
N(v) U {v}. This notation also extends to any subset U of
V where we use N(U) and I'(U) to respectively denote
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Upeu N (v) and UyepT'(v). We also use deg(v) to denote
the degree of vertex v, i.e., degg(v) = |Ng(v)].

Lexicographically First MIS: The lexicographically
first maximal independent set (LFMIS) of a graph G =
(V,E) according to a ranking 7 : V — [0,1] over the
vertices in V' is obtained as follows. Initially, every vertex
in V is alive. We iteratively take the alive vertex v with the
minimum rank 7(v), add v to the MIS, and kill v and all
of its alive neighbors. We use LFMIS(G, 7) to refer to the
subset of vertices that join this MIS. For each vertex v, we
define the eliminator of v, denoted by elimg . (v), as the
(unique) vertex that kills v. More precisely, elimg - (v) is
the lowest-rank vertex in (N (v)U{v})NLFMIS(G, 7). Note
that if v is in the MIS, we have elimg . (v) = v; otherwise,
elimg -(v) # v and w(elimg »(v)) < m(v). When no
confusion is possible, we may write elim(v) instead of
elimg . (v) for brevity.

Lexicographically First MM: All definitions above can
be extended to MM as well if we consider LFMIS over
the line-graph. The resulting lexicographically first MM of a
graph G = (V, E), which we denote by LFMM(G, w) where
7w : E — [0,1] is a ranking over the edges of G would be
as follows. Initially, all the edges are alive. We iteratively
pick the alive edge e with the minimum rank 7(e), add it to
the matching, and kill e and all the alive incident edges to
e. The eliminator elimg (e) of an edge e in this algorithm
can similarly be defined as the lowest-rank edge incident
to e (including e itself) that is in the maximal matching
LFMM(G, ).

LFMIS and LFMM over Random Ranks: The two
algorithms above are particularly useful when the ranking 7
maps to a random permutation, i.e., each entry of 7 is a real
chosen uniformly at random from [0, 1]. It is not hard to see
that choosing O(logn) bit reals is enough to guarantee no
two entries assume the same rank w.h.p. From now on, when
we use the term “random ranking” 7, we indeed assume that
each entry of 7 has ©(logn) bits.

One useful property of LFMIS over random rankings is
that once we, roughly speaking, process p fraction of the
vertices with the lowest ranks and remove their MIS nodes
and their neighbors, the maximum degree in the remaining
graph drops to O(p~!-logn) w.h.p. The same also holds for
LFMM. This property is very well-known [14, 1, 21, 8, 6];
when incorporating the definition of eliminators, it would
read as follows:

Proposition IIL.1. Consider a graph G = (V, E), let 7 :
V — [0,1] be a random ranking, and for any real p € [0,1],
define V), as the subset of V including any vertex v with
m(elimg »(v)) > p. Wh.p., for all O(log n) bit values of p €
[0, 1], the maximum degree in graph G[V,] is O(p~*-logn).

Proposition IIL2. Consider a graph G = (V, E), let 7 :
E — [0, 1] be a random ranking, and for any real p € [0, 1],
define I, to be the subset of E including any edge e with
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w(elimg r(e)) > p. Wh.p., for all O(logn) bit values of
p € [0,1], every vertex has O(p~" -logn) incident edges in
B,
For the minor differences between the statements of
these propositions and those in the literature, we prove
them in Appendix VIII. We emphasize that the changes are
straightforward and we claim no novelty on this part.

IV. FULLY DYNAMIC MIS: DATA STRUCTURES & THE
ALGORITHM

In this section, we present the data structures and the
algorithm required for maintaining LEMIS after each update.

We fix a random ranking 7 in the pre-processing step and
maintain LFMIS(G, 7) after each update. Throughout the
rest of this section, we focus on the data structures required
for maintaining LFMIS(G, 7) and the algorithm we use to
update them. Fix an arbitrary ¢ and suppose that we have
to address edge update number ¢t. We use “time t” to refer
to the moment after the first ¢ edge updates. Moreover, we
use Gy = (V, E;) to denote the resulting graph at time ¢.
The following definitions are crucial both for the algorithm’s
description and its analysis.

o A:={v|elimg, , (v) # elimg, »(v)}: The set of
vertices whose eliminator changes after the update; we
call these the affected vertices.

o F: The set of vertices w that belong to exactly one of
LFMIS(G¢, ) or LFMIS(G;—1, 7). We call these the
flipped vertices. Note that F C A.

Our main result in this section is the following algorithm.

Lemma IV.1. There is an algorithm to update LFMIS(G, )
and the data structures required for it after
sertion or deletion of any edge e (a,b)

O(|A\ min{A, ol Y log A) time w.h.p.

Note that the bound on the update-time in the statement
above is parametrized by two random variables |.A| and
min{7(a),m(b)} of the ranking =. To provide a concrete
bound on the update-time, we need to analyze how these
two random variables are related. We prove the necessary
tools for this analysis in Section V and finally prove that
this quantity is in fact polylogn in Section VI.

In the rest of this section, we only focus on prov-
ing Lemma IV.1. We describe the data structures in Sec-
tion IV-A, describe the algorithm in Section IV-B, and
prove the correctness and running time of the algorithm in
Section IV-C.

in-
in

A. Data Structures

As described before, our algorithm starts with a pre-
processing step where we choose a random ranking 7 over
the n fixed vertices in V/, i.e., as discussed in Section III, we
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pick a ©(logn) bit real w(v) € [0, 1] for each vertex v. The
ranking 7 will then be used to maintain LFMIS(G, ) after
each update to graph G. To update this MIS efficiently, we
maintain the following data structures for each vertex v € V.

e m(v): A binary variable that is 1 if v € LFMIS(G, )
and O otherwise.

e k(v): The rank of v’s eliminator, i.e., k(v)
m(elimg »(v)). Note that m(v) = 1 iff k(v) = w(v).

e N~ (v): The set of neighbors u of v where k(u) <
kE(v). The set N~ (v) is stored as a self-balancing
binary search tree (BST) and each vertex w in it is
indexed by k(u).

o Nt (v): The set of neighbors u of v where k(u) >
k(v). The set N T (v) is also stored as a BST, but unlike
N~ (v), each member u in N (v) is indexed by its ID.

It has to be noted that each vertex u € N~ (v) is indexed
by k(u), a property that may change after an edge update
and thus we may need to re-order the vertices in N~ (v).
However, the vertices in N1 (v) are simply indexed by their
IDs which are static. Also, observe that:

Observation IV.2. For any two neighbors u and v, u €
N7 (v) if and only if v € N~ (u).

Proof: If u € NT(v), then k(u) > k(v); since N~ (u)
includes every neighbor w of u with k(w) < k(u), and
k(v) < k(u), we have v € N~ (u). Similarly, if v € N~ (u),
then k(v) < k(u); since N (v) includes every neighbor w
of v with k(w) > k(v) and k(u) > k(v), we have u €
N+t (v). [ |

From now on, we use m;(v), k:(v), N; (v) and N;(v)
to respectively refer to data structures m(v), k(v), N~ (v)
and N*(v) by time ¢. Before describing the algorithm, we
describe the pre-processing step in more details.

Pre-processing Step: Apart from choosing random
ranking 7, we initialize an array P(v) < () for every vertex v
in the pre-processing step. This array will later be used in the
update algorithm in Section IV-B. Moreover, we construct
LEMIS over the original graph Gy = (V, Ey) via the trivial
approach: We iterate over the vertices according to m to
construct LFMIS(Gy, ) and set m(v) for each vertex v.
Then for each vertex v, we iterate over all of its neighbors
to fill in k(v), N*(v), and N~ (v). We initially spend
O(nlogn) time for sorting the vertices, then for each vertex
v, we spend O(deg(v)) time to fill in its data structures. This
process, overall, takes O((|V| + |Ep|) logn) time which is
clearly optimal (up to a logarithmic factor) as it is required
to read the input.

B. The Algorithm

We now turn to describe how we maintain the data
structures defined in the previous section after each edge
update. Consider update number ¢, and suppose that an
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edge e = (a,b) is either inserted or deleted. Moreover,
assume w.l.o.g. that m(a) < mw(b). We show how our data
structures can be adjusted accordingly in the time specified
by Lemma IV.1.

Since we are maintaining the lexicographically first
MIS—and not just any MIS—of a dynamically changing
graph, a single edge update can potentially affect vertices
that are multiple-hops away. To detect these vertices effi-
ciently, we use an iterative approach with which, intuitively,
we do not “look” at too many unaffected vertices. Before
formalizing this, we start with an observation. The proof is
a simple consequence of the structure of LFMIS and thus
we defer it to Section VI-B.

Observation IV.3. For any vertex v € A, the following
properties hold:

1) ki—1(v) > m(a) and ki(v) > w(a).
2) ifv # b, then v has a neighbor u such that w(u) < w(v)
and u € F.

We start with an intuitive and informal description of the
algorithm. The algorithm’s formal description and the proofs
are given afterwards.

Algorithm Outline: Observation V.3 part 2 implies that
if a vertex u is in set A, then there should be a path from
vertex b to u where all the vertices in the path (except u)
belong to F and the ranks in the path are monotonically
increasing. This motivates us to use an iterative approach.
We start by a set S which originally only includes vertex b.
Then we iteratively take the minimum rank vertex v from
S, detect whether v € F and if so, we add all the “relevant
neighbors” of v that may continue these monotone paths
to set S. Clearly, we cannot add all neighbors of v to S
since there could be as many as Q(A) such nodes. Rather,
we only consider neighbors u of v where k;_1(u) > m(a).
Observation IV.3 part 1 guarantees that every vertex u € A
has k;_1(u) > m(a) and thus this set of relevant neighbors
is sufficient to ensure any vertex in A will be added to S at
some point. Note that by definition, for any vertex u € V'\ A,
both k(u) and m(u) will remain unchanged after the update.
Therefore, once we handle all vertices in set S, for every
vertex u in the graph, k(u) and m(u) should be updated.
However, note that the adjacency lists of vertices outside .A
may require to be updated if they have a neighbor in A.
We do this at the end of the algorithm. Algorithm 1 below
formalizes the structure of this algorithm and the subroutines
used are formalized afterwards.

We use k:—1(v) and k;(v) to refer to the value k(v) should
hold before and after the update respectively. In the process
of updating k(v) from k;_1(v) to k:(v), whenever we use
k(v) without any subscript in the algorithm, we refer to the
value of this data structure at that specific time. In particular,
since we update the vertices iteratively, it could happen that
in a specific time during the algorithm, for some vertex u,
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Algorithm 1. Maintaining the data structures after inser-
tion or deletion of an edge e = (a, b).

18+ {b}
2 For each vertex v, we have an array P(v) = 0.

// Initialized in the pre-processing step.

3 while S is not empty do
4 Let v < argmin, s m(u) be the minimum
rank vertex in S.
if ISAFFECTED(v) then
v e A in time O(|P(v)]).
Hy
FINDRELEVANTNEIGHBORS (v, 7(a))

/I H,, includes neighbors w of v with
ki—1(u) > 7(a) and has size ()(1;(‘";')1)
w.h.p.

UPDATEELIMINATOR (v, H,,)  // Updates
E(v) and m(v) by iterating over H.,.

if v € F then

for any vertex u € ‘H, do
L if 7(u) > 7(v) then insert u to S

and insert v to P(u).
| Remove v from S and set P(v) < 0.
12 UPDATEADJACENCYLISTS() // Updates
adjacency lists N and N~ where necessary.

// Checks whether

11

k(u) = ki(u) and for another vertex w, k(w) = ki—1(w).
The same notation extends to m(v), N*(v), and N~ (v) in
the natural way.

We use iteration to refer to iterations of the while loop in
Algorithm 1. The following invariants hold at the beginning
of the algorithm when & = {b} and, as we will show
in Claim VI.7 via an induction, will continue to hold
throughout.

Invariant IV.4. Consider the start of any iteration and let
v be the lowest-rank vertex in S. It holds true that k(u) =
ki(u) and m(u) = my(u) for every vertex u with 7(u) <
w(v), ie, k(u) and m(u) already hold the correct values.
Moreover, k(u) = ki—1(u) and m(u) = ms—1(u) for every
other vertex u with w(u) > 7(v).

Invariant IV.5. Consider the start of any iteration and let
v be the lowest-rank vertex in S. The set P(v) includes a
vertex u iff: (1) m(u) < w(v), and (2) u € F, and (3) v and
v are adjacent.

