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Abstract: Most phenomenological, statistical models used to generate ecological forecasts take1

either a time-series approach, based on long-term data from one location, or a space-for-time2

approach, based on data describing spatial patterns across environmental gradients. However,3

the magnitude and even the sign of environment-response relationships detected using these two4

approaches often differs, leading to contrasting predictions about responses to future environ-5

mental change. Here we consider how the forecast horizon determines whether more accurate6

predictions come from the time-series approach, the space-for-time approach, or a combination7

of the two. As proof of concept, we use simulated case studies to show that forecasts for short8

and long forecast horizons need to focus on different ecological processes, which are reflected in9

different kinds of data. First, we simulated population or community dynamics under stationary10

temperature using two simple, mechanistic models. Second, we fit statistical models to the sim-11

ulated data using a time-series approach, a space-for-time approach, or a weighted average. We12

then forecast the response to a temperature increase using the statistical models, and compared13

these forecasts to temperature effects simulated by the mechanistic models. We found that the14

time-series approach made accurate short-term predictions because it captured initial conditions15

and effects of fast processes such as birth and death. The space-for-time approach made more16

accurate long-term predictions because it better captured the influence of slower processes such17

as evolutionary and ecological selection. The weighted average made accurate predictions at18

all time scales, including intermediate time-scales where the other two approaches performed19

poorly. A weighted average of time-series and space-for-time approaches shows promise, but20

making this weighted model operational will require new research to predict the rate at which21

slow processes begin to influence dynamics.22
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Introduction24

Forecasting is increasingly recognized as important to the application and advancement of eco-25

logical research. Forecasts are necessary to guide environmental policy and management deci-26

sions about mitigation and adaption to global change (Clark et al., 2001; Mouquet et al., 2015;27

Dietze et al., 2018). But forecasts can also advance understanding of the processes governing28

ecological systems by providing rigorous tests of model predictions (Houlahan et al., 2017; Di-29

etze, 2017; Dietze et al., 2018). The dual benefits of informing management and advancing basic30

knowledge makes forecasting an important priority for ecological research.31

Statistical models used for ecological forecasting generally rely on either time-series ap-32

proaches or space-for-time substitutions. The time-series approach involves fitting models to33

long-term datasets to describe the temporal dynamics of a system. We then project those dy-34

namic models to make predictions about what will happen in the future. This approach is often35

used to study population or vital rate fluctuations as a function of weather (Dalgleish et al.,36

2011), or primary production as a function of annual precipitation (Lauenroth and Sala, 1992).37

When time-series models are fit with typically short ecological data sets, they capture “fast pro-38

cesses” operating on interannual time-scales, such as birth, death, individual growth, small-scale39

dispersal events, and short-term responses to environmental conditions (Fig. 1). Statistical mod-40

els built using this approach normally cover a limited spatial extent (but see Hefley et al. 2017;41

Kleinhesselink and Adler 2018; Chevalier and Knape 2020), and ignore slower processes, such as42

evolutionary adaptation or turnover in community composition, that could influence dynamics43

at longer time scales (Clark et al., 2001).44

Space-for-time substitution approaches begin by describing how an ecological variable of45

interest, such as occupancy or productivity, varies across sites experiencing different environ-46

mental conditions. These spatial relationships between environment and ecological response are47

assumed to also hold for changes at a site through time. To make a forecast, we first predict the48

future environmental conditions and then determine the associated ecological response, based49

on the observed spatial relationship. This is the approach commonly used to predict population50

distribution or abundance as a function of climate (Elith and Leathwick, 2009) or mean primary51

production as a function of mean precipitation (Sala et al., 1988). Space-for-time models capture52

the outcome of interactions between fast processes and slower processes operating over long53

time periods, such as immigration, extinction, and responses to large or prolonged environmen-54

tal changes (Fig. 1). However, space-for-time models provide no information about how quickly55

the system will move from the current state to the predicted, future state. In fact, transient dy-56

namics could prevent the system from ever reaching the predicted steady state (Urban et al.,57

