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Abstract: Most phenomenological, statistical models used to generate ecological forecasts take
either a time-series approach, based on long-term data from one location, or a space-for-time
approach, based on data describing spatial patterns across environmental gradients. However,
the magnitude and even the sign of environment-response relationships detected using these two
approaches often differs, leading to contrasting predictions about responses to future environ-
mental change. Here we consider how the forecast horizon determines whether more accurate
predictions come from the time-series approach, the space-for-time approach, or a combination
of the two. As proof of concept, we use simulated case studies to show that forecasts for short
and long forecast horizons need to focus on different ecological processes, which are reflected in
different kinds of data. First, we simulated population or community dynamics under stationary
temperature using two simple, mechanistic models. Second, we fit statistical models to the sim-
ulated data using a time-series approach, a space-for-time approach, or a weighted average. We
then forecast the response to a temperature increase using the statistical models, and compared
these forecasts to temperature effects simulated by the mechanistic models. We found that the
time-series approach made accurate short-term predictions because it captured initial conditions
and effects of fast processes such as birth and death. The space-for-time approach made more
accurate long-term predictions because it better captured the influence of slower processes such
as evolutionary and ecological selection. The weighted average made accurate predictions at
all time scales, including intermediate time-scales where the other two approaches performed
poorly. A weighted average of time-series and space-for-time approaches shows promise, but
making this weighted model operational will require new research to predict the rate at which

slow processes begin to influence dynamics.
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Introduction

Forecasting is increasingly recognized as important to the application and advancement of eco-
logical research. Forecasts are necessary to guide environmental policy and management deci-
sions about mitigation and adaption to global change (Clark et al., 2001; Mouquet et al., 2015;
Dietze et al., 2018). But forecasts can also advance understanding of the processes governing
ecological systems by providing rigorous tests of model predictions (Houlahan et al., 2017; Di-
etze, 2017; Dietze et al., 2018). The dual benefits of informing management and advancing basic
knowledge makes forecasting an important priority for ecological research.

Statistical models used for ecological forecasting generally rely on either time-series ap-
proaches or space-for-time substitutions. The time-series approach involves fitting models to
long-term datasets to describe the temporal dynamics of a system. We then project those dy-
namic models to make predictions about what will happen in the future. This approach is often
used to study population or vital rate fluctuations as a function of weather (Dalgleish et al.,
2011), or primary production as a function of annual precipitation (Lauenroth and Sala, 1992).
When time-series models are fit with typically short ecological data sets, they capture “fast pro-
cesses” operating on interannual time-scales, such as birth, death, individual growth, small-scale
dispersal events, and short-term responses to environmental conditions (Fig. 1). Statistical mod-
els built using this approach normally cover a limited spatial extent (but see Hefley et al. 2017;
Kleinhesselink and Adler 2018; Chevalier and Knape 2020), and ignore slower processes, such as
evolutionary adaptation or turnover in community composition, that could influence dynamics
at longer time scales (Clark et al., 2001).

Space-for-time substitution approaches begin by describing how an ecological variable of
interest, such as occupancy or productivity, varies across sites experiencing different environ-
mental conditions. These spatial relationships between environment and ecological response are
assumed to also hold for changes at a site through time. To make a forecast, we first predict the
future environmental conditions and then determine the associated ecological response, based
on the observed spatial relationship. This is the approach commonly used to predict population
distribution or abundance as a function of climate (Elith and Leathwick, 2009) or mean primary
production as a function of mean precipitation (Sala et al., 1988). Space-for-time models capture
the outcome of interactions between fast processes and slower processes operating over long
time periods, such as immigration, extinction, and responses to large or prolonged environmen-
tal changes (Fig. 1). However, space-for-time models provide no information about how quickly
the system will move from the current state to the predicted, future state. In fact, transient dy-
namics could prevent the system from ever reaching the predicted steady state (Urban et al.,
2012).
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Although both time-series and space-for-time approaches are widely used, there has been
little discussion of their advantages and disadvantages for guiding policy decisions or advancing
our understanding of ecological dynamics (Harris et al., 2018; Renwick et al., 2018). Such a dis-
cussion is overdue given that these two approaches are likely to make very different predictions
about ecological responses to future environmental change. For example, average forage produc-
tion in the U.S. shortgrass steppe increases rapidly with increasing mean annual precipitation,
but production is much less sensitive to interannual variation in precipitation at any one location
(Lauenroth and Sala, 1992). The space-for-time approach would predict large changes in produc-
tion in response to a future change in precipitation, while the time-series approach would predict
smaller changes. Bird species” abundances in the United Kindgom also show different responses
to spatial vs. temporal variation in weather covariates. Not only are abundances typically more
sensitive to spatial variation in the covariates, but in many cases the temporal response takes the
opposite sign (Oedekoven et al., 2017). Whenever the sign or magnitude of relationships based
on time-series and space-for-time approaches differ, so will the resulting forecasts.

Whether time-series models, space-for-time approaches, or some combination of the two will
serve as the best source of information for forecasting may depend on how far into the future
we are attempting to forecast (Harris et al., 2018). This potential dependency on the “forecast
horizon” (sensu Hyndman and Athanasopoulos 2018) reflects lags in the response of ecological
conditions to environmental change, shifts in the importance of ecological processes with time
scale (Levin, 1992; Rosenzweig et al., 1995), and differences between time-series and spatial gra-
dients in the range of environmental conditions represented in observed data (Fig. 1). At short
forecast horizons (days to years), dynamics will reflect physiological and demographic responses
and interactions among the organisms present at a site more than temporal turnover of genotypes
or species; environmental conditions are likely to stay within the range of historical variation; and
the current state of the system is likely to capture the influence of unmeasured processes. As a
result, for near-term forecasts time-series approaches may capture the key dynamics and provide
accurate predictions.