Invariant IV.6. For any vertex u, before reaching Line 12 of
Algorithm 1, adjacency lists N (u) and N~ (u) respectively
hold values N, | (u) and N | (u).

We continue by formalizing all the subroutines used in
Algorithm 1.
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Subroutine ISAFFECTED(v): This function returns true
if v € A and returns false otherwise. We consider two cases
where v = b and v # b individually. For the former case, we
show that b € A if and only if m(a) = 1 and k(b) > 7 (a).
For the latter case, we first scan the set P(v) to see if there
exists a vertex u € P(v) with m(u) = k(v). If such vertex
u exists, then v € A. Otherwise, let u be the lowest-rank
vertex in P(v) such that m(u) = 1. If w(u) < k(v), then
v € A and otherwise v ¢ A. This subroutine clearly takes
O(|P(v)|) time. We also prove its correctness in Claim VL1.

Subroutine FINDRELEVANTNEIGHBORS(v, 7w(a)):
The goal in this subroutine is to find the set

Hy :={u e NW) | ki_1(u) > 7m(a)}. (1)

By definition of N*(v) and N~ (v), each neighbor u €
N(v) is at least in one of these two sets. Therefore, to
construct set H,, we have to find neighbors u of v with
ki 1(u) > m(a) in both N*(v) and N~ (v). For the former,
we simply iterate over all neighbors u of v in set N*(v)
and if k;_q(u) > 7(a), we add u to H,. For the latter,
recall from Invariant IV.6 that N~ (v) = N,_,(v); thus, the
vertices u in N~ (v) are indexed by k:—1(u). To find only
those in N~ (v) with k;_1(u) > 7(a), it suffices to search
for index m(a) and traverse over all vertices whose index is
at least 7(a). The correctness and an analysis of the running
time of this algorithm is provided in Claim VI.2.

Subroutine UPDATEELIMINATOR (v, H,,): Given that
the minimum-rank vertex v € S is in set A, this subroutine
updates k(v) assuming that the set H, is already computed
and given. To do this, let v be the lowest-rank vertex in H,
with m(u) = 1. If no such vertex exists, or if w(u) > m(v),
v has to join the MIS and thus we set k(v) < 7(v) and
m(v) < 1. Otherwise, u has to be the new eliminator of v
and we set k(v) < 7w(u) and m(v) < 0. This subroutine
clearly takes O(|H,|) time. We also prove its correctness in
Claim VL3.

Subroutine  UPDATEADJACENCYLISTS(): If e is
deleted, we remove a from Nt (b) and N~ (b), and remove
b from Nt (a) and N~ (a) (note that some of these sets
may not include the removing vertex). If e is inserted, we
insert a and b into each other’s “appropriate” adjacency list
according to the current values of k(a) and k(b); namely:

o If k(a) < k(b), insert a into N~ (b), and insert b into
N7 (a).

o If k(a) > k(b), insert a into N (b), and insert b into
N~ (a).

o If k(a) = k(b), insert a into N~ (b) and N*(b), and
insert b into N~ (a) and N*(a).

We also need to update the adjacency lists of any affected
vertex v, since after changing k(v), some neighbors of v
may have to move from NT(v) to N~ (v) or vice versa.
Moreover, if an affected vertex v is in N~ (u) of some vertex
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u, we also need to recompute the position of v in N~ (u),
since recall that v should be indexed by k(v) in N~ (u)
which has now changed.

To address the changes above, the crucial property is
that for any vertex v € A, any vertex u that has to move
between N1 (v) and N~ (v) or has v in its set N~ (u), has
to belong to ‘H, (see Claim VI.4 for the proof). Therefore
in the algorithm, for any vertex v € A, we only iterate over
the vertices u € H, and based on k(u) and k(v), which at
this point in the algorithm are correctly updated, determine
the membership of vertex v in adjacency lists of vertex
and vice versa. We then update N~ (v), N*(v), N~ (u) and
N7 (u) accordingly.

C. Overview of Correctness & The (Parametrized) Running
Time

The correctness of Algorithm 1 follows mainly from
the greedy structure of LFMIS and does not require a
sophisticated analysis. As such, we defer it to Section VI-B.
Here, we focus on the main ideas required for bounding the
running time of the algorithm stated in Lemma IV.1. A com-
plete proof of this lemma is also presented in Section VI-B.

One particularly important property is that, w.h.p., the size
of set H,, for every vertex v € A is O( min{A, I:r’fa’;‘ }). This
is formally proved in Claim VI.2 of Section VI-B; but the
main intuition is as follows. From definition of H,, every
vertex u € H,, has k;—1(u) > m(a). Moreover, since v € A,
by Observation IV.3 part 1, we also have k;_1(v) > 7(a).
This means that if we construct LEMIS in graph G;_; on the
prefix of vertices with rank in [0, 7(a)), then vertex v will
survive and will have a remaining degree of at least |H,|.
Since the adversary is oblivious and the ranking 7 and graph
G';_1 are independently chosen, we can use Proposition III.1
to argue that in this remaining graph, maximum degree is,
w.h.p., at most O (min{A, f(ga’)‘ }) implying the same upper
bound on |H,|.

Observe that in the algorithm, only for vertices v € F
we insert (a subset of) their relevant neighbors H, to S.
Therefore, the total number of vertices inserted to S is at
most O (|F| min{A, 17‘:(%3 ), w.h.p. However, this is not an
upper bound on the algorithm’s running time since each
vertex in S is not simply processed in constant time. We
summarize these procedures below.

Subroutine ISAFFECTED(v): This subroutine is called
for every vertex v € S. It is clear from description that
ISAFFECTED(v) takes O(|P(v)|) time. Therefore, the ag-
gregated running time of this function for all vertices in
S is Y, cg|P(v)]. Observe that each vertex u € P(v)
is in F. Furthermore, each vertex u € JF belongs to
P(v) of at most |H,| vertices due to Line 10. There-
fore, a simple double-counting argument shows that w.h.p.,
Yues P(v)] < O(|F|min{A, 1285}).

Subroutine FINDRELEVANTNEIGHBORS(v, 7(a)):
This is called for every vertex v € A. Thanks to the fact
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that N~ (v) is indexed by k;_1(.) and that N*(v) has size at
most O(|H,|) (we show this in the proof of Claim VI.2) this
subroutine takes O(|H,|log A) time where the extra log A
factor is for iterating over BST N~ (v). Thus, the aggregated
running time is O (|.A| min{A, f(gar)”}log A).

Subroutine  UPDATEELIMINATOR (v, H,,): This sub-
routine is only called for vertices v € A and takes
O(|H,|) time. Clearly, the aggregated running time is
O(|A| min{A, 2&51), w.h.p.

UPDATEADJACENCYLISTS():

Subroutine As
described in the subroutine, for any vertex v € A, v
has to be re-indexed or moved in adjacency lists of at
most |H,| of its neighbors. Each such operation requires
O(log A) time. Therefore, the aggregated running time is
w.h.p. O(|A| min{A, f(ga’;} log A).

The total running time of the algorithm is the sum of
the aggregated running time of each of the procedures
above which is O(]A|min{A, :’E‘%’}log A) as required by
Lemma IV.1.

V. AN ANALYSIS OF AFFECTED VERTICES: PROOF OF
THEOREM 3

In this section, we prove Theorem 3 which we briefly
highlighted in Section II. In this regard, for any two graphs
G = (V,E) and G' = (V/,E') with V! C V and a
ranking m over V, we define A,(G,G’) = {v € V |
elimg (v) # elimgr ~(v)} to be the set of vertices with
different eliminators in the two graphs. Note that this is
analogous to the definition of “affected vertices” in the
previous section and hence the choice of notation. A more
formal statement of Theorem 3 reads as follows:

Theorem 3. Fix an arbitrary graph G = (V,E) and let
G' = GV \ {v}] be obtained by removing an arbitrary
vertex v from G. If w is a random ranking over V,
Ex[|A=(G,G")] < O(log n).

The fact that Theorem 3 bounds the number of affected
vertices as a result of a vertex update can be used to bound
the affected vertices by O(logn) as a result of an edge
update e = (a,b), even when we condition on any value

for min{w(a),n(b)}.

Lemma V.1. Fix an arbitrary graph G = (V, E) and let
G' = (V, E’) be the graph obtained by adding or removing
an arbitrary edge e = (a,b) to G. If 7 is a random ranking
over V, then for any value of A € [0,1], it holds that
E [|A-(G,G")| | min{n(a), 7(b)} = A\] < O(logn).

Lemma V.1 is crucial for our analysis as it implies that
the two random variables |A, (G, G’)| and min{r(a),w(b)},
which recall are used in the statement of Lemma IV.1, can
be regarded as “almost” independent. We elaborate more on
this in Section VL

We first prove Lemma V.1 given the correctness of The-
orem 3. The bulk of analysis is then concentrated around
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proving Theorem 3.

Proof of Lemma V.1: Suppose w.l.o.g. that 7(a) <
7(b), i.e., m(a) = A by the conditional event. Let U be the
subset of V' containing vertices w with m(w) < m(a). We
prove the lemma even when the set U, and the rank of the
vertices in it are chosen adversarially.

We have G'[U] = G[U] since v ¢ U and the only
difference of the two graphs G’ and G which is in edge
(a,b) does not belong to either of the two induced graphs.
Therefore, we have LFMIS(G'[U],7) = LFMIS(G[U], );
let Iy be this MIS. Furthermore, let H'(V{;, E}) and
H(Vy, Ex) be the residual graphs after we remove vertices
in Iy and their neighbors from G’ and G respectively. It
is not hard to see that either H = H' (if a & Iy or if b
has another neighbor w with 7(w) < 7w(a) in Iy) or H’
has exactly one extra vertex than H which has to be b, i.e.,
H = H'[V},\ {b}]. In the former case, since the two graphs
are equal, no matter how  is chosen, the eliminators of all
vertices will be the same. In the latter case, the two graphs
H and H’ differ in only one vertex and no information
about the relative order of the vertices in Vi or V}; in 7 is
revealed. Therefore, by Theorem 3, the expected number of
vertices whose eliminators are different in H and H' is at
most O(logn). [ |

We now, turn to prove Theorem 3 and start with some
notation. Throughout the rest of this section, vertex v should
be regarded as fixed. We use I and I’ to respectively denote
independent sets LFMIS(G, 7) and LFMIS(G’, 7). Also, for
brevity, we use A, instead of A, (G, G"). Furthermore, we
define F,. as the subset of vertices in A, whose MIS-status
is flipped, i.e., u € F; if and only if u belongs to exactly
one of [ or I.

Instead of rankings, it will be more convenient to consider
permutations for the arguments of this section. That is, we
assume that a permutation 7 : V' — [n] from the set II of
all n! possible permutations is drawn uniformly at random
and the LFMIS is constructed according to this permutation.
It is clear that LFMIS according to a random rank follows
exactly the same distribution as that according to a random
permutation.*

The following observation is very similar to Observa-
tion IV.3 of the previous section and will be very useful
here too.

Observation V.2. If A, is non-empty, then v € I and v €
Fr. Furthermore, for every vertex u € A, \ {v}, there is
another vertex w € F, that is adjacent to u and w(w) <
m(u).

Proof: We first prove that if A, # 0 then v € I.

Assume for contradiction that v ¢ I and A, # (. Since
v does not belong to G’, we also have v & I’, ie., v is

4To see this, observe that to draw a random permutation 7w : V' — [n],
one can first draw a random rank p : V' — [0, 1] and then sort the vertices
based on p.
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in neither of the two maximal independent sets I and I’.
Now take the minimum rank vertex v in A, (which exists
since A, # 0). Since u € A, by definition, its eliminators
should be different in I and I’. Therefore, there should exist
a vertex w with m(w) < m(u), that is in exactly one of the
two maximal independent sets. Since v is in neither of [
and I’, w # v. However, in this case, w would also belong
to A, contradicting that v is the minimum rank vertex in
A, and completing the proof of this part.