2012).58
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Although both time-series and space-for-time approaches are widely used, there has been59

little discussion of their advantages and disadvantages for guiding policy decisions or advancing60

our understanding of ecological dynamics (Harris et al., 2018; Renwick et al., 2018). Such a dis-61

cussion is overdue given that these two approaches are likely to make very different predictions62

about ecological responses to future environmental change. For example, average forage produc-63

tion in the U.S. shortgrass steppe increases rapidly with increasing mean annual precipitation,64

but production is much less sensitive to interannual variation in precipitation at any one location65

(Lauenroth and Sala, 1992). The space-for-time approach would predict large changes in produc-66

tion in response to a future change in precipitation, while the time-series approach would predict67

smaller changes. Bird species’ abundances in the United Kindgom also show different responses68

to spatial vs. temporal variation in weather covariates. Not only are abundances typically more69

sensitive to spatial variation in the covariates, but in many cases the temporal response takes the70

opposite sign (Oedekoven et al., 2017). Whenever the sign or magnitude of relationships based71

on time-series and space-for-time approaches differ, so will the resulting forecasts.72

Whether time-series models, space-for-time approaches, or some combination of the two will73

serve as the best source of information for forecasting may depend on how far into the future74

we are attempting to forecast (Harris et al., 2018). This potential dependency on the “forecast75

horizon” (sensu Hyndman and Athanasopoulos 2018) reflects lags in the response of ecological76

conditions to environmental change, shifts in the importance of ecological processes with time77

scale (Levin, 1992; Rosenzweig et al., 1995), and differences between time-series and spatial gra-78

dients in the range of environmental conditions represented in observed data (Fig. 1). At short79

forecast horizons (days to years), dynamics will reflect physiological and demographic responses80

and interactions among the organisms present at a site more than temporal turnover of genotypes81

or species; environmental conditions are likely to stay within the range of historical variation; and82

the current state of the system is likely to capture the influence of unmeasured processes. As a83

result, for near-term forecasts time-series approaches may capture the key dynamics and provide84

accurate predictions.85

In contrast, at long forecast horizons (decades to centuries), environmental conditions that86

have not been historically observed are likely to not only occur but to persist long enough to87

drive significant turnover of genotypes and species through colonization and extinction as well88

as changes in the flux of energy and nutrients. At these long forecast horizons, the state of the89

system at the time the forecast is issued may be little help in predicting the future state. For the90

century-scale forecasts often featured in biodiversity and species-distribution modeling, space-91

for-time approaches may effectively capture the response of ecosystems to major shifts in climate92

over long periods, producing better long-term forecasts than time-series approaches. Using dif-93

ferent modeling approaches for different forecast horizons is common in other disciplines. For94

example, meteorological models for short-term weather forecasts differ substantially in spatial95
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and temporal resolution and extent from the global circulation models used to predict long-term96

changes in climate.97

Why not simply use process-based models to avoid the difficulties posed by phenomenolog-98

ical time-series and space-for-time modeling approaches? If we could accurately characterize all99

of the processes governing a system, then a model based on that understanding should make100

accurate predictions at all forecast horizons. Process-based models should also be more robust101

for making predictions outside of historically observed conditions and even beyond the con-102

ditions observed across spatial gradients, which will be especially important in a future with103

increasingly novel combinations of environment and species interactions (Williams and Jackson,104

2007). Unfortunately, in most cases this approach is not currently feasible because we lack a105

detailed knowledge of all the complex and interacting processes influencing the dynamics of real106

ecological systems. Even if the general form of the models were known, estimating the high107

number of parameters and quantifying how they vary across ecosystems typically requires more108

data than is currently available even for well-studied systems. Furthermore, the high complexity109

and corresponding parameter uncertainty of such models can increase predictive errors; simpler110

time-series models may actually perform better (Ward et al., 2014), though spatial replication can111

reduce the cost of complexity (Chevalier and Knape, 2020). As a result, models used for eco-112

logical forecasting will include at least some phenomenological components. But that does not113

mean that phenomenological forecast models cannot benefit from process-based understanding.114