In contrast, at long forecast horizons (decades to centuries), environmental conditions that
have not been historically observed are likely to not only occur but to persist long enough to
drive significant turnover of genotypes and species through colonization and extinction as well
as changes in the flux of energy and nutrients. At these long forecast horizons, the state of the
system at the time the forecast is issued may be little help in predicting the future state. For the
century-scale forecasts often featured in biodiversity and species-distribution modeling, space-
for-time approaches may effectively capture the response of ecosystems to major shifts in climate
over long periods, producing better long-term forecasts than time-series approaches. Using dif-
ferent modeling approaches for different forecast horizons is common in other disciplines. For

example, meteorological models for short-term weather forecasts differ substantially in spatial
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and temporal resolution and extent from the global circulation models used to predict long-term
changes in climate.

Why not simply use process-based models to avoid the difficulties posed by phenomenolog-
ical time-series and space-for-time modeling approaches? If we could accurately characterize all
of the processes governing a system, then a model based on that understanding should make
accurate predictions at all forecast horizons. Process-based models should also be more robust
for making predictions outside of historically observed conditions and even beyond the con-
ditions observed across spatial gradients, which will be especially important in a future with
increasingly novel combinations of environment and species interactions (Williams and Jackson,
2007). Unfortunately, in most cases this approach is not currently feasible because we lack a
detailed knowledge of all the complex and interacting processes influencing the dynamics of real
ecological systems. Even if the general form of the models were known, estimating the high
number of parameters and quantifying how they vary across ecosystems typically requires more
data than is currently available even for well-studied systems. Furthermore, the high complexity
and corresponding parameter uncertainty of such models can increase predictive errors; simpler
time-series models may actually perform better (Ward et al., 2014), though spatial replication can
reduce the cost of complexity (Chevalier and Knape, 2020). As a result, models used for eco-
logical forecasting will include at least some phenomenological components. But that does not
mean that phenomenological forecast models cannot benefit from process-based understanding.
Even if process-level understanding does not enable a fully mechanistic model, it can improve
the specification of phenomenological models. Our hypothesis is that different processes may be
relevant for different forecast horizons, and that we can act on this knowledge by fitting models
to different kinds of datasets.

Here we use two simulated case studies to 1) demonstrate why time-series and space-for-time
approaches can make different predictions, 2) propose that the best model-building approaches
for ecological forecasting may depend on the time horizon of the forecast, and 3) explore how
time-series and space-for-time approaches might be combined via weighted averaging to make
better forecasts at intermediate time scales. The first case study focuses on how interspecific
interactions affect the population dynamics of a focal species, and the second focuses on an
eco-evolutionary scenario. Our simulations illustrate that:

1. For short-term forecasts, phenomenological time-series approaches may be hard to beat,
whereas longer-term forecasts may require accounting for the influence of slow processes

such as evolutionary and ecological selection as well as dispersal.

2. Different kinds of data reflect the operation of different processes: longitudinal data cap-
ture autocorrelation and fast responses of current assemblages to interannual environmental
variation, while data spanning spatial gradients capture the long-term outcome of interac-

tions between fast and slow processes. Whether predictive models should be trained using
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longitudinal or spatial data sets, or both, likely depends on the time-scale of the desired

forecast.

3. A key challenge for future research is determining the rate at which slow processes begin to

influence dynamics.

Modeling approach

In each case study, we simulated the effects of an increase in temperature on simple systems with
known dynamics. The truth was represented by a simulation model that was mechanistic for at
least one important process, but we treated this data-generating model as unknown when ana-
lyzing the data and we assumed that perfectly recovering the mechanisms it contains would not
be possible in practice. We began each simulation under a stationary distribution of annual tem-
peratures, allowing the system to equilibrate; we call this the baseline phase. We then increased
temperature progressively over a period of time, followed by a second period of stationary, now
elevated, temperature. The objective was to forecast the response of the system to the tempera-
ture increase based on spatial and/or temporal data “sampled” from the simulation during the
baseline period.

We made forecasts based on two phenomenological statistical models, each representing pro-
cesses operating at different time scales. One statistical model represents the time-series or “tem-
poral approach.” We regressed interannual variation in an ecological response on interannual
variation in temperature at just one site. The other statistical model relies on a space-for-time
substitution, which we call the “spatial approach” for brevity. We regressed the mean tempera-
ture on the mean of an ecological state or rate across many sites. We compared forecasts from
both statistical models to the simulated dynamics to determine how well the two approaches
performed at different forecast horizons. We also assessed the potential for combining the infor-
mation available in temporal and spatial patterns by using a weighted average of the forecasts
from the temporal and spatial approaches optimized to best match the (simulated) observations.
We then studied how the optimal model weights changed over time. We expected the temporal
approach to best predict short-term dynamics, the spatial approach to best predict long-term
dynamics, while the weighted model would show potential to provide the best forecasts at tran-
sitional, intermediate time scales. The three statistical models are described in Supporting In-
formation (Appendix A). Computer code for both case studies will be archived at Zenodo upon
acceptance. Instructions for running the code are in the README file in the main directory of

the zip archive.

