

Matching the forecast horizon with the relevant spatial and temporal processes and data sources

Peter B. Adler¹, Ethan P. White^{2,3,4} and Michael H. Cortez⁵

¹Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah

²Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida

³Informatics Institute, University of Florida, Gainesville, Florida

⁴Biodiversity Institute, University of Florida, Gainesville, Florida

⁵Department of Biological Science, Florida State University, Tallahassee, Florida

¹ **Abstract:** Most phenomenological, statistical models used to generate ecological forecasts take either a time-series approach, based on long-term data from one location, or a space-for-time approach, based on data describing spatial patterns across environmental gradients. However, the magnitude and even the sign of environment-response relationships detected using these two approaches often differs, leading to contrasting predictions about responses to future environmental change. Here we consider how the forecast horizon determines whether more accurate predictions come from the time-series approach, the space-for-time approach, or a combination of the two. As proof of concept, we use simulated case studies to show that forecasts for short and long forecast horizons need to focus on different ecological processes, which are reflected in different kinds of data. First, we simulated population or community dynamics under stationary temperature using two simple, mechanistic models. Second, we fit statistical models to the simulated data using a time-series approach, a space-for-time approach, or a weighted average. We then forecast the response to a temperature increase using the statistical models, and compared these forecasts to temperature effects simulated by the mechanistic models. We found that the time-series approach made accurate short-term predictions because it captured initial conditions and effects of fast processes such as birth and death. The space-for-time approach made more accurate long-term predictions because it better captured the influence of slower processes such as evolutionary and ecological selection. The weighted average made accurate predictions at all time scales, including intermediate time-scales where the other two approaches performed poorly. A weighted average of time-series and space-for-time approaches shows promise, but making this weighted model operational will require new research to predict the rate at which slow processes begin to influence dynamics.

23 *Keywords:* dispersal, ecological forecasting, eco-evolutionary dynamics, global change, selection

24 **Introduction**

25 Forecasting is increasingly recognized as important to the application and advancement of eco-
26 logical research. Forecasts are necessary to guide environmental policy and management deci-
27 sions about mitigation and adaption to global change (Clark et al., 2001; Mouquet et al., 2015;
28 Dietze et al., 2018). But forecasts can also advance understanding of the processes governing
29 ecological systems by providing rigorous tests of model predictions (Houlahan et al., 2017; Di-
30 etze, 2017; Dietze et al., 2018). The dual benefits of informing management and advancing basic
31 knowledge makes forecasting an important priority for ecological research.

32 Statistical models used for ecological forecasting generally rely on either time-series ap-
33 proaches or space-for-time substitutions. The time-series approach involves fitting models to
34 long-term datasets to describe the temporal dynamics of a system. We then project those dy-
35 namic models to make predictions about what will happen in the future. This approach is often
36 used to study population or vital rate fluctuations as a function of weather (Dagleish et al.,
37 2011), or primary production as a function of annual precipitation (Lauenroth and Sala, 1992).
38 When time-series models are fit with typically short ecological data sets, they capture “fast pro-
39 cesses” operating on interannual time-scales, such as birth, death, individual growth, small-scale
40 dispersal events, and short-term responses to environmental conditions (Fig. 1). Statistical mod-
41 els built using this approach normally cover a limited spatial extent (but see Hefley et al. 2017;
42 Kleinhesselink and Adler 2018; Chevalier and Knape 2020), and ignore slower processes, such as
43 evolutionary adaptation or turnover in community composition, that could influence dynamics
44 at longer time scales (Clark et al., 2001).

45 Space-for-time substitution approaches begin by describing how an ecological variable of
46 interest, such as occupancy or productivity, varies across sites experiencing different environ-
47 mental conditions. These spatial relationships between environment and ecological response are
48 assumed to also hold for changes at a site through time. To make a forecast, we first predict the
49 future environmental conditions and then determine the associated ecological response, based
50 on the observed spatial relationship. This is the approach commonly used to predict population
51 distribution or abundance as a function of climate (Elith and Leathwick, 2009) or mean primary
52 production as a function of mean precipitation (Sala et al., 1988). Space-for-time models capture
53 the outcome of interactions between fast processes and slower processes operating over long
54 time periods, such as immigration, extinction, and responses to large or prolonged environmen-
55 tal changes (Fig. 1). However, space-for-time models provide no information about how quickly
56 the system will move from the current state to the predicted, future state. In fact, transient dy-
57 namics could prevent the system from ever reaching the predicted steady state (Urban et al.,
58 2012).

59 Although both time-series and space-for-time approaches are widely used, there has been
60 little discussion of their advantages and disadvantages for guiding policy decisions or advancing
61 our understanding of ecological dynamics (Harris et al., 2018; Renwick et al., 2018). Such a dis-
62 cussion is overdue given that these two approaches are likely to make very different predictions
63 about ecological responses to future environmental change. For example, average forage produc-
64 tion in the U.S. shortgrass steppe increases rapidly with increasing mean annual precipitation,
65 but production is much less sensitive to interannual variation in precipitation at any one location
66 (Lauenroth and Sala, 1992). The space-for-time approach would predict large changes in produc-
67 tion in response to a future change in precipitation, while the time-series approach would predict
68 smaller changes. Bird species' abundances in the United Kingdom also show different responses
69 to spatial vs. temporal variation in weather covariates. Not only are abundances typically more
70 sensitive to spatial variation in the covariates, but in many cases the temporal response takes the
71 opposite sign (Oedekoven et al., 2017). Whenever the sign or magnitude of relationships based
72 on time-series and space-for-time approaches differ, so will the resulting forecasts.

73 Whether time-series models, space-for-time approaches, or some combination of the two will
74 serve as the best source of information for forecasting may depend on how far into the future
75 we are attempting to forecast (Harris et al., 2018). This potential dependency on the "forecast
76 horizon" (*sensu* Hyndman and Athanasopoulos 2018) reflects lags in the response of ecological
77 conditions to environmental change, shifts in the importance of ecological processes with time
78 scale (Levin, 1992; Rosenzweig et al., 1995), and differences between time-series and spatial gra-
79 dients in the range of environmental conditions represented in observed data (Fig. 1). At short
80 forecast horizons (days to years), dynamics will reflect physiological and demographic responses
81 and interactions among the organisms present at a site more than temporal turnover of genotypes
82 or species; environmental conditions are likely to stay within the range of historical variation; and
83 the current state of the system is likely to capture the influence of unmeasured processes. As a
84 result, for near-term forecasts time-series approaches may capture the key dynamics and provide
85 accurate predictions.

86 In contrast, at long forecast horizons (decades to centuries), environmental conditions that
87 have not been historically observed are likely to not only occur but to persist long enough to
88 drive significant turnover of genotypes and species through colonization and extinction as well
89 as changes in the flux of energy and nutrients. At these long forecast horizons, the state of the
90 system at the time the forecast is issued may be little help in predicting the future state. For the
91 century-scale forecasts often featured in biodiversity and species-distribution modeling, space-
92 for-time approaches may effectively capture the response of ecosystems to major shifts in climate
93 over long periods, producing better long-term forecasts than time-series approaches. Using dif-
94 ferent modeling approaches for different forecast horizons is common in other disciplines. For
95 example, meteorological models for short-term weather forecasts differ substantially in spatial

96 and temporal resolution and extent from the global circulation models used to predict long-term
97 changes in climate.

98 Why not simply use process-based models to avoid the difficulties posed by phenomenolog-
99 ical time-series and space-for-time modeling approaches? If we could accurately characterize all
100 of the processes governing a system, then a model based on that understanding should make
101 accurate predictions at all forecast horizons. Process-based models should also be more robust
102 for making predictions outside of historically observed conditions and even beyond the con-
103 ditions observed across spatial gradients, which will be especially important in a future with
104 increasingly novel combinations of environment and species interactions (Williams and Jackson,
105 2007). Unfortunately, in most cases this approach is not currently feasible because we lack a
106 detailed knowledge of all the complex and interacting processes influencing the dynamics of real
107 ecological systems. Even if the general form of the models were known, estimating the high
108 number of parameters and quantifying how they vary across ecosystems typically requires more
109 data than is currently available even for well-studied systems. Furthermore, the high complexity
110 and corresponding parameter uncertainty of such models can increase predictive errors; simpler
111 time-series models may actually perform better (Ward et al., 2014), though spatial replication can
112 reduce the cost of complexity (Chevalier and Knape, 2020). As a result, models used for eco-
113 logical forecasting will include at least some phenomenological components. But that does not
114 mean that phenomenological forecast models cannot benefit from process-based understanding.
115 Even if process-level understanding does not enable a fully mechanistic model, it can improve
116 the specification of phenomenological models. Our hypothesis is that different processes may be
117 relevant for different forecast horizons, and that we can act on this knowledge by fitting models
118 to different kinds of datasets.

119 Here we use two simulated case studies to 1) demonstrate why time-series and space-for-time
120 approaches can make different predictions, 2) propose that the best model-building approaches
121 for ecological forecasting may depend on the time horizon of the forecast, and 3) explore how
122 time-series and space-for-time approaches might be combined via weighted averaging to make
123 better forecasts at intermediate time scales. The first case study focuses on how interspecific
124 interactions affect the population dynamics of a focal species, and the second focuses on an
125 eco-evolutionary scenario. Our simulations illustrate that:

- 126 1. For short-term forecasts, phenomenological time-series approaches may be hard to beat,
127 whereas longer-term forecasts may require accounting for the influence of slow processes
128 such as evolutionary and ecological selection as well as dispersal.
- 129 2. Different kinds of data reflect the operation of different processes: longitudinal data cap-
130 ture autocorrelation and fast responses of current assemblages to interannual environmental
131 variation, while data spanning spatial gradients capture the long-term outcome of interac-
132 tions between fast and slow processes. Whether predictive models should be trained using

133 longitudinal or spatial data sets, or both, likely depends on the time-scale of the desired
134 forecast.

135 3. A key challenge for future research is determining the rate at which slow processes begin to
136 influence dynamics.

