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Abstract

Chromosomal inversions can lead to reproductive isolation and adaptation in insects such
as Drosophila melanogaster and the non-model malaria vector Anopheles gambiae. Inver-
sions can be detected and characterized using principal component analysis (PCA) of single
nucleotide polymorphisms (SNPs). To aid in developing such methods, we formed a new
benchmark derived from three publicly-available insect data. We then used this benchmark
to perform an extended validation of our software for inversion analysis (Asaph). Through
that process, we identified and characterized several problematic test cases liable to misin-
terpretation that can help guide PCA-based inversion detection. Lastly, we re-analyzed the
2R chromosome arm of 150 An. gambiae and coluzzii samples and observed two inversions
(2Rc and 2Rd) that were previously known but not annotated in these particular individuals.
The resulting benchmark data set and methods will be useful for future inversion detection
based solely on SNP data.

Introduction

Chromosomal inversions play an important role in ecological adaptation by enabling the accu-
mulation of beneficial alleles [1-4] and, in some cases, lead to reproductive isolation [5]. For
example, the 2La inversion in the Anopheles gambiae mosquito complex has been associated
with thermal tolerance of larvae [6], enhanced desiccation resistance in adult mosquitoes [7,
8], and susceptibility to at least one species of malaria parasite (Plasmodium falciparum) [9].
Inversions enable multiple mutually-exclusive traits to be maintained in the same population;
inversion genotype frequencies and expressions of traits can vary seasonally [10] or spatially
(6,7, 11].

Principal component analysis (PCA) of single-nucleotide polymorphism (SNP) data is par-
ticularly attractive for detecting inversions (see Table 7 for a comparison of existing software).
Inversions accumulate mutations private to each inversion orientation; these mutations are
inherited by offspring but not shared across different orientations due to reduced recombina-
tion in the inversion region. For large inversions, the number of mutations correlated with
each inversion form can be quite substantial and generate a large signal detectable by PCA
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[12-14]. Samples tend to cluster by their inversion genotypes, enabling inference of genotypes
with clustering algorithms (e.g., K-Means or Gaussian Mixture Models) [15]. PCA-based
methods successfully detected inversions in a number of organisms including insects (Anophe-
les mosquitoes [1, 16, 17]), fish (Atlantic cod [18-24]), birds (zebra finches [25] and great tits
[26]), and plants (sunflowers [27]).

PCA of SNP data has wide-ranging uses in population genetics beyond inversion detection.
PCA has been used to visualize relationships between samples [28], correct for stratification in
genome-wide association studies (GWAS) [29], and as a pre-processing step for inferring pop-
ulation structure with clustering algorithms [30, 31]. Multiple phenomena including inver-
sions and populations structure induce clustering in PCA scatter plots. Clusters can be
mischaracterized if care is not taken to set up experiments appropriately (e.g., ensure samples
are drawn from a single geographic region and population).

Inspection and visualization of the SNPs associated with principal components (PCs) or
clusters enables more precise inversion detection and allows for inversion detection even
when population structure is present. SNPs captured by a principal component can be identi-
fied by inspecting the loading factors [32, 33], association testing with PC coordinates or clus-
ter IDs [16, 34-36], or analysis of variance using population genetics statistics such as Fgr [27].
When SNP association values are plotted along a chromosome (e.g., Manhattan plots), inver-
sion regions stand out due to the presence of a step-function like pattern with a large number
of associated SNPs in the inverted region and few outside of the region.

We gathered and curated the publicly-available SNP data sets from the Drosophila Genetic
Reference Panel v2 (DGRP2) [37, 38], 1000 Anopheles Genomes project [17], and 16 Anopheles
Genomes project [39] to create a benchmark for inversion analysis methods. Samples in these
data sets had been experimentally genotyped for several well-studied large inversions in their
original papers. These data provided interesting test cases such as complex relationships
between inversions genotypes and population structure (the Anopheles samples) and each
other (e.g., inversions of the 3R chromosome arm of the D. melanogaster samples). These data
are important as many insects (including medically-important vectors and agricultural pests)
do not have large, polytene chromosomes and must be analyzed with computational inversion
detection techniques.

Using this new benchmark, we validated our inversion detection framework Asaph [16]. In
our original paper, we only evaluated our framework on the 34 Anopheles gambiae and coluzzii
samples from the 16 Anopheles Genomes project [39]. We demonstrated the value of this
framework to the biological community by characterizing inversions on the 2R chromosome
arm of 150 Anopheles samples from Burkina Faso [17]. We detected the presence of the 2Rc
and 2Rd inversions in the An. coluzzii samples.

Materials and methods
Formation of three test sets

We constructed three test sets from publicly-available insect population genomics data [17,
37-39]. We downloaded the VCF files from the Drosophila Genetic Reference Panel v2 [37,
38] project web site, for the phase 1 AR3 data release from the 1000 Anopheles Genomes [17]
project web site, and for 16 Anopheles genomes from project from the Dryad Digital Reposi-
tory [40]. Sample IDs and inversion genotype annotations either came from the supplemental
materials of the papers [37-39] or the 1000 Anopheles Genomes project web site. VCFTools
[41] was used to create a separate VCEF file for each chromosome arm and select biallelic SNPs.
We performed PCA of SNPs from across the entire Drosophila genome; sevens samples (lines
348, 350, 358, 385, 392, 395, and 399) appeared to be outliers and were removed. For the 1000
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Anopheles genomes project data, we selected the 150 An. gambiae and coluzzii samples from
Burkina Faso. We previously selected 34 An. gambiae and coluzzii samples from Burkina Faso,
Cameroon, Mali, and Tanzania from the 16 Anopheles genomes project data. The Drosophila
3L chromosome arm contained several low-frequency inversions (In(3L)P, In(3L)M, and In
(3L)Y) [37, 38], so we filtered out the inverted individuals (lines 31, 69, 136, 426, 721, and 913)
to allow 3L to be used in the negative test set. We also created a VCF file of the 2L SNPs from
only the 81 Burkina Faso An. gambiae samples from the 1000 Anopheles Genomes data sets.
We calculated inversion frequencies as (2 * homo. inv. samples + hetero. samples)/(2 *
samples).