Even if process-level understanding does not enable a fully mechanistic model, it can improve115

the specification of phenomenological models. Our hypothesis is that different processes may be116

relevant for different forecast horizons, and that we can act on this knowledge by fitting models117

to different kinds of datasets.118

Here we use two simulated case studies to 1) demonstrate why time-series and space-for-time119

approaches can make different predictions, 2) propose that the best model-building approaches120

for ecological forecasting may depend on the time horizon of the forecast, and 3) explore how121

time-series and space-for-time approaches might be combined via weighted averaging to make122

better forecasts at intermediate time scales. The first case study focuses on how interspecific123

interactions affect the population dynamics of a focal species, and the second focuses on an124

eco-evolutionary scenario. Our simulations illustrate that:125

1. For short-term forecasts, phenomenological time-series approaches may be hard to beat,126

whereas longer-term forecasts may require accounting for the influence of slow processes127

such as evolutionary and ecological selection as well as dispersal.128

2. Different kinds of data reflect the operation of different processes: longitudinal data cap-129

ture autocorrelation and fast responses of current assemblages to interannual environmental130

variation, while data spanning spatial gradients capture the long-term outcome of interac-131

tions between fast and slow processes. Whether predictive models should be trained using132
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longitudinal or spatial data sets, or both, likely depends on the time-scale of the desired133

forecast.134

3. A key challenge for future research is determining the rate at which slow processes begin to135

influence dynamics.136

Modeling approach137

In each case study, we simulated the effects of an increase in temperature on simple systems with138

known dynamics. The truth was represented by a simulation model that was mechanistic for at139

least one important process, but we treated this data-generating model as unknown when ana-140

lyzing the data and we assumed that perfectly recovering the mechanisms it contains would not141

be possible in practice. We began each simulation under a stationary distribution of annual tem-142

peratures, allowing the system to equilibrate; we call this the baseline phase. We then increased143

temperature progressively over a period of time, followed by a second period of stationary, now144

elevated, temperature. The objective was to forecast the response of the system to the tempera-145

ture increase based on spatial and/or temporal data “sampled” from the simulation during the146

baseline period.147

We made forecasts based on two phenomenological statistical models, each representing pro-148

cesses operating at different time scales. One statistical model represents the time-series or “tem-149

poral approach.” We regressed interannual variation in an ecological response on interannual150

variation in temperature at just one site. The other statistical model relies on a space-for-time151

substitution, which we call the “spatial approach” for brevity. We regressed the mean tempera-152

ture on the mean of an ecological state or rate across many sites. We compared forecasts from153

both statistical models to the simulated dynamics to determine how well the two approaches154

performed at different forecast horizons. We also assessed the potential for combining the infor-155

mation available in temporal and spatial patterns by using a weighted average of the forecasts156

from the temporal and spatial approaches optimized to best match the (simulated) observations.157

We then studied how the optimal model weights changed over time. We expected the temporal158

approach to best predict short-term dynamics, the spatial approach to best predict long-term159

dynamics, while the weighted model would show potential to provide the best forecasts at tran-160

sitional, intermediate time scales. The three statistical models are described in Supporting In-161

formation (Appendix A). Computer code for both case studies will be archived at Zenodo upon162

acceptance. Instructions for running the code are in the README file in the main directory of163

the zip archive.164

Community turnover example165

Conservation biologists and natural resource managers often need to anticipate the impact of en-166

vironmental change on the abundance of endangered species, biological invaders, and harvested167

species. Although the managers may be primarily interested in just one focal species, skillful168
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prediction might require considering interactions with many other species, greatly complicating169

the problem. But at what forecast horizon do altered species interactions become impossible170

to ignore? We explored this question using a metacommunity simulation model developed by171