137 **Modeling approach**

138 In each case study, we simulated the effects of an increase in temperature on simple systems with
139 known dynamics. The truth was represented by a simulation model that was mechanistic for at
140 least one important process, but we treated this data-generating model as unknown when ana-
141 lyzing the data and we assumed that perfectly recovering the mechanisms it contains would not
142 be possible in practice. We began each simulation under a stationary distribution of annual tem-
143 peratures, allowing the system to equilibrate; we call this the baseline phase. We then increased
144 temperature progressively over a period of time, followed by a second period of stationary, now
145 elevated, temperature. The objective was to forecast the response of the system to the tempera-
146 ture increase based on spatial and/or temporal data “sampled” from the simulation during the
147 baseline period.

148 We made forecasts based on two phenomenological statistical models, each representing pro-
149 cesses operating at different time scales. One statistical model represents the time-series or “tem-
150 poral approach.” We regressed interannual variation in an ecological response on interannual
151 variation in temperature at just one site. The other statistical model relies on a space-for-time
152 substitution, which we call the “spatial approach” for brevity. We regressed the mean tempera-
153 ture on the mean of an ecological state or rate across many sites. We compared forecasts from
154 both statistical models to the simulated dynamics to determine how well the two approaches
155 performed at different forecast horizons. We also assessed the potential for combining the infor-
156 mation available in temporal and spatial patterns by using a weighted average of the forecasts
157 from the temporal and spatial approaches optimized to best match the (simulated) observations.
158 We then studied how the optimal model weights changed over time. We expected the temporal
159 approach to best predict short-term dynamics, the spatial approach to best predict long-term
160 dynamics, while the weighted model would show potential to provide the best forecasts at tran-
161 sitional, intermediate time scales. The three statistical models are described in Supporting In-
162 formation (Appendix A). Computer code for both case studies will be archived at Zenodo upon
163 acceptance. Instructions for running the code are in the README file in the main directory of
164 the zip archive.

165 **Community turnover example**

166 Conservation biologists and natural resource managers often need to anticipate the impact of en-
167 vironmental change on the abundance of endangered species, biological invaders, and harvested
168 species. Although the managers may be primarily interested in just one focal species, skillful

169 prediction might require considering interactions with many other species, greatly complicating
170 the problem. But at what forecast horizon do altered species interactions become impossible
171 to ignore? We explored this question using a metacommunity simulation model developed by
172 Alexander et al. (2018) to study how community responses to increasing temperature depend on
173 the interplay between within-site demography and competitive interactions and the movement
174 of species across sites.

175 Methods

176 The model features Lotka-Volterra competitive interactions among plants within sites that are
177 arrayed along an elevation and temperature gradient. Composition varies along the gradient
178 because of a trade-off between growth rate and cold tolerance: cold sites are dominated by
179 slow-growing species that can tolerate low temperatures, while warm sites are dominated by
180 fast-growing species that are cold intolerant. Multiple species can coexist within sites because
181 all species experience stronger competition from conspecifics than from heterospecifics. Sites
182 are linked by dispersal: a specified fraction of each species' offspring leaves the site where they
183 were produced and reaches all other sites with equal probability. We provide a more detailed
184 description of the simulation model in SI Appendix B.

185 We first simulated a baseline period with variable but stationary temperature, followed by
186 a period of rapid temperature increase, and then a final period of stationary temperature. In-
187 terannual variation in temperature is the same at all sites, but mean temperature varies among
188 sites. All sites experienced the same absolute increase in mean temperature. We focused on the
189 biomass dynamics of one focal species that dominated the central site during the baseline period.
190 Parameter values for the simulations described in the main text are shown in Table SM-1. We
191 report results from one simulation run; results were qualitatively consistent for replicate runs
192 (Fig. SM-1A).

193 Results

194 During the baseline period there were strong spatial patterns across the mean temperature gra-
195 dient. Individual species, including our focal species, showed classic, unimodal "Whittaker"
196 patterns of abundances across the gradient (Fig. 2A). These spatial patterns are the basis for our
197 spatial statistical model of the temperature-biomass relationship for our focal species (Fig. 2A).
198 In contrast to the strong spatial patterns, population and community responses to interannual
199 variation in temperature within sites were weak. At our focal site in the center of the gradient,
200 the biomass of the focal species was quite insensitive to interannual variation in temperature,
201 but showed strong temporal autocorrelation (Fig. 2B). Our temporal statistical model estimates
202 this weak, linear temperature effect, along with the strong lag effect of biomass in the previous
203 year.

204 We used both the temporal and spatial statistical models to forecast the effect of a temperature
205 increase (Fig. 3A) on the focal species' biomass at one location in the center of the temperature

gradient. The predictions from these two models contrasted markedly, with the temporal statistical model predicting a large increase in biomass and the spatial statistical model predicting a decrease. Initially, the simulated abundances followed the increase predicted by the temporal model, but as faster-growing species colonized and increased in abundance at the focal site, the biomass of the focal species decreased, eventually falling below its baseline level (Fig. 3B).

To combine information from the temporal and spatial statistical models into a single prediction, we fit a weighting parameter, ω , which varies over time and is bounded between 0 and 1. At any time point, or year, t , this weighted forecast is $\omega \cdot T(N_{t-1}, K_t) + (1 - \omega) \cdot S(K_t)$ where T is the temporal statistical model, which depends on population size, N , and expected temperature, K , and S is the spatial statistical model, which depends only on K (see SI Appendix A for a full description of the approach). The weighted model accurately predicts the simulated dynamics across the full forecast horizon (Fig. 3B). It also shows that the most rapid shifts in the model weights occurred during the period when warm-adapted, faster growing species were increasing most rapidly in abundance (Fig. 3C). However, the reason the weighted models works so well is that the weights were determined by fitting directly to the data. Unlike the forecasts from the spatial and temporal statistical models, we did not generate out-of-sample predictions from the weighted model; it merely provides a convenient way to quantify how rapidly dynamics shift from being dominated by interannual variation captured in the temporal model (time $t = 0$ to $t \approx 1250$ in Fig. 3B) to being dominated by the steady-state equilibrium captured by the spatial model (time $t \geq 2500$). A true forecast from the weighted model would require a method to determine the model weights *a priori*.

When we repeated the simulation with a continuous, nonstationary temperature increase, we see a qualitatively similar shift in weights with increasing forecast horizon from the temporal to spatial statistical model (Fig. SM-2). In this case, the forecast from the temporal statistical model is not as skillful in the near-term forecast horizon, because the model does not account for the temperature trend during the model fitting period. Separating the effect of annual temperature deviations from the temperature trend would distinguish between short and long-term patterns, much as our temporal and spatial statistical models do in the simulation with stationary temperature periods.

The compositional turnover affecting our focal species also influences total biomass, linking community and ecosystem dynamics. We repeated our focal species analysis for total community biomass, and the results were similar: the temporal statistical model initially made the best forecasts immediately following the onset of the temperature increase, but as the identity and abundances of species at the study site changed, the model weights rapidly shifted to the spatial statistical model (Figs. SM-3 and SM-4).

241 **Eco-evolutionary example**

242 Evolutionary adaptation is a key uncertainty in predicting how environmental change will impact
243 a focal population at a given location (Hoffmann and Sgro, 2011). Like the shifts in species
244 composition illustrated in the previous example, shifts in genotype frequencies can also influence
245 dynamics and forecasts at different time scales. Although shifts in genotype frequencies at the
246 population level are analogous to changes in species composition at the community level, the
247 mechanisms are distinct: heterozygosity and genetic recombination have no analogue at the
248 community level. We demonstrate how these processes influence short and long-term forecasts
249 with a standard eco-evolutionary simulation model for a hypothetical annual plant population.

250 **Methods**

251 Our model assumes that fecundity is temperature dependent, and different genotypes have dif-
252 ferent temperature optima (Fig. 4A). All seeds germinate every year, preventing a seedbank from
253 developing. The model describes how the local density of each genotype changes between years,
254 which depends on temperature and genotype densities in the previous year. Transient temporal
255 dynamics are computed directly from the model; these dynamics are the basis for the tempo-
256 ral statistical model. To create a spatial gradient, we simulated the equilibrium density of each
257 genotype in a series of local populations experiencing different mean temperatures. The pattern
258 of equilibrium densities across the mean annual temperature gradient is the basis for our spatial
259 statistical model: cold sites will be dominated by the cold-adapted homozygous genotype, warm
260 sites will be dominated by the heat-adapted homozygous genotype, and intermediate sites will be
261 dominated by the heterozygous genotype (Fig. 4B). The full description of the eco-evolutionary
262 simulation model is provided in SI Appendix C, and parameter values for simulations described
263 here are shown in Table SM-2. As in the first case study, we report results from just one simula-
264 tion run, but results were qualitatively consistent for replicate runs (Fig. SM-1B).

265 The spatial pattern shown in Fig. 4B is the outcome of steady-state conditions. But at any one
266 site, the population's short-term response to temperature will be determined by the dominant
267 genotype's reaction norm (Fig. 4A). For example, at a cold site dominated by the cold-adapted
268 homozygous genotype, a warmer than average year would cause a decrease in population size
269 due to decreases in fecundity (blue line in Fig. 4A), even though the heat-adapted homozygote
270 might perform optimally at that temperature. However, if warmer than normal conditions persist
271 for many years, then genotype frequencies should shift, and the heat-adapted homozygote will
272 compensate for the decreases of the cold-adapted genotype.

273 **Results**

274 To demonstrate these dynamics, we simulated a diploid annual plant population at a colder than
275 average site. During the baseline period, the population is dominated by the cold-adapted geno-
276 type. We used the simulated data from this baseline period to fit a temporal statistical model

277 (Appendix A) that predicts population growth rate as a function of annual temperature and pop-
278 ulation size (Fig. 4C), assuming no knowledge of the underlying eco-evolutionary dynamics. We
279 then imposed a period of warming, followed by a final period of higher stationary temperature
280 (Fig. 5 top).

281 With the onset of warming, the population crashed as the cold-adapted genotype decreased
282 in abundance. Eventually, frequencies of the heterozygous genotype and the warm-adapted
283 homozygous genotype began to increase and the population recovered (Fig. 5 bottom). The
284 temporal statistical model (solid blue line in Fig. 5) accurately predicted the impact of the initial
285 warming trend, but eventually became too pessimistic, while the spatial statistical model (solid
286 red line in Fig. 5) did not handle the initial trend but accurately predicted the eventual, new
287 steady state.

