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Abstract
Many aquatic organisms use vocalizations for reproductive behavior; therefore, disruption of their soundscape could adversely 
affect their life history. Male oyster toadfish (Opsanus tau) establish nests in shallow waters during spring and attract female 
fish with boatwhistle vocalizations. Males exhibit high nest fidelity, making them susceptible to anthropogenic sound in 
coastal waters, which could mask their vocalizations and/or reduce auditory sensitivity levels. Additionally, the effect 
of self-generated boatwhistles on toadfish auditory sensitivity has yet to be addressed. To investigate the effect of sound 
exposure on toadfish auditory sensitivity, sound pressure and particle acceleration sensitivity curves were determined using 
auditory evoked potentials before and after (0-, 1-, 3-, 6- and 9-day) exposure to 1- or 12-h of continuous playbacks to ship 
engine sound or conspecific vocalization. Exposure to boatwhistles had no effect on auditory sensitivity. However, expo-
sure to anthropogenic sound caused significant decreases in auditory sensitivity for at least 3 days, with shifts up to 8 dB 
SPL and 20 dB SPL immediately following 1- and 12-h anthropogenic exposure, respectively. Understanding the effect of 
self-generated and anthropogenic sound exposure on auditory sensitivity provides an insight into how soundscapes affect 
acoustic communication.
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Introduction

Aquatic organisms are exposed to various abiotic (e.g., 
waves, wind and rain), biotic (e.g., invertebrates, fishes and 
marine mammal vocalizations) and anthropogenic (e.g., 
nearshore and offshore construction, ship traffic, seismic 
exploration and sonar) sounds. These various sound sources 
have the potential to interfere with, or mask, acoustic com-
munication in the underwater soundscape (Popper and 
Hawkins 2016, 2019; Putland et al. 2019). It has previously 
been shown that exposure to anthropogenic sound may 
negatively affect the behavior (e.g., foraging, movements, 
predator/prey interactions and mating) and physiology (e.g., 
hearing, oxygen consumption and heart rate) of aquatic 
organisms (for review see Slabbekoorn et al. 2010; Rad-
ford et al. 2014; Williams et al. 2015; Shannon et al. 2016; 
Popper and Hawkins 2019). While research on the effects 

of exposure to anthropogenic sound has been conducted on 
marine mammals (e.g., Holt et al. 2008; Sivle et al. 2012; 
Pirotta et al. 2015), less is known regarding the effect of 
anthropogenic sound on fishes (Hawkins et al. 2015). Addi-
tionally, the effect of self-generated sounds on the signaler’s 
auditory sensitivity remains largely unexplored.

In fishes, sound detection is mediated by the displacement 
of mechanoreceptive sensory hair cells in the lateral line and 
inner ear (Flock and Wersäll 1962; Flock 1965; Wersäll et al. 
1965; Hudspeth and Corey 1977; Hudspeth 1985). How-
ever, similar to the auditory systems of terrestrial organisms 
(Hamernik et al. 1974; Saunders and Dooling 1974), high 
intensity and/or prolonged sound exposure may result in hair 
cell damage, which leads to decreases in auditory sensitiv-
ity or temporary threshold shifts (TTS). For example, TTS 
following exposure to white noise (0.2–4.0 kHz; 158 dB re. 
1 µPa) was observed for up to 3 days in goldfish (Carassius 
auratus) and 14 days in catfish (Pimelodus pictus) (Amoser 
and Ladich 2003). Moving forward, it is critical to charac-
terize and understand the acoustical stimulus that induces 
auditory sensitivity shifts and recovery due to the vital role 
sound detection serves in underwater communication.
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The oyster toadfish (Opsanus tau) is a vocal fish spe-
cies found along the eastern coast of the United States. In 
late spring to early summer, male toadfish establish nests 
in shallow waters and acoustically attract females to their 
nest via an advertisement vocalization, termed a boatwhistle 
(Gray and Winn 1961; Fine 1978). Male toadfish produce 
boatwhistles throughout the day with peak calling usually 
between 1900 and 0200, with some individuals producing 
boatwhistles every 4 s for almost the entire night (Van Wert 
and Mensinger 2019). Conspecifics can detect these vocali-
zations via both the lateral line (Radford and Mensinger 
2014; Cardinal et al. 2018; Mensinger et al. 2019) and inner 
ear otoliths (Fay and Edds-Walton 1997a, b; Maruska and 
Mensinger 2015), with sound intensities reaching up to 
150 dB re. 1 µPa within the nest (Mensinger 2014). How-
ever, the effect of long-duration exposure to boatwhistle 
vocalizations on auditory sensitivity is unclear.