We provided scripts and inversion genotype labels for the benchmark data set in our public
GitHub repository (https://github.com/rnowling/asaph). A provided script implements the
steps above for processing data from the original repositories (provided by the user). Citations
are provided in the documentation to aid users in citing the original papers.

Methods for detecting, genotyping, and localization of inversions from
SNP data

We compared three overlapping PCA-based methods (Scatter plots from PCA with clustering,
PC-SNP association tests, and cluster-SNP association tests) for analysis of inversions using
SNP data. The three methods differ in their capabilities (e.g., genotyping and localization) and
sensitivity to parameters (e.g., selecting PCs and number of clusters) (see Table 1). All three
methods are able to detect inversions but with different levels of precision. Inversions can be
localized using either form of association testing, but only clustering can infer genotypes.
Inversion detection was easier with the PC-SNP association tests since the cluster-SNP associa-
tion tests were sensitive to using the correct combination of PCs and number of clusters.

An overview of the relationships of the methods is presented in Fig 1. All workflows began
with PCA of SNP data encoded as a matrix. The PC coordinates of the samples can be visual-
ized using a scatter plot; visualization identification of clusters can be interpreted to indicate
population structure or inversions. The genotypes of the samples for each SNP can be tested
for association with the samples’ coordinates along a PC, and the resulting —log; of the p-val-
ues of the SNPs can be plotted along the chromosome arm for each PC in a Manhattan plot. A
step-function like pattern in the Manhattan plots indicates that the PC captures an inversion
and provides its location. Samples can be clustered (e.g., using k-means) by their PC coordi-
nates to infer genotypes. Lastly, the genotypes of the samples for each SNP can be tested for
association with the samples’ cluster membership and plotted in a Manhattan plot to deter-
mine if a given clustering captures an inversion and the inversion’s location.

We used implementations of the methods available in Asaph, our open-source toolkit for
variant analysis available at https://github.com/rnowling/asaph under the Apache Public

Table 1. Comparison of methods. The capabilities of three PCA-based methods (PCA scatter plots with optional clustering and association testing SNPs against either
cluster labels or PC coordinates) are summarized. We compare the methods on detecting, genotyping, and localizing inversions in terms of capability, easy of use, and

potential for ambiguous results.

Detects Inversions

Infers Inversion Genotypes
Localizes Inversions

Ease of Use

Potential for Ambiguous Interpretation

https://doi.org/10.1371/journal.pone.0240429.t001

PCA Scatter Plots Clustering Cluster-SNP Association Tests PC-SNPAssociation Tests
Yes Yes Yes Yes

No Yes No No

No No Yes Yes

Easy Moderate Difficult Easy

Yes Yes No No
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Fig 1. Workflows for detecting, localizing, and genotyping inversions. The three approaches (PCA with clustering, PC-SNP association testing, and
Cluster-SNP association testing) all begin with performing PCA on a feature matrix generated from SNP data. K-Means clustering is performed using
the PC coordinates to infer genotypes. The inferred genotypes and PC coordinates of the samples are represented using scatter plots. Association testing
can be performed between the samples’ SNP genotypes and either the PC coordinates or cluster labels. The p-values from the association tests are
plotted along the chromosome in a Manhattan plot to visualize the spatial distribution of the associations and detect and localize inversions.

https://doi.org/10.1371/journal.pone.0240429.9001

License v2. Asaph is implemented in Python using the Scikit Learn [42], Matplotlib [43], and
Numpy / Scipy [44] libraries.

For each data set, we performed the following steps. First, we performed PCA. SNPs for
each chromosome arm were imported into separate Asaph projects (import --workdir
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<workdir> --vcfgz <vcf.gz file> --compress with the default setting of cate-
gorical feature encoding). PCA was performed with 10 PCs (pca - -workdir <work-
dir> train --n-components 10) with the default setting of a PCA model).
Explained variances were output for each PC (pca --workdir <workdir>
explained-variance-analysis); the number of PCs used in downstream analyses
was chosen by looking for an “elbow” in the plots of the explained variances.

We clustered every data set six times (k = 1 to 6) and chose the appropriate number of clus-
ters (k) by looking for an “elbow” in the resulting plot of the inertia (sum of squared errors)
(python pc_analysis.py --coordinates <coordinates fl.tsv>
sweep-clusters --n-clusters 1 2 3 4 5 6 ——-n-components 1 2
--plot-fl <cluster-inertia.png>). We re-clustered the samples using the chosen
value of k and output the cluster assignments to a text file (python pc_analysis.py
--coordinates <coordinates fl.tsv> output-clusters --n-clus-
ters <k> --n-components 1 2 --labels-fl <cluster labels.tsv>).
Coordinates along the first 4 PCs were output from Asaph (pca --workdir <workdir>
output-coordinates --selected-components 1 2 3 4 --output-£f1
<coordinates fl.tsv>). PCA scatter plots were generated from the samples’ PC coor-
dinates with samples colored by cluster (python pc_analysis.py --coordinates
<coordinates_ fl.tsv> plot-projections --pairs 1 2 3 4 --plot-
dir <plot-dir> --labels-fl cluster labels.tsv).

Secondly, we calculated PC-SNP associations (pca --workdir <workdir> snp-
association-tests --components 1 2 3 4 --model-type logistic).
The resulting p-values output to text files. One Manhattan plot was created per PC using the
manhattan plot.py script.

Lastly, cluster-SNP association tests were performed using the cluster labels (snp _asso-
ciation tests --workdir <workdir> --populations cluster la-
bels. tsv) with the default settings (using the class probabilities to calculate the intercept,
adjusting the training set through re-sampling, and the population labels as the dependent var-
iable). A Manhattan plot was generated using the manhattan plot.py script.