Alexander et al. (2018) to study how community responses to increasing temperature depend on172

the interplay between within-site demography and competitive interactions and the movement173

of species across sites.174

Methods175

The model features Lotka-Volterra competitive interactions among plants within sites that are176

arrayed along an elevation and temperature gradient. Composition varies along the gradient177

because of a trade-off between growth rate and cold tolerance: cold sites are dominated by178

slow-growing species that can tolerate low temperatures, while warm sites are dominated by179

fast-growing species that are cold intolerant. Multiple species can coexist within sites because180

all species experience stronger competition from conspecifics than from heterospecifics. Sites181

are linked by dispersal: a specified fraction of each species’ offspring leaves the site where they182

were produced and reaches all other sites with equal probability. We provide a more detailed183

description of the simulation model in SI Appendix B.184

We first simulated a baseline period with variable but stationary temperature, followed by185

a period of rapid temperature increase, and then a final period of stationary temperature. In-186

terannual variation in temperature is the same at all sites, but mean temperature varies among187

sites. All sites experienced the same absolute increase in mean temperature. We focused on the188

biomass dynamics of one focal species that dominated the central site during the baseline period.189

Parameter values for the simulations described in the main text are shown in Table SM-1. We190

report results from one simulation run; results were qualitatively consistent for replicate runs191

(Fig. SM-1A).192

Results193

During the baseline period there were strong spatial patterns across the mean temperature gra-194

dient. Individual species, including our focal species, showed classic, unimodal “Whittaker”195

patterns of abundances across the gradient (Fig. 2A). These spatial patterns are the basis for our196

spatial statistical model of the temperature-biomass relationship for our focal species (Fig. 2A).197

In contrast to the strong spatial patterns, population and community responses to interannual198

variation in temperature within sites were weak. At our focal site in the center of the gradient,199

the biomass of the focal species was quite insensitive to interannnual variation in temperature,200

but showed strong temporal autocorrelation (Fig. 2B). Our temporal statistical model estimates201

this weak, linear temperature effect, along with the strong lag effect of biomass in the previous202

year.203

We used both the temporal and spatial statistical models to forecast the effect of a temperature204

increase (Fig. 3A) on the focal species’ biomass at one location in the center of the temperature205
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gradient. The predictions from these two models contrasted markedly, with the temporal sta-206

tistical model predicting a large increase in biomass and the spatial statistical model predicting207

a decrease. Initially, the simulated abundances followed the increase predicted by the temporal208

model, but as faster-growing species colonized and increased in abundance at the focal site, the209

biomass of the focal species decreased, eventually falling below its baseline level (Fig. 3B).210

To combine information from the temporal and spatial statistical models into a single predic-211

tion, we fit a weighting parameter, ω, which varies over time and is bounded between 0 and 1.212

At any time point, or year, t, this weighted forecast is ω · T(Nt−1, Kt) + (1−ω) · S(Kt) where T is213

the temporal statistical model, which depends on population size, N, and expected temperature,214

K, and S is the spatial statistical model, which depends only on K (see SI Appendix A for a full215

description of the approach). The weighted model accurately predicts the simulated dynamics216

across the full forecast horizon (Fig. 3B). It also shows that the most rapid shifts in the model217

weights occurred during the period when warm-adapted, faster growing species were increasing218

most rapidly in abundance (Fig. 3C). However, the reason the weighted models works so well219

is that the weights were determined by fitting directly to the data. Unlike the forecasts from the220

spatial and temporal statistical models, we did not generate out-of-sample predictions from the221

weighted model; it merely provides a convenient way to quantify how rapidly dynamics shift222

from being dominated by interannual variation captured in the temporal model (time t = 0 to223

t ≈ 1250 in Fig. 3B) to being dominated by the steady-state equilibrium captured by the spatial224

model (time t ≥ 2500). A true forecast from the weighted model would require a method to225

determine the model weights a priori.226

When we repeated the simulation with a continuous, nonstationary temperature increase, we227

see a qualitatively similar shift in weights with increasing forecast horizon from the temporal228

to spatial statistical model (Fig. SM-2). In this case, the forecast from the temporal statistical229

model is not as skillful in the near-term forecast horizon, because the model does not account230