Toadfish require hard substrates for their nests and are 
often found under docks or piers, placing them in close prox-
imity to anthropogenic sound sources. Additionally, male 
toadfish exhibit high nest fidelity (Maruska and Mensinger 
2009; Mensinger 2014; Putland et al. 2018), which may 
make them more susceptible to the negative effects of 
anthropogenic sound than mobile species that can swim 
away from the source (Faulkner et al. 2018). Therefore, the 
toadfish is an excellent model to investigate the effects of 
anthropogenic sound. Previously, Vasconcelos et al. (2007) 
have shown that Lusitanian toadfish (Halobatrachus didac-
tylus) auditory detection is masked during anthropogenic 
sound playbacks; however, the effect of prolonged exposure 
on auditory sensitivity has yet to be investigated. The goals 
of the present study were to determine toadfish baseline 
auditory sensitivity and the effect of anthropogenic sound 
or male boatwhistle vocalizations on toadfish auditory 
sensitivity.

Materials and methods

Animal husbandry

Adult toadfish (n = 15; 12 males and 3 females, standard 
length: 26.0 ± 3.4 cm; mean ± SD) were obtained from the 
Marine Biological Laboratory in Woods Hole, MA and 
housed at the University of Minnesota Duluth. All toadfish 
were collected from Buzzards Bay near New Bedford, MA 
between May and July 2018. At the University of Minnesota 
Duluth, toadfish were maintained in 515 L polypropylene 
recirculating tanks (120 cm length × 95 cm width × 40 cm 
water depth, 1.55 cm thick; Miller Manufacturing, Eagan, 
MN) filled with artificial saltwater (35 PSU, Instant Ocean, 
Blacksburg, VA) that was mechanically, chemically, and 

biologically filtered (1500 Penn-Plax Cascade™ filters) and 
maintained at 18.0 ± 0.5 ℃.

Auditory evoked potential (AEP) recordings

Auditory evoked potential (AEP) recordings were conducted 
between November 2018 and February 2019. AEPs were 
performed in a 375 L cylindrical fiberglass experimental 
tank (90 cm diameter × 60 cm water depth) placed on a 
1 cm thick rubber mat to dampen vibrations. The experi-
mental tank was enclosed within a galvanized angle iron 
frame (110 × 125 × 180 cm) covered on three sides and the 
top with FOAMULAR Insulation Sheathing (2.54 cm thick; 
Owens Corning, Toledo, OH) to reduce background sound.

Toadfish were anesthetized by immersion in a buffered 
0.005% tricaine artificial seawater solution and immobilized 
with an intramuscular injection of 0.01% pancuronium bro-
mide (600 μg/kg1). Toadfish were suspended in a mesh sling 
above the experimental tank using an adjustable arm boom 
stand (Omano Microscopes, China). Two insulated stainless-
steel electrodes (Rochester Electro-Medical Inc., Tampa, 
FL) were subcutaneously inserted into the midline of the 
toadfish head. The reference electrode was positioned 5 mm 
from the rostrum and centered between the nares, while the 
recording electrode was inserted along the dorsal midline 
directly above the brainstem approximately 6 mm anterior to 
the posterior end of the cranium. For serial testing, a small 
bolus of cyanoacrylate gel was placed on the epidermis of 
the toadfish immediately posterior to the recording electrode 
to ensure that the electrode was inserted in the same posi-
tion in subsequent testing. Toadfish were submerged with 
their dorsal surface 5 cm below the surface and their ven-
tral surface 40 cm above the monopole underwater speaker 
(Clark Synthesis AQ-339; Littleton, CO; Frequency range: 
30–17,000 Hz). Electrodes were connected to a headstage 
(gain = 10 ×) that attached to an extracellular differential 
amplifier (gain = 100 ×; Dagan, Minneapolis, MN). The 
signal was filtered (band pass: 0.03–3 kHz) and recorded 
with Spike2 software (Cambridge Electronic Design Ltd, 
Version 8) using a custom Spike2 script (Cambridge Elec-
tronic Design; Cambridge, UK) and monitored on a portable 
computer.