Evaluation of inversion detection task

For each data set, we retrieved the inversions that had been detected in the original papers
describing the data sets [17, 37-39]. For the clustering method, we recorded the number of
clusters identified as optimal using the “elbow” in the inertia plots. If no confounding factors
were present, we expected one cluster per inversion genotype present in the data set. For the
PC-SNP association tests, we looked for a step-like function in the resulting Manhattan plots
indicating an inversion; we did not require that an inversion was associated with a specific PC
to count as detected. Lastly, for the Cluster-SNP association tests, we also looked for a step-like
function in the resulting Manhattan plot.

Evaluation of inversion genotype inference task

We retrieved the inversion genotypes for each sample in each data set from the original papers
describing the data sets [17, 37-39]. We evaluated the agreement of the clusters with the
known inversion genotypes. Clustering algorithms do not consistently return the same cluster
IDs across runs, so we used a logistic regression model to test association between the cluster
IDs (as a one-hot encoded categorical variable) and inversion genotypes. The model’s predic-
tions were evaluated using a balanced accuracy metric to overcome class imbalance (not all
genotypes were present in equal proportions) and weight each genotype equally.
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Evaluation of inversion localization task

We retrieved the coordinates for the inversion regions from the original papers describing the
data sets [17, 37-39]. We estimated the observed inversion regions from the Manhattan plots
generated from the PC-SNP and Cluster-SNP association tests. We compared the observed
and expected regions qualitatively for agreement.

Characterizations of inversions on the Anopheles 2R chromosome arms

We retrieved the 2R chromosome arm VCEF file and sample IDs from the phase 1 AR3 data
release from the 1000 Anopheles Genome [17] project web site. We used VCFtools to select the
150 Burkina Faso Anopheles gambiae and Anopheles coluzzii samples, biallelic SNPs, and gen-
erate three VCF files (both species, only An. gambiae, and only An. coluzzii). We followed the
workflow described above to generate PCA scatter plots and Manhattan plots from cluster-

SNP and PC-SNP association tests.

Results

We formed three test sets from publicly-available insect population genomics data sets (see
below and Table 2). We used these test data to evaluate three methods (PCA with clustering,
cluster-SNP association tests, and PC-SNP association tests) across three problems (inversion
detection, inversion genotype inference, and inversion localization). Lastly, we applied this
framework to SNPs from 150 Burkina Faso Anopheles samples from the 1000 Anopheles
Genomes project [17] and found inversions (2Rc and 2Rd) that were not previously annotated.

Formation of three test sets

We constructed three test sets (negative for inversions, inversions in samples from a single spe-
cies and population, and inversions in samples from multiple species and/or populations)
from previously-published data [17, 37-39] (see Table 2).

Table 2. Characterization of SNP data sets. A benchmark data set for evaluating methods for inversion detection using using SNP data was formed from data for three
insect species (D. melanogaster [37, 38], An. gambiae and coluzzii [17, 39]). The chromosome arms were organized into three test cases (negatives, positive drawn from a
single population, and positive drawn from multiple populations) based on known inversion genotypes from previous papers. We analyzed SNPs from the 2R chromosome
arms of An. gambiae and coluzzii but do not include these data in our benchmark data set since not all inversions were fully characterized. For each chromosome arm, the
geographic locations in which the samples were collected, species of the samples, number of samples, inversions identified in these data by the original authors and their
frequencies, and the number of SNPs are provideded.

Test Case Data Source |Location Species Chrom. Samples | Inversions (Frequency) SNPs
Negative [37, 38] D. mel. 3L 192* 896,257
Negative [39] BCMT An. gam. and col. 3L 34 1,329,375
Negative [17] B An. gam. and col. 3L 150 7,449,486
Single (37, 38] D. mel. 2L 198 In(2L)t (14.4%) 910,880
Single (37, 38] D. mel. 2R 198 In(2R)NS (12.1%) 740,948
Single [37, 38] D. mel. 3R 198 In(3R)Mo (18.7%), In(3R)p (7.1%), In(3R)k (8.1%) 884,009
Multiple [17] B An. gam. and col. 2L 150 2La (94.7%) 8,296,600
Multiple [17] B An. gam. 2L 81 2La (90.7%)
Multiple [39] BCMT An. gam. and col. 2L 34 2La (54.4%)
Other [17] B An. gam. and col. 2R 150 2Rb (59.3%) 11,332,702
Other [17] B An. gam. 2R 81 2Rb (82.1%) 11,332,702
Other [17] B An. col. 2R 69 2Rb (31.1%) 11,332,702
Other [17] B An. col. 2L 69 2La (99.3%) 8,296,600
* Inversions were present in only six samples, which we removed; B: Burkina Faso, C: Cameroon, M: Mali, and T: Tanzania
https://doi.org/10.1371/journal.pone.0240429.t002
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Fig 2. Negative cases. Analysis of chromosome arms without known major inversions (Drosophila 3L—6 samples
with inversion excluded (see Methods), 150 Anopheles 3L, and 34 Anopheles 3L). (a—c) PCA of samples, clustered with
k-means, and colored by cluster. Manhattan plots visualizing p-values from association tests against sample cluster IDs
(d—f) and PC coordinates (g—I, one Manhattan plot per PC).

https://doi.org/10.1371/journal.pone.0240429.9002

Negative test case: We selected the Drosophila melanogaster 3L, 150 Burkina Faso Anopheles
3L, and 34 Anopheles 3L chromosome arms (see Fig 2). The Anopheles 3L chromosome arms
have no known high or moderately high frequency inversions. The Drosophila 3L chromo-
some arm had several low-frequency inversions (In(3L)M, In(3L)K, and In(3L)P), so we
removed the six samples with heterozygous or homozygous inverted genotypes. The Drosoph-
ila samples were drawn from a single population, the 150 Anopheles samples included two spe-
cies (An. gambiae and coluzzii) from the same geographical location (Burkina Faso), and the
34 Anopheles samples included two species (An. gambiae and coluzzii) from four geographic
locations (Burkina Faso, Cameroon, Mali, and Tanzania).