For the second part, fix a vertex u € A, and let x and 2’
be its eliminators in I and I’ respectively. Note that = and
x’ cannot be the same vertex or otherwise u & A,. Suppose
that 7(x) < m(z’). The fact that « is an eliminator of u in
I means that x € I. On the other hand, the fact that z’,
instead of z, is the eliminator of « in I’ means that x & I'.
This means that = has to belong to F,. A similar argument
holds for the case where 7(z') < m(x). [ |

For a vertex u € A, \ {v}, we define the parent
of u, denoted by p,(u), as its neighbor in F, (which
exists by observation above) with the lowest rank, i.e.,
pr(u) = argmin,e yy)nr, ™(w). Furthermore, we define
the propagation path Py (u) of each vertex u € A, as:

W
Pel) {(Papw(u)),u)

With a slight abuse of notation, P (u) can be denoted by
a sequence (wq,...,wy) where wy = v, wy = u, and for
every i € [k—1], w; = pz(wit+1). Note that this sequence is
a valid path of the graph because by definition each vertex
is a neighbor of its parent and 7(p,(u)) is strictly smaller
than 7(u) by Observation V.2, thus, no vertex can be visited
twice in the sequence. Furthermore, w; = v because every
vertex w € A, has a parent p,(w) except v.

if u=wv,
otherwise.

Claim V.3. Fix an arbitrary permutation 7, an arbitrary
vertex u € Ay, and let Pr(u) = (w1,...,wy). For odd
i € [k—1], w; € LFMIS(G, ) and for even i € [k — 1],
w; € LFMIS(G, ).

Proof: Since v € A, and thus A, # (), we already
know from Observation V.2 that vertex v = w; has to belong
to LFMIS(G, ), proving the claim for ¢ = 1. To complete
the proof, we show that for any ¢ € [k — 2], exactly one of
w; and w; 11 is in LFMIS(G, 7).

First, observe that since LFMIS(G, ) is an independent
set, no two adjacent vertices can belong to it. Therefore, we
only have to show that for any ¢ € [k — 2], it cannot be
the case that neither of w; and w;_1 are in LFMIS(G, 7).
Suppose for contradiction that this holds. By definition
of propagation paths, and since i € [k — 2], we get
that w; is the parent of w;y; and w;4+; is the parent of
w;+2. Every vertex that is a parent of another vertex has
to be in F, by definition. Therefore, both w; and w;yq
belong to F,. Combined with the assumption that neither
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of w; and w;41 are in LFMIS(G, ), both have to belong
to LFMIS(G’,7) (by definition of F,) which cannot be
possible since LFMIS(G’, ) is also an independent set. W
Let II denote the set of all permutations over V. We say
a permutation 7 € II is unlikely, if for some vertex u € V,
|Pr(u)] > Blogn where (3 is a constant that we fix later,
and likely otherwise. Denoting the set of likely and unlikely
permutations by II; and Iy respectively, we have

Er[[Az|] =Pr[r € 1] - Erorr, [[Axr]]

+ Prir € y] - Epmnry, [|AR]]- 2)
We prove E[|A:|] = O(logn) by bounding the two terms
in (2) individually.

Lemma V4 ([14, 20]). If B is a large enough constant,
Pr[r € Hy] < n~2

Lemma V.5 (likely permutations). E,om, [|Ax|]
O(logn).

Lemma V.4 almost directly follows from the earlier works
of [14, 20] on bounding parallel round complexity of LEMIS
over a random permutation; we provide the details in Sec-
tion V-C. Lemma V.5, which is proven in Section V-A,
constitutes the novel part of the proof and is indeed where
bulk of the whole analysis is concentrated on. Below, we
first show why Lemmas V.5 and V.4 are sufficient to prove
Theorem 3.

Proof of Theorem 3: By Lemma V.5, we have
Ex~t,[|Az]] = O(logn). Since Pr[r € II1] < 1 for being
a probability, we get Pr[r € ] - Eqrurr, [|Ax|] < O(logn),
i.e., the first term in (2) is bounded by O(logn). On the other
hand, by Lemma V.4, we have Pr[r € IIyy] < n~2. Using
this, we can bound the second term in (2) to be as small
as n~! even if A, includes all n vertices for any 7 € Il.
Therefore overall, we get E.[[A[] < O(logn) +n~' =
O(logn), which is the desired bound. [ |

A. Handling Likely Permutations: Proof of Lemma V.5

In the rest of this section, we focus on proving
Lemma V.5. The overall plan is as follows. For each permu-
tation 7 € I, we blame a set of permutations B(w) C II
such that:

(P [B(7)[ = [Ax|.
(P2) For each permutation 7’ € II, there are at most 3 logn
permutations 7 € II;, where 7’ € B().

We first prove that having such blaming sets satisfying
properties P1 and P2 is sufficient for proving Lemma V.5
and then describe how the blaming sets are constructed.

Proof of Lemma V.5: Defining X as the sum

390

> e, [Axl, we have:
Eror, [ Al = Z Pr[drawing 7 | 7 € 1] - | Ax|
relly,
= 3 A
[T | en "
™ L
X

= —. 3
TIL| ©

By property P1, |B(w)| > | Ax| for every 7 € Il ,. Thus,

Yi= > |B(m)|> > |[A]=X.

welly welly

On the other hand, since by property P2, each permuta-
tion 7’ € II belongs to B(w) of at most Slogn other
permutations 7, a simple double counting argument gives
Y < |II|Blog n; implying also that X < |II|3log n. More-
over, since II;, = IT\ II;; and by Lemma V.4, o] <n7?,

it holds that HXL > 1 — =2, thus, [IT| = O(|II.|). For this,

[TI]
- : .
X < |lI|Blogn implies X = O(|II;|logn). Plugging this
into (3), we get Epr, [JAx|] < O(lnlﬁi‘:log") = O(logn) as
desired. |
For every permutation 7 € II;, and each vertex u € A,
we construct a permutation ¢, € II. The blaming set of
7 will then be the set B(m) = J,c4_{#ru}. For a vertex
u € Ay, with Pr(u) (v = wy,wa,...,wg = u), we
construct permutation ¢ ,, as follows:

o For each vertex w & Pr(u), @r(w) < m(w).
o Oru(wr) < m(wg).
o Forany 2 <i <k, o (w;) < m(w;_1).

In other words, permutation ¢, ,, on all vertices outside
P.(u) is exactly the same as m, however for the vertices
in P (u), ¢r,, is obtained by rotating the 7 ranks by one
index towards u. An example is shown in the figure below.

As captured by the following observation, it is not hard
to show that with this construction, property P1 is indeed
satisfied:

Observation V.6. By construction above, property Pl is
satisfied.

Proof: The reason is that we indeed construct |A,]|
permutations to include in B(7): ¢r, for each u € A;.
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Note, however, that we still need to argue that for any two
vertices u and w in A, permutations ¢, ,, and ¢ ,, are not
the same so that the set containing them has size |.A,|. This
follows because ¢ ,(v) = m(w) and ¢, (v) = 7(u) but
m(u) # 7(w), implying that ¢r ., (v) # @r . (v) and thus
the two permutations ¢ ,, and ¢, are not equal. [ |

The harder part is to show that our construction also
satisfies property P2:

Claim V.7. By construction above, property P2 is also
satisfied.

Suppose that a permutation p is blamed by permutations
7w and 7', i.e., p € B(w) N B(r’). This means that there
should exist vertices u € A, and v € A, where
Oru = Pxw = p. To prove Claim V.7, we analyze the
circumstances under which this may occur. Consider the
propagation paths P, (u) = (w1, ws, ..., wy) and Py (u') =
(wh,ws,. .., wy,) and recall that w, = wu, w), = u' and
w; = w) = v. Let j be the largest integer where for any
i€ {l,...,5}, we have w; = w;. Note that clearly j > 1
since w} = w; = v. We call w; (or equivalently w’) the
branching vertex and analyze the following scenarios which
cover all possibilities individually (see Figure 1):

o Scenario 1: j is odd, w; # u, and w; # u'.

 Scenario 2: j is even, w; # u, and w; # .

« Scenario 3: at least one of u or v’ is the same as wj.

Scenario 1
Scenario 2
i ! i i
wl ?,U2 ’11)3 U]4
(D)—O—(O—@ Scenario 3
wl w? w3 w4 w5

Figure 1: The grey vertex in each scenario, denotes the
corresponding branching vertex w;.

The claim below unveils several important structural prop-
erties of propagation paths and will be our main tool to prove
Claim V.7. See Figure 2 for an illustration of some of these
properties.
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Claim V.8. Consider two different permutations m and
7w’ in IlI;, and two (possibly the same) vertices u and
u'. Let w; be the branching vertex for propagation paths
Pr(u) = (w1,...,wg) and P (v') = (wi,...,wy,). If
Orw = P and ©'(wj) > m(w;), then:

1) for every vertex w that does not belong to either of
P (u) and Py ('), 7(w) = 7' (w).

2) m(w) = n'(w) for every vertex w with w(w) < 7(w;).

3) m(wg) = 7' (wy,).

4) k > j+ 1 (ie, vertex wjy1 should exist) and
7' (wj41) = m(w;).

5) wjt1 € LEMIS(G, 7).

' W
w,,, s
permutation w, w, Wy wji 1 wy.
" 0—©—©- —®
D P P ) i \
/ W, / W, / Wy / Wiy ! w; Wisy wk‘\
: ! ! : ' !
I 1 1 1 \ 1
1 1 1 1 \ 1
1 1 1 1 \ / [
' | | 1 \ . w,
. . . . o %
\ \ \ \ . _.
Vo o o \
permutation \wi \\11)2 \\11) 3
™| 0—0—@- ~@
w. w, w. w. w. w. w

a vertex with unspecified
MIS status

O

@ a vertex not in the MIS

O the branching vertex

see the figure
clow)

same rank
description

. a vertex in the MIS

Figure 2: Illustration of some of the properties obtained from
Claims V.3 and V.8 for vertices in P (u) = (w1, ..., w)
and P (u') = (wi,...,w},) given that @r ., = @n
and 7'(w;) > m(w;) where w; is the branching vertex. A
dashed line between vertices x on the top and y on the
bottom implies 7(x) = 7'(y). Note that for the illustration
purpose, this figure models only scenarios 1 and 2; however,
Claims V.3 and V.8 are general and hold for all three
scenarios.

We first show how these properties can be used to prove
Claim V.7, then prove Claim V.8.

Proof of Claim V.7: Suppose that a permutation p is
blamed by two permutations 7 and 7', and let u and v’
be the vertices where ¢, = @r/ ./ (We note that v and v’
may be the same vertex). We show that if these assumptions
hold, then scenarios 1 and 2 defined above would lead to
contradictions, implying that scenario 3 is the only case for
which this may occur. To show this, we assume w.l.o.g. that
m'(w;) > m(w;) so that all conditions of Claim V.8 are
satisfied.
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Scenario 1. Since in this scenario w; # v/, we get j < k';
more precisely, j € [k’ — 1]. Furthermore, recall that
J is assumed to be odd in scenario 1. Combining the
two conditions, Claim V.3 implies w; € LFMIS(G, 7’).
On the other hand, by Claim V.8 part 5, wj 1 €
LFMIS(G, ©’). However, this is a contradiction since
by definition of Pr(u), w; = px(w;41) and thus w;
and w;1 are neighbors; meaning that they both cannot
belong to independent set LFMIS(G, «').

Scenario 2. The assumption w; # u’ implies that there
is a vertex w),, and that w; = pp (w},,); thus by
definition of pr(wj,), w; € Fp. It also implies
that j € [k’ — 1] (as argued in scenario 1). But
since j is even in this scenario, Claim V.3 implies
w; ¢ LEMIS(G, ). Let us use H to denote the graph
G[V \ {v}] obtained by removing vertex v from G.
Recall that by definition, w; is in Fy/ iff its MIS-
status is different in LFMIS(G, 7") and LFMIS(H, 7).
Therefore, since w; ¢ LFMIS(G,n’) we have to
have w; € LFMIS(H,#). This also implies that
wjy1 ¢ LFMIS(H,n") since as argued in scenario
1, w; and w;4q are neighbors in G and thus H. On
the other hand, similar to scenario 1, we should have
w;y1 € LEMIS(G, ") by Claim V.8 part 5. Therefore,
since w;1 has a different MIS-status in LFMIS(G, 7’)
and LFMIS(H, 7"), we have w; 1 € Fs. By definition,
Fr € Ay thus by Observation V.2,

there exists a vertex € Ny (w;41) such that

z € Fpoand 7' (z) < 7' (wjq1).

Furthermore, by Claim V.8 part 4, 7' (wj4+1) = m(w;);
combined with 7’(x) < 7’(w,41), this implies 7' (x) <
m(w;). Observe that by Claim V.8 part 2 the two
permutations 7w and 7’ are exactly the same on the
set of vertices with rank less than m(wj;). Therefore,
x € LFMIS(G,n’) iff x € LFMIS(G,7), and = €
LFMIS(H,«') iff « € LFMIS(H,w). As a result,
x € F, implies that x € F.
Finally, recall that p, (w;41) is by definition the lowest-
rank neighbor of w; in F;. Therefore, since x € F;
and 7(z) < mw(w;), we have pr(w;t1) # w;. This
contradicts the definition of Pr(u) which guarantees
wj = Pr(Wj41).
As shown above, the only case for which we might get
Oru = Px 4 1s scenario 3 as the other two scenarios lead
to contradictions. We now show that because of the very
specific structure of scenario 3, each permutation is blamed
by at most [ log n permutations.