288 As in the community turnover example, we also fit a weighted average of predictions from
289 the spatial and temporal statistical models (purple line in Fig. 5), with the weights changing
290 over time. This weighted model initially reflected the temporal model (decrease from $t = 500$
291 to $t = 600$), but then rapidly transitioned to reflect the spatial model ($t \geq 700$). The rapid
292 transition in the weighting term, ω , occurred during the period of most rapid change in genotype
293 frequencies (Fig. SM-5). The weighted model's predictions look impressively accurate, but, as in
294 the community turnover example, that is because we used the full, simulated time series to fit
295 the weighting term. A true forecast would require an independent method to predict how the
296 model weights shift over time.

297 Discussion

298 Ecological forecasts are typically made using either a space-for-time substitution approach based
299 on models fit to spatial data or using dynamic models fit to time-series data. Empirical studies
300 show that the environment-response relationships detected by these approaches frequently differ
301 in magnitude and even sign (Lauenroth and Sala, 1992; Oedekoven et al., 2017; Amburgey et al.,
302 2018; Kleinhesselink and Adler, 2018). Our simulations illustrate how such differences may arise
303 and then lead to very different predictions about the future state of ecological systems. Which
304 approach provides the most accurate forecasts likely depends on the forecast-horizon. In our
305 simulations, time-series approaches performed best for short forecast horizons, whereas models
306 based on spatial data made more accurate forecasts at long horizons. In addition, our simulations
307 demonstrate extended transitional periods during which neither the time-series or the spatial
308 approach was effective on its own. The challenge is determining what is "short-term," what is
309 "long-term," and how to handle the many forecasts we need in ecology which fall in between.
310 We have proposed that a weighted combination of the time-series and space-for-time approaches
311 may produce better forecasts at these intermediate forecast horizons.

312 We designed our simulation studies to illustrate how the change in statistical model perfor-
313 mance with increasing forecast horizon reflects differences in the types and scales of processes

314 captured by spatial and temporal data sets. How could these hypotheses be tested with empir-
315 ical data? The hypothesis that time-series models will be most effective for near-term forecasts
316 already has empirical support, in the form of recent analyses of biodiversity forecasts at time
317 scales from one to ten years (Harris et al., 2018). The result should not be surprising, since local
318 time-series data capture demographic processes, lagged effects, and responses of current assem-
319 blages to small changes in environmental conditions. In addition, the state of the system in the
320 near future depends heavily on the current state. Since short-term forecasts do not typically
321 require extrapolating into novel conditions, a model based on the historical range of variation
322 which incorporates lags and accurate initial conditions is likely to be successful.

323 Space-for-time modeling approaches for predicting long-term, steady-state outcomes of eco-
324 logical change have also been tested empirically, primarily via hindcasting. Overall, the results
325 are mixed: some tests show reasonable prediction of changes in community composition (Blois
326 et al., 2013; Illán et al., 2014) or species distributions (Norberg et al., 2019), supporting the hy-
327 pothesis that datasets spanning spatial gradients capture the long-term outcome of interactions
328 between fast processes and slower processes such as ecological and evolutionary selection, dis-
329 persal, and responses to large changes in the environment. Other attempts to validate predictions
330 from space-for-time models have been discouraging (Worth et al., 2014; Illán et al., 2014; Davis
331 et al., 2014; Brun et al., 2016; Veloz et al., 2012), indicating violations of model assumptions or ef-
332 fects of transient dynamics. However, predictions from the space-for-time approaches are rarely
333 compared directly to predictions from time-series models (Harris et al. 2018, but see Renwick
334 et al. 2018). We need more such comparisons to identify the appropriate modeling approach for
335 different forecast horizons.

336 The greatest empirical challenge will be testing our hypothesis that a weighted average of
337 spatial and temporal statistical models will make the best forecasts at intermediate time scales.
338 There are two problems: finding appropriate data and determining the model weights *a priori*.
339 Many data sets have both a longitudinal and spatial dimension, but we could not think of one
340 which also featured a clear ecological response to directional environmental change. Surely such
341 datasets exist, and we hope researchers who work with them will test our proposed weighted
342 model. Determining model weights may be more difficult. In our simulations, we fit the weights
343 directly to the simulated data, which is impossible to do for actual forecasting when the future is
344 unknown. We need new theory or empirical case studies in order to assign these weights *a priori*.

345 Theory could explore the influence of different parameters on the rate at which slow processes
346 begin to influence dynamics. The effects of some parameters are intuitive: in the community
347 turnover example, increasing the fraction of dispersing individuals caused a more rapid shift in
348 species composition and in model weights (Fig. 6A). Other parameters have less intuitive effects:
349 we expected that increasing the temperature tolerance of genotypes in the evo-evolutionary ex-
350 ample would accelerate the shift in model weights by maintaining higher genetic diversity. Our
351 simulations showed the opposite effect, with wider tolerances slowing the shift in model weights

352 (Fig. 6B), presumably by decreasing the strength of selection. Additional factors to consider
353 include organism lifespans and the magnitude of directional environmental change relative to
354 historical interannual variation.

355 Empirical research could inform model weights by accumulating enough case studies to in-
356 fer patterns in the weighting functions and guide applications in new systems. Developing
357 rules of thumb would require testing many forecasts from both time-series and spatial models
358 across a range of time-horizons. This effort may require a novel integration of typically disparate
359 approaches, such as analyses of paleoecological data (e.g., Worth et al. 2014), long-term observa-
360 tional (e.g., Nice et al. 2019) or experimental data (e.g., Silvertown et al. 2006), and model systems
361 with short-generation times (e.g., Good et al. 2017).

362 The idea of combining forecasts with model weights and allowing the weights to shift across
363 the forecast horizon need not be limited to extremely simple statistical models like the ones we
364 used in this study. The same concept could work for any class of models that differ in pre-
365 dictive skill at different forecast horizons, such as more sophisticated phenomenological models
366 designed to minimize problems of extrapolating outside the historical range of variation, or a
367 set of process-based models focusing on mechanisms operating at different time scales. Deter-
368 mining the model weights *a priori* might be easier when models feature explicit processes with
369 characteristic time scales.

370 On the other hand, there is no guarantee that our proposed model weighting scheme will
371 work when applied in real ecosystems. The most obvious potential problem is that space-for-time
372 approaches may fail to predict long-term dynamics if model assumptions are violated, transient
373 dynamics are strong, or future environmental conditions have no current analog (Worth et al.,
374 2014; Veloz et al., 2012). The notion that model weighting can improve forecasts at intermediate
375 and long forecast horizons must be viewed as a hypothesis to be tested with empirical data.

376 Given the challenges of determining model weights *a priori*, we should also pursue alterna-
377 tives for intermediate forecast horizons. In the Introduction, we argued that fully process-based
378 models are not feasible. However, a new class of statistical models offers a compromise be-
379 tween mechanistic detail and phenomenological feasibility. Spatiotemporal statistical modeling
380 approaches are being developed to study patterns and processes of interest to ecological forecast-
381 ers, such the spread of an invasive species or population status of a threatened species (Wikle,
382 2003; Williams et al., 2017; Schliep et al., 2018). Because these models include both fast processes,
383 such as births and deaths, and slower processes, such as colonization and extinction dynamics,
384 they have the potential to make better predictions at intermediate forecast horizons than purely
385 spatial or temporal models. However, these spatiotemporal models have rarely been used in a
386 forecasting context, due to a combination of data limitation and computational challenges. Many
387 data sources contain either spatial or temporal variation, but not both, and when spatiotempo-
388 ral datasets are available they often involve irregular sampling, creating challenges for modeling.
389 Fitting and generating predictions from spatiotemporal models is also computationally intensive,

390 especially with large datasets (McDermott and Wikle, 2017). Fortunately, thanks to large-scale
391 monitoring efforts from remote sensing platforms, the National Ecological Observatory Network
392 (<https://www.neonscience.org/>), and community science projects (e.g., eBird), large scale spa-
393 tiotemporal data is increasingly available. In addition, new methods for spatiotemporal forecast-
394 ing are being developed that address existing computational challenges (McDermott and Wikle,
395 2017), and access to high performance computing resources is increasingly common. Given these
396 developments, future ecological forecasting efforts should explore spatiotemporal approaches
397 and assess whether they improve predictions at intermediate time scales relative to traditional
398 time-series or space-for-time approaches.

399 Our simulation studies have important implications for the emerging field of ecological fore-
400 casting. First, they suggest that evaluating model performance at both short and long forecast
401 horizons will be essential as research on forecasting methods accelerates. Second, while single
402 approaches may perform reasonably well for either short or long horizons, skillful predictions at
403 intermediate forecast horizons may require a combination of information from spatial and tem-
404 poral statistical models. Intermediate time horizons pose challenges in other forecasting contexts
405 as well. Weather forecasts based on regional-scale meteorological models are very effective for
406 forecasting a week to ten days in advance, but then become largely uninformative. Forecasting
407 these intermediate scales has been challenging in meteorology and will likely be challenging in
408 ecology as well. While the recent emphasis on near-term iterative forecasting (Dietze et al., 2018)
409 is the logical and tractable starting point, we also need to build understanding and capacity for
410 forecasting ecological dynamics across all forecast horizons of interest.

411 **Data accessibility statement:**

412 The manuscript contains no original data. All computer code will be archived at Zenodo upon
413 acceptance of the paper.

414 **Statement of authorship:**

415 PBA and EPW designed the study, PBA and MHC built the models, and PBA analyzed the
416 models. PBA wrote the first draft of the manuscript, and all authors contributed substantially to
417 revisions.

418 **Acknowledgements:**

419 We thank Heather Lynch and Juan Manuel Morales for comments that improved early drafts
420 of the paper. PBA was supported by the National Science Foundation (DEB-1927282) and the
421 Utah Agriculture Experiment Station (grant 1322). EPW was supported by the Gordon and Betty
422 Moore Foundation's Data-Driven Discovery Initiative (GBMF4563).

423 **Literature cited**

424 Alexander, J. M. et al. 2018. Lags in the response of mountain plant communities to climate
425 change. – *Global Change Biology* 24: 563–579.