Two of the test sets were positive for inversions. The first test set (single positive) was
formed from three Drosophila chromosome arms (2L, 2R, and 3R). The samples were all
drawn from the same population and species to avoid these confounding factors. The 2L and
2R chromosome arms each contained a single prominent inversion (In(2L)t, In(2R)NS) each
with all three inversion genotypes present. Three separate inversions (In(3R)P, In(3R)K, and In
(3R)Mo) were present on the 3R chromosome arm; the homozygous inverted and heterozy-
gous genotypes of the inversions are mutually exclusive with each other, which complicates the
analysis (see S1 File).

The last test set (multiple positive) included data from multiple species and/or from multi-
ple geographic locations (150 Burkina Faso Anopheles 2L, 81 Burkina Faso An. gambiae 2L,
and 34 Anopheles (4 locations) 2L). All samples had been previously karyotyped for the 2La
inversion [17, 39]. Detection of the 2La inversion in the 150 Burkina Faso samples was compli-
cated since not all inversion genotypes are present in both species; none of the samples had the
homozygous standard genotype and only a single An. coluzzii sample is heterozygous (see
Table 4).

In the 16 Anopheles genomes samples, the 2La inversion genotypes were associated with
both species and locations. Samples from Cameroon were primarily homozygous for the
inverted orientation, while samples from Burkina Faso and Mali were primarily homozygous
for the standard orientation (see Table 3). Five samples from across locations are heterozygous.
All three genotypes were observed in An. gambiae samples, while An. coluzzii samples were
homozygous for either the standard or inverted orientations (see Table 4).
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Table 3. Occurrences of 2La inversion genotypes by location for 34 Anopheles samples. The 2La inversion genotypes
for the 34 An. gambiae and coluzzii samples from [39] by were analyzed for association with geographic location. The
homozygous inverted genotype was observed primarily in samples from Cameroon, while the homozygous standard
genotype was observed in samples only from Burkina Faso and Mali. Association of the inversion genotypes with geo-
graphic location prevents correction for potential confounding effects for this data set.

Location Homo. Std. Hetero. Homo. Inv
Burkina Faso 5 2 0
Cameroon 0 1 15
Mali 8 0 0
Tanzania 0 2 1

https://doi.org/10.1371/journal.pone.0240429.t1003

Table 4. Occurrences of 2La inversion genotypes by Anopheles species and data set. The 2La inversion genotypes for the 34 An. gambiae and coluzzii samples from [39]
and 150 An. gambiae and coluzzii samples from [17] were analyzed for association with species. The two papers do not agree on the definitions of the standard and inverted
orientations. The homozygous standard inversion genotype was not observed in the 150 Burkina Faso samples but was dominant in the Burkina Faso samples from [39]
(see Table 3). Likewise, the homozygous inverted genotype was not observed in the Burkina Faso samples from [39] but was dominant among the 150 Burkina Faso
samples.

Data Source Species Homo. Std. Hetero. Homo. Inv
[17] An. coluzzii 0 1 68
[17] An. gambiae 0 15 66
[39] An. coluzzii 3 0
[39] An. gambiae 10 5 8

https://doi.org/10.1371/journal.pone.0240429.t004

The 2La genotype labels may not be consistent between the 16 Anopheles genomes and
1000 Anopheles genomes data. The 2La homozygous inverted genotype was not observed
among the 7 Burkina Faso samples from the 34 total Anopheles samples, while the 2La homo-
zygous standard orientation was not observed among the 150 Burkina Faso Anopheles samples
(see Table 4). We suspect that the data sets disagree on which orientations are standard and
inverted.

Evaluation on inversion detection task

All three methods (PCA with clustering, cluster-SNP association tests, and PC-SNP association
tests) are capable of detecting inversions. Here we illustrate results for: no inversions present
with single or multiple species and/or populations (Fig 2); inversions present with a single spe-
cies and a single population (Fig 3); and inversions present with multiple species and/or popu-
lations (Fig 4).

An inversion (without confounding factors) is expected to segregate samples into two or
three clusters (one per inversion genotype present in the data) in PCA. We first evaluated test
cases with no inversions (see Fig 2a-2c). One large cluster and some outliers were observed in
the PCA for Drosophila 3L; k-means identified three clusters as optimal for fitting the data (see
S1 File). We analyzed the Anopheles 3L chromosome arm using both Anopheles data sets. The
150 Burkina Faso samples segregated into two clusters (corresponding to the two species) in
the PCA, while the 34 samples formed four clusters corresponding to the four geographic
areas. The two-cluster patterns observed for 3L and 2L (with the single 2La inversion) for the
150 Burkina Faso samples were similar (compare Figs 2b and 4b) despite different causes (two
species versus the 2La inversion); the clusters present a second example that could be misinter-
preted without prior knowledge of the inversion status of the samples.
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Fig 3. Positive cases with a single species. Analysis of chromosome arms with known major inversions in samples
drawn from a single species (Drosophila 2L, 2R, and 3R). (a—c) PCA of samples, clustered with k-means, and colored
by cluster. Manhattan plots visualizing p-values from association tests against sample cluster IDs (d—f) and PC
coordinates (g—I, one Manhattan plot per PC).

https://doi.org/10.1371/journal.pone.0240429.g003

Secondly, we analyzed the test cases of inversions present with a single species and popula-
tion (see Fig 3a-3c). Three clusters were present for the two arms (Drosophila 2L and 2R) each
with a single inversion (as expected). For the case with multiple mutually-exclusive inversions
(Drosophila 3R), more than three clusters would be expected due to combinations of different
inversion genotypes. K-means identified three clusters, however, as the optimal fit according
to the “elbow” in the inertia plot (see S1 File). Without prior knowledge of the inversions, the
three clusters could be misinterpreted as indicating the presence of a single inversion.