Fix a permutation p and let C, be a set that includes
every pair (m,u) with # € II; and u € V for which
¢@ru = p. Clearly, |C,| is an upper bound on the number
of permutations that blame p, thus it suffices to bound |C,|

by Slogn.
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First, we show that for any two different pairs (7, u)
and (7',4’) in C,, we have |Pr(u)| # |Px (u')|. Suppose
for the sake of contradiction that |Py(u)| = | Py (u')|. Let

Pr(u) = (w1,...,w) and Pp(u') = (wi,...,w}) be
the vertices in the two paths and let w; be the branching
vertex. We know that ¢, = @ = p since the pairs

belong to C,. Therefore, scenario 3 has to occur and thus
either w; = v’ or w; = u. In either case, we get j = k
since v = wy, and v’ = wj. Furthermore, by definition of
the branching vertex we have w;, = w) for any i € [j].
Moreover, by Claim V.8 parts 2 and 3, for any i € [j], we
have 7(w;) = 7' (w}). Meaning that the set of vertices and
their ranks in the two permutations are exactly the same on
the propagation paths. On the other hand, for any vertex
x that does not belong to the propagation paths, we also
have w(x) = 7'(z) due to Claim V.8 part 1. Combining
these, we get that 7 = 7/. We also showed that wy, = wj,
and thus v = u'. Therefore, the two pairs (7,u) and
(7',u') are identical, which is in contradiction with our
initial assumption that they are different.

Now we show that |C,| < Blogn. Suppose for contra-
diction that there are at least Blogn + 1 pairs in C,. As
shown in the previous paragraph, for each pair (7, u) € C,,
| Px ()| is unique. Therefore, if |C,| > S logn, there should
be at least a pair (7, u) with |P;(u)| > 8logn+1. However,
by definition, the propagation-path of every vertex in every
permutation w € II;, has size at most Slogn which is a
contradiction. Therefore, |C,| < logn for any permutation
p, thus every permutation p is blamed by at most S logn
other permutations. This means that property P2 is also
satisfied by our mapping, as desired. |

B. The Mapping’s Structural Properties: Proof of Claim V.8

In what follows, we prove the parts of Claim V.8 one by
one. Note that the proof of each part may depend on the
correctness of the previous parts.

Proof of Claim V.8 part 1: For any vertex w that does

not belong to the propagation paths P (u) and P/ (u'),

we have @r ., (w) m(w) and @r (W) 7' (w) by

construction of permutations ¢ ,, and ¢ ,; hence, to have

Oru = Qa4 it should hold that m(w) = 7' (w). [ |
Proof of Claim V.8 part 2.: Consider a vertex w with

m(w) < w(w;), we prove m(w) = 7' (w).

Case 1: w ¢ Pr(u) and w & P/ (u'). In this case, by
Claim V.8 part 1 we have 7(w) = 7'(w).

Case 2: w € P,(u). By definition of propagation-path
Pr(u), we have 7(w1) < ... < w(wyg). Therefore,
since w € Pr(u) and w(w) < m(w;), we should have
w = w; for some i < j. Since w; is the branching
vertex, this means w;;1 = wj,; and w; = wj. By
construction of @ ,, and @/ 7, we have o o, (Wit1) =
m(w;) and @ (wi,) = 7' (wj). Combined with
Wit1 = Wiy 1, Wi = Wi, and ©r = Prs 4, this means
71'(10,) = 7T/(’w7‘,).
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Case 3: w & P;(u) and w € P (u'). We show that it is
essentially impossible to satisfy the property’s condition
m(w) < w(wj;) in this case, implying that the property
holds automatically. First, observe that w = w should
hold for some ¢ > j, or otherwise w € P.(u) by
definition of the branching vertex w;. By construction
of ¢, this implies g/ v (w) > 7' (W) = 7' (w;).
Combined with assumption 7'(w;) > mw(w;), we get
Orrw (W) > w(w;). Moreover, since w € Pr(u), we
get oy (w) = w(w). Thus, to have ©r, = Yr 4,
it should hold that m(w) @ar u(w). Since we
just showed @/ . (w) > m(w;), this would imply
m(w) > w(w;) which as outlined at the start of this
case, is sufficient for our purpose.

The cases above clearly cover all possibilities; thus the proof
is complete. ]

Proof of Claim V.8 part 3.: Recall that wy = w| = v.
We have ¢, ., (v) = m(wg) and @ (v) = 7(w},) simply
by construction of these permutations. Therefore, to have
©ru(v) = @a o (v), we should have w(wg) = 7'(w},). W

Proof of Claim V.8 part 4.: Suppose for contradiction
that k < j, i.e., vertex w;11 does not exist. Since w; is the
branching vertex, it has to belong to P,(u) by definition,
thus, £ > j. Combined with k£ < j, the only possibility
would be k = j. By Claim V.8 part 3, we have 7(wy)
7' (w},) and since j = k, we get

m(w;) = ' (wh). “
On the other hand, by definition of P,/ (u’), we have
(W) > 7' (wiy_y) ... > 7' (w)). 5)

Moreover, recall from the claim’s assumption that 7’ (wj) >
m(w;). Combining this with (4) and (5), the only option is
if 5 = k’. To see this, observe that j < k’ by definition
of the branching vertex; now, if j < &/, then from (5) we
obtain 7'(wj,) > 7'(w;) which due to (4) would imply
m(w;) > 7’'(w;) contradicting the claim’s assumption that
m(w;) < 7' (wjy); thus, j = k’. Recall that we also assumed
j = k at the beginning of the proof, therefore j = k
k’. This implies by definition of the branching vertex that
w; = w), for any ¢ € [k] (or equivalently [£']), i.e., the two
paths P, (u) and P./(u') are exactly the same. Moreover,
due to j = k = K’ and Claim V.8 parts 2 and 3, for any
vertex w; in the propagation paths, 7(w;) = 7'(w;). On
the other hand, for any vertex = outside the two paths, we
have 7(x) = 7’(x) by Claim V.8 part 1. Therefore, overall,
the two permutations 7 and 7’ have to be exactly the same
on all vertices, which is a contradiction with the claim’s
assumption that 7 and 7’ are different. Therefore, our initial
assumption that k£ < j cannot hold and vertex w;,; should
exist.

Finally, by construction of ¢ ., we have ¢ (w;11) =
m(w;). Now, since wji1 ¢ Pr(u') (otherwise w;iq
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would be be the branching vertex instead of w;), we
have P’ (wj+1) = 7T/(IU]HLl) From Pru = Pr’us WE
get pru(wijt1) = @aw(wjs1). Combining these three
equalities, we get m(w;) = 7' (w;4+1) as desired. |

Proof of Claim V.8 part 5.: Suppose for the sake
of contradiction that w;1; ¢ LFMIS(G,n’) and let z :
elimg -/ (w;41) be the eliminator of w;41 in LFMIS(G, 7).
Since wjt1 ¢ LFMIS(G,7), it holds that «'(x)
7' (w;41). Moreover, by Claim V.8 part 4, 7'(w;41)
m(w;); combined with inequality 7'(x) < 7'(w,;11), this
implies that 7'(z) < m(w;). Note also that, by Claim V.8
part 2, the two permutations 7 and 7’ are exactly the same
on the set of vertices with rank less than m(wj;); since z is
among such vertices,

7' (z) < m(wy). (6)

Another implication of the equivalence of the two permu-

tations on vertices with rank less than 7w(w;) is that since

xz € LFMIS(G, ") (which holds since z is the eliminator

of w; 41 in LFMIS(G, 7)) we also have x € LFMIS(G, 7).

This in turn, implies that x is the eliminator of w;y1 in

LFMIS(G, ) as well. On the other hand, since w;4q is a

vertex in path P, (u), by definition of the propagation-paths,

it should hold that w;,1 € A,. Moreover, by definition of

A, we have elimg »(wj41) # elimgr (w;41) where G is

defined as G[V \ {v}]. Denoting elim¢g’ »(w;41) by y and

noting that z = elimg (w;4+1), we get y # z. Therefore,
one of the following cases should occur:

Case 1: 7(y) < w(z). In this case, the fact that z is
the eliminator of w;;; in LFMIS(G, ) even though
7(y) < w(x) means y ¢ LFMIS(G, ). On the other
hand, y € LFMIS(G’,7) since y = elimgr »(wjt1),
therefore y € F, by definition. However, this contra-
dicts w; = pr(wjt1) since by (6), 7(y) < w(z) <
m(wj;) , thus, y should be the parent of w;; instead
of wy.

Case 2: 7(y) > w(z). Similarly, in this case, the fact that
x is not the eliminator of w;4; in LFMIS(G’, ) even
though 7(z) < 7(y) implies that x ¢ LFMIS(G’, ).
This means that x € F, and again, since m(z) <
m(w;), « has to be the parent of w;;1 instead of wj.

(z)

To wrap up, w;+1 ¢ LFMIS(G, ') leads to a contradiction,
thus w;y1 € LEMIS(G, 7). [

C. Unlikely Permutations: Proof of Lemma V.4

The LEMIS over a permutation 7 can be parallelized in
the following way. In each round, each vertex that holds
the minimum rank among its neighbors joins the MIS and
then is removed from the graph along with its neighbors
(note that this, in parallel, happens for several vertices in
each round). Fischer and Noever [20], building on an earlier
approach of Blelloch et al. [14], showed that if permutation
7 is chosen randomly, with probability at least 1 — n =2, it
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takes O(logn) rounds until the graph becomes empty.” This
result as a black-box does not prove Lemma V.4. However,
to prove this upper-bound on round-complexity, they indeed
upper bound the maximum size of dependency-paths which
are structures that are very close to propagation-paths:

Definition V.9 ([20, Definition 2.1]). A path wy,ws, ..., wg
in the graph is a dependency-path according to permutation
m, if for any odd i € [k], vertex w; is in LFMIS(G, )
and for any even i € [k], w; & LFMIS(G,7) and w;—1 =
elimg - (w;).

Recall that indeed, if wuq,...,uy iS a propagation-path,
then for every i € [k—1], u; = elimg »(u;41) by definition.
Moreover, by Claim V.3, except for the last vertex in the
propagation-path, the odd vertices are in the MIS and the
even vertices are not. Therefore:

Observation V.10. [f there exists a propagation-path of size
{ in the graph, then its first {—1 vertices form a dependency-
path.

Fischer and Noever [20] prove that with probability
1 — n~2, every dependency-path has size O(logn) if 7 is
chosen at random. Therefore, from Observation V.10, we
get that the probability of having a propagation-path with
size Blogn, if § is a large enough constant, is at most n "2,
which completes the proof of Lemma V.4.

VI. FULLY DYNAMIC MIS: PUTTING EVERYTHING
TOGETHER

A. The (Concrete, Non-Parametrized) Running Time

In this section, we show how combining Lemma IV.1 with
Lemma V.1 proves the main claim of this paper that MIS
can be maintained in polylogarithmic update-time.

Theorem 1 (restated). There is a data structure to maintain
an MIS against an oblivious adversary in a fully-dynamic
graph that, per update, takes O(log® A - log®n) expected
time. Furthermore, the number of adjustments to the MIS
per update is O(1) in expectation.