426 Amburgey, S. M. et al. 2018. Range position and climate sensitivity: The structure of among-
427 population demographic responses to climatic variation. – *Global Change Biology* 24: 439–454.

428 Blois, J. L. et al. 2013. Space can substitute for time in predicting climate-change effects on
429 biodiversity. – *Proceedings of the National Academy of Sciences* 110: 9374–9379.

430 Brun, P. et al. 2016. The predictive skill of species distribution models for plankton in a changing
431 climate. – *Global Change Biology* 22: 3170–3181.

432 Chevalier, M. and Knape, J. 2020. The cost of complexity in forecasts of population abundances
433 is reduced but not eliminated by borrowing information across space using a hierarchical
434 approach. – *Oikos* in press.

435 Clark, J. et al. 2001. Ecological forecasts: An emerging imperative. – *Science* 293: 657–660.

436 Dagleish, H. J. et al. 2011. Climate influences the demography of three dominant sagebrush
437 steppe plants. – *Ecology* 92: 75–85.

438 Davis, E. B. et al. 2014. Ecological niche models of mammalian glacial refugia show consistent
439 bias. – *Ecography* 37: 1133–1138.

440 Dietze, M. C. 2017. Prediction in ecology: a first-principles framework. – *Ecological Applications*
441 27: 2048–2060.

442 Dietze, M. C. et al. 2018. Iterative near-term ecological forecasting: Needs, opportunities, and
443 challenges. – *Proceedings of the National Academy of Sciences* 115: 1424–1432.

444 Elith, J. and Leathwick, J. R. 2009. Species distribution models: ecological explanation and pre-
445 diction across space and time. – *Annual Review of Ecology, Evolution, and Systematics* 40:
446 677–697.

447 Good, B. H. et al. 2017. The dynamics of molecular evolution over 60,000 generations. – *Nature*
448 551: 45.

449 Harris, D. J. et al. 2018. Forecasting biodiversity in breeding birds using best practices. – *PeerJ* 6:
450 e4278.

451 Hefley, T. J. et al. 2017. When mechanism matters: Bayesian forecasting using models of ecological
452 diffusion. – *Ecology Letters* 20: 640–650.

453 Hoffmann, A. A. and Sgro, C. M. 2011. Climate change and evolutionary adaptation. – *Nature*
454 470: 479–485.

455 Houlahan, J. E. et al. 2017. The priority of prediction in ecological understanding. – *Oikos* 126:
456 1–7.

457 Hyndman, R. and Athanasopoulos, G. 2018. *Forecasting: Principles and Practice*. – OTexts.

458 Illán, J. G. et al. 2014. Precipitation and winter temperature predict long-term range-scale abun-
459 dance changes in Western North American birds. – *Global Change Biology* 20: 3351–3364.

460 Kleinhesselink, A. R. and Adler, P. B. 2018. The response of big sagebrush (*Artemisia tridentata*)
461 to interannual climate variation changes across its range. – *Ecology* 99: 1139–1149.

462 Lauenroth, W. K. and Sala, O. E. 1992. Long-term forage production of North American short-
463 grass steppe. – *Ecological Applications* 2: 397–403.

464 Levin, S. A. 1992. The problem of pattern and scale in ecology: the robert h. macarthur award
465 lecture. – *Ecology* 73: 1943–1967.

466 McDermott, P. L. and Wikle, C. K. 2017. An ensemble quadratic echo state network for non-linear
467 spatio-temporal forecasting. – *Stat* 6: 315–330.

468 Mouquet, N. et al. 2015. REVIEW: Predictive ecology in a changing world. – *Journal of Applied*
469 *Ecology* 52: 1293–1310.

470 Nice, C. C. et al. 2019. Extreme heterogeneity of population response to climatic variation and
471 the limits of prediction. – *Global Change Biology* 25: 2127–2136.

472 Norberg, A. et al. 2019. A comprehensive evaluation of predictive performance of 33 species
473 distribution models at species and community levels. – *Ecological Monographs* 89: e01370.

474 Oedekoven, C. S. et al. 2017. Attributing changes in the distribution of species abundance to
475 weather variables using the example of British breeding birds. – *Methods in Ecology and*
476 *Evolution* 8: 1690–1702.

477 Renwick, K. M. et al. 2018. Multi-model comparison highlights consistency in predicted effect of
478 warming on a semi-arid shrub. – *Global Change Biology* 24: 424–438.

479 Rosenzweig, M. L. et al. 1995. *Species diversity in space and time*. – Cambridge University Press.

480 Sala, O. E. et al. 1988. Primary production of the central grassland region of the United States. –
481 *Ecology* 69: 40–45.

482 Schliep, E. M. et al. 2018. Joint species distribution modelling for spatio-temporal occurrence and
483 ordinal abundance data. – *Global Ecology and Biogeography* 27: 142–155.

484 Silvertown, J. et al. 2006. The Park Grass Experiment 1856-2006: Its contribution to ecology. –
485 *Journal of Ecology* 94: 814.

486 Urban, M. C. et al. 2012. On a collision course: competition and dispersal differences create
487 no-analogue communities and cause extinctions during climate change. – *Proceedings of the*
488 *Royal Society of London B: Biological Sciences* 279: 2072–2080.

489 Veloz, S. D. et al. 2012. No-analog climates and shifting realized niches during the late quaternary:
490 implications for 21st-century predictions by species distribution models. – *Global Change*
491 *Biology* 18: 1698–1713.

492 Ward, E. J. et al. 2014. Complexity is costly: a meta-analysis of parametric and non-parametric
493 methods for short-term population forecasting. – *Oikos* 123: 652–661.

494 Wikle, C. K. 2003. Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes.
495 – *Ecology* 84: 1382–1394.

496 Williams, J. W. and Jackson, S. T. 2007. Novel climates, no-analog communities, and ecological
497 surprises. – *Frontiers in Ecology and the Environment* 5: 475–482.

498 Williams, P. J. et al. 2017. An integrated data model to estimate spatiotemporal occupancy,
499 abundance, and colonization dynamics. – *Ecology* 98: 328–336.

500 Worth, J. R. P. et al. 2014. Environmental niche modelling fails to predict Last Glacial Maximum
501 refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates? – *Global Ecology and*
502 *Biogeography* 23: 1186–1197.

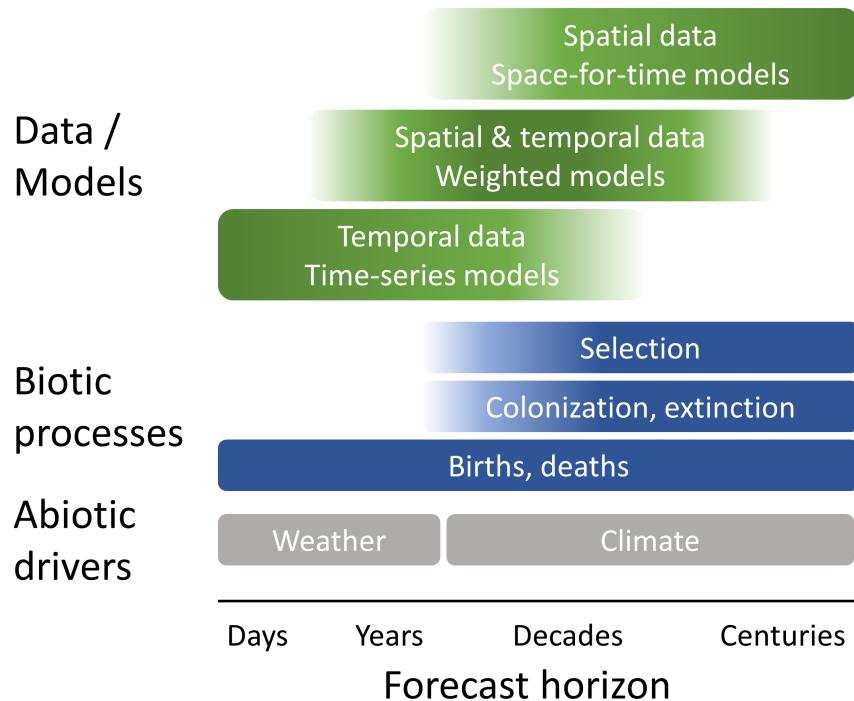


Figure 1: Fast and slow processes operate at different time scales, and are reflected in different kinds of datasets. Fast processes, such as births, deaths, and individual growth, operate at all time scales, but are the exclusive drivers of the short-term dynamics captured in most time series datasets. Slower processes, such as evolutionary selection on genotype frequencies, ecological selection on species abundances, and colonization and extinction, interact with fast processes to drive dynamics over the long-term. The influence of these slow processes is seen in very long time series, or in spatial gradients. Understanding dynamics at intermediate time scales requires integrating information from spatial and temporal data sources. We propose a model weighting approach; mechanistic spatiotemporal modeling is another alternative. The time scales shown here were chosen with vascular plants in mind, but the same concepts would apply for much shorter-lived organisms but at shorter time scales.

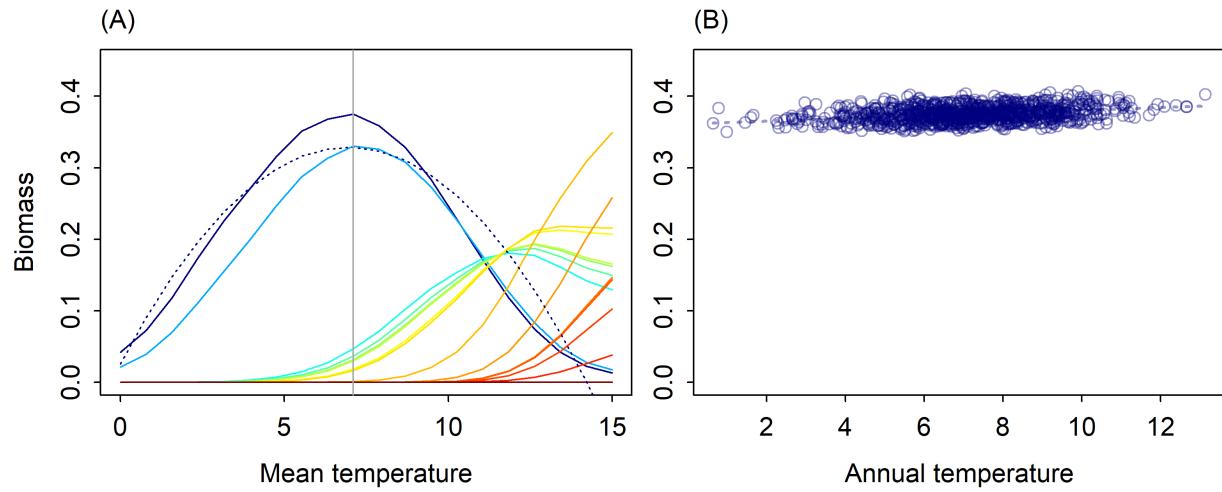


Figure 2: (A) Mean biomass by species (colors) across the temperature gradient during the baseline period. The focal species, dominant at the site in the center of the gradient (vertical gray line), is shown in dark blue. The dashed blue line shows predictions from the spatial statistical model. (B) Annual biomass of the focal species at the central site during the baseline period. The dashed line shows predictions from the temporal statistical model.