Single Inversion Single Inversion Single Inversion
Multiple Species Single Species Multiple Species
Single Population Single Population Multiple Populations
(150 Anopheles 2L) (81 An. gambiae 2L) (34 Anopheles 2L)
3 % b §
PCA with i 1 -
Clustering s H %
(a); clus:ers ;h)’z clus:rs m: clusters
Cluster B s B
Association i H H
Tests 5 b :
(d)3 clrus‘;er'sb()PC 1) V ()2 cl:snler:(yPC 1) M3 cl::;::::‘?c 1)
PCA
Association s H
Tests d ¢ ¢
wrer mroz

Fig 4. Positive cases with a multiple species and/or populations. Analysis of the 2L Anopheles chromosome arm with
known major inversions in samples drawn from multiple species and/or locations (150 Anopheles from Burkina Faso,
81 Anopheles gambiae samples of the 150 Anopheles samples, and 34 Anopheles gambiae and coluzzii samples from
four geographic locations). (a—c) PCA of samples, clustered with k-means, and colored by cluster. Manhattan plots
visualizing p-values from association tests against sample cluster IDs (d—f) and PC coordinates (3—k, one Manhattan
plot per PC).

https://doi.org/10.1371/journal.pone.0240429.9004
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Lastly, we evaluated the third set of test cases of inversions present in samples from multiple
species and/or multiple populations (see Fig 4a—4c). We focus on the 2La inversion in the two
Anopheles data sets. When both species were analyzed together, the samples from both data
sets segregated into three clusters in the PCA (see Fig 4a and 4c). The three clusters did not
correspond to the three possible inversion genotypes, but to combinations of the inversion
genotypes and species. (Not all inversion genotypes were present in the samples.) We isolated
and separately analyzed the 81 An. gambiae samples from the 150 Burkina Faso samples. The
An. gambiae samples segregated into two clusters (see Fig 4b), corresponding to the two inver-
sion genotypes that were present.

Cluster-SNP association tests detected inversions more accurately than PCA and clustering
alone. Inversions were indicated by a “step” function in the resulting Manhattan plots. For the
test cases of inversions present in a single species and population, the cluster-SNP association
tests were consistent with PCA. The Drosophila In(2L)t and In(2R)NS inversions were readily
identified in the Manhattan plots (see Fig 3d and 3e), while the method was unable to differen-
tiate between the multiple inversions on 3R (see Fig 3f). For the negative test cases, there were
either few SNPs with strong associations or associated SNPs were distributed widely across the
chromosome arms with no clear contiguous step-function pattern indicative of an inversion
(see Fig 2d-2f); the method successfully avoided false positives even when inversion-like clus-
ter patterns (e.g., Anopheles 3L) were present in the PCA.

Inversion detection with multiple species proved more challenging with the cluster-SNP
association tests (see Fig 4d—4f). The cluster-SNP association tests failed to identify 2La in the
150 Burkina Faso samples (see Fig 4d). The 2La inversion was clearly indicated in the analysis
of the subset of 81 An. gambiae samples (see Fig 4e). The presence of both species was not
problematic in the analysis of the 34 Anopheles samples data set; 2La was clearly visible (see
Fig 4f).

The PC-SNP association tests were both accurate and easy to apply. The PC-SNP associa-
tion tests are performed for each PC and do not depend on identifying representative clusters.
The Drosophila In(2L)t and In(2R)NS inversions were readily identified in the Manhattan
plots of associations against PC 1 for each arm; as with the other methods, the multiple inver-
sions on 3R were misrepresented as a single inversion (see Fig 3g-31). Like the cluster-SNP
association tests, the negative test cases either had few strongly-associated SNPs or associated
SNPs were distributed widely throughout the chromosome arms with no apparent step-func-
tion pattern (see Fig 2g-21).

The PC-SNP association tests method was most successful at identifying inversions with
multiple species and/or populations (see Fig 4g-41). For the 150 Burkina Faso samples, the 2La
inversion was detected in the Manhattan plot for associations against PC 2 and with even
greater clarity in associations with PC 1 for the 81 An. gambiae samples. Lastly, when applied
to the 34 Anopheles samples from four locations, 2La was visible in the association tests with
PC1.

Evaluation on inversion genotype inference task

Of the three methods, only PCA-clustering was able to infer samples’ inversion genotypes. We
evaluated the agreement of the inferred inversion genotypes with the experimentally-deter-
mined inversion genotype labels for our data set (see Table 5). Cluster assignments (labels)
were not always ordered consistently (e.g., randomly ordered). We trained logistic regression
models to predict the samples’ genotypes from the cluster labels and evaluated the predictions
using the balanced accuracy metric. This metric avoids erroneously high accuracy scores when
samples in a small class are mislabeled.
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Table 5. Genotype inference task. We evaluated a single methods (PCA with clustering) on the genotype inference task (which inversion genotype does a sample have?)
using two benchmark test cases (positive from a single population and positive from multiple populations). Note that the two association-testing methods are not able to
infer genotypes. For each chromosome arm used, we indicated known inversions, how many genotypes are present in the data set, and a measure of balanced accuracy cal-
culated from the cluster predictions. The D. melanogaster 3R chromosome arm has three mutually-exclusive inversions, which we list separately.

Test Case
Single
Single
Single
Single
Single

Multiple
Multiple
Multiple

Chrom. Inversion Present Genotypes Clusters Balanced Accuracy
D. mel. 2L In(2L)t 3 3 93.3%
D. mel. 2R In(2R)NS 3 3 94.4%
D. mel. 3R In(3R)Mo 3 60.7%
In(3R)p 3 43.3%
In(3R)K 3 55.0%
150 An. gam. and col. 2L 2La 2 3 66.7%
81 An. gam. 2L 2La 2 2 100.0%
34 An. gam. and col. 2L 2La 3 4 100.0%

We evaluated clustering in terms of accuracy of inferring inversion genotypes. Inversion genotypes were retrieved from the original papers describing the data [17, 37—

39]. Association of the known genotypes with the cluster labels was measured using balanced accuracy. *Could not resolve multiple, mutually-exclusive inversions

https://doi.org/10.1371/journal.pone.0240429.t005

Inversion genotype inference was straight-forward and accurate for tests cases where a sin-
gle inversion was present in samples from a single species and population (Fig 3). For the Dro-
sophila 2L and 2R chromosome arms, the inversion genotypes predicted the cluster labels with
accuracies of 93.3% (In(2L)t) and 94.4% (In(2R)NS). Genotype inference was less successful
for the Drosophila 3R chromosome arm with multiple mutually-exclusive inversions (In(3R)K,
In(3R)mo, and In(3R)p) (Fig 3). We evaluated different combinations parameters (PCs 1-2,

k = 3-7). In the best case (k = 3, PCs 1 and 2), balanced accuracies for predicting cluster assign-
ments from karyotype labels were 55.0% (In(3R)K), 60.7% (In(3R)mo), and 43.3% (In(3R)p).