Community turnover example

Conservation biologists and natural resource managers often need to anticipate the impact of en-
vironmental change on the abundance of endangered species, biological invaders, and harvested

species. Although the managers may be primarily interested in just one focal species, skillful
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prediction might require considering interactions with many other species, greatly complicating
the problem. But at what forecast horizon do altered species interactions become impossible
to ignore? We explored this question using a metacommunity simulation model developed by
Alexander et al. (2018) to study how community responses to increasing temperature depend on
the interplay between within-site demography and competitive interactions and the movement

of species across sites.
Methods

The model features Lotka-Volterra competitive interactions among plants within sites that are
arrayed along an elevation and temperature gradient. Composition varies along the gradient
because of a trade-off between growth rate and cold tolerance: cold sites are dominated by
slow-growing species that can tolerate low temperatures, while warm sites are dominated by
fast-growing species that are cold intolerant. Multiple species can coexist within sites because
all species experience stronger competition from conspecifics than from heterospecifics. Sites
are linked by dispersal: a specified fraction of each species’ offspring leaves the site where they
were produced and reaches all other sites with equal probability. We provide a more detailed
description of the simulation model in SI Appendix B.

We first simulated a baseline period with variable but stationary temperature, followed by
a period of rapid temperature increase, and then a final period of stationary temperature. In-
terannual variation in temperature is the same at all sites, but mean temperature varies among
sites. All sites experienced the same absolute increase in mean temperature. We focused on the
biomass dynamics of one focal species that dominated the central site during the baseline period.
Parameter values for the simulations described in the main text are shown in Table SM-1. We
report results from one simulation run; results were qualitatively consistent for replicate runs
(Fig. SM-1A).

Results

During the baseline period there were strong spatial patterns across the mean temperature gra-
dient. Individual species, including our focal species, showed classic, unimodal “Whittaker”
patterns of abundances across the gradient (Fig. 2A). These spatial patterns are the basis for our
spatial statistical model of the temperature-biomass relationship for our focal species (Fig. 2A).
In contrast to the strong spatial patterns, population and community responses to interannual
variation in temperature within sites were weak. At our focal site in the center of the gradient,
the biomass of the focal species was quite insensitive to interannnual variation in temperature,
but showed strong temporal autocorrelation (Fig. 2B). Our temporal statistical model estimates
this weak, linear temperature effect, along with the strong lag effect of biomass in the previous
year.

We used both the temporal and spatial statistical models to forecast the effect of a temperature

increase (Fig. 3A) on the focal species’ biomass at one location in the center of the temperature
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gradient. The predictions from these two models contrasted markedly, with the temporal sta-
tistical model predicting a large increase in biomass and the spatial statistical model predicting
a decrease. Initially, the simulated abundances followed the increase predicted by the temporal
model, but as faster-growing species colonized and increased in abundance at the focal site, the
biomass of the focal species decreased, eventually falling below its baseline level (Fig. 3B).

To combine information from the temporal and spatial statistical models into a single predic-
tion, we fit a weighting parameter, w, which varies over time and is bounded between 0 and 1.
At any time point, or year, ¢, this weighted forecast is w - T(N;_1, K;) + (1 — w) - S(K;) where T is
the temporal statistical model, which depends on population size, N, and expected temperature,
K, and S is the spatial statistical model, which depends only on K (see SI Appendix A for a full
description of the approach). The weighted model accurately predicts the simulated dynamics
across the full forecast horizon (Fig. 3B). It also shows that the most rapid shifts in the model
weights occurred during the period when warm-adapted, faster growing species were increasing
most rapidly in abundance (Fig. 3C). However, the reason the weighted models works so well
is that the weights were determined by fitting directly to the data. Unlike the forecasts from the
spatial and temporal statistical models, we did not generate out-of-sample predictions from the
weighted model; it merely provides a convenient way to quantify how rapidly dynamics shift
from being dominated by interannual variation captured in the temporal model (time ¢+ = 0 to
t ~ 1250 in Fig. 3B) to being dominated by the steady-state equilibrium captured by the spatial
model (time t > 2500). A true forecast from the weighted model would require a method to
determine the model weights a priori.

When we repeated the simulation with a continuous, nonstationary temperature increase, we
see a qualitatively similar shift in weights with increasing forecast horizon from the temporal
to spatial statistical model (Fig. SM-2). In this case, the forecast from the temporal statistical
model is not as skillful in the near-term forecast horizon, because the model does not account
for the temperature trend during the model fitting period. Separating the effect of annual tem-
perature deviations from the temperature trend would distinguish between short and long-term
patterns, much as our temporal and spatial statistical models do in the simulation with stationary
temperature periods.