Proof of Theorem 1: Consider insertion or deletion of
an edge e = (a,b). As before, we use A to denote random
variable min{x(a),w(b)} and use A to denote the set of
vertices whose eliminators change as a result of this edge
update. By Lemma IV.1, we have

E[update-time for an edge e = (a, b)]
=E[O(]A| -log A - min{A~" -logn,A})]
=O(log A) -E[|A| - min{\~! - logn, A}]

= O(log A -logn) - E[min{)\_l -logn, AH @)

SWe note that the success probability of these works is actually 1 —n—¢

for any desirable constant ¢ > 1 affecting the hidden constants in the
round-complexity. For our purpose, ¢ = 2 is sufficient.
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The third equation follows from E[|A| | A] < O(logn)
which was proved in Lemma V.1, combined with the fact
that if for two possibly dependent random variables y; and
y2, E[y1|y2] < B, then E[y; - y2] < BE[ys]. To bound the
random variable inside the expectation, suppose we partition
the [0,1] interval into A sub-intervals Iy,...,Ia where
I; = [, %] for any i € [A]. Note that if A € I; then at
least one of 7(a) and m(b) is in I;. Therefore, a simple union
bound implies that Pr[\ € I;] < Pr[r(a) € I;] + Pr[n(b) €
I;] = 2/A. We, thus, have:

E[min{A™" -logn, A}]
A
> PrAe L] -E[min{A™" -logn, A} | A € I}]

2 (o

A
1
= O(logn) Z = O(log A -logn).

i=1

~.
—

IN

2 s

ngls

Replacing this into (7) suffices to bound the expected update-
time by O(log® A-log” n). Furthermore, as mentioned before
in Section II, we already know from [15, Theorem 1] that
the expected adjustment complexity of random order LFMIS
is O(1), completing the proof. [ |

B. Deferred Proofs

We start by proving Observation I'V.3 which is crucial for
the algorithm’s correctness.

Observation IV.3 (restated). For any vertex v € A, the
following properties hold:

1) ki—1(v) > w(a) and ki(v) > w(a).
2) ifv # b, then v has a neighbor u such that w(u) < m(v)
and u € F.

Proof of Observation IV.3 part 1: Let U denote the set
of vertices v in V' with 7(v) < 7(a). Observe that the two
induced subgraphs G;[U] and G;_1[U] are identical since
the only difference between G; and G;_; is insertion/dele-
tion of edge e = (a,b) whose endpoints both have rank at
least 7(a) (recall that w(a) < 7(b)) and thus neither belongs
to U. Since the MIS is constructed greedily on lower rank
vertices first, the set of MIS vertices in G¢[U] and G;_1[U]
according to 7 are exactly the same. Let Iy denote these
MIS nodes. Note that any vertex v with k;—1(v) < 7(a)
should have a neighbor in I;;. Since both end-points of edge
e are in V' \ U, the set of neighbors of Iy in both graphs
G, and G;_ are also identical. Therefore for each vertex v
with k;_1(v) < 7(a), we have k;(v) = k;—1(v) and thus v
cannot be in A by definition. By a similar argument, for any
vertex v with k;(v) < m(a) we also have k;_1(v) = ki (v)
and thus v &€ A. [ ]
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Proof of Observation 1V.3 part 2: The assumption v €
A implies that the eliminator of v has changed after the
update. Let w be the eliminator of v before the update. If
the MIS-status of no neighbor u of v with 7(u) < 7(w)
changes, since v # b and the set of neighbors of v are the
same before and after the update, then w remains to be the
eliminator of v. Therefore, to have v € A, the MIS-status
of at least one of v’s neighbors changes and this vertex is
in F by definition. ]
We first prove the correctness of each of the subroutines
and then that of the overall algorithm. These subroutines are
proven to be correct by the end of any iteration ¢ conditioned
on the assumption that Invariants IV.4-IV.6 (or a subset of
them) hold at the start of iteration 7. We later inductively
prove that these invariants hold and that indeed the whole
algorithm is correct.

Claim VIL.1. By the end of any iteration i, subroutine
ISAFFECTED(v) correctly decides whether the lowest-rank
vertex v € S is in set A in time O(|P(v)|) given that
Invariants 1V.4-1V.6 hold by the start of iteration 1.

Proof: The algorithm clearly takes O(|P(v)|) time
since it only iterates over the vertices in P(v) to decide
on the output. In what follows, we prove its correctness. As
in the algorithm’s description, we consider two cases where
v = b and v # b individually.

Case 1 v = b: In this case, the algorithm decides b € A
if and only if m(a) = 1 and k(b) > w(a). We show that
this is indeed correct.

The if part. We show that if m(a) =1 and k(b) > 7(a),
then b € A. Observe from Invariant IV.4 that at this point
in the algorithm, we have k(b) = k;_1(b). Therefore, the
k(b) > m(a) assumption implies k;_1(b) > m(a). Moreover,
the MIS-status of vertex a cannot change as it is the
lower-rank vertex of the updated edge, thus, it holds that
m¢(a) = my_1(a) and consequently m(a) 1 implies
a € LFMIS(G;—_1, 7). Combining these, the eliminator of b
has to be a iff there is an edge between a and b. Therefore,
updating edge e = (a,b) definitely changes b’s eliminator
and thus b € A.

The only if part. Suppose that one of the conditions do
not hold, we show b ¢ A. First, if k¥ < w(a), then by
Observation IV.3 part 1, b ¢ A as desired. Moreover, if
m(a) = 0, as before, we should have m;_1(a) = ms(a) =0
since « is the lower-rank vertex of the update. As a result,
insertion or deletion of e cannot have an effect on the
eliminator of b and thus b & A.

Case 2 v # b: In this case, the eliminator of v changes
if and only if at least one of the following conditions hold:
(1) the eliminator of v in time ¢ — 1 leaves the MIS, (2) at
least a vertex u adjacent to v with 7(u) < k(v) joins the
MIS. If none of these conditions hold, then elimg, , - (v)
remains to be the smallest-rank vertex in {b} U N(b) that
is in the MIS after the update; therefore by definition of

395

eliminator, k;_1(v) = k¢(v) and thus v & A.

Our algorithm precisely checks these conditions. For
condition (1), if the eliminator v := elimg, , .(v) leaves
the MIS after the update, it should by definition belong to
F. Note that by invariant IV.5, P(v) exactly contains the
neighbors w of v with w € F and 7(w) < m(v). Therefore
if w € P(v), then condition (1) holds and v € A. Our
algorithm also checks condition (2) by finding the lowest-
rank vertex w in P(v) with m(w) = 1 and then comparing
its rank with k;_1(v). [ |

Claim VI1.2. At any iteration i, with probability at least 1 —
n= (D set H, has size O(min{A, I:é%an ). Furthermore,
subroutine FINDRELEVANTNEIGHBORS (v, w(a)) correctly
finds the set H., in time O(|H,|-log A), given that Invariant

IV.6 holds by the start of iteration 1.

Proof:

Size of H,: Observe that if H, is defined, then as
assured by the condition in Line 5 of Algorithm 1, v € A
thus by Observation IV.3, k;_1(v) > 7(a). Furthermore, by
definition, every vertex u € H, has k,_1(u) > m(a). This
means that if we take LFMIS of G;_; induced on vertices
with rank in [0, 7(a)) and remove them and their neighbors
from the graph, v and all of its neighbors in H, will survive.
Recall that the adversary is oblivious and the graph G;_1 and
random permutation 7 are chosen independently. Therefore,
applying Proposition III.1 on graph G;_; with p = 7(a)
bounds |H,| by O(r(a)"!logn) w.h.p. Moreover, clearly
|H,| < A since they are neighbors of v, concluding the
bound on the size of H,,.

Correctness: The assumption that Invariant IV.6 holds
implies that N~ (v) = N, ,(v) and N*(v) = N7, (v).
Therefore, FINDRELEVANTNEIGHBORS(v, w(a)) correctly
finds H,.

Running time: Since the vertices v € N~ (v) are
indexed by k;_1(u) and the algorithm iterates only over the
neighbors u of v in this set with k;_1 (u) > 7(a), the running
time of this part is O(|H,|log A) where the log A factor
comes from searching in this BST which has size A at most.
However, note that the algorithm iterates over all vertices
in N*(v) since it is not indexed by k:—1(.). Therefore,
we have to prove |N1(v)| cannot be larger than |H,|. We
know from Invariant IV.6 that for any vertex u € N*(v),
we have k;—1(u) > ki—1(v). Moreover, since v € A, by
Observation 1V.3, k;_1(v) > mw(a). Combining the two, we
get that k;_1(u) > m(a). This means that every vertex
u € NT(v) that is still a neighbor of v after the update,
should be in set |#,|. Since at most one edge is removed
from the graph at time ¢, we have |NT(v)| < |[H,| + 1,
completing the proof. |

Claim VL3. Let v be the lowest-rank vertex at the start of an
arbitrary iteration. Subroutine UPDATEELIMINATOR (v, H.,,)
correctly updates k(v) and m(v) of vertex v in time O(|H,|)
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assuming that Invariant IV.4 holds by this iteration.

Proof: 1t is clear that the algorithm takes O(|H,]|) time,
here we prove its correctness. Note that at the time of using
subroutine UPDATEELIMINATOR (v, H,,), we know v € A.
Therefore, from Observation IV.3 part 1, we know k;(v) >
m(a) and k¢—1(v) > 7(a). We consider the two cases where
m¢(v) = 1 and my(v) = 0 differently.

Suppose that my(v) 0 and let w be the elimina-
tor of v after the update, i.e., m(w) = ki(v) (note that
since m(v) = 0, w # v). We first show w € H, by
proving that k;_1(w) > m(a). Suppose for contradiction
that k;—1(w) < 7(a). Then by Observation IV.3 part 1,
w ¢ A and consequently w ¢ F since F C A. Since
w is the eliminator of v in Gy, we have m(w) 1.
Moreover, for w ¢ F, we also get m;_1(w) = 1 which,
by definition, means w has to be its own eliminator in G;_1
and thus k;_1 (w) = m(w). Combined with k;_1(w) < 7(a),
this would mean 7 (w) < 7(a). This, however, contradicts
kt—1(v) > w(a) since v has a neighbor w in MIS of G;_1
with rank smaller than 7(a) and thus it should hold that
ki—1(v) < m(a). This contradiction implies that indeed
k:—1(w) > 7(a) and thus w € H,,. Furthermore, in this case,
since w(w) < 7(v), by Invariant IV.4, m(w) = my(w) =1
and indeed the lowest-rank vertex u in H, with m(u) =1
should be vertex w and the algorithm is correct.

On the other hand, if m:(v) = 1, then no lower-rank
neighbor of v should be in the MIS. In this case, once we
scan the set #H,,, we will not find any vertex u with a lower-
rank than 7(v) and m(u) = 1, thus we correctly decide that
v is in the MIS and update m(v) and k(v) correctly. |

Claim VI.4. Subroutine UPDATEADJACENCYLISTS() cor-

rectly updates the adjacency lists and with probability at

least 1 — n=¢, takes O(|A| - min{A, f(ga?} - log A) time
given that for any vertex v, k(v) = k¢(v).

Proof: The only edge update is between vertices a
and b and the algorithm first accordingly addresses this
change by updating N*(a), N~ (a), N*(b), and N~ (b).
For the rest of the vertices, we do not have an edge update
but the changes to the adjacency lists are resulted by the
changes to the eliminators. For a vertex v, these changes
are limited to moving its neighbors between N7 (v) and
N~ (v) or possibly re-indexing its neighbors in N~ (v)
whose eliminator has changed.

We say an edge (v,u) causes an update iff position of u
and v or their indexing in each others’ adjacency lists (N
or N7) needs to be updated. Let T denote the set of these
edges. Note that by definition of N* and N—, if u ¢ A
and v ¢ A, then (v,u) ¢ T. This means that at least one
end-point of any edge in 7 is in A.

Assume w.l.o.g. that for edge (v,u) € T, we have v €
A. We claim that w € H, should hold. To show this, we
assume that u ¢ #, and obtain a contradiction. Recall that
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we have u ¢ H, iff k(u) < 7(a). By Observation IV.3 part
1, this would imply k;—1(u) < ki—1(v), ke(u) < k(v), and
u ¢ A. Because of ki_1(u) < ki—1(v) and ki (u) < ki(v),
the position of vertices u and v in each others adjacency
lists remains unchanged. That is, we have v € N (u), v ¢
N~ (u), u € N~ (v), and w ¢ N~ (v) at both times ¢ and
t — 1. Moreover, since u ¢ A, we have ky_1(u) = ki(u)
and thus w is already correctly indexed in N~ (v). This is,
however, a contradiction since position of « and v and their
indexing in each others’ adjacency lists is already updated
and as a result (v,u) ¢ T. Therefore, it should indeed hold
that u € H,.

In subroutine UPDATEADJACENCYLISTS(), for any ver-
tex v € A we go over its neighbors u € H, and determine
the membership of vertex v in adjacency lists of vertex u
and vice versa. To do so, by definition of Nt and N~ we
only need values of k;(v) and k:(u) which are assumed to
be updated (in the statement of the claim). We then update
N~ (v), N*(v), N~ (u) and N*(u) accordingly; thus the
algorithm correctly updates the adjacency lists.