for the temperature trend during the model fitting period. Separating the effect of annual tem-231

perature deviations from the temperature trend would distinguish between short and long-term232

patterns, much as our temporal and spatial statistical models do in the simulation with stationary233

temperature periods.234

The compositional turnover affecting our focal species also influences total biomass, linking235

community and ecosystem dynamics. We repeated our focal species analysis for total community236

biomass, and the results were similar: the temporal statistical model initially made the best237

forecasts immediately following the onset of the temperature increase, but as the identity and238

abundances of species at the study site changed, the model weights rapidly shifted to the spatial239

statistical model (Figs. SM-3 and SM-4).240
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Eco-evolutionary example241

Evolutionary adaptation is a key uncertainty in predicting how environmental change will impact242

a focal population at a given location (Hoffmann and Sgro, 2011). Like the shifts in species243

composition illustrated in the previous example, shifts in genotype frequencies can also influence244

dynamics and forecasts at different time scales. Although shifts in genotype frequencies at the245

population level are analogous to changes in species composition at the community level, the246

mechanisms are distinct: heterozygosity and genetic recombination have no analogue at the247

community level. We demonstrate how these processes influence short and long-term forecasts248

with a standard eco-evolutionary simulation model for a hypothetical annual plant population.249

Methods250

Our model assumes that fecundity is temperature dependent, and different genotypes have dif-251

ferent temperature optima (Fig. 4A). All seeds germinate every year, preventing a seedbank from252

developing. The model describes how the local density of each genotype changes between years,253

which depends on temperature and genotype densities in the previous year. Transient temporal254

dynamics are computed directly from the model; these dynamics are the basis for the tempo-255

ral statistical model. To create a spatial gradient, we simulated the equilibrium density of each256

genotype in a series of local populations experiencing different mean temperatures. The pattern257

of equilibrium densities across the mean annual temperature gradient is the basis for our spatial258

statistical model: cold sites will be dominated by the cold-adapted homozygous genotype, warm259

sites will be dominated by the heat-adapted homozygous genotype, and intermediate sites will be260

dominated by the heterozygous genotype (Fig. 4B). The full description of the eco-evolutionary261

simulation model is provided in SI Appendix C, and parameter values for simulations described262

here are shown in Table SM-2. As in the first case study, we report results from just one simula-263

tion run, but results were qualitatively consistent for replicate runs (Fig. SM-1B).264

The spatial pattern shown in Fig. 4B is the outcome of steady-state conditions. But at any one265

site, the population’s short-term response to temperature will be determined by the dominant266

genotype’s reaction norm (Fig. 4A). For example, at a cold site dominated by the cold-adapted267

homozygous genotype, a warmer than average year would cause a decrease in population size268

due to decreases in fecundity (blue line in Fig. 4A), even though the heat-adapted homozygote269

might perform optimally at that temperature. However, if warmer than normal conditions persist270

for many years, then genotype frequencies should shift, and the heat-adapted homozygote will271

compensate for the decreases of the cold-adapted genotype.272

Results273

To demonstrate these dynamics, we simulated a diploid annual plant population at a colder than274

average site. During the baseline period, the population is dominated by the cold-adapted geno-275

type. We used the simulated data from this baseline period to fit a temporal statistical model276
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(Appendix A) that predicts population growth rate as a function of annual temperature and pop-277

ulation size (Fig. 4C), assuming no knowledge of the underlying eco-evolutionary dynamics. We278

then imposed a period of warming, followed by a final period of higher stationary temperature279