Initial AEP testing revealed that toadfish (n = 5) did not 
respond to pure tones > 500 Hz; therefore, subsequent AEP 
recordings were conducted in response to 100, 120, 140, 
160, 180, 200, 220, 240, 260, 280, 300, 350, 400 and 500 Hz 
pure tone bursts (50 ms, 500 repetitions, 3 ms delay). AEP 
waveforms were verified subjectively by AEP visual inspec-
tion and objectively by fast Fourier transform power spec-
trum analysis (FFT, Hamming Window = 1024), with the 
presence of a significant peak (FFT level ≥ 0.001 μV) at two 
times the stimulus frequency (Higgs et al. 2002; Egner and 
Mann 2005; Sisneros 2007; Bhandiwad et al. 2017).
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After baseline AEP sensitivity curves were determined, 
individual toadfish were placed in a 375 L trough (50 cm 
water depth; top: 125 cm × 75 cm maximum width, bottom: 
100 cm × 50 cm; Rubbermaid Commercial Products, Win-
chester, VA) sound exposure tank. An underwater speaker 
(Clark Synthesis AQ-339; Littleton, CO; frequency range: 
30–17,000 Hz) was submerged at one end of the tank and 
was connected to an amplifier (Bosch Plena; Farmington 
Hills, MI) and Roland 4-channel portable recorder (R-44; 
Roland Corporation; Hamamatsu, Japan). A mesh bar-
rier was placed at the opposite end to restrict toadfish to 
50–80 cm from the speaker (Fig. 1a). Toadfish (n = 5 fish/
treatment) received one of three treatments: a 12-h playback 
of an underwater sound recording from an individual male 
toadfish boatwhistle vocalization (fundamental frequency: 
180 Hz) that was 425 ms in duration followed by 3.575 s of 
silence (playback frequency: 0.25 Hz), which reflects the 
timing of toadfish vocalizations in a natural setting (Putland 
et al. 2018; Van Wert and Mensinger 2019), or a continu-
ously looped 1- or 12-h playback of a broadband anthro-
pogenic sound recorded underwater from an idling 15 m 
research vessel (Detroit Diesel 12 V-71 engine; power out-
put: 7–1193 kW; single screw; broadband frequency range: 
30–12,000 Hz; 2-min duration) (Fig. 1b–e). Following sound 
exposure, toadfish were tested immediately (0 day), and then 
1, 3, 6 and 9 days after exposure.

Sound exposure

Sound pressure (SPL; dBrms re. 1 μPa) and particle accelera-
tion levels (PAL; dBrms re. 1 ms-2) were determined in the 
experimental tank during playbacks at 18 locations within 
the enclosed area containing the toadfish. The benthic toad-
fish spent almost their entire time on the substrate; therefore, 
measurements were made approximately 7.5 cm from the 
bottom to correlate with inner ear position. Sound pressure 
levels were determined using a suspended calibrated hydro-
phone (HTI-96-MIN; High Tech Inc., Long Beach, MS; 
open circuit voltage (OCV) with preamp battery = −165 dB 
re. 1 V/μPa), while particle acceleration levels were calcu-
lated using a neutrally buoyant waterproofed triaxial accel-
erometer (Model: W356A12/NC; PCB Piezotronics, Depew, 
NY; Sensitivity: X = 10.47 mV ms-2; Y = 10.35 mV ms-2; 
Z = 10.29  mV  ms-2) connected to a signal conditioner 
(Model: 482C; PCB Piezotronics, Depew, NY). All data 
were recorded using PowerLab data acquisition system and 
analyzed offline as the voltage root mean square (rms) using 
LabChart software (Version 8). Vrms values measured with 
the hydrophone were converted into dB and then corrected 
for the open circuit voltage (Eq. 1). Sound pressure level for 
boatwhistles and anthropogenic sound was maintained at 
approximately 150 dBrms re 1 μPa between 80 and 550 Hz 
within the toadfish area.

Vrms values for each axis (X, Y and Z) of the particle accel-
erometer were calibrated to the sensitivity of the accelerom-
eter and used to calculate the magnitude of particle accel-
eration in dB scale (Eq. 2) (Vetter et al. 2018, 2019; Nissen 
et al. 2019).

All calculations for sound pressure and particle accelera-
tion levels were performed within a custom Matlab software 
(Version2017a) script.