To analyze the running time, using Claim VI.2, we know
that for any vertex v € A, set H,, has size O(min{A, l;’(ga’; b
with probability at least 1—n~(°t1)_ Also, each update takes
O(log A) time since it consists of at most four insertions
and deletions in adjacency lists which are stored as BSTs.
Overall, this means that the running time can be bounded

by O(|A] - min{A, lﬁfa?} -log A) with probability at least
. |

1—n

Claim VL5. If Invariant IV.4 holds by some iteration i, then
Invariant IV.5 also holds by iteration 1.

Proof: Let u be any vertex adjacent to v with m(u) <
7(v) and w € F. In other words, any vertex that should be in
set P(v) for the Invariant IV.5 to hold. Assuming that Invari-
ant IV.4 holds, we know that m(u) = m:(u) and m(u) #
my—1(u). Observe that in the algorithm, updating m(u) only
happens in subroutine UPDATEELIMINATOR(v, #,) which
is followed by adding u to set P(.) of any vertex in set H,,
if u is flipped. Set ‘H,, by definition includes vertex v since
k(v) > m(a) and w(v) > 7(u). This proves that set P(v)
satisfies Invariant IV.5. ]

Claim VI.6. Let v be the lowest-rank vertex in S in
an arbitrary iteration © of the algorithm. Assuming that
Invariant IV.4 holds at the start of iteration i we have:
1) If S = () at the end of iteration i, for any vertex u € V,
m(u) = my(u) and k(u) = ki(u).
2) If § # () at the end of iteration i, then Invariant 1V.4
holds at the start of iteration © + 1 as well.

Proof: Let 8’ denote set S at the end of iteration ¢
and let v’ be the lowest-rank vertex in that. Throughout the
proof, by & we mean set S at the start of iteration ¢ and we
use v to refer to its lowest-rank vertex. Let us first review
Invariant TV.4. It states that for any vertex u, if w(u) < m(v)
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then k(u) = ki—1(u), and m(u) = m;—1(u) hold and
otherwise we have k(u) = k;—1(u), and m(u) = my_1(u).
We first show that k(v) and m(v) are updated at the end
of iteration ¢. By claim VL5, we know that Invariant IV.5
holds at the start of iteration ¢ and by Claim VLI, we
know that holding Invariant IV.5 means that subroutine
ISAFFECTED(v) correctly detects if v € A or not. Moreover,
by Claim VL3 if v € A, in the next step, algorithm correctly
updates k(v) and m(v). At this point of the algorithm, we
know that for any vertex u with 7(u) < m(v), we have
k(u) = ki(u) and m(u) = my(u).

Now, let u be the vertex with the lowest-rank among
the vertices in .4 whose rank is greater than 7(v). To
complete the proof it suffices if we show that if such a
vertex exists, then ©v € &’. This means that if S’ = 0,
then for any vertex u € V, we have m(u) = m(u)
and k(u) = ki(u). Moreover, for the case of S" # (), it
results that for any vertex u, with m(u) < 7(v") we have
m(u) = m¢(u) and k(u) = k¢(u) or in the other words that
Invariant IV.4 holds at the start of iteration ¢ + 1. We use
proof by contradiction by assuming that there exists a vertex
u in set A but not in S’ such that for any vertex u’' with
m(u') < 7(u) we have m(u') = my(v'), and k(u') = ky(u').
By Observation V.2, any vertex in .4 has a neighbor in F
with a lower rank. Let «’ be such a neighbor of u. By the
assumption that all neighbors of u with a lower rank has
updated m(.), we have m(u’) # m;_1(u’). Observe that in
the algorithm, updating m(u’) only happens in subroutine
UPDATEELIMINATOR (v, H,,+) which is followed by adding
vertices in H,, to S. Set H,,, by definition, includes vertex u
since k(u) > m(a) (otherwise by Observation IV.3, u ¢ A )
and 7(u) > 7(u'). Thus, we obtain a contradiction and the
proof is completed. [ ]

Claim VL7. Invariants IV.4, 1V.5, and IV.6 hold throughout
the algorithm with probability 1.

Proof: First, observe that Invariant IV.6 holds since
Line 12 is the only part of the algorithm that we modify the
adjacency lists. Moreover, by Claim VI.5, the correctness of
Invariant IV.5 results from Invariant IV.5. Thus, we only
need to show that Invariants IV.4 holds throughout the
algorithm. We do so using induction. As the base case,
in the first iteration of the algorithm we have S = {b}
(or S = () which does not need a proof). We need to
show that for any vertex u if w(u) < w(b) we have
k(u) = ki(u), and m(u) = my(u) and if w(u) > m(b)
we have k(u) = ki—1(u), and m(u) = ms—1(u). Before the
start of this iteration we have not changed k(u) and m(u)
of any vertex w thus for all of them k(u) = ki—1(u) and
m(u) = my—1(u). Moreover, by Observation V.2, updating
edge e does not affect a vertex « with w(u) < m(b) which
means that for any such vertex we have k:(u) = ki—1(u).
Therefore, we conclude that Invariants 1V.4 holds for the
base case. This completes the proof since the induction step
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is a direct result of Claim VI.6. |
We continue with a simple observation and then turn to
formally prove the running time.

Observation VL8. Let v; and v; respectively denote the
lowest-rank vertices of S in two arbitrary iterations i and j
of Algorithm 1. If i < j then 7(v;) < w(v;).

Proof: We show that this claim holds for j = ¢ + 1
which can be inductively used to generalize it to any
arbitrary ¢ and j. Let §; and S; respectively denote set
S at the beginning of iteration ¢ and set S at the beginning
of iteration ¢ + 1. We know that v;y; is either inserted to
S in iteration ¢ or that it is in set S;. Observe that any
vertex added to S in the i-th iteration has rank lower than
m(v;) and that v; is the lowest-rank vertex in S;. As a result
’/T(’Ui) < W(UiJrl). | |

Claim VL9. With probability at least 1 — n™°, the total
running time of the algorithm until the set S becomes empty

is at most O(|A| - log A - min{ &% 'A}).

m(a)’

Proof: To prove this claim, we first show that |S| and
Y ves |P(v)| are both O(|Al - log A - min{ I:(ga’;,A}) with
probability at least 1 — n~¢. Observe that in the algorithm,
we only add vertices to these sets in Line 10. Moreover,
by Observation V1.8, each vertex is removed from S at
most once. Thus, the algorithm runs this line for any vertex
v € A and any vertex v in its H, only once. Therefore, by
Claim VI.2, the number of times the algorithm adds a vertex
to these sets adds up to O(].A| - log A - min{ ff’ar)b,A}) with
probability at least 1 — n~¢. Note that |S| is equal to the
number of iterations in the algorithm and }° _o|P(v)| is
the overall time that the subroutine ISAFFECTED(v) takes
over all iterations. Moreover, for any vertex v € A we
run Lines 5-10 of the algorithm which by Claim VI.3 and
Claim VI.2 take O(logA - min{ l;’(ga?,A}) time. To sum
up, the total running time of the algorithm until the set
S becomes empty is O(|A] - log A - min{ ffar)‘,A}) with
probability at least 1 —n~¢. ]

We are now ready to prove Lemma IV.1.

Lemma 1IV.1 (restated). There is an algorithm to up-
date LFMIS(G, ) and the data structures required for
it after insertion or deletion of any edge e (a,b) in

o(|A| min{A, ol Y log A)

time w.h.p.

Proof: By Claim V1.9, with probability at least 1 —n~¢
it takes O(]A| - log A - min{ lf‘r’(ga/’)L,A}) time until set S
becomes empty. We further show that when this happens
we have m(v) = my(v) and k(v) = ki(v). This is a direct
result of Claim VI.7 and Claim VI.6. The former stated that
Invariant IV.4 holds throughout the algorithm and the latter
states that if Invariant IV.4 holds in the last iteration of the
algorithm, then for any vertex v we have m(v) = m.(v) and
k(v) = ki(v). Moreover, using Claim VI.4 we know that
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subroutine UPDATEADJACENCYLISTS() correctly updates

c

the adjacency lists and with probability at least 1 — n™°,
it takes O(| A - log A - min{A, ffar)b}) time given that for
any vertex v we have k(v) = ki(v). This completes the
proof and we obtain that with probability at least 1 — n~¢,
Algorithm 1 correctly updates all the data structures in

O(JA| - log A - min{&" 'A}) time. [ |

w(a)’

VII. EXTENSION TO FULLY DYNAMIC MAXIMAL
MATCHING

What is Different: It is well-known that MM of a
graph can be found by first taking its line-graph and then
constructing an MIS on it. Doing so, the edges in the original
graph that correspond to the MIS nodes in the line-graph will
form an MM. However, the line-graph may be much larger
than the original graph and thus expensive to construct and
maintain. Nonetheless, because of the very specific structure
of line-graphs, we can indeed implement (a simpler variant
of) the same algorithm for MM without going through an
explicit construction of the line-graph. In what follows, we
highlight the main differences between our MIS algorithm
and its MM implementation.

The first difference is that for LFMM, the random ranking
7 has to be drawn on the edges instead of the vertices and
thus we cannot fix 7 in the pre-processing step. However,
this is easy to handle: We draw the rank 7(e) € [0, 1] of any
edge e randomly upon its arrival.

The second difference is where the specific structure of
line-graphs helps significantly. The set of edges whose MM-
statuses change as a result of an edge update form a single
path or a single cycle. In fact, this holds true for any arbitrary
ranking 7 over the edges. This is in sharp contrast with
MIS, where the propagations may branch (consider a star
and assume that the center leaves the MIS). This branching
is precisely what complicates the proof of Theorem 3 for
MIS. Since we do not have this problem for MM, we can
directly bound the set of edges with different MM-statuses
by O(logn), w.h.p., using a reduction to the parallel round
complexity of random-order LFMM [14, 20]. Therefore, the
analog of Theorem 3 for MM is significantly easier to prove.
It also simplifies the algorithm we use to detect the changes
to MM (compared to MIS).

The third difference is simple, but plays a crucial role in
both adapting the MIS algorithm to MM and also simplify-
ing it. Instead of storing the adjacency lists on the edges,
which is the natural idea if one constructs the line-graph
explicitly, we can simply store them on the vertices. In fact,
because of this difference, it also turns out that for MM,
we do not need to partition the adjacency lists into Nt
and N~. That is, we can afford to keep an adjacency list
N(v) on each vertex v including all incident edges to v,
where each edge e € N(v) is indexed by its eliminator’s
rank. The main reason that this is feasible, here, is that if
the eliminator of an edge e = (u, v) changes, we only need

to re-index e in N(u) and N (v). However, for MIS, if the
eliminator of a vertex w changes, we may have to re-index
u in the adjacency lists of all of its neighbors.

Algorithm Setup: Suppose that we have fixed the
ranking 7 on the edges. As described above, we can draw
7(e) € [0,1] for any edge e in the graph at the time of its
arrival. In what follows, considering update number ¢, which
can be an edge insertion or deletion, we describe how to
address it and update LFMM(G;_1, ) to LFMM(G¢,7) in
polylog n time.

Analogous to the MIS algorithm, we define A := {w |
elimg, »(w) # elimg, , ~(w)} to be the set of edges
whose eliminator changes after the update and call these
the affected edges. Moreover, we define F to be the set of
edges whose MM-status changes after the update; we call
these the flipped edges. Note that 7 C A. We first provide
the following algorithm.

Lemma VIL1. There is an algorithm to update
LFMM(G, r) and the data structures required for it
after insertion or deletion of any edge f = (a,b) in
O(\]:| min{A, féf;} log A) time, w.h.p.

Note a subtle difference between Lemma VII.1 and the
similar Lemma IV.l1 we had for MIS: Here, the running
time is parametrized by |F| whereas in Lemma IV.1 it is
parametrized by |.Al.

We will later prove in Section VII-D that the running time
in Lemma VIL1 is actually bounded by O(log® Alog® n) in
expectation, thus, proving Theorem 2.

A. Data Structures

We maintain the following data structures on each edge
e in graph G.

e m(e): A binary variable that is 1 if edge e €
LFMM(G, 7) and O otherwise.

e k(e): The rank of e’s eliminator, ie., k(e) =
7(elimg . (e)). Note that m(e) = 1 iff k(e) = w(e).

Furthermore, for any vertex v, we maintain the following
data structures.

e k(v): If an edge e € LFMM(G, ) is connected to v,
then k(v) = 7(e); otherwise, k(v) = oo.

o N(v): The set of edges connected to vertex v. The set
N (v) is stored as a self-balancing binary search tree
and each edge e in it is indexed by k(e).