The compositional turnover affecting our focal species also influences total biomass, linking
community and ecosystem dynamics. We repeated our focal species analysis for total community
biomass, and the results were similar: the temporal statistical model initially made the best
forecasts immediately following the onset of the temperature increase, but as the identity and
abundances of species at the study site changed, the model weights rapidly shifted to the spatial
statistical model (Figs. SM-3 and SM-4).
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Eco-evolutionary example

Evolutionary adaptation is a key uncertainty in predicting how environmental change will impact
a focal population at a given location (Hoffmann and Sgro, 2011). Like the shifts in species
composition illustrated in the previous example, shifts in genotype frequencies can also influence
dynamics and forecasts at different time scales. Although shifts in genotype frequencies at the
population level are analogous to changes in species composition at the community level, the
mechanisms are distinct: heterozygosity and genetic recombination have no analogue at the
community level. We demonstrate how these processes influence short and long-term forecasts

with a standard eco-evolutionary simulation model for a hypothetical annual plant population.
Methods

Our model assumes that fecundity is temperature dependent, and different genotypes have dif-
ferent temperature optima (Fig. 4A). All seeds germinate every year, preventing a seedbank from
developing. The model describes how the local density of each genotype changes between years,
which depends on temperature and genotype densities in the previous year. Transient temporal
dynamics are computed directly from the model; these dynamics are the basis for the tempo-
ral statistical model. To create a spatial gradient, we simulated the equilibrium density of each
genotype in a series of local populations experiencing different mean temperatures. The pattern
of equilibrium densities across the mean annual temperature gradient is the basis for our spatial
statistical model: cold sites will be dominated by the cold-adapted homozygous genotype, warm
sites will be dominated by the heat-adapted homozygous genotype, and intermediate sites will be
dominated by the heterozygous genotype (Fig. 4B). The full description of the eco-evolutionary
simulation model is provided in SI Appendix C, and parameter values for simulations described
here are shown in Table SM-2. As in the first case study, we report results from just one simula-
tion run, but results were qualitatively consistent for replicate runs (Fig. SM-1B).

The spatial pattern shown in Fig. 4B is the outcome of steady-state conditions. But at any one
site, the population’s short-term response to temperature will be determined by the dominant
genotype’s reaction norm (Fig. 4A). For example, at a cold site dominated by the cold-adapted
homozygous genotype, a warmer than average year would cause a decrease in population size
due to decreases in fecundity (blue line in Fig. 4A), even though the heat-adapted homozygote
might perform optimally at that temperature. However, if warmer than normal conditions persist
for many years, then genotype frequencies should shift, and the heat-adapted homozygote will
compensate for the decreases of the cold-adapted genotype.

Results

To demonstrate these dynamics, we simulated a diploid annual plant population at a colder than
average site. During the baseline period, the population is dominated by the cold-adapted geno-

type. We used the simulated data from this baseline period to fit a temporal statistical model
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(Appendix A) that predicts population growth rate as a function of annual temperature and pop-
ulation size (Fig. 4C), assuming no knowledge of the underlying eco-evolutionary dynamics. We
then imposed a period of warming, followed by a final period of higher stationary temperature
(Fig. 5 top).

With the onset of warming, the population crashed as the cold-adapted genotype decreased
in abundance. Eventually, frequencies of the heterozygous genotype and the warm-adapted
homozygous genotype began to increase and the population recovered (Fig. 5 bottom). The
temporal statistical model (solid blue line in Fig. 5) accurately predicted the impact of the initial
warming trend, but eventually became too pessimistic, while the spatial statistical model (solid
red line in Fig. 5) did not handle the initial trend but accurately predicted the eventual, new
steady state.

As in the community turnover example, we also fit a weighted average of predictions from
the spatial and temporal statistical models (purple line in Fig. 5), with the weights changing
over time. This weighted model initially reflected the temporal model (decrease from t = 500
to t = 600), but then rapidly transitioned to reflect the spatial model (t > 700). The rapid
transition in the weighting term, w, occurred during the period of most rapid change in genotype
frequencies (Fig. SM-5). The weighted model’s predictions look impressively accurate, but, as in
the community turnover example, that is because we used the full, simulated time series to fit
the weighting term. A true forecast would require an independent method to predict how the

model weights shift over time.

Discussion

Ecological forecasts are typically made using either a space-for-time substitution approach based
on models fit to spatial data or using dynamic models fit to time-series data. Empirical studies
show that the environment-response relationships detected by these approaches frequently differ
in magnitude and even sign (Lauenroth and Sala, 1992; Oedekoven et al., 2017; Amburgey et al.,
2018; Kleinhesselink and Adler, 2018). Our simulations illustrate how such differences may arise
and then lead to very different predictions about the future state of ecological systems. Which
approach provides the most accurate forecasts likely depends on the forecast-horizon. In our
simulations, time-series approaches performed best for short forecast horizons, whereas models
based on spatial data made more accurate forecasts at long horizons. In addition, our simulations
demonstrate extended transitional periods during which neither the time-series or the spatial
approach was effective on its own. The challenge is determining what is “short-term,” what is
“long-term,” and how to handle the many forecasts we need in ecology which fall in between.
We have proposed that a weighted combination of the time-series and space-for-time approaches
may produce better forecasts at these intermediate forecast horizons.

We designed our simulation studies to illustrate how the change in statistical model perfor-

mance with increasing forecast horizon reflects differences in the types and scales of processes
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captured by spatial and temporal data sets. How could these hypotheses be tested with empir-
ical data? The hypothesis that time-series models will be most effective for near-term forecasts
already has empirical support, in the form of recent analyses of biodiversity forecasts at time
scales from one to ten years (Harris et al., 2018). The result should not be surprising, since local
time-series data capture demographic processes, lagged effects, and responses of current assem-
blages to small changes in environmental conditions. In addition, the state of the system in the
near future depends heavily on the current state. Since short-term forecasts do not typically
require extrapolating into novel conditions, a model based on the historical range of variation
which incorporates lags and accurate initial conditions is likely to be successful.