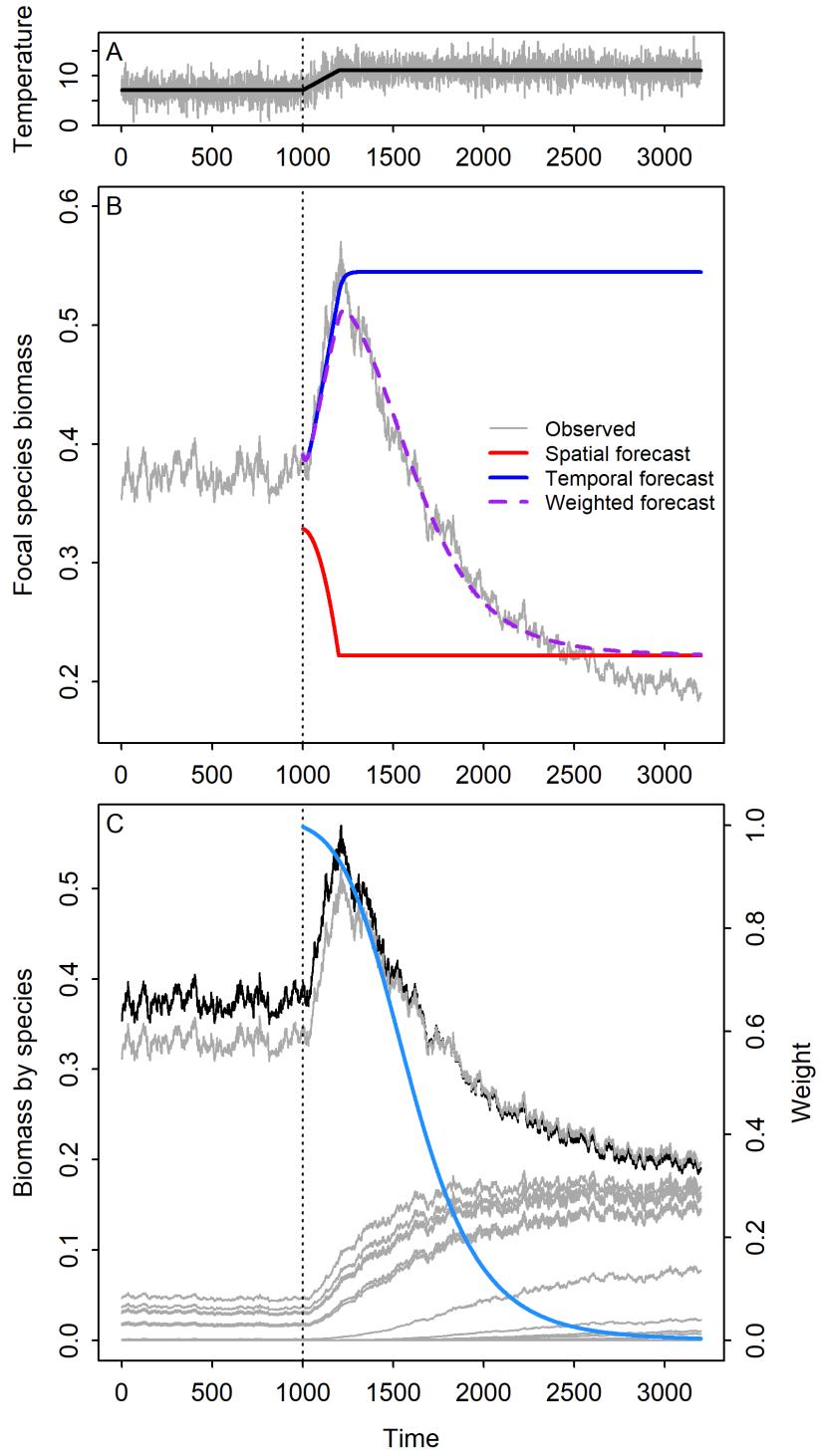


Figure 3: (A) Simulated annual temperatures (grey) and expected temperature (black), which was used to make forecasts, at the focal site. (B) Simulated focal species biomass and forecasts from the spatial, temporal and weighted statistical models at the focal site in the metacommunity model. (C) Simulated changes in biomass of the focal species (black) and all other species (grey), and the weight given to the temporal statistical model for focal species biomass (blue). Time 1000 (years) in each panel corresponds to the start of the temperature increase.

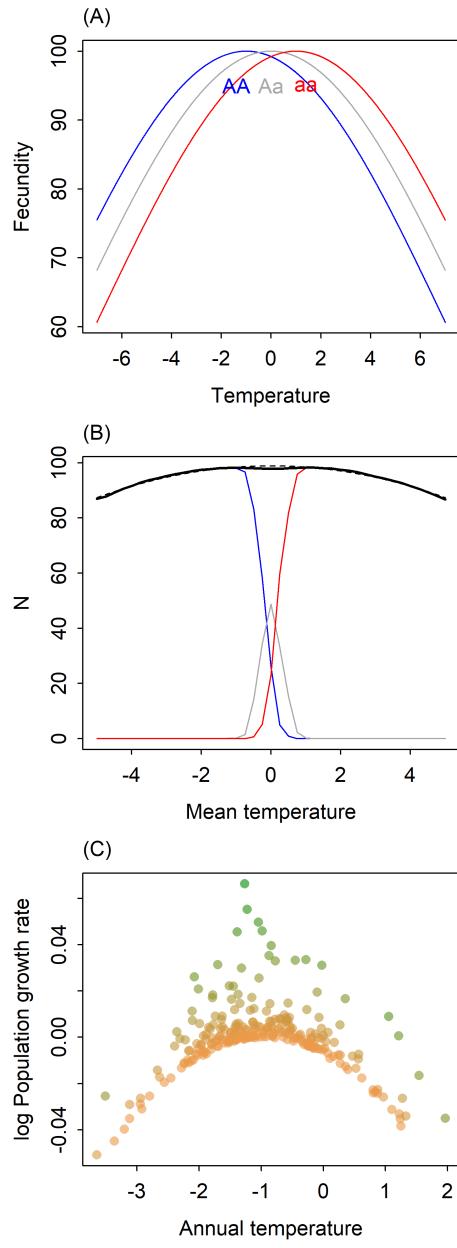


Figure 4: (A) Reaction norms of the three genotypes. (B) The spatial pattern of individual genotypes (colors) and total population abundance (black) at sites arrayed across a gradient of mean annual temperature. The dashed black line (almost entirely hidden by the solid black line) shows predictions from an empirical, spatial statistical model, a linear regression that describes mean population size as a function of mean temperature. (C) The relationship between annual temperature and per capita growth rate at a location with a mean temperature that favors the cold-adapted genotype. Colors show population size (the green to brown gradient depicting low to high population density), which influences the population growth rate through density dependence.

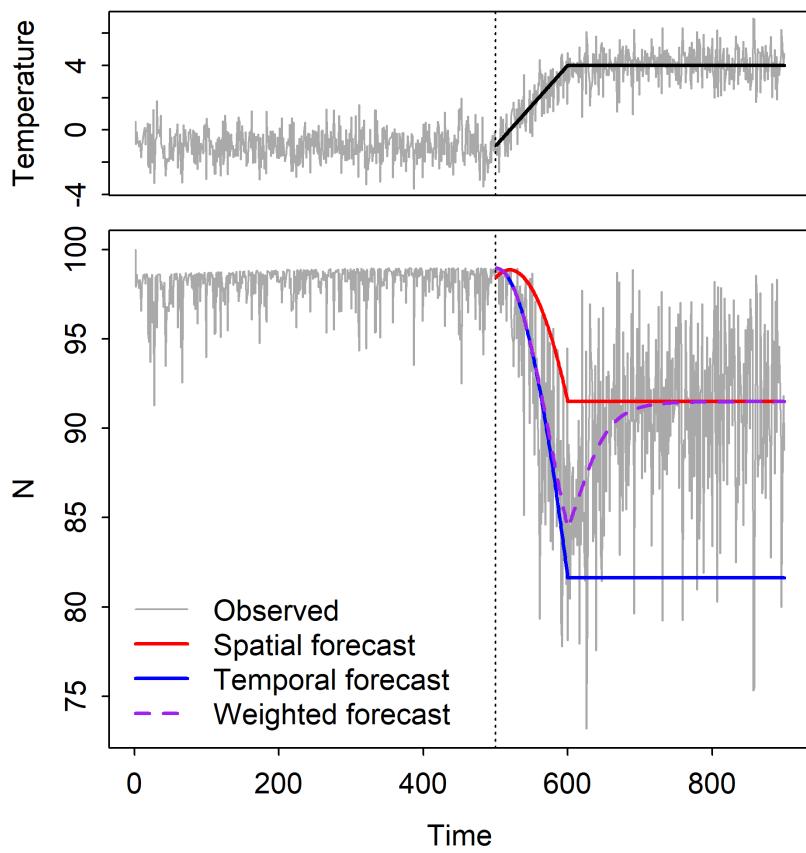


Figure 5: (Top) Simulated annual temperatures (grey) and expected temperature (black), which was used to make forecasts. (Bottom) Simulated population size and forecasts from the spatial, temporal and weighted statistical models.

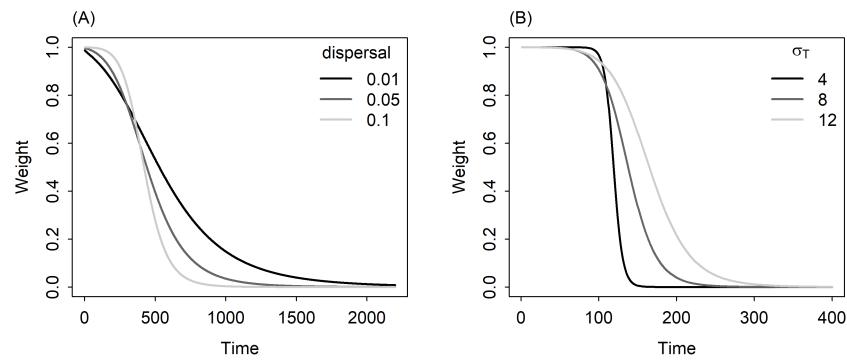


Figure 6: The rate of change in the weight of the temporal forecast (y-axis) depends on (A) the fraction of propagules dispersing in the community turnover example and (B) on the temperature tolerance of genotypes, given by σ_T (larger values indicate wider thermal niches) in the eco-evolutionary example. Time 0 (years) in these figures corresponds to the start of the temperature increase.

Appendices

503 A Spatial, temporal and spatial-temporal-weighted models

504 The two simulation models in the main text describe how population size, $N(x, t)$, at location x
 505 changes over time (t). We assume that the temperature, $K(x, t)$, at each location can vary in time
 506 and space. To forecast the dynamics generated by these simulations models, we fit a series of
 507 statistical models.

508 The spatial model, which we refer to as S , is a quadratic regression of the mean long-term
 509 population density at a location ($\bar{N}(x)$) against the mean temperature at that location ($\bar{K}(x)$).
 510 The quadratic term describes the unimodal relationship between \bar{N} and \bar{K} . The spatial statistical
 511 model is

$$\bar{N}(x) = S(\bar{K}(x)) = \beta_0^S + \beta_1^S \bar{K}(x) + \beta_2^S \bar{K}(x)^2 + \varepsilon \quad (1)$$

512 The temporal model, which we call T , starts with a time-series of “observed” population
 513 sizes, or total biomasses, at one location, $N(t)$, for $t = 1 \dots n$ (the spatial index is suppressed
 514 because we only focus on one location at a time). In the community turnover example, we fit the
 515 following regression, which predicts biomass at time $t + 1$ as a function of biomass ($N(t)$) and
 516 annual temperature ($K(t)$) at time t ,

$$\ln(N(t + 1)) = T(N(t), K(t)) = \beta_0^T + \beta_1^T \ln(N(t)) + \beta_2^T K(t) + \varepsilon \quad (2)$$

517 In the eco-evolutionary example, the response variable is the log of the population growth rate.
 518 The regression, which includes a quadratic effect of temperature, is

$$\ln\left(\frac{N(t + 1)}{N(t)}\right) = T(N(t), K(t)) = \beta_0^T + \beta_1^T \ln(N(t)) + \beta_2^T K(t) + \beta_3^T K(t)^2 + \varepsilon \quad (3)$$

519 This version of the temporal model returns a per capita growth rate on the log scale. To predict
 520 population size at the next time step, we exponentiate the growth rate and multiply it by the
 521 current population size: $\exp(T(N(t), K(t)))N(t)$.

522 The weighted model is a weighted average of predictions from the spatial and temporal
 523 models, with the weights changing as a function of time, here expressed as the forecast horizon.
 524 The weights change as a function of the square root of the forecast horizon, to allow rapid shifts
 525 in the model weights.

$$\text{logit}(\omega_t) = \beta_0^W + \beta_1^W \sqrt{t} \quad (4)$$

526 For the community turnover example, the predicted biomass from the weighted model is:

$$\hat{N}(t + 1) = \omega \cdot T(N(t), K(t)) + (1 - \omega) \cdot S(K(t)) \quad (5)$$

527 Again, we suppress the spatial subscript (x) here because we are focused on densities at just
 528 one location. For the eco-evolutionary example, the predicted population size from the weighted
 529 model is:

$$\hat{N}(t+1) = \omega \cdot \exp(T(N(t), K(t)))N(t) + (1 - \omega) \cdot S(K(t)) \quad (6)$$

530 We used the `optim` function to estimate the β^W s that minimize the sum of squared errors,
 531 $(\hat{N}(t+1) - N(t+1))^2$.

532 In the main text, we show the point forecasts but not the uncertainty around the forecasts.
 533 After exploring that uncertainty, we decided that presenting it would be misleading. For the spa-
 534 tial and, especially, the temporal statistical models, the uncertainty is unrealistically low, because
 535 the models are estimated with very large samples sizes from the simulations. Furthermore, the
 536 simulations do not include noise; the only reason there is any uncertainty is because the statis-
 537 tical models are slightly mis-specified with respect to the process models. Showing uncertainty
 538 for the weighted model would be even less meaningful, because it is not a true, out-of-sample
 539 forecast (parameters are fit directly to the observations for which we make predictions). The R
 540 code to compute uncertainties for the spatial and temporal forecasts is available on our Github
 541 repository (<https://github.com/pbadler/space-time-forecast>), but is commented out.

542 B Description of the meta-community model

543 Alexander et al. (2018) developed a meta-community model to represent dynamics of local com-
 544 munities arrayed along a one-dimensional elevation gradient, as influenced by three main pro-
 545 cesses: temperature-dependent growth, competition, and dispersal. Here we adapt their notation
 546 to be consistent with our own.

547 The population size of species i in cell x at time $t+1$, $N_i(x, t+1)$, is computed in two
 548 steps. The first step accounts for changes in local population sizes due to dispersal. In each
 549 local community, all species export a fraction (d) of their local population to the two adjacent
 550 communities in the 1-dimensional landscape:

$$N'_i(x, t) = (1 - d) \cdot N_i(x, t) + \frac{d}{2} \cdot (N_i(x+1, t) + N_i(x-1, t)) \quad (7)$$

551 Here N' distinguishes the post-dispersal population size from the pre-dispersal population size.
 552 The second step computes population growth, taking into account competition:

$$N_i(x, t+1) = N'_i(x, t) + N'_i(x, t)[g_i(K(x) - K_{min_i}) - c_i N'_i(x, t) - l_i \sum_k N'_k(x, t)] \quad (8)$$

553 In the absence of competition, the growth rate (g_i) is determined by the difference between the
 554 temperature at site x ($K(x)$) and the focal species' minimum temperature tolerance, K_{min_i} , the
 555 lowest temperature at which a species can maintain a positive growth rate. Growth is further
 556 reduced by intraspecific and interspecific competition, parameterized by c_i and l_i . All species are

557 assigned the same value of c_i , which represents an additional effect of intraspecific competition
 558 on top of interspecific competition. This stabilizes coexistence, since every species will exert
 559 stronger intra- than interspecific competition. However, values of l vary among species to create
 560 a trade-off between growth rates and competitive ability versus low temperature tolerance: fast-
 561 growing species (high g_i) are more tolerant of interspecific competition (low l_i) but are more
 562 limited by temperature (high K_{min_i}).

563 To assign species-specific parameter values, the number of species in the metacommunity is
 564 specified. Next, each species is assigned an optimal temperature within a specified temperature
 565 range by drawing from a uniform distribution. Sensitivity to interspecific competition is then
 566 determined as a decreasing function of optimal temperature. Calculations are performed in the
 567 script `SpeciesPoolGen.R`.

568 C Description of the eco-evolutionary annual plant model

Haploid Model: Begin with a haploid model that describes the number of seeds present in a population. We model a scenario in which all seeds germinate, so we can ignore seedbank dynamics. $N_{i,t}$ is the number of seeds of species i at time t . The model is

$$\begin{aligned} N_{1,t+1} &= \frac{\lambda_1(K(t))N_{1,t}}{1 + \alpha_{11}N_{1,t} + \alpha_{12}N_{2,t}} \\ N_{2,t+1} &= \frac{\lambda_2(K(t))N_{2,t}}{1 + \alpha_{21}N_{1,t} + \alpha_{22}N_{2,t}} \end{aligned} \quad (9)$$

569 where $\lambda_i(K(t))$ is the seed production rate per plant, and $K(t)$ is the temperature at time t . Below
 570 we refer to the α_{ij} as intra- and inter-genotype competition coefficients.

571 **Diploid Model:** Consider a one-species diploid model. The genotypes are denoted by AA ,
 572 Aa , and aa . The number of each genotype at time t is $N_{AA}(t)$, $N_{Aa}(t)$, and $N_{aa}(t)$. The seed
 573 production rate for genotype AA is $\lambda_{AA}(K(t))$, and the analogous parameters for the other
 574 genotypes are similarly denoted. The competition coefficients are denoted by $\alpha_{i,j}$, e.g., $\alpha_{AA,AA}$ or
 575 $\alpha_{AA,Aa}$. Throughout we assume that gametes mix randomly in the population.

576 First consider the case where the competition coefficients are zero ($\alpha_{i,j} = 0$). Let T denote the
 577 total number of gamete-pairs produced in a given year,

$$T = \lambda_{AA}(K(t))N_{AA}(t) + \lambda_{Aa}(K(t))N_{Aa}(t) + \lambda_{aa}(K(t))N_{aa}(t). \quad (10)$$

The first term is the number of gamete-pairs produced by AA individuals. The second and third terms are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The proportion of A gametes (ϕ_A) and the proportion of a gametes (ϕ_a) are given by

$$\phi_A = \frac{2\lambda_{AA}(K(t))N_{AA}(t) + \lambda_{Aa}(K(t))N_{Aa}(t)}{2T} \quad \text{and} \quad \phi_a = 1 - \phi_A. \quad (11)$$

Note that the T in the denominator of ϕ_A shows up because we are computing proportions. Combining all of these we get the dynamics for each genotype,

$$\begin{aligned} N_{AA}(t+1) &= \phi_A^2 T \\ N_{Aa}(t+1) &= \phi_A \phi_a T \\ N_{aa}(t+1) &= \phi_a^2 T \end{aligned} \tag{12}$$

Now consider the case where the competition coefficients are non-zero ($\alpha_{i,j} \neq 0$). Including competition changes the way in which we compute T , ϕ_A , and ϕ_a . Specifically, because the total number of seeds produced per year by each genotypes is reduced based on intra- and inter-genotype competition, the total number of gamete-pairs becomes

$$\begin{aligned} T &= \frac{\lambda_{AA}(K(t))N_{AA}(t)}{1 + \alpha_{AA,AA}N_{AA}(t) + \alpha_{AA,Aa}N_{Aa}(t) + \alpha_{AA,aa}N_{aa}(t)} \\ &+ \frac{\lambda_{Aa}(K(t))N_{Aa}(t)}{1 + \alpha_{Aa,AA}N_{AA}(t) + \alpha_{Aa,Aa}N_{Aa}(t) + \alpha_{Aa,aa}N_{aa}(t)} \\ &+ \frac{\lambda_{aa}(K(t))N_{aa}(t)}{1 + \alpha_{aa,AA}N_{AA}(t) + \alpha_{aa,Aa}N_{Aa}(t) + \alpha_{aa,aa}N_{aa}(t)}. \end{aligned} \tag{13}$$

The first line is the number of gamete-pairs produced by AA individuals after accounting for the effects of competition. The second and third lines are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The proportions of A gametes and a gametes are

$$\begin{aligned} \phi_A &= \frac{2}{2T} \frac{\lambda_{AA}(K(t))N_{AA}(t)}{1 + \alpha_{AA,AA}N_{AA}(t) + \alpha_{AA,Aa}N_{Aa}(t) + \alpha_{AA,aa}N_{aa}(t)} \\ &+ \frac{1}{2T} \frac{\lambda_{Aa}(K(t))N_{Aa}(t)}{1 + \alpha_{Aa,AA}N_{AA}(t) + \alpha_{Aa,Aa}N_{Aa}(t) + \alpha_{Aa,aa}N_{aa}(t)} \\ \phi_a &= 1 - \phi_A \end{aligned} \tag{14}$$

Combining all of this results in the same model as above,

$$\begin{aligned} N_{AA}(t+1) &= \phi_A^2 T \\ N_{Aa}(t+1) &= 2\phi_A \phi_a T \\ N_{aa}(t+1) &= \phi_a^2 T, \end{aligned} \tag{15}$$

⁵⁷⁸ but the definitions of T , ϕ_A , and ϕ_a are given by equations (13) and (14).

579 **Supplementary Tables**

Table SM-1: Parameters and parameter values for the community turnover case study. Values are assigned at the start of `comm_turn_master.R`. “Name” refers to the variable declared in the computer code. These names do not exactly match the symbols shown in the equations in Appendix B; rather, the species-specific values of those parameters are calculated in the computer code based on the values in this table.

Name	Value	Definition
L_land	20	Length of landscape
Tmin	0	Minimum of spatial gradient in baseline temperature
Tmax	15	Maximum of spatial gradient in baseline temperature
Tstdev	2	Standard deviation of temperature (interannual variation)
deltaT	4	Magnitude of directional change in temperature
burnin_yrs	2000	Number of years to initialize simulation
baseline_yrs	1000	Number of years at baseline temperature used to fit statistical models
warming_yrs	200	Number of years over which temperature increases
final_yrs	2000	Number of years at steady-state, elevated temperature
N	40	Number of species
Gmax	0.5	Maximum population growth rate
Gmin	0.2	Minimum population growth rate
Lmax	1.5	Maximum sensitivity to competition
Lmin	0.7	Minimum sensitivity to competition
Cmax	0.2	Maximum additional sensitivity to conspecific competition
Cmin	0.2	Minimum additional sensitivity to conspecific competition
d	0.01	Fraction of offspring dispersing from home site

Table SM-2: Parameters and parameter values for the eco-evolutionary case study. Values are assigned at the start of `genetic_diversity_master.R`. “Name” refers to the variable declared in the computer code. Where appropriate, the corresponding symbols from equations in Appendix C are shown in parentheses.

Name	Values	Definition
Tstdev	1	Standard deviation of temperature (interannual variation)
baseT	-1	Baseline temperature
deltaT	5	Total change in temperature
baseline_yrs	500	Number of years at baseline temperature used to fit statistical models
warming_yrs	100	Number of years over which temperature increases
final_yrs	300	Number of years at steady-state, elevated temperature
fec_Tmu	-1,0,1	Optimal fecundity temperature for genotypes AA, Aa, and aa
fec_Tsigma	8	Standard deviation in fecundity for all genotypes
fec_max	100	Maximum fecundity for all genotypes
alpha (α)	1	All competition coefficients for all genotypes

580 **Supplementary Figures**

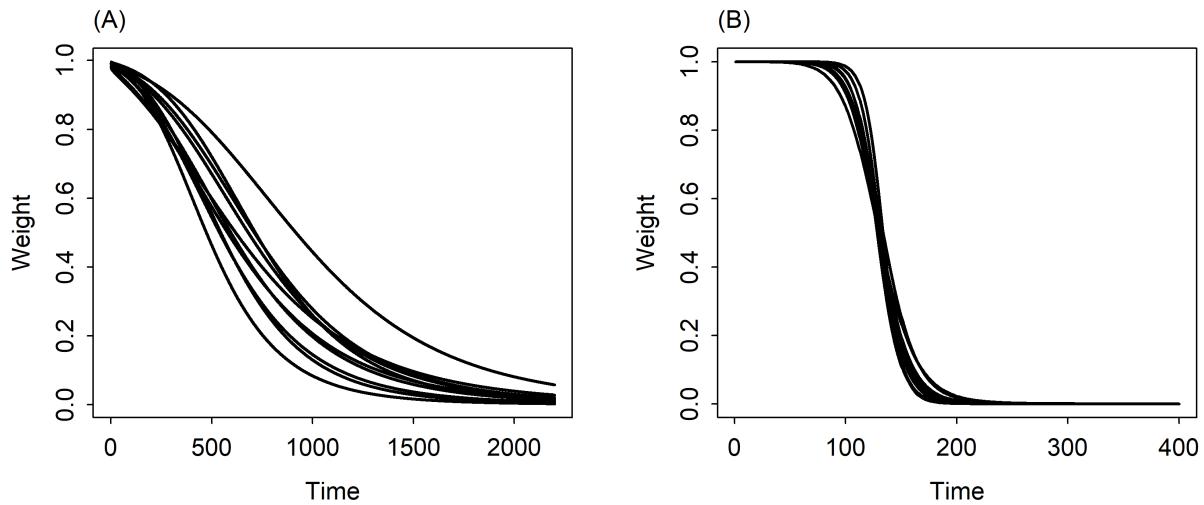


Figure SM-1: (A) Temporal shifts in the model weighting term for 10 independent simulations of (A) the community turnover model, and (B) the eco-evolutionary model. For the community turnover model, each simulation began with initialization of a new regional species pool. For the eco-evolutionary model, genotype parameters were fixed, and only the sequence of annual temperatures varied between runs. In all cases, the combined forecast is heavily weighted towards the time-series model at short forecast time scales, and towards the space-for-time model at long forecast time scales.