Similar to MIS, in the pre-processing step, we can simply
construct the LFMM of the original graph Gy = (V, Ey)
and fill in the data structures above in O((|V|+|FEy|) logn)
time.
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Algorithm 2. Maintaining the data structures after inser-
tion or deletion of an edge f = (a,b).

1 S« {f}

2 while S is not empty do

3 Let e = (u,v) < argmin, g m(e') be the
minimum rank edge in S.

UPDATEDATASTRUCTURES(€)
k(e), m(e), k(v), k(u), A, and F.

if e € 7 then

He < {e/ € Nw)UN(u) | kp—1(e') >

(/)

/1 Tt can be found in time O(log A - |H.])
since N(v), and N(u) are indexed by
E(.).

for any edge €’ € H. with w(e') > m(e)

do
| insert ¢’ to S.

/I Updates

8

Remove e from S.

9

10 UPDATEADJACENCYLISTS()
adjacency lists where necessary.

/I Updates

B. The Algorithm

The following observation is analogous to Observa-
tion I'V.3 for MIS and motivates the same iterative approach
in determining the changes in MM.

Observation VIL.2. For any edge ¢ € A, the following
properties hold:

1) ki—1(e) = 7(f) and ki(e) = m(f).
2) if e £ f, then e has a neighbor ¢’ such that w(e’) <
m(e) and ' € F.

Algorithm 2 formalizes how our data structures can be up-
dated after each edge insertion/deletion. The subroutines not
formalized in the algorithm will be formalized subsequently.

We use iteration to refer to iterations of the while loop in
Algorithm 2. The following invariants will hold throughout
the algorithm.

Invariant VIL3. Consider the start of any iteration and let
e be the lowest-rank vertex in S. It holds true that k(e') =
k(') and m(e’) = my(e') for any edge ¢’ with w(e') <
w(e), i.e, k(e') and m(e') already hold the correct values.
Moreover, k(e') = ki—1(€e’) and m(e') = my_1(€’) for every
other edge ¢’ with w(e') > w(e).

Invariant VIL.4. Consider any vertex v in an arbitrary iter-
ation of the algorithm, and let M,, = {e € E | m(e) = 1}.
Throughout the algorithm, it holds that if M, #* (), then
k(v) = minee s, 7(e), and otherwise k(v) = oo.

We continue by formalizing all subroutines used in Algo-
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rithm 2.

Subroutine UPDATEDATASTRUCTURES(e): Let u and
v denote the two end-points of edge e. This function updates
k(e), m(e), k(v), and k(u) which also determines the
membership of e to sets A and F. Let x = min(k(v), k(u)).
We show that e joins the matching iff 2 > 7(e) which results
inm(e) «+ 1, k(e) < w(e), k(v) + w(e), and k(u) + 7(e).
Otherwise, we have m(e) <— 0 and k(e) < z. Note that if e
was previously in the matching and is flipped now, we need
to update k(v) and k(u) if they are equal to 7(e). We show
that if e is removed from the matching and k(v) = 7(e)
then we should set k(v) + oo and the same for vertex u.

Subroutine UPDATEADJACENCYLISTS(): We first up-
date N(a) and N(b). We remove f from both these sets if f
is deleted and add it otherwise. Also, for any affected edge
e = (u,v) we need to update its index in sets N(v) and
N(u). We do so by a single iteration over set .A. Due to
the fact that adjacency lists are BSTs with size O(A), this
takes O(|A|log A) time.

C. Correctness & (Parametrized) Running Time

The correctness of Algorithm 2 follows from basic ar-
guments and the greedy structure of LFMM and hence we
defer it to Section VII-E. Here, we discuss why the running
time of the algorithm is O(|F|min{A, f(gf?}logA) as
claimed in Lemma VII.1. The complete proof of both the
correctness and running time of the algorithm is presented
in Section VII-E.

Using a similar argument used for MIS, we can use

Proposition II1.2 to prove (see Section VII-E):

Claim VILS. At any iteration i, with probability at least
1 —n=(+D, set H, has size O(min{A, f(gfgl}) and can be
constructed in time O(|H.|log A).

Let us first analyze the running time before the last
line where we update adjacency lists. Observe that any
edge ¢’ that is added to set S belongs to H. of an edge
e € F. Therefore, at most O(|F|min{A, f(gf’;‘}) edges
are added to S. Note that, if an edge ¢/ € S is not
in set F, we only spend O(1) time for it in subroutine
UPDATEDATASTRUCTURES(€’). Thus, the total time spent
on all edges not in F is indeed O(|F| min{A, l:(ng)L}) On
the other hand, for each edge e € F, the most expensive
operation is to find set H, which Claim VIL5 shows can
be done in O(|H.|log A) time. Therefore, the total running
time before UPDATEADJACENCYLISTS() can be bounded
by O(|F|min{A, l;’ff’;} log A).

Next, in the UPDATEADJACENCYLISTS(), we only iterate
over all edges in A and update their position in their
end-points. This takes O(|A|logA) time. Note that by
Observation VIL.2, any edge ¢ € A is adjacent to an edge
e € F and k;_1(e’) > m(f). This means that ¢/ € H. and
by Claim VILS5:
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logn

Observation VIL.6. Wh.p.,

Al < O(|F| min{A, 2n}).

7w (f)
Therefore, the overall running time is indeed
O(|F| min{A, I:(gf’;} log A) as claimed in Lemma VIL1.

D. Putting Everything Together: Proof of Theorem 2

Before proving Theorem 2 we need the following high
probability bound of O(logn) on |F| which we prove in
Section VII-E.

Claim VIL7. Let G and G’ be two graphs that differ in only
one edge and let ™ be a random ranking on their edges.
Then, w.h.p., there are at most O(logn) edges that have
different MM-statuses in LFMM(G, 7) and LFMM(G’, ).

Now, we are ready to prove Theorem 2.

Theorem 2 (restated). There is a data structure to maintain
a random-order lexicographically first maximal matching
against an oblivious adversary in a fully-dynamic graph
that per update, takes O(logQA - log? n) expected time.
Furthermore, per update, the adjustment-complexity is O(1)
in expectation.

Proof: We use Algorithm 2. Combination of
Lemma IV.1, and the fact that |F| < O(logn) w.h.p.
due to Claim VIL7, bounds the update-time of this
algorithm, w.h.p., by

O(log Alogn) min{A, 1;5:;}
_ 2 N 1
= O(log Alog”n) mm{A, 7r(f)}

Since 7(f) is chosen from [0,1] uniformly at random,
E[min {A, g)}] = O(logA) Thus, the total running

time is O(log” Alog® n) in expectation, as required by the
theorem.

For the adjustment-complexity, similar to MIS, it is shown
in [15, Theorem 1] that LFMIS over random rankings
requires O(1) expected adjustments under vertex updates.
On the line-graph, this implies that if an edge is added or
removed, the number of changes to LFMM over a random
ranking is O(1) in expectation; concluding the proof. N

E. Deferred Proofs

Observation VIL.2 (restated). For any edge e € A, the
following properties hold:

1) ki—1(e) > 7(f) and ki(e) > w(f).
2) if e # f, then e has a neighbor ¢’ such that w(e') <
w(e) and € € F.

Proof of part 1: Let U denote the set of edges
e in E with w(e) < m(f). Consider the subgraph only
containing these edges. Since the matching is constructed
greedily on the lower rank edges first, the set of matching
edges in U does not change after the update. Let My
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denote the matching edges in U. Note that any edge e with
k:—1(e) < w(f) is incident to an edge ¢’ in M. Since e
and €’ are still incident after the update and that updating
f does not change k(e’) we have ki(e) = ki—1(e). This
means that for each edge e with k;_1(e) < m(f), we have
ki(e) = ki—1(e) and thus e cannot be in A by definition.
By a similar argument, for any edge e with k(e) < w(f)
we also have k;_1(e) = ki(e) and thus e & A. [ |
Proof of part 2:

The fact that e € A means that eliminator of edge e
changes after the update. Let €’ be its eliminator before the
update. By definition of the eliminator, for e # f we have
e € A iff the matching status of at least an edge incident to
e with rank at most m(e’) changes. This means that if e is
not incident to any edge in F, then e ¢ A. [ |

Claim VIL8. Ler ¢ = (u,v) be the lowest-rank edge
in S at the start of an arbitrary iteration. Subroutine
UPDATEDATASTRUCTURES(e) correctly updates k(e) and
m(e) in constant time assuming that Invariants VII.3 and
VII.4 hold by this iteration.

Proof: By definition, we know that eliminator of edge e
is its lowest-rank edge in N (v)UN (u) that is in the matching
after the update. By Invariants VIL4 min(k(u), k(v)) is
the rank of an edge who has the lowest-rank amongst the
edges ¢ in N(v) U N(u) with m(e’) = 1. Moreover,
by Invariants VIL3, we know that for any edge e’ with
m(e’) < m(e), we have m(e) my(e’). This means
that min(k(u), k(v)) < m(e) iff there is at least one edge
adjacent to e that is in the matching after the update. In
the subroutine UPDATEDATASTRUCTURES(e), we use this
condition to determine m(e). Further in the subroutine if
m(e) 1 we set k(e) m(e) and otherwise set it to
min(k(u), k(v)) which is correct by definition of elimina-
tor. To sum up, subroutine UPDATEDATASTRUCTURES(€e)
correctly updates k(e) and m(e) for edge e the lowest-rank
edge in S. [ |

Observation VIL9. Let e and €' respectively denote two
edges removed from S in two consecutive iteration of the
algorithm in Line 9. We have 7(e) < w(e’).

Proof: Let S; and S; 1 respectively denote set S at the
beginning of iteration 7 and set S at the beginning of iteration
1+ 1 and let e; and e; 1, be the lowest-rank edges in these
sets. We know that e;; is either inserted to S in iteration
i or that it is in set S;. Observe that any edge added to S
in the i-th iteration has rank lower than 7(e;) and that e; is
the lowest-rank vertex in S;. As a result 7(e;) < m(€;41).

|

Claim VIL10. Let e be the lowest-rank edge in S in
an arbitrary iteration i of the algorithm. Assuming that
Invariants VII.3, and VII.4 hold at the start of iteration i
we have:
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1) If S = () at the end of iteration i, then for any edge e
we have k(e) = ki(e), and m(e) = mq(e) and for any
vertex v we have k(v) = k(v).

2) If S # 0 at the end of iteration i, then Invariants VII.3
and VII.4 hold at the start of iteration i + 1 as well.

Proof: By Claim VIL8, we know that by the end of
iteration 4, for any edge ¢’ with w(e’) < w(e) we have
m(e’) = my(e’), and k(e’) = ki(e’). Let g be the lowest-
rank edge in A whose k(g) or m(g) are not updated at the
end of iteration 7. We show that if such an edge exists it
is in set S. Note that by Observation VIIL.2, edge g has at
least one incident edge ¢’ where 7(¢’) < 7(g) and ¢’ € F.
Since g is the lowest-rank edge whose k(g) or m(g) are not
updated, we get that k(g") or m(g’) are updated. This means
that there was an iteration j < 7 of the algorithm in which
¢’ was the lowest-rank edge in S since k:(¢') = ki—1(g’)
and that in each iteration we only update k() for the lowest-
rank edge in S. Since ¢’ is in F in iteration j, the algorithm
adds all the edges in H. to set S in that iteration. By
definition of H., this set includes edge g. Also, note that
by Observation VIL.9, the rank of vertices removed from set
S is increasing; thus g is still in set S in iteration 4. This
means that if set S is empty then for all edges g, we have
m(g) = my(g) and k(g) = ki(g) and if it is nonempty
Invariants VIL.3 holds in the next iteration.

To complete the proof it suffices to show that if S is
empty at the end of iteration 7, for any vertex v we have
kE(v) = ki(v) and that otherwise Invariants VII.4 still holds
at iteration ¢ + 1. Note that in the ¢-th iteration we do not
change m(e’) if ¢/ # e. Thus, given that Invariants VIL.4
holds at the beginning of iteration ¢, for any vertex v that is
not incident to e we have k = k;(v) at the end of the iteration
as well. Now consider vertex w that is incident to e. If e is
not flipped or if k(u) < w(e) the algorithm does not change
k(u) which is correct by definition of k(u). Therefore, we
only need to consider the case that e is flipped and k(u) >
m(e). In this case, if m(e) = 1, the it is be the lowest-
rank edge adjacent to u with m(.) = 1. Algorithm correctly
detects this and sets k(u) = 7(e) in this scenario. Further,
if m;(e) = 0 (which means m;_,(e) = 1), then there is no
other edge adjacent to u with m(.) = 1 in which case, as
well, the algorithm correctly sets k(u) = co. We achieved
this from the fact that each vertex has at most one edge
with m;_1(.) = 1 and by Invariants VIL.3 any edge u; with
a higher rank than u has k(u;) = ki—1(uq). To sum up,
Invariant VII.4 still holds at the end of iteration 7 and the
proof of the claim is completed. ]

Claim VILS (restated). At any iteration i, with probability
at least 1 —n~(“t1), set H, has size O(min{A, f(gf?}) and
can be constructed in time O(|H.|log A).