Particle acceleration thresholds

Particle acceleration sensitivity was determined via a water-
proofed triaxial accelerometer that was placed within the 
AEP experimental tank at the position of the toadfish head 
during testing. For a given frequency, particle acceleration 
measurements were made across the corresponding sound 
intensity range. Using a custom Matlab (Version 2017a) 
script, particle acceleration measurements (Vrms) for each 
axis (X, Y and Z) were corrected for the sensitivity of the 
accelerometer (Fig. 2) and particle acceleration level sensi-
tivity curves were determined (Eq. 2).

Statistical analysis

To determine the effects of sound exposure and recovery 
period on the auditory sensitivity of toadfish, a two-way 
repeated measure analysis of variance (ANOVA) with fre-
quency (Hz) and time (baseline, 0, 1, 3, 6 or 9 days post-
exposure) as factors and sensitivity measurements as the 
dependent variable was performed. A Holm–Sidak post hoc 
test determined significant sensitivity shifts from baseline 
for each frequency (α = 0.05). All statistical analyses were 
performed using SigmaPlot software (Version 13).

Results

Sound exposure

The mean background PAL and SPL measured 7.5 cm from 
the bottom within the toadfish area of the exposure tank was 
− 48.4 ± 1.7 dBrms re. 1 ms-2 PAL and 102.5 ± 0.9 dBrms re. 
1 μPa SPL, respectively (Fig. 3a). PAL and SPL increased 
during boatwhistle playbacks, to − 3.8 ± 1.5 dBrms re. 1 ms-2 
PAL and 151.9 ± 0.9 dBrms re. 1 μPa SPL (Fig. 3b), while 
anthropogenic playbacks attained levels up to − 4.1 ± 2.9 
dBrms re. 1 ms-2 PAL and 152.1 ± 1.2 dBrms re. 1 μPa SPL 
(Fig. 3c).

(1)dBrms re.1�Pa = 20 Log10
(

Vrms

)

− OCV.

(2)dBrms re.1ms−2 = 20 Log10

�
√

X2 + Y2 + Z2

�

.
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Fig. 1   Sound exposure. a 
Top view schematic of sound 
exposure tank showing the 
underwater speaker and toadfish 
position. The mesh barrier 
maintained toadfish a mini-
mum distance of 50 cm from 
the speaker. b Spectrogram of 
the boatwhistle vocalization 
playback (180-Hz fundamental 
frequency; 425-ms duration; 
0.25-Hz playback frequency; 
150 dB re. 1 μPa). Red box indi-
cates the time region over which 
the (c) power spectral density 
curve was generated. Inset rep-
resents the power spectrum of a 
single boatwhistle vocalization. 
Anthropogenic sound playback 
(150 dB re. 1 μPa) d spec-
trogram and e power spectral 
density curve
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Auditory evoked potentials

Toadfish (n = 15, 12 males and 3 females) responded to all 
tested frequencies between 100 and 500 Hz. Figure 4 dis-
plays two representative AEP waveforms and FFT analy-
ses in response to 220 and 400 Hz, respectively. Baseline 
SPL (dBrms re. 1 μPa) and PAL (dBrms re. 1 ms-2) AEP 

responses were observed at all frequencies tested (Fig. 5). 
Fish displayed greatest auditory sensitivity at 100 Hz (SPL: 
116.2 ± 6.1 dBrms re. 1 μPa; PAL: − 49.1 ± 6.6 dBrms re. 
1 ms-2) and 120 Hz (SPL: 116.3 ± 6.4 dBrms re. 1 μPa; PAL: 
− 47.2 ± 6.2 dBrms re. 1 ms-2), with sensitivity decreas-
ing up to 500 Hz (SPL: 145.1 ± 3.6 dBrms re. 1 μPa; PAL: 
− 17.9 ± 3.9 dBrms re. 1 ms-2) (Fig. 5). AEPs above 500 Hz 
were not detectable at the maximum sound pressure levels 
presented (150 dB re. 1 μPa). 

Anthropogenic playbacks

Following 1-h anthropogenic sound exposure (n = 5, 4 males 
and 1 female), temporary SPL and PAL auditory sensitiv-
ity shifts were observed in all fish between 100 and 400 Hz 
(Fig. 6) with two fish showing no response to 500 Hz. To 
determine if auditory sensitivity significantly shifted from 
baseline measurements, a two-way repeated measures 
ANOVA was conducted between 100 and 400 Hz. Signifi-
cant threshold shifts at 500 Hz were determined by removing 
day 0 from analysis and only post hoc values at 500 Hz were 
used to determine significant sensitivity shifts across 1, 3, 6 
and 9 days post-exposure.