(Fig. 5 top).280

With the onset of warming, the population crashed as the cold-adapted genotype decreased281

in abundance. Eventually, frequencies of the heterozygous genotype and the warm-adapted282

homozygous genotype began to increase and the population recovered (Fig. 5 bottom). The283

temporal statistical model (solid blue line in Fig. 5) accurately predicted the impact of the initial284

warming trend, but eventually became too pessimistic, while the spatial statistical model (solid285

red line in Fig. 5) did not handle the initial trend but accurately predicted the eventual, new286

steady state.287

As in the community turnover example, we also fit a weighted average of predictions from288

the spatial and temporal statistical models (purple line in Fig. 5), with the weights changing289

over time. This weighted model initially reflected the temporal model (decrease from t = 500290

to t = 600), but then rapidly transitioned to reflect the spatial model (t ≥ 700). The rapid291

transition in the weighting term, ω, occurred during the period of most rapid change in genotype292

frequencies (Fig. SM-5). The weighted model’s predictions look impressively accurate, but, as in293

the community turnover example, that is because we used the full, simulated time series to fit294

the weighting term. A true forecast would require an independent method to predict how the295

model weights shift over time.296

Discussion297

Ecological forecasts are typically made using either a space-for-time substitution approach based298

on models fit to spatial data or using dynamic models fit to time-series data. Empirical studies299

show that the environment-response relationships detected by these approaches frequently differ300

in magnitude and even sign (Lauenroth and Sala, 1992; Oedekoven et al., 2017; Amburgey et al.,301

2018; Kleinhesselink and Adler, 2018). Our simulations illustrate how such differences may arise302

and then lead to very different predictions about the future state of ecological systems. Which303

approach provides the most accurate forecasts likely depends on the forecast-horizon. In our304

simulations, time-series approaches performed best for short forecast horizons, whereas models305

based on spatial data made more accurate forecasts at long horizons. In addition, our simulations306

demonstrate extended transitional periods during which neither the time-series or the spatial307

approach was effective on its own. The challenge is determining what is “short-term,” what is308

“long-term,” and how to handle the many forecasts we need in ecology which fall in between.309

We have proposed that a weighted combination of the time-series and space-for-time approaches310

may produce better forecasts at these intermediate forecast horizons.311

We designed our simulation studies to illustrate how the change in statistical model perfor-312

mance with increasing forecast horizon reflects differences in the types and scales of processes313
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captured by spatial and temporal data sets. How could these hypotheses be tested with empir-314

ical data? The hypothesis that time-series models will be most effective for near-term forecasts315

already has empirical support, in the form of recent analyses of biodiversity forecasts at time316

scales from one to ten years (Harris et al., 2018). The result should not be surprising, since local317

time-series data capture demographic processes, lagged effects, and responses of current assem-318

blages to small changes in environmental conditions. In addition, the state of the system in the319

near future depends heavily on the current state. Since short-term forecasts do not typically320

require extrapolating into novel conditions, a model based on the historical range of variation321

which incorporates lags and accurate initial conditions is likely to be successful.322

Space-for-time modeling approaches for predicting long-term, steady-state outcomes of eco-323

logical change have also been tested empirically, primarily via hindcasting. Overall, the results324

are mixed: some tests show reasonable prediction of changes in community composition (Blois325

et al., 2013; Illán et al., 2014) or species distributions (Norberg et al., 2019), supporting the hy-326

pothesis that datasets spanning spatial gradients capture the long-term outcome of interactions327

between fast processes and slower processes such as ecological and evolutionary selection, dis-328

persal, and responses to large changes in the environment. Other attempts to validate predictions329

from space-for-time models have been discouraging (Worth et al., 2014; Illán et al., 2014; Davis330

et al., 2014; Brun et al., 2016; Veloz et al., 2012), indicating violations of model assumptions or ef-331

fects of transient dynamics. However, predictions from the space-for-time approaches are rarely332

compared directly to predictions from time-series models (Harris et al. 2018, but see Renwick333

et al. 2018). We need more such comparisons to identify the appropriate modeling approach for334

different forecast horizons.335

The greatest empirical challenge will be testing our hypothesis that a weighted average of336

spatial and temporal statistical models will make the best forecasts at intermediate time scales.337

There are two problems: finding appropriate data and determining the model weights a priori.338