Proof:
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Size of He: Observe that if H, is defined, then as as-
sured by the condition in Line 5 of Algorithm 2,e € F C A
thus by Observation IV.3, k;_1(e) > w(f). Furthermore, by
definition, every edge ¢’ € H. has ki_1(e’) > m(f). This
means that if we take LFMM of G;_; induced on edges
with rank in [0, 7(f)) and remove them and their neighbors
from the graph, e and all of its neighbors in H. will survive.
Recall that the adversary is oblivious and the graph G;_1 and
random permutation 7 are chosen independently. Therefore,
applying Proposition II1.2 on graph G;_; with p = = (f)
bounds |H.| by O(w(f)!logn) w.h.p. Moreover, clearly
|He| < 2A — 2 since all edges in it are incident to e,
concluding the bound on the size of ..

Construction of H.: Note that we do not change the
adjacency lists N(.) stored on the vertices until the very
last line of Algorithm 2. Therefore, for any vertex v, we
have N(v) = N;_1(v) before this line. This means that
throughout the algorithm, for any edge e = (u,v) we can
iterate over edges in N(u) and N(v) and find all edges
e’ with k;_q1(e’) > m(a); all these edges will belong to
‘H.. Thus the total time required is O(|H.|log A). Note that
this is possible since N(v) and N(u) are BSTs indexed by
ki—1(.) of the elements in them but comes at the cost of an
extra O(log A) factor as these BSTs can have size up to A.

|
Combining all these claims, we can prove Lemma VII.1.

Lemma VIIL.1 (restated). There is an algorithm to up-
date LFMM(G,w) and the data structures required for

it after insertion or deletion of any edge f = (a,b) in
O(|.7:| min{A, lfr’(gfgl}log A) time, w.h.p.
Proof:

Correctness: We first show that when set S becomes
empty, for any edge e we have k(e) = ki(e), and m(e) =
my(e) and for any vertex v we have k(v) = ki(v). To
do so, we will use proof by induction and show that
Invariants VIL.3 and VIL.4 hold throughout the algorithm.
This proves our claim since by Observation VIL9 if both
invariants hold in the last iteration of the algorithm, then
when set S becomes empty the data structures &(.) and m(.)
are updated for all edges and vertices. By Observation VII.2,
for any edge e’ with w(e’) < 7(f) we have m(e’) = my(e)
and k(e’) = ki(¢’) which means that Invariant VIL.3 holds
in the first iteration. Further, Invariant VIL.4 holds since m(.)
of none of the edges has changed yet. This gives us the base
case of the induction. Moreover, the induction step is a direct
result of Claim VI.5 which states that if both invariants hold
in an arbitrary iteration they hold in the next iteration given
that S is nonempty.

To complete the prove of correctness, we need to show
that when the algorithm terminates, for any vertex v, we have
N(v) = Ng(v). Subroutine UPDATEADJACENCYLISTS()
first modifies the adjacency lists of vertices a and b by
adding e to them if e is to be added or deleting it otherwise.
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Note that as we showed, when the algorithm runs this
subrutine, for any edge e we already have k(e) = ki—1(e),
thus set A is also updated. Therefore, Algorithm 2, correctly
updates the adjacency lists by iterating over edges in .4 and
updating their index in the adjacency lists of their end-points.

Running Time: First, note that by Claim VILS5, with
probability at least 1 — n™°, the size of H. for any edge
e is O(min{A, 821} and constructing that takes time

~(f)
O(log A - min{ l:(ng)L ,A}). Moreover, by Observation VIL.9,
we know that each edge is the lowest-rank edge in set
S in at most one iteration. Putting these facts together
gives us that the number of iterations of the algorithm is
O(]F] - min{ fff’;’,A}) with probability at least 1 — n~°.
We also know by Claim VIL8 that subroutine UPDATE-
DATASTRUCTURES(e) takes O(1) time. Therefore, the total
running time of the algorithm until set S becomes empty
is O(|F| - log A - min{ ljfffgl,A}) with probability at least
1 — n~°. Further, subroutine UPDATEADJACENCYLISTS()
takes O(|.A|log A) time which by Claim VIL6 is bounded

by O(log A-min{ l;’(gf’;, A}) with probability at least 1—n~°.
|

Claim VIL7 (restated). Ler G and G’ be two graphs that
differ in only one edge and let ™ be a random ranking
on their edges. Then, w.h.p., there are at most O(logn)
edges that have different MM-statuses in LFMM(G, ) and
LFMM(G, 7).

Proof: Assume without loss of generality that G’ is
obtained by removing an edge e from G and let F be the
set of edges with different MM-statuses in LFMM(G, )
and LFMM(G’, 7). We first show that: (1) Each edge e € F
with e # f, has a lower-rank neighboring edge in F. (2)
The edges in F form either a single path or a single cycle.

Proof of (1) directly follows from Observation VII.2 part
2. For (2), observe that each edge in JF is in at least
one of the two matchings LFMM(G, ) and LFMM(G’, ).
Therefore, each vertex has at most two incident edges in
F; meaning that each connected component in F is indeed
either a cycle or a path. To see why there cannot be more
than one such connected component, observe that in this
case, at least one connected component does not include f.
Let g be the minimum-rank edge in this component. For g,
(1) cannot hold which is a contradiction.

Now, we show that |F| = O(logn). To do this, we
provide a reduction to the parallel round complexity of
LFMM over random orders.

LFMM can be parallelized, just like LEMIS as described
in Section V-C, in the following way: In each round, all
edges that hold the locally minimum rank among their neigh-
bors join MM, then we remove them and their neighboring
edges. It is known from [20, Corollary B.1] that if ranking
7 over the edges is chosen randomly, then it takes O(logn)
rounds until we find a maximal matching, with probability
1 —n~¢ for any constant ¢ > 1.
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We prove that the parallel round-complexity of random-
order LFMM is at least Q(|F]), implying that w.h.p. |F| =
O(logn) as desired. To do this, observe that by properties
(1) and (2) above, there should be a monotone path P =
(e1,...,ex) in F where m(e;) < m(e;41) for any i € [k—1]
and where & = Q(|F|). (Just take the longest path in F \
{f}, by (1) it has size Q(|F]) and by (2) it is monotone.)
Furthermore, since each edge in P is in F and the edges in
F belong to exactly one of LFMM(G, 7) and LFMM(G’, ),
the edges in P have to alternate between the two matchings.
Suppose w.l.o.g. that the odd ones belong to LFMM(G, 7).
Now, take edge wq;4+1 for any ¢. We show that it takes at
least 4 parallel rounds until this edge joins LFMM(G, 7).
For wsg;4+1 to join the matching, its lower rank neighbor
wy; should be removed so that ws;4; becomes the local
minimum edge. This does not happen until wy;_1 joins the
matching since ws; 1 and we;41 are the only incident edges
to wy; that are in LFMM(G, 7). Now, a simple induction
implies that it takes at least ¢ rounds until ws; 41 joins the
matching, and thus the parallel round complexity is at least
Q(k) = Q(]F]|), which as described, implies | F| = O(logn)
w.h.p. ]

VIII. PROOFS OF PROPOSITIONS III.1 AND III.2:
DEGREE PRUNING

Proposition IIL.1 (restated). Consider a graph G = (V, E),
let 7 : V — [0,1] be a random ranking, and for any real
p € [0,1], define V,, as the subset of V including any vertex
v with (elimg  (v)) > p. Wh.p., for all O(logn) bit values
of p € [0, 1], the maximum degree in graph G[V},] is O(p~* -
logn).

Proof: Let us use LFMIS, (G, ) to denote the subset
of vertices in LFMIS(G, 7) with rank in [0, p]. Any vertex v
with elimg »(v) < p is in set T'(LFMIS, (G, 7)). Therefore,
the set V), is precisely equal to set V' \ I'(LFMIS, (G, 7)).
Therefore, we have to show that once we remove all vertices
in T(LFMIS,, (G, 7)) from the graph, the maximum remain-
ing degree drops to O(p~!logn) w.h.p.

Fix an arbitrary O(logn) bit real p € [0,1] and an
arbitrary vertex v € V. Let us use H = (Vy,Epq) to
denote the residual graph G[V \ T'(LFMIS,(G,r))] and
use d, to denote the residual degree of v in H. That is,
dy 0if v ¢ Vg and d, = degy(v) otherwise. The
main part of the proof is to show that for any parameter
B > 1, it holds that Pr[d, > p~'3] < e ”. Then setting
B = a«alnn, for some large enough constant o would
imply Pr[d, > p~talogn] < n~®. Combining this with
a simple union bound over the poly(n) many possible pairs
of v and p will conclude the proof of the proposition that
d, = O(p~tlogn) for all v and p w.h.p.

We first describe a random process for generating an
independent set I. Then we prove that distribution of
LFMIS,(G,m) and I is exactly the same and thus both
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have the same probabilistic behavior. We then prove that [
significantly prunes the vertex degrees in the residual graph.

The random process is as follows: A permutation 1 over
all vertices in V' is fixed uniformly at random and we
initialize I to be (). We then iterate over the vertices in the
order of 1. Once we encounter a vertex v in the process, if
v has a neighbor in I, we discard v and call it irrelevant.
Otherwise, v is relevant and we draw a Bernoulli random
variable x,, which is 1 with probability p. If x,, = 0, we call
v unlucky and discard it and if x, = 1, we add v to [ and
call it lucky.

It is easy to verify that the random process above in de-
termining [ is precisely equivalent to the following process:
First sample each vertex of V into a set .S independently with
probability p, then fix a random permutation v over the ver-
tices in .S and let I be the independent set LFMIS(G[S], ¢).
On the other hand, recall that LFMIS, (G, ) is the LEMIS
obtained once we only process the vertices v with rank
7(v) in [0, p]. Since 7 is a random ranking, the probability
that for a vertex v, m(v) € [0,p] is p and is independent
from the rank of the other vertices. Furthermore, once we
condition on the set of vertices with rank within [0, p], their
internal ordering will be completely at random. Therefore,
the two independent sets I and LFMIS, (G, 7) have the same
distribution and thus the same probabilistic behavior.

Finally, we prove the promised claim that Pr[d, >
p~1B] < e for any vertex v and any parameter 3 > 1 by
considering the pruning effect of I, which we showed above
is equivalent to that of LFMIS, (G, 7). To have d, > p~!'5,
v should survive to the residual graph, i.e., v & I'(I). This
means that in the original process for constructing [, anytime
that we encounter a relevant neighbor u of v, it should turn
out to be unlucky. Furthermore, the irrelevant neighbors of
v do not survive to the residual graph. Therefore, to have
d, > p~ '3, we should encounter at least p~'3 relevant
neighbors of v. The probability that all these neighbors turn
out to be unlucky is (1 — p)ﬂ/p < e # as desired. [ |

Proposition IIL.2 (restated). Consider a graph G = (V, E),
let m : E — [0,1] be a random ranking, and for any real

€ [0,1], define E, to be the subset of E including any
edge e with m(elimg - (€)) > p. W.h.p., for all O(logn) bit
values of p € [0, 1], every vertex has O(p~!-logn) incident
edges in E,.

Proof: This simply follows by applying Proposi-
tion III.1 to the line-graph of G.

Consider the line-graph L = (VL EL) of graph G, i.e.,
VI is equivalent to E. Note that ranking 7 on E is a
random ranking on the vertices of L. Moreover, for any
edge e € F and its equivalent vertex v, € Vi, their
eliminators elimg - (e) and elimy, ,(v.) are also equivalent
(due to the well-known equivalence of MM and MIS on
the line-graph). This means that e € E,, iff v, € VpL
where VI = {v € VI | 7(elimg.(v)) > p}. By
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Proposition III.1 we know the maximum degree in L[VPL] is
at most O(p~!logn) w.h.p. Therefore, each edge e € E, is
incident to at most O(p~" logn) other edges in E, and thus
every vertex in V has at most O(p~!logn) incident edges
in E,. u
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