Significant auditory sensitivity shifts from baseline 
(two-way repeated measures ANOVA, d.f. = 5, F = 8.58, 
P < 0.001) were observed only across PAL auditory 
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Fig. 3   Sound maps in the 
toadfish end of the tank for 
particle acceleration (dB re. 
1 ms−2; left) and sound pressure 
level (dB re. 1 μPa; right) for 
a background, b boatwhistle 
playbacks and c anthropogenic 
sound playbacks. The maps 
were constructed from the aver-
age measurements (n = 5) at 18 
locations 7.5 cm from the bot-
tom within the toadfish area

5

15

25

35

45

70 80 90 100

5

15

25

35

45

70 80 90 100

W
id

th
 o

f E
xp

os
ur

e 
Ta

nk
 (c

m
)

Distance from Speaker (cm)

a

b

c

5

15

25

35

45

70 80 90 100

5

15

25

35

45

70 80 90 100
5

15

25

35

45

70 80 90 100

5

15

25

35

45

70 80 90 100

100
110
120
130
140
150
160

Particle A
cceleration L

evel
(dB

 re. 1 m
s

-2)

Sound Pressure L
evel

(dB
 re. 1 μPa)

-50
-40
-30
-20
-10

0
10



6	 Journal of Comparative Physiology A (2020) 206:1–14

1 3

sensitivity curves (Table 1). Significant PAL auditory sensi-
tivity shifts were observed at 100, 160, 180, 200 and 300 Hz 
(Holm–Sidak, P < 0.05) immediately following (0  day) 
anthropogenic sound exposure with significant shifts at 100, 
120, 160, 180, 200, 300, and 350 Hz persisting at day one. 
By day three, significant shifts from baseline were observed 
at 160, 180, and 300 Hz; however, by day six, there was no 
significant difference between pre- and post-exposure PAL 
measurements (Table 1; Fig. 6).

Following 12-h anthropogenic sound exposure, tempo-
rary SPL and PAL sensitivity shifts were observed across 
all frequencies (0–400 Hz), with four fish exhibiting no 
response at 500  Hz (n = 5, four males and one female; 
Fig. 7). Significant auditory sensitivity shifts across all 
frequencies (100–400 Hz) were observed for both 12-h 
anthropogenic SPL (two-way repeated measures ANOVA, 
d.f. = 5, F = 12.34, P < 0.001) and PAL sensitivity curves 
(two-way repeated measures ANOVA, d.f. = 5, F = 12.51, 
P < 0.001). Recovery of auditory sensitivity was observed 
as soon as day one; however, significant shifts (Holm–Sidak, 
P < 0.05) were sustained for SPL sensitivity curves at 140, 
160, 200 and 260 Hz and for PAL sensitivity curves at 100, 
140, 160, 200 and 260 Hz. At day three, significant shifts 
(Holm–Sidak, P < 0.05) persisted at 100, 140, 160, 200, and 
240 Hz for both SPL and PAL auditory sensitivity curves; 
however, by day six significant SPL and PAL sensitivity 
shifts were no longer observed (Holm–Sidak, SPL: P = 0.26; 
PAL: P = 0.26, Tables 2, 3; Fig. 7).

Boatwhistle playbacks

Following exposure to 12-h of boatwhistle playbacks (180-
Hz fundamental frequency; 425-ms duration; 0.25-Hz 
playback frequency), toadfish (n = 5; four males and one 
female) displayed an increased auditory sensitivity (8 dB 
SPL or 6 dB PAL) to frequencies between 300 and 500 Hz 
compared to baseline auditory sensitivity curves (Fig. 8). 
However, no significant auditory sensitivity (SPL and PAL) 
shifts were observed when compared to baseline levels (two-
way repeated measures ANOVA, d.f. = 5, SPL: F = 2.684, 
P = 0.052, PAL: F = 1.393, P = 0.27) (Fig. 8).