We then evaluated the test cases with multiple species and/or populations (Fig 4). The 150
Burkina Faso samples segregated into three clusters (with one outlier point) in the PCA of the
2L SNPs. The clusters corresponded to combinations of the species and 2La inversion geno-
types (only the heterozygous and homozygous inverted genotypes were present in the samples)
and resulted in a balanced accuracy of 66.7%. Clustering of the 81 An. gambiae and 34 Anophe-
les samples predicted the 2La genotypes with 100% balanced accuracies.

Evaluation on inversion localization task

Two of the methods (cluster- and PC-SNP association tests) were able to localize inversions.
We qualitatively compared the step-function patterns in the Manhattan plots with reported
genomic coordinates (see Table 6). The strongly-associated SNPs on 2L and 2R extended past
the reported regions for the Drosophila In(2L)t and In(2R)NS inversions on both ends (see Fig
3). The strongly-associated SNPs spanned approximately 0—16 Mbp in the 2L Manhattan
plots versus the reported region of 2.2—13.2 Mbp for In(2L)t [37]. Similarly, for 2R, strongly-
associated SNPs spanned approximately 10—17.5 Mbp versus the reported region of 11.3—
16.2 Mbp. The In(3R)P, In(3R)K, and In(3R)Mo inversions were reported to span 12.6—20.6
Mbp, 7.6 Mbp—22.0 Mbp, and 17.2—24.9 Mbp, respectively [37]. In the Manhattan plots, the
inversion region on 3R spans from approximately 15 Mbp to the end of the chromosome arm
and overlapped all three inversions.

The association test methods localized the 2La inversion more accurately and consistently
than the Drosophila inversions. The Anopheles 2La inversion spans approximately 20.0—45.0
Mbp on 2L [39, 45, 46]. Where visible in the Manhattan plots for the cluster- and PC-SNP
association tests, SNPs associated with 2La inversion were consistently localized to the 20.0—
43.0 Mbp region (see Fig 4).
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Table 6. Inversion localization task. We evaluated the two association-testing methods (PC-SNP and Cluster-SNP association tests) on the inversion localization task
(what region is spanned by an inversion?) using two benchmark test cases (positive from a single population and positive from multiple populations). Note that the two
PCA scatter plot method is not able to localize inversions. For each chromosome arm used, we indicated known inversions, the expected ranges, and the ranged identified

be each method. The D. melanogaster 3R chromosome arm has three mutually-exclusive inversions, which we list separately.

Test Case Chrom. Inversion Exp. Range (Mb) PC-SNP Obs. Range (Mb) Cluster-SNP Obs. Range (Mb)
Single D. mel. 2L In(2L)t 2.2-13.2 start-16.0 (PC1) start-16.0
Single D. mel. 2R In(2R)NS 11.3-16.2 10.0-17.5 (PC1) 10.0-18.0
Single D. mel. 3R In(3R)Mo 12.6-20.6 14.0-end* (PC1) 14.0-end*
Single In(3R)p 7.6-22.0 Mb 14.0-end* (PC1) 14.0-end*
Single In(3R)K 17.2-24.9 Mb 14.0-end* (PC1) 14.0-end*
Multiple 150 An. gam. and col. 2L 2La 20.0-45.0 20.0-43.0 (PC2) start-end"
Multiple 81 An. gam. 2L 2La 20.0-45.0 20.0-43.0 (PC1) 20.0-43.0
Multiple 34 An. gam. and col. 2L 2La 20.0-45.0 20.0-43.0 (PC1) 20.0-43.0

We evaluated the PC-SNP and Cluster-SNP association test methods on localizing inversions. We compared the range of inversions observed in the Manhattan plots
created from these two methods with the coordinates described for these inversions in prior work [37-39, 45, 46].
*Could not resolve multiple, mutually-exclusive inversions

TCould not resolve 2La

https://doi.org/10.1371/journal.pone.0240429.1006

Characterizations of inversions on the Anopheles 2R chromosome arm

We applied the inversion detection methods to the 2R chromosome arm in the 150 Burkina
Faso Anopheles samples from the 1000 Anopheles Genome project (see Fig 5). The 1000
Anopheles Genome project samples were karyotyped for the 2Rb inversion but karyotype labels
for other previously-known 2R inversions had not been made available to our knowledge [17].

Five clusters were present in PCA of the SNPs (see Fig 5a), but no inversions were visible in
the cluster-SNP association tests (despite expecting the 2Rb inversion to be visible). The
PC-SNP association tests revealed the 2Rb inversion (and possibly, the 2Rc inversion) (see Fig
5g and 5h).

The analysis was confounded by analyzing the species together, so we divided the samples
by species and analyzed each species separately. We observed the pattern for 2Rb in An.

Multiple Inversions
Multiple Species
Single Population

(150 Anopheles 2R)

Single Inversion
Single Species
Single Population
(81 An. gambiae 2R)

Single Inversion
Single Species
Single Population
(69 An. coluzzii 2R)

PCA with
Clustering

() S clusters (b) 2 clusters

Cluster
Association
Tests

fe—

(e) 2 clusters (PC 1)

PCA
Association
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J—

(@PC1 (hPC2 @prc1

(WPC1 pcz

Fig 5. Anopheles 2R chromosome arm. Analysis of the 2R chromosome arm of the 150 Anopheles samples from
Burkina Faso (all samples, 81 Anopheles gambiae samples, and 69 Anopheles coluzzii samples). (a—c) PCA of samples,
clustered with k-means, and colored by cluster. Manhattan plots visualizing p-values from association tests against
sample cluster IDs (d—f) and PC coordinates (g—k, one Manhattan plot per PC).

https://doi.org/10.1371/journal.pone.0240429.9005
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gambiae as expected (see Fig 5b, 5e, 5i and 5j). No other 2R inversions appeared to be present
in the An. gambiae samples.