Space-for-time modeling approaches for predicting long-term, steady-state outcomes of eco-
logical change have also been tested empirically, primarily via hindcasting. Overall, the results
are mixed: some tests show reasonable prediction of changes in community composition (Blois
et al., 2013; Illan et al., 2014) or species distributions (Norberg et al., 2019), supporting the hy-
pothesis that datasets spanning spatial gradients capture the long-term outcome of interactions
between fast processes and slower processes such as ecological and evolutionary selection, dis-
persal, and responses to large changes in the environment. Other attempts to validate predictions
from space-for-time models have been discouraging (Worth et al., 2014; Illan et al., 2014; Davis
et al., 2014; Brun et al., 2016; Veloz et al., 2012), indicating violations of model assumptions or ef-
fects of transient dynamics. However, predictions from the space-for-time approaches are rarely
compared directly to predictions from time-series models (Harris et al. 2018, but see Renwick
et al. 2018). We need more such comparisons to identify the appropriate modeling approach for
different forecast horizons.

The greatest empirical challenge will be testing our hypothesis that a weighted average of
spatial and temporal statistical models will make the best forecasts at intermediate time scales.
There are two problems: finding appropriate data and determining the model weights a priori.
Many data sets have both a longitudinal and spatial dimension, but we could not think of one
which also featured a clear ecological response to directional environmental change. Surely such
datasets exist, and we hope researchers who work with them will test our proposed weighted
model. Determining model weights may be more difficult. In our simulations, we fit the weights
directly to the simulated data, which is impossible to do for actual forecasting when the future is
unknown. We need new theory or empirical case studies in order to assign these weights a priori.

Theory could explore the influence of different parameters on the rate at which slow processes
begin to influence dynamics. The effects of some parameters are intuitive: in the community
turnover example, increasing the fraction of dispersing individuals caused a more rapid shift in
species composition and in model weights (Fig. 6A). Other parameters have less intuitive effects:
we expected that increasing the temperature tolerance of genotypes in the evo-evolutionary ex-
ample would accelerate the shift in model weights by maintaining higher genetic diversity. Our

simulations showed the opposite effect, with wider tolerances slowing the shift in model weights

10
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(Fig. 6B), presumably by decreasing the strength of selection. Additional factors to consider
include organism lifespans and the magnitude of directional environmental change relative to
historical interannual variation.

Empirical research could inform model weights by accumulating enough case studies to in-
fer patterns in the weighting functions and guide applications in new systems. Developing
rules of thumb would require testing many forecasts from both time-series and spatial models
across a range of time-horizons. This effort may require a novel integration of typically disparate
approaches, such as analyses of paleoecological data (e.g., Worth et al. 2014), long-term observa-
tional (e.g., Nice et al. 2019) or experimental data (e.g., Silvertown et al. 2006), and model systems
with short-generation times (e.g., Good et al. 2017).

The idea of combining forecasts with model weights and allowing the weights to shift across
the forecast horizon need not be limited to extremely simple statistical models like the ones we
used in this study. The same concept could work for any class of models that differ in pre-
dictive skill at different forecast horizons, such as more sophisticated phenomenological models
designed to minimize problems of extrapolating outside the historical range of variation, or a
set of process-based models focusing on mechanisms operating at different time scales. Deter-
mining the model weights a priori might be easier when models feature explicit processes with
characteristic time scales.

On the other hand, there is no guarantee that our proposed model weighting scheme will
work when applied in real ecosystems. The most obvious potential problem is that space-for-time
approaches may fail to predict long-term dynamics if model assumptions are violated, transient
dynamics are strong, or future environmental conditions have no current analog (Worth et al.,
2014; Veloz et al., 2012). The notion that model weighting can improve forecasts at intermediate
and long forecast horizons must be a viewed as a hypothesis to be tested with empirical data.

Given the challenges of determining model weights a priori, we should also pursue alterna-
tives for intermediate forecast horizons. In the Introduction, we argued that fully process-based
models are not feasible. However, a new class of statistical models offers a compromise be-
tween mechanistic detail and phenomenological feasibility. Spatiotemporal statistical modeling
approaches are being developed to study patterns and processes of interest to ecological forecast-
ers, such the spread of an invasive species or population status of a threatened species (Wikle,
2003; Williams et al., 2017; Schliep et al., 2018). Because these models include both fast processes,
such as births and deaths, and slower processes, such as colonization and extinction dynamics,
they have the potential to make better predictions at intermediate forecast horizons than purely
spatial or temporal models. However, these spatiotemporal models have rarely been used in a
forecasting context, due to a combination of data limitation and computational challenges. Many
data sources contain either spatial or temporal variation, but not both, and when spatiotempo-
ral datasets are available they often involve irregular sampling, creating challenges for modeling.

Fitting and generating predictions from spatiotemporal models is also computationally intensive,

11



390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

especially with large datasets (McDermott and Wikle, 2017). Fortunately, thanks to large-scale
monitoring efforts from remote sensing platforms, the National Ecological Observatory Network
(https:/ /www.neonscience.org/), and community science projects (e.g., eBird), large scale spa-
tiotemporal data is increasingly available. In addition, new methods for spatiotemporal forecast-
ing are being developed that address existing computational challenges (McDermott and Wikle,
2017), and access to high performance computing resources is increasingly common. Given these
developments, future ecological forecasting efforts should explore spatiotemporal approaches
and assess whether they improve predictions at intermediate time scales relative to traditional
time-series or space-for-time approaches.