Many data sets have both a longitudinal and spatial dimension, but we could not think of one339

which also featured a clear ecological response to directional environmental change. Surely such340

datasets exist, and we hope researchers who work with them will test our proposed weighted341

model. Determining model weights may be more difficult. In our simulations, we fit the weights342

directly to the simulated data, which is impossible to do for actual forecasting when the future is343

unknown. We need new theory or empirical case studies in order to assign these weights a priori.344

Theory could explore the influence of different parameters on the rate at which slow processes345

begin to influence dynamics. The effects of some parameters are intuitive: in the community346

turnover example, increasing the fraction of dispersing individuals caused a more rapid shift in347

species composition and in model weights (Fig. 6A). Other parameters have less intuitive effects:348

we expected that increasing the temperature tolerance of genotypes in the evo-evolutionary ex-349

ample would accelerate the shift in model weights by maintaining higher genetic diversity. Our350

simulations showed the opposite effect, with wider tolerances slowing the shift in model weights351
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(Fig. 6B), presumably by decreasing the strength of selection. Additional factors to consider352

include organism lifespans and the magnitude of directional environmental change relative to353

historical interannual variation.354

Empirical research could inform model weights by accumulating enough case studies to in-355

fer patterns in the weighting functions and guide applications in new systems. Developing356

rules of thumb would require testing many forecasts from both time-series and spatial models357

across a range of time-horizons. This effort may require a novel integration of typically disparate358

approaches, such as analyses of paleoecological data (e.g., Worth et al. 2014), long-term observa-359

tional (e.g., Nice et al. 2019) or experimental data (e.g., Silvertown et al. 2006), and model systems360

with short-generation times (e.g., Good et al. 2017).361

The idea of combining forecasts with model weights and allowing the weights to shift across362

the forecast horizon need not be limited to extremely simple statistical models like the ones we363

used in this study. The same concept could work for any class of models that differ in pre-364

dictive skill at different forecast horizons, such as more sophisticated phenomenological models365

designed to minimize problems of extrapolating outside the historical range of variation, or a366

set of process-based models focusing on mechanisms operating at different time scales. Deter-367

mining the model weights a priori might be easier when models feature explicit processes with368

characteristic time scales.369

On the other hand, there is no guarantee that our proposed model weighting scheme will370

work when applied in real ecosystems. The most obvious potential problem is that space-for-time371

approaches may fail to predict long-term dynamics if model assumptions are violated, transient372

dynamics are strong, or future environmental conditions have no current analog (Worth et al.,373

2014; Veloz et al., 2012). The notion that model weighting can improve forecasts at intermediate374

and long forecast horizons must be a viewed as a hypothesis to be tested with empirical data.375

Given the challenges of determining model weights a priori, we should also pursue alterna-376

tives for intermediate forecast horizons. In the Introduction, we argued that fully process-based377

models are not feasible. However, a new class of statistical models offers a compromise be-378

tween mechanistic detail and phenomenological feasibility. Spatiotemporal statistical modeling379

approaches are being developed to study patterns and processes of interest to ecological forecast-380

ers, such the spread of an invasive species or population status of a threatened species (Wikle,381

2003; Williams et al., 2017; Schliep et al., 2018). Because these models include both fast processes,382

such as births and deaths, and slower processes, such as colonization and extinction dynamics,383

they have the potential to make better predictions at intermediate forecast horizons than purely384

spatial or temporal models. However, these spatiotemporal models have rarely been used in a385

forecasting context, due to a combination of data limitation and computational challenges. Many386

data sources contain either spatial or temporal variation, but not both, and when spatiotempo-387

ral datasets are available they often involve irregular sampling, creating challenges for modeling.388

Fitting and generating predictions from spatiotemporal models is also computationally intensive,389
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especially with large datasets (McDermott and Wikle, 2017). Fortunately, thanks to large-scale390

monitoring efforts from remote sensing platforms, the National Ecological Observatory Network391

(https://www.neonscience.org/), and community science projects (e.g., eBird), large scale spa-392

tiotemporal data is increasingly available. In addition, new methods for spatiotemporal forecast-393

ing are being developed that address existing computational challenges (