We observed multiple 2R inversions (2Rb, 2Rc, and 2Rd) in the An. coluzzii samples. The
2Rc inversion is adjacent to 2Rb and when the two inversions appear together, they are desig-
nated as the 2Rbc system [45, 46]. The 2Rbc inversion genotype was visible in both the cluster-
SNP associations and PC-SNP associations for PC 1 (see Fig 5f and 5k). The presence of 2Rc
(2Rbc) in some of the An. coluzzii samples explains why the karyotypes from the two species
did not cluster together along PC 2 when the 150 samples were analyzed together. The 2Rd
inversion was observed in the PC-SNP associations for PC 2 see Fig 51).

Discussion

While experimental techniques such as Fluorescence in situ hybridization (FISH) are the most
accurate way to identify inversions [47-49], the chromosomes of many non-model insect spe-
cies are not visible under a microscope, and we must turn to computational methods. In
human genomics, the most popular methods for detecting structural variations such as inver-
sions are based on alignment of reads to a reference genome. Inversion breakpoints can be dis-
covered by checking for cases where either paired-end sequence data align unexpectedly (e.g.,
[50-53]). Breakpoints in Anopheles mosquitoes are characterized by long repeated sequences
[47, 48] which have prohibited breakpoint detection with alignment-based methods [54, 55].
Methods for detecting inversions from SNP data (e.g., see Table 7) are a promising alternative
for analyzing inversions in non-model organisms (e.g., [16, 18, 25-27, 39, 57].

We generated a new benchmark for evaluating computational inversion analysis by gather-
ing and curating publicly-available SNP data sets from the Drosophila Genetic Reference Panel
v2 (DGRP2) [37, 38], 1000 Anopheles Genomes project [17], and 16 Anopheles Genomes proj-
ect [39]. Drosophila melanogaster and Anopheles species have large polytene chromosomes
that can be seen directly under a microscope [47-49]; consequently, data from these species
are well-suited to evaluating inversion detection methods. Samples in these data sets were gen-
otyped for several well-studied large inversions (by the original researchers). These data pro-
vided interesting test cases such as complex relationships between inversions genotypes and
population structure (the Anopheles samples) and each other (e.g., inversions of the 3R chro-
mosome arm of the D. melanogaster samples). This data set will be useful in future work on
inversion detection methods. We provided scripts and metadata in our public repository for
Asaph so that others can easily regenerated the benchmark data set from the original data.

We previously described a family of PCA-based inversion analysis methods for SNP data
[16]. These methods are implemented in and distributed through our open-source software
package Asaph (https://github.com/rnowling/asaph). In our original work, we only validated
the framework on the 34 An. gambiae and coluzzii samples from the 16 Anopheles Genomes
project [39]. Here, we performed a more in-depth validation using the new benchmark. We
looked at three tasks: inversion detection, inference of inversion genotypes, and inversion
localization. Analyzing samples from multiple species or locations produced an inversion-like
cluster pattern even when no inversions were present. For example, the combination of two
species and the presence of only two out of three 2La genotypes in 150 Burkina Faso Anopheles
samples resulted in three clusters that could be misinterpreted as inversions alone. Our results
are expected given the wide range of use cases for PCA beyond inversion detection such as
analyzing population structure [29, 31]. Ideally, we would only analyze samples from a single
species and geographic location; unfortunately, this might not always possible.

Cluster- and PC-SNP association tests were substantially easier to interpret than the PCA-
clustering approach. All inversions were detected by the PC-SNP association test method, even
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Table 7. Summaries of inversion analysis tools. Details of existing software tools that were either designed or can be applied to inversion analysis using SNP data are

summarized.

Paper
Language

Summary

Year
Released

Inversion
Detection

Genotyping
Localization

Software
Link

SNPRelate

(34]

R

SNPRelate provides

parallel implementations
of PCA for SNP data and

the ability to perform
correlation testing

between PC coordinates

and SNP genotypes.

Although not designed
for inversion detection,

SNPRelate can be
applied to inversion
detection using PCA

scatter and Manhattan

plots.

2012
Yes

Yes
Yes

https://www.
bioconductor.org/

packages/release/bioc/

html/SNPRelate.html

PCAdapt Asaph inveRsion invClust EIGENSOFT PLINK

[35, 36] [16] [56, 62] [15] [29, 31] [63, 64]

CandR Python R R C C

PCAdapt uses PCA | Asaph uses inveRsion identifies | Developed by the | EIGENSOFT PLINK can perform
to infer population | PCA, changes in linkage authors of provides population
structure and clustering, and | disequilibrium along | inveRsion, analysis of inference with PCA
assumes variants association the chromosome invClust performs | population and perform

with strong tests to detect, | arm from SNP data | PCA and structure using | regression with

associations with the

genotype, and

to find inversion

clustering of

PCA.

quantitative traits.

PC coordinates are | localize breakpoints. samples with Although not the
under local inversions. Gaussian mixture intended purpose,
selection. Although models to perform these techniques can
not designed for inversion genotype be used for
inversion detection, inference. inversion analysis.
PCA scatter plots Inversions can first

and variant p-values be detected and

from association localized by

tests can be used to inveRsion and

detect inversions then invClust can

with scatter and be applied to SNPs

Manhattan plots, in the inversion

respectively. region.

2014 (C) /2016 (R) | 2018 2012 2015 2006 2007

Yes Yes Yes Yes Yes Yes

Yes Yes No Yes Yes Yes

Yes Yes Yes No No Yes

https://cran.r- https://github. | https://www. https://rdrr.io/ https://github. | https://www.cog-
project.org/web/ com/rnowling/ | bioconductor.org/ github/isglobal- com/ genomics.org/plink/
packages/pcadapt/ | asaph packages/release/ brge/invClust/ DReichLab/EIG | 1.9/

index.html

https://doi.org/10.1371/journal.pone.0240429.t007

bioc/html/inveRsion.
html

in cases with confounding factors (e.g., Anopheles 2La inversion) (see Table 8). The cluster-
SNP association test methods identified most of the inversions except in the case of jointly ana-
lyzing the 150 Burkina Faso An. gambiae and coluzzi samples. Neither method was able to
deconvolve the the multiple mutually-exclusive inversions on the Drosophila 3R chromosome
arm, although both methods did detect the presence of inversions in that region.