Our simulation studies have important implications for the emerging field of ecological fore-
casting. First, they suggest that evaluating model performance at both short and long forecast
horizons will be essential as research on forecasting methods accelerates. Second, while single
approaches may perform reasonably well for either short or long horizons, skillful predictions at
intermediate forecast horizons may require a combination of information from spatial and tem-
poral statistical models. Intermediate time horizons pose challenges in other forecasting contexts
as well. Weather forecasts based on regional-scale meteorological models are very effective for
forecasting a week to ten days in advance, but then become largely uninformative. Forecasting
these intermediate scales has been challenging in meteorology and will likely be challenging in
ecology as well. While the recent emphasis on near-term iterative forecasting (Dietze et al., 2018)
is the logical and tractable starting point, we also need to build understanding and capacity for

forecasting ecological dynamics across all forecast horizons of interest.
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Figure 1: Fast and slow processes operate at different time scales, and are reflected in different
kinds of datasets. Fast processes, such as births, deaths, and individual growth, operate at all
time scales, but are the exclusive drivers of the short-term dynamics captured in most time series
datasets. Slower processes, such as evolutionary selection on genotype frequencies, ecological
selection on species abundances, and colonization and extinction, interact with fast processes to
drive dynamics over the long-term. The influence of these slow processes is seen in very long
time series, or in spatial gradients. Understanding dynamics at intermediate time scales requires
integrating information from spatial and temporal data sources. We propose a model weighting
approach; mechanistic spatiotemporal modeling is another alternative. The time scales shown
here were chosen with vascular plants in mind, but the same concepts would apply for much
shorter-lived organisms but at shorter time scales.
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Figure 2: (A) Mean biomass by species (colors) across the temperature gradient during the base-
line period. The focal species, dominant at the site in the center of the gradient (vertical gray
line), is shown in dark blue. The dashed blue line shows predictions from the spatial statistical
model. (B) Annual biomass of the focal species at the central site during the baseline period. The
dashed line shows predictions from the temporal statistical model.
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Figure 3: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. (B) Simulated focal species biomass and forecasts
from the spatial, temporal and weighted statistical models at the focal site in the metacommunity
model. (C) Simulated changes in biomass of the focal species (black) and all other species (grey),
and the weight given to the temporal statistical model for focal species biomass (blue). Time 1000
(years) in each panel corresponds to the start of the temperature increase.
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Figure 4: (A) Reaction norms of the three genotypes. (B) The spatial pattern of individual geno-
types (colors) and total population abundance (black) at sites arrayed across a gradient of mean
annual temperature. The dashed black line (almost entirely hidden by the slid black line) shows
predictions from an empirical, spatial statistical model, a linear regression that describes mean
population size as a function of mean temperature. (C) The relationship between annual tem-
perature and per capita growth rate at a location with a mean temperature that favors the cold-
adapted genotype. Colors show population size (the green to brown gradient depicting low to
high population density), which influences the population growth rate through density depen-
dence.
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fraction of propagules dispersing in the community turnover example and (B) on the temperature
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evolutionary example. Time 0 (years) in these figures corresponds to the start of the temperature
increase.
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Appendices

A Spatial, temporal and spatial-temporal-weighted models

The two simulation models in the main text describe how population size, N (x,t), at location x
changes over time (t). We assume that the temperature, K(x, t), at each location can vary in time
and space. To forecast the dynamics generated by these simulations models, we fit a series of
statistical models.

The spatial model, which we refer to as S, is a quadratic regression of the mean long-term
population density at a location (N(x)) against the mean temperature at that location (K(x)).
The quadratic term describes the unimodal relationship between N and K. The spatial statistical
model is
N(x) = S(R(x)) = B3 + BiK(x) + B5K(x)* + ¢ (1)

The temporal model, which we call T, starts with a time-series of “observed” population
sizes, or total biomasses, at one location, N(t), for t = 1..n (the spatial index is suppressed
because we only focus on one location at a time). In the community turnover example, we fit the
following regression, which predicts biomass at time ¢ + 1 as a function of biomass (N(t)) and

annual temperature (K(t)) at time ¢,
In(N(t+1)) = T(N(t),K(t)) = Bj + p1 In(N(t)) + B K(t) + ¢ 2

In the eco-evolutionary example, the response variable is the log of the population growth rate.

The regression, which includes a quadratic effect of temperature, is

i (N1

N ) = T(N(t),K(t)) = BS + BT In(N(t)) + BIK(t) + BIK(t)* + ¢ )

This version of the temporal model returns a per capita growth rate on the log scale. To predict
population size at the next time step, we exponentiate the growth rate and multiply it by the
current population size: exp(T(N(t), K(t)))N(t).