Discussion

Toadfish auditory responses were observed in response 
to frequencies ranging from 100 to 500 Hz, with greatest 
sensitivity observed in response to frequencies within the 
fundamental frequency range (100–225 Hz) of toadfish 
vocalizations. Additionally, toadfish were capable of retain-
ing auditory sensitivity when exposed to playbacks of con-
specific vocalizations; however, significant sensitivity shifts 
were observed following exposure to anthropogenic sound 
playbacks.

Previous studies had indicated a slightly extended toadfish 
auditory range up to 800 Hz (Yan et al. 2000), while a clas-
sical conditioning study observed a range up to 700 Hz in 
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Fig. 4   Auditory evoked potential (AEP) response to a 220 Hz and b 
400 Hz. Each panel displays the average AEP trace (500 repetitions) 
for the indicated sound pressure level (dB re. 1 μPa) on the left and 

the fast Fourier transformation (FFT) analysis on the right. AEP 
thresholds were determined to be 128 and 130 dB re. 1 μPa for 220 
and 400 Hz, respectively
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the laboratory and up to 400 Hz in the natural environment 
(Fish and Offutt 1972). While previous field experiments 
allowed for characterizing toadfish auditory sensitivity in 
their natural environment, the physiological experiments 
conducted in the laboratory likely had a complex acoustic 
field that was not accurately characterized relative to both 
sound pressure and particle motion. Therefore, these stud-
ies are complicated by only measuring auditory sensitiv-
ity relative to sound pressure components of the stimulus 
(Fish and Offutt 1972; Yan et al. 2000). Additionally, while 
it has been hypothesized that toadfish may be capable of 
detecting sound pressure via indirect secondary pathways 
(Edds-Walton et al. 2015) similar to the plainfin midship-
man (Porichthys notatus) (Colleye et al. 2019), previous 
experiments (Fish and Offutt 1972; Yan et al. 2000) were not 
adequately designed to explicitly test sound pressure detec-
tion. The underwater sound presentation used here, which 
included measuring the particle motion as it is the compo-
nent of underwater sound that all fish are capable of detect-
ing (Popper and Fay 2011), may provide a more accurate 
analysis of the toadfish auditory capabilities and sensitivity. 

The differences between SPL and PAL auditory sensitiv-
ity curves show the necessity of measuring both acoustical 
parameters as SPL analysis alone would have underesti-
mated the impacts of anthropogenic sound exposure.

The effects of anthropogenic sound exposure on fishes 
are just beginning to be understood, and it is important 
to measure baseline auditory sensitivity to determine if 
anthropogenic exposure has a negative effect on the audi-
tory system. For example, behavioral experiments have 
shown that anthropogenic sound may impact reproduc-
tive behaviors (Ladich 2013; Bruintjes and Radford 2013), 
predator/prey interactions (Voellmy et al. 2014a, b; Simp-
son et al. 2015), larval fish orientation and settlement 
(Radford et al. 2011; Holles et al. 2013) and schooling 
(Sarà et al. 2007; Herbert-Read et al. 2017). Physiologi-
cal experiments have determined that anthropogenic sound 
may increase stress (Santulli et al. 1999; Wysocki et al. 
2006; Sierra-Flores et al. 2015), damage auditory struc-
tures (McCauley et al. 2003; Smith et al. 2006), mask audi-
tory signals (Ramcharitar and Popper 2004; Wysocki and 
Ladich 2005; Codarin et al. 2009) and induce temporary 

Fig. 5   Baseline sound pressure 
level (dB re. 1 μPa; top) and 
particle acceleration level (dB 
re. 1 ms−2; bottom) sensitivity 
curves needed to evoke an AEP 
response is plotted versus sound 
frequency (Hz). Data are plotted 
as mean ± 1 SD (n = 15)
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auditory threshold shifts (Smith et al. 2004, 2006; Popper 
et al. 2005; Vasconcelos et al. 2007; Nissen et al. 2019). 
However, it is crucial to acknowledge that effects upon fish 
behavior and physiology will vary depending upon many 
factors, including differing environmental conditions, 
sound sources, perceived sound characteristics and species 
(Parvulescu 1964; Rogers et al. 2016; Popper and Hawkins 
2019; Popper et al. 2019). Additionally, given that research 
has been performed on a limited number of fish species, 
the results from the present experiments should not be 
used to generalize across species.

Within coastal recreational waterways, passive acoustic 
monitoring studies have observed that anthropogenic sound 
pressure levels produced by recreational vessels do not often 
surpass 120 dB re. 1 μPa (Haviland-Howell et al. 2007; 
Erbe 2013; Marley et al. 2017). However, many toadfish 
reside in areas frequented by commercial vessels, and in 
the coastal waters of Massachusetts, anthropogenic sound 
pressure levels produced by research vessels, tug boats and 
private yachts may exceed 160 dB re. 1 μPa (71–224 Hz) 
(Hatch et al. 2012), and have the potential to mask boat-
whistle vocalizations. To simulate anthropogenic sound that 

Fig. 6   Auditory sensitivity 
curves for data related to expo-
sure to 1-h of continuous broad-
band anthropogenic sound [Fre-
quency range: 30–12,000 Hz; 
sound pressure ~ 150 dB re. 1 
μPa (80–550 Hz)]. The mini-
mum sound pressure (dB re. 1 
μPa; top) and particle accelera-
tion (dB re. 1 ms−2; bottom) 
levels needed to evoke an AEP 
response is plotted versus fre-
quency (Hz). Colors represent 
the pre-exposure (baseline, 
black) and post-exposure (day 
0, red; day 1, green; day 3, light 
blue; day 6, pink; day 9, blue) 
to 1-h of continuous broadband 
anthropogenic sound. Data are 
plotted as mean ± 1 SD (n = 5)

Table 1   Particle acceleration level (dB re. 1 ms−2) sensitivity shifts during serial testing after exposure to 1-h anthropogenic sound

Table values show significance levels in comparison to baseline (Holm–Sidak, P < 0.05)
ns not significant

Frequency (Hz)

100 120 140 160 180 200 220 240 260 280 300 350 400 500

0 day P < 0.001 ns ns P = 0.004 P < 0.001 P < 0.001 ns ns ns ns P = 0.045 ns ns ns
1 day P < 0.001 P = 0.025 ns P = 0.002 P < 0.001 P = 0.03 ns ns ns ns P = 0.041 P = 0.001 ns ns
3 day ns ns ns P = 0.035 P = 0.008 ns ns ns ns ns P = 0.048 ns ns ns
6 and 9 day ns ns ns ns ns ns ns ns ns ns ns ns ns ns
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toadfish may encounter, source level underwater recordings 
were taken from the Marine Biological Laboratory’s RV 
Gemma (15 m) while it idled at its dock in Eel Pond, Woods 
Hole, MA, where a reproducing toadfish population resides 
(Putland et al. 2018; Van Wert and Mensinger 2019). In this 
study, even short-duration (1-h) anthropogenic exposure led 
to significant auditory sensitivity shifts up to 8 dB SPL or 
9 dB PAL immediately after sound exposure, with sustained 
exposure (12-h) resulting in greater shifts up to 20 dB SPL 
or 22 dB PAL and frequency shifts persisting for at least 
3 days. Fish in both treatments recovered by day six, indi-
cating the impact was transient; however, repeated exposure 
may lead to permanent sensitivity shifts.

The behavioral impacts that decreased auditory sensitiv-
ity may have on toadfish have yet to be determined; how-
ever, reproductive success relies on females detecting male 
vocalizations (Fish 1972). The proclivity of toadfish for hard 
substrates often places them near docks and pilings with 
high boat traffic and human activity that may impact toad-
fish auditory sensitivity. Additionally, male toadfish exhibit 
high nest fidelity (Maruska and Mensinger 2009; Mensinger 
2014; Putland et al. 2018), which may make them suscepti-
ble to anthropogenic sounds as they are unlikely to leave the 

area. Therefore, the decreased auditory sensitivity follow-
ing anthropogenic sound exposure could negatively impact 
toadfish reproductive success.

Toadfish populations are also exposed to natural ambi-
ent sound including the vocalizations of conspecifics. Field 
recordings of toadfish vocalizations highlight that individu-
als can produce sound intensities ranging from 130 to 140 dB 
re. 1 μPa at 1 m (Tavolga 1971) with individuals vocaliz-
ing up to 15 times per minute during the night (Ricci et al. 
2017; Putland et al. 2018; Van Wert and Mensinger 2019). 
At close proximity (< 20 cm), within the nest, boatwhistle 
vocalizations also reverberate and approach source level 
sound intensities up to 150 dB re. 1 μPa (Mensinger 2014). 
Additionally, boatwhistle vocalizations can be interspersed 
by grunts, which target conspecifics vocalizations, resulting 
in sustained frequent and high intensity sound throughout 
the night (Maruska and Mensinger 2009; Mensinger 2014). 
However, significant shifts in auditory sensitivity were not 
observed following boatwhistle playbacks. Since toadfish 
were tested outside their mating season, it is possible toad-
fish were not as sensitive to sound and were not affected 
by the conspecific playbacks. For example, P. notatus dis-
play seasonal auditory plasticity, with increased auditory 

Fig. 7   Auditory sensitiv-
ity curves for data related to 
exposure to 12-h of continu-
ous broadband anthropogenic 
sound [Frequency range: 
30–12,000 Hz; sound pres-
sure ~ 150 dB re. 1 μPa 
(80–550 Hz)]. The minimum 
sound pressure (dB re. 1 μPa; 
top) and particle accelera-
tion (dB re. 1 ms−2; bottom) 
levels needed to evoke an AEP 
response is plotted versus fre-
quency (Hz). Colors represent 
the pre-exposure (baseline, 
black) and post-exposure (day 
0, red; day 1, green; day 3, light 
blue; day 6, pink; day 9, blue) to 
12-h of continuous broadband 
anthropogenic sound. Data are 
plotted as mean ± 1 SD (n = 5)
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sensitivity occurring during the summer mating season, due 
to changes in both circulating hormone levels (Sisneros et al. 
2004; Rohmann and Andrew 2011; Perelmuter et al. 2019) 
and hair cell density (Coffin et al. 2012; Lozier and Sisneros 
2019). The boatwhistle vocalizations also have a narrow 
frequency range compared to the anthropogenic sound and 
the AEPs may have missed finer scale sensitivity changes. 
Additionally, it has been postulated that toadfish have an 
adaptive filter or a mechanism to cancel out self-generated 
noise and allow for sustained auditory sensitivity similar to 
P. notatus (Weeg et al. 2005). However, if this mechanism 
exists, it is more likely utilized during the production of self-
generated sounds as the adaptive filter needs to be activated 
prior to vocalizing and would not become activated from 
sounds produced by conspecifics or speakers. Yet, it remains 
possible that the consistent inter-call interval (4 s) allowed 
the toadfish to anticipate the next call and activate the adap-
tive filter mechanisms.

The AEP technique allowed for minimally invasive 
monitoring and sequential testing of fish auditory sensitiv-
ity following exposure to varying sound treatments. While 
this technique has previously been used to investigate 

hearing loss, caution should be used in interpreting the 
data. Although the AEP tank (375 L) is larger than many 
other AEPs set-ups (Vasconcelos et al. 2007; Ladich and 
Schulz-Mirbach 2013), it is still a relatively small tank, 
which results in a complex sound environment with sound 
reverberations or echoes that may influence results (Par-
vulescu 1964; Rogers et al. 2016). The sound exposure 
experiments tried to alleviate some of the complications 
of small tanks by limiting the toadfish to a specific area 
allowing for relatively uniform sound pressure and parti-
cle acceleration levels. Additionally, it must be noted that 
AEPs represent a gross sensitivity response and behavio-
ral experiments or single unit recordings could potentially 
reveal greater auditory sensitivity.

In conclusion, exposure to even short durations (1-h) of 
high intensity (~ 150 dB re. 1 μPa) anthropogenic sound is 
capable of causing significant temporary sensitivity shifts 
that are sustained for at least 3 days post-exposure. These 
significant sensitivity shifts may be enough to impact 
female sound source localization and the reproductive 
success of these fish.

Fig. 8   Auditory sensitiv-
ity curves for data related to 
exposure to 12-h of boatwhistle 
playbacks (425 ms duration; 
180 Hz fundamental frequency, 
0.25 Hz playback frequency, 
sound pressure ~ 150 dB re. 1 
μPa (80–550 Hz)). The mini-
mum sound pressure (dB re. 1 
μPa; top) and particle accelera-
tion (dB re. 1 ms−2; bottom) 
levels needed to evoke an AEP 
response is plotted versus fre-
quency (Hz). Colors represent 
the pre-exposure (baseline, 
black) and post-exposure (day 
0, red; day 1, green; day 3, light 
blue; day 6, pink; day 9, blue) to 
12-h of boatwhistle playbacks. 
Data are plotted as mean ± 1SD 
(n = 5)
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