Of the three approaches, only the PCA-clustering method was capable of inferring inver-
sion genotypes. Clustering accurately inferred inversion genotypes for the Drosophila In(2L)t

and In(2R)NS and Anopheles 2La inversions but not the mutually-exclusive Drosophila In(3R)
K, In(3R)mo, and In(3R)p inversions. These results were consistent with difficulties deconvol-
ving the 3R inversions on the detection and localization tasks.

Two of the methods (cluster- and PC-SNP association tests) were able to localize large
inversions. Breakpoints for large inversions in insects can occur in areas with long runs of sim-
ple tandem repeats [47, 48], which inhibit accurate and consist determination of genomic
coordinates. In the Drosophila data sets, strongly-associated SNPs extended past the previ-
ously-recorded genomic coordinates for In(2L)t and In(2R)NS by ~2 Mbp on each side. The
3R inversions were ambiguous and difficult to detect due to mutual exclusion and overlaps
but the locations of the strongly-associated SNPs best fit the In(3R)Mo inversion. In contrast,
the 2La inversion was localized accurately and consistently in the two Anopheles data sets.
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Table 8. Inversion detection task. We evaluated three methods (PCA with clustering, PC-SNP association testing, and Cluster-SNP association testing) on the inversion
detection task (is an inversion present?) using our three benchmark test cases (negative, positive from a single population, and positive from multiple populations). For
each chromosome arm used, we indicated known inversions and whether the inversion was detected by a given method. The D. melanogaster 3R chromosome arm has
three mutually-exclusive inversions, which we list separately.

Test Case Chrom. Inversion Clusters PC-SNP Cluster-SNP
Negative D. mel. 3L None 1 No No
Negative 34 An gam. and col. 3L None 4 No No
Negative 150 An gam. and col. 3L None 2 No No
Single D. mel. 2L In(2L)t 3 Yes (PC1) Yes
Single D. mel. 2R In(2R)NS 3 Yes (PC 1) Yes
Single D. mel. 3R In(3R)Mo 3 Yes (PC 1)* Yes*
Single In(3R)p 3 Yes (PC 1)* Yes*
Single In(3R)K 3 Yes (PC 1)* Yes*
Multiple 150 An. gam. and col. 2L 2La 3 Yes (PC 2) No
Multiple 81 An. gam. 2L 2La 2 Yes (PC 1) Yes
Multiple 34 An. gam. and col. 2L 2La 4 Yes (PC 1) Yes

We compared inversions detected by the three methods to the known inversion karyotypes for these data sets taken from the original papers describing the data [17, 37-
39]. If an inversion was present with no population structure, three clusters corresponding to three possible genotypes (which may not all be present) would be expected.

*Multiple, mutually-exclusive inversions were detected as a single inversion by our methods.

https://doi.org/10.1371/journal.pone.0240429.t008

Repressed recombination extending outward several megabases from inversion break points
beyond has been observed in Drosophila [58]; it is interesting that the methods detect this
reduced recombination.

Both the clustering (for detection and genotype inference) and cluster-SNP association test
methods required careful selection of the PCs and number of clusters. Incorrect choices lead
to inaccurate inversion detection, genotype inference, and inversion localization. With no
parameters to tune, the PC-SNP association test method was both the easiest to use and most
reliable of the three methods for inversion detection and localization. We found it useful to
first detect and localize inversions with the PC-SNP association test method and then guide
the selection of the PCs and number of clusters by reproducing the results with the cluster-
SNP association test method. Only once the appropriate PCs and number clusters were identi-
fied did we attempt genotype inference. Association testing enabled more accurate inversion
detection, validation of the clustering parameters, and localization of inversions. To test this
further, we applied the three approaches to analyze SNPs from the 2R chromosome arm of the
150 Burkina Faso Anopheles samples. At the time of our analysis, karyotype labels were only
publicly-available for the 2Rb inversion [17] but not other known 2R inversions [11, 45, 46].
We identified the potential presence of the 2Rc and 2Rd inversions in the An. coluzzii samples.
During the revision stage for this paper, experimental work identifying the presence of the 2Rc
and 2Rd inversions in these particular An. coluzzii samples became available [59, 60]. The
experimental work both validated our results and confirmed the utility of the association-test
methods discussed here.

Conclusion

PCA-based approaches can be used to detect, localize and genotype inversions using SNPs.
We constructed a new benchmark for validating SNP-based inversion detection methods from
publicly-available data. We used this benchmark to perform a more extensive validation of our
previously-published inversion analysis framework, and we identified several problematic
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cases where interpretation can be ambiguous. Lastly, we applied this revised framework to
identify 2Rc and 2Rd inversions in Burkina Faso An. gambiae and coluzzii samples, which
were experimentally annotated only while this paper was in press.

Going forward, inversion analysis faces three main challenges. First, the methods evaluated
here are not yet developed to the point of being completely automated or “high-throughput.”
While progress continues to be made [61], completely automated detection is still out of reach.
Secondly, the existing methods are unable to deconvolve cases with multiple mutually-exclu-
sive inversions (e.g., 3R chromosome arm of D. melanogaster). Further work needs to look at
ways to accurately handle these complicated cases and is already ongoing [60]. Lastly, existing
methods require relatively well-assembled, chromosome-length genome assemblies. PCA does
not depend on the spatial relationships of SNPs but Manhattan plots resulting from association
testing do and significantly improve interpretability. Extending the benchmark and validation
presented here to either poorly-assembled genomes or even new reference free (k-mer) detec-
tion methods will be useful to the broader research community.

Supporting information

S1 File. Supplemental text. The supplemental text contains additional analysis, including vali-
dation using a simulated data set.
(PDF)
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