The weighted model is a weighted average of predictions from the spatial and temporal
models, with the weights changing as a function of time, here expressed as the forecast horizon.
The weights change as a function of the square root of the forecast horizon, to allow rapid shifts
in the model weights.

logit(wi) = By’ + By’ v/t @)

For the community turnover example, the predicted biomass from the weighted model is:

N(t+1) =w-T(N(t),K(t)) + (1 —w)-S(K(t)) (5)
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Again, we suppress the spatial subscript (x) here because we are focused on densities at just
one location. For the eco-evolutionary example, the predicted population size from the weighted
model is:

N(t+1) = w-exp(T(N(t), K(1))N(t) + (1 - w) - S(K(t)) ©6)

We used the optim function to estimate the ,Bws that minimize the sum of squared errors,
(N(t+1) — N(t+1))2

In the main text, we show the point forecasts but not the uncertainty around the forecasts.
After exploring that uncertainty, we decided that presenting it would be misleading. For the spa-
tial and, especially, the temporal statistical models, the uncertainty is unrealistically low, because
the models are estimated with very large samples sizes from the simulations. Furthermore, the
simulations do not include noise; the only reason there is any uncertainty is because the statis-
tical models are slightly mis-specified with respect to the process models. Showing uncertainty
for the weighted model would be even less meaningful, because it is not a true, out-of-sample
forecast (parameters are fit directly to the observations for which we make predictions). The R
code to compute uncertainties for the spatial and temporal forecasts is available on our Github

repository (https://github.com/pbadler/space-time-forecast), but is commented out.

B Description of the meta-community model

Alexander et al. (2018) developed a meta-community model to represent dynamics of local com-
munities arrayed along a one-dimensional elevation gradient, as influenced by three main pro-
cesses: temperature-dependent growth, competition, and dispersal. Here we adapt their notation
to be consistent with our own.

The population size of species i in cell x at time t + 1, Nj(x,f + 1), is computed in two
steps. The first step accounts for changes in local population sizes due to dispersal. In each
local community, all species export a fraction (d) of their local population to the two adjacent

communities in the 1-dimensional landscape:
d
N!(x,t) = (1 —d) - Ni(x,t) + 5 (Ni(x +1,) + Ni(x — 1, 1)) (7)

Here N’ distinguishes the post-dispersal population size from the pre-dispersal population size.

The second step computes population growth, taking into account competition:

Ni(x,t+1) = N/(x,t) + N/(x,t)[;(K(x) — Kmin;) — ¢;N/! (x,t) — ; ;N,i(x, t)] (8)

In the absence of competition, the growth rate (g;) is determined by the difference between the
temperature at site x (K(x)) and the focal species’ minimum temperature tolerance, Kmin;, the
lowest temperature at which a species can maintain a positive growth rate. Growth is further

reduced by intraspecific and interspecific competition, parameterized by c; and /;. All species are
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assigned the same value of c;, which represents an additional effect of intraspecific competition
on top of interspecific competition. This stabilizes coexistence, since every species will exert
stronger intra- than interspecific competition. However, values of | vary among species to create
a trade-off between growth rates and competitive ability versus low temperature tolerance: fast-
growing species (high ¢;) are more tolerant of interspecific competition (low [;) but are more
limited by temperature (high Kmin;).

To assign species-specific parameter values, the number of species in the metacommunity is
specified. Next, each species is assigned an optimal temperature within a specified temperature
range by drawing from a uniform distribution. Sensitivity to interspecific competition is then
determined as a decreasing function of optimal temperature. Calculations are performed in the

script SpeciesPoolGen.R.

C Description of the eco-evolutionary annual plant model

Haploid Model: Begin with a haploid model that describes the number of seeds present in
a population. We model a scenario in which all seeds germinate, so we can ignore seedbank

dynamics. N;; is the number of seeds of species i at time t. The model is

Np o= MK(E)Ny

LA 11 N1+ x12No ¢ ©)
Ny = A2(K(E)No

2i41 =

1+ a1 Nyt +anNo;

where A;(K(t)) is the seed production rate per plant, and K(f) is the temperature at time ¢. Below
we refer to the a;; as intra- and inter-genotype competition coefficients.
Diploid Model: Consider a one-species diploid model. The genotypes are denoted by AA,
Aa, and aa. The number of each genotype at time t is Naa(t), Na,(f), and N, (t). The seed
production rate for genotype AA is Ag4(K(t)), and the analogous parameters for the other
genotypes are similarly denoted. The competition coefficients are denoted by «; j, e.g., €44,44 or
a a4, Aq- Throughout we assume that gametes mix randomly in the population.

First consider the case where the competition coefficients are zero («;; = 0). Let T denote the

total number of gamete-pairs produced in a given year,
T = Aaa(K(£))Naa(t) + Aaa(K(£))Naa(t) + Aaa(K()) Naa(t). (10)

The first term is the number of gamete-pairs produced by AA individuals. The second and third
terms are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The
proportion of A gametes (¢4) and the proportion of a gametes (¢,) are given by

b = 2)\AA(K(t))NAA(t;;‘ Ana(K()Naa(t) o bo=1—a. (11)




Note that the T in the denominator of ¢4 shows up because we are computing proportions.

Combining all of these we get the dynamics for each genotype,

Naa(t+1) = ¢3T
Naa(t+1) = padaT (12)
Naa(t + 1) = 47521T

Now consider the case where the competition coefficients are non-zero («;; # 0). Including
competition changes the way in which we compute T, ¢4, and ¢,. Specifically, because the total
number of seeds produced per year by each genotypes is reduced based on intra- and inter-

genotype competition, the total number of gamete-pairs becomes

T— Aaa(K(t))Naa(t)
1+ aaa4aNaa(t) +aanraNaa(t) + 44,00 Naa(t)
+ AAa(K(t))NAa(t)
14+ apq,4aNaA(t) + @a5,4aNaa(t) + @ aa,0aNaa(t)
N Aua(K()) a1
1+ “ua,AANAA(t) + “ua,AaNAa(t) + “ua,aaNua(t) .