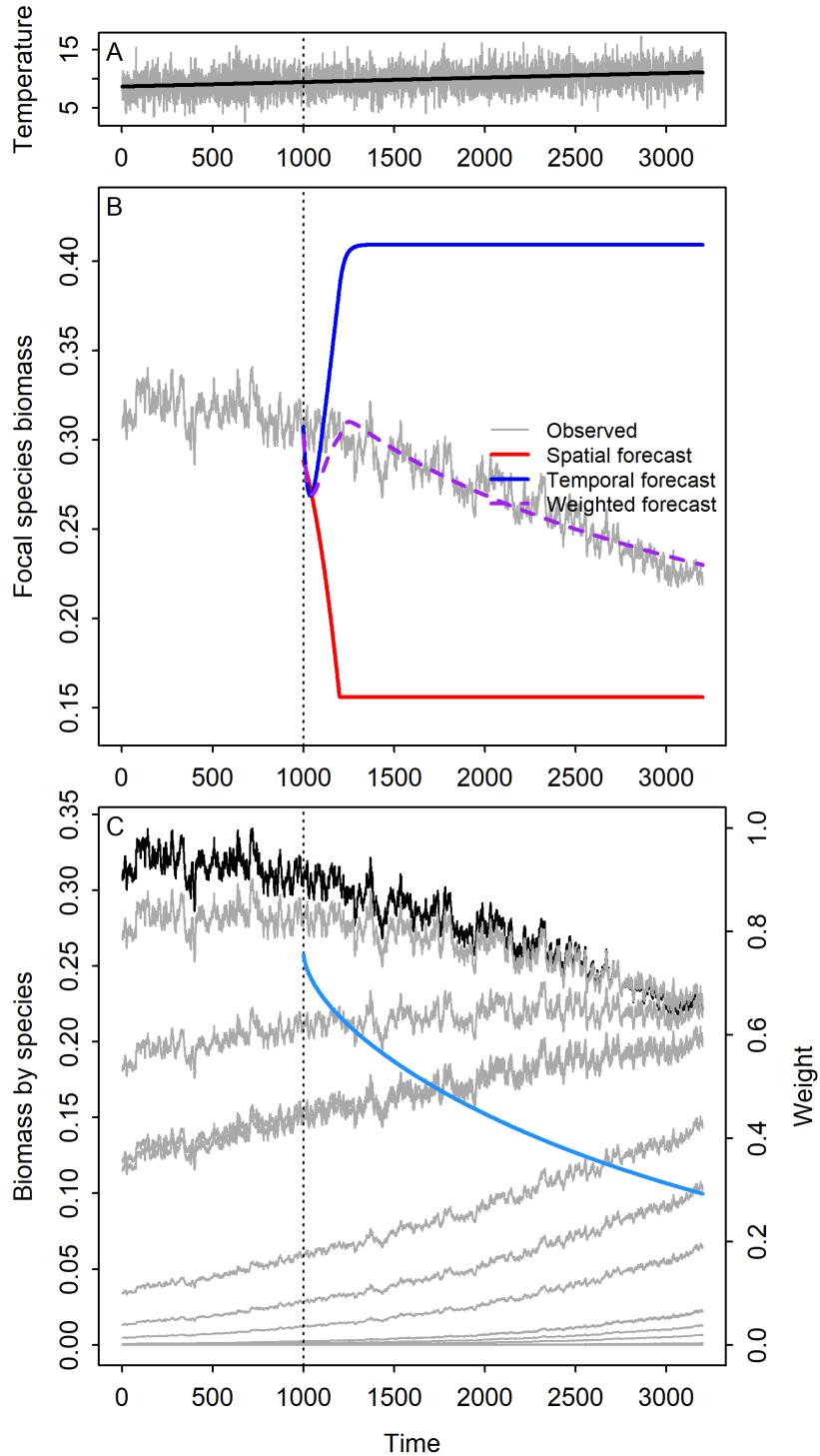


Figure SM-2: (A) Simulated annual temperatures (grey) and expected temperature (black), which was used to make forecasts, at the focal site. In contrast to Fig. 3, which shows results for a period of warming followed by stationary temperatures, for this simulation we spread the same temperature increase out over the entire simulation with no stationary periods. (B) Simulated focal species biomass and forecasts from the spatial, temporal and weighted statistical models at the focal site in the metacommunity model. (C) Simulated biomass of the focal species (black) and all other species (grey), and the weight given to the temporal statistical model for focal species biomass (blue). Time 1000 (years) in each panel corresponds to the start of the temperature increase.

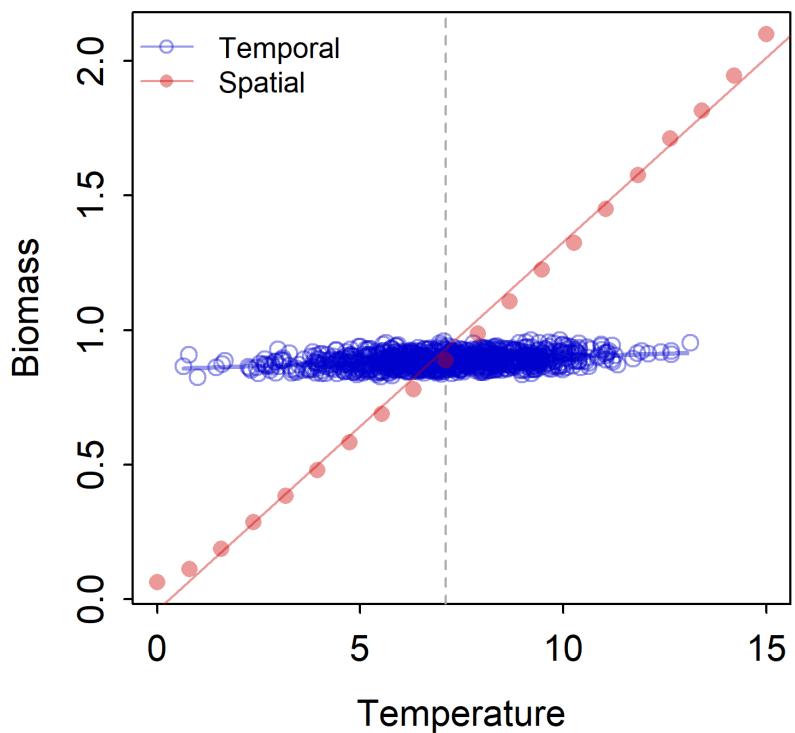


Figure SM-3: Results for total biomass from the community turnover model. Blue points show mean total biomass during the baseline period at locations across the temperature gradient, and the blue line shows predictions from the spatial model. Red points show annual total biomass during the baseline period as a function of annual temperature at the central site on the gradient. The red line shows predictions from the temporal model.

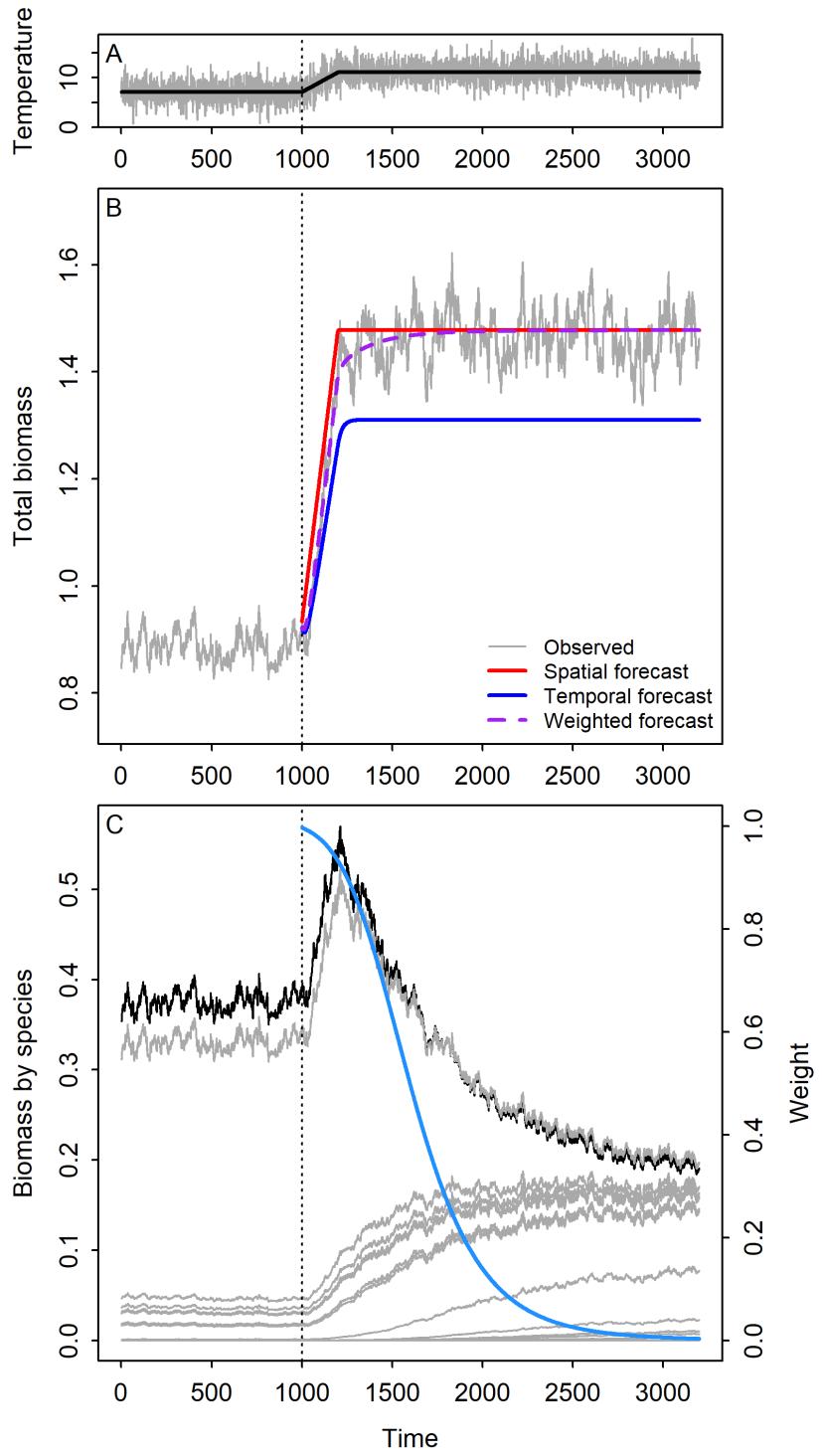


Figure SM-4: Results for total biomass from the community turnover model. (A) Simulated annual temperatures (grey) and expected temperature (black), which was used to make forecasts, at the focal site. (B) Simulated total biomass and forecasts from the spatial, temporal and weighted models. (C) Simulated changes in biomass of all species (grey) at the focal site in the metacommunity model, and the weight given to the temporal model for total biomass (blue). Time 1000 (years) in this figure corresponds to the start of the temperature increase.

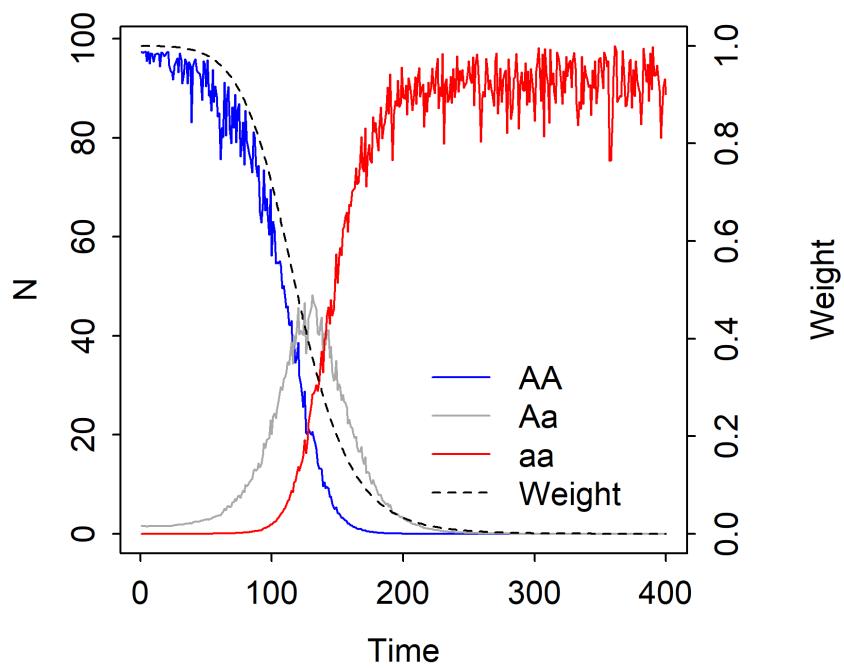


Figure SM-5: Simulated shifts in genotype abundances, and the model weighting term, ω , during the warming phase and the following stationary temperature phase. Time 0 (years) in this figure corresponds to the start of the temperature increase.