(13)

The first line is the number of gamete-pairs produced by AA individuals after accounting for the
effects of competition. The second and third lines are the numbers of gamete-pairs produced by

Aa and aa individuals, respectively. The proportions of A gametes and a gametes are

qu _ i /\AA(K(t))NAA(t)
2T 14 aaaaaNaa(t) +aaa,40Naq(t) + aaa,0aNaa(t)
N 1 Aaa(K(t))Naa(t) (14)
2T 1+ IXA,Z,AANAA(t) + “Aa,AaNAa(t) + “Aa,aaNmz(t)
¢a =1- ¢A

Combining all of this results in the same model as above,

Naa(t+1) = ¢5T
Nag(t+1) = 2¢a¢,T (15)
N (t+1) = 2T,

s7s  but the definitions of T, ¢4, and ¢, are given by equations (13) and (14) .



5o Supplementary Tables

Table SM-1: Parameters and parameter values for the community turnover case study. Values
are assigned at the start of comm_turn master.R. “Name” refers to the variable declared in the
computer code. These names do not exactly match the symbols shown in the equations in
Appendix B; rather, the species-specific values of those parameters are calculated in the computer
code based on the values in this table.

Name Value Definition

L land 20 Length of landscape

Tmin 0 Minimum of spatial gradient in baseline temperature

Tmax 15 Maximum of spatial gradient in baseline temperature

Tstdev 2 Standard deviation of temperature (interannual variation)

deltaT 4 Magnitude of directional change in temperature

burnin_yrs 2000 Number of years to initialize simulation

baseline_yrs 1000 Number of years at baseline temperature used to fit statistical models

warming_yrs 200 Number of years over which temperature increases

final yrs 2000 Number of years at steady-state, elevated temperature

N 40 Number of species

Gmax 0.5 Maximum population growth rate

Gmin 0.2 Minimum population growth rate

Lmax 1.5 Maximum sensitivity to competition

Lmin 0.7 Minimum sensitivity to competition

Cmax 0.2 Maximum additional sensitivity to conspecific competition
Cmin 0.2 Minimum additional sensitivity to conspecific competition
d 0.01 Fraction of offspring dispersing from home site

Table SM-2: Parameters and parameter values for the eco-evolutionary case study. Values are as-
signed at at the start of genetic_diversity master.R. “Name” refers to the variable declared in
the computer code. Where appropriate, the corresponding symbols from equations in Appendix
C are shown in parentheses.

Name Values Definition

Tstdev 1 Standard deviation of temperature (interannual variation)
baseT -1 Baseline temperature

deltaT 5 Total change in temperature

baseline_yrs 500 Number of years at baseline temperature used to fit statistical models
warming_yrs 100 Number of years over which temperature increases

final_yrs 300 Number of years at steady-state, elevated temperature
fec_Tmu -1,0,1  Optimal fecundity temperature for genotypes AA, Aa, and aa
fec_Tsigma 8 Standard deviation in fecundity for all genotypes

fec_max 100 Maximum fecundity for all genotypes

alpha () 1 All competition coefficients for all genotypes
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Figure SM-1: (A) Temporal shifts in the model weighting term for 10 independent simulations
of (A) the community turnover model, and (B) the eco-evolutionary model. For the community
turnover model, each simulation began with initialization of a new regional species pool. For the
eco-evolutionary model, genotype parameters were fixed, and only the sequence of annual tem-
peratures varied between runs. In all cases, the combined forecast is heavily weighted towards
the time-series model at short forecast time scales, and towards the space-for-time model at long
forecast time scales.
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Figure SM-2: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. In contrast to Fig. 3, which shows results for a
period of warming followed by stationary temperatures, for this simulation we spread the same
temperature increase out over the entire simulation with no stationary periods. (B) Simulated
focal species biomass and forecasts from the spatial, temporal and weighted statistical models at
the focal site in the metacommunity model. (C) Simulated biomass of the focal species (black) and
all other species (grey), and the weight given to the temporal statistical model for focal species
biomass (blue). Time 1000 (years) in each panel corresponds to the start of the temperature
increase. 7
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Figure SM-3: Results for total biomass from the community turnover model. Blue points show
mean total biomass during the baseline period at locations across the temperature gradient, and
the blue line shows predictions from the spatial model. Red points show annual total biomass
during the baseline period as a function of annual temperature at the central site on the gradient.
The red line shows predictions from the temporal model.
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Figure SM-4: Results for total biomass from the community turnover model. (A) Simulated an-
nual temperatures (grey) and expected temperature (black), which was used to make forecasts, at
the focal site. (B) Simulated total biomass and forecasts from the spatial, temporal and weighted
models. (C) Simulated changes in biomass of all species (grey) at the focal site in the metacom-
munity model, and the weight given to the temporal model for total biomass (blue). Time 1000
(years) in this figure corresponds to the start of the temperature increase.
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Figure SM-5: Simulated shifts in genotype abundances, and the model weighting term, w, during
the warming phase and the following stationary temperature phase. Time 0 (years) in this figure
corresponds to the start of the temperature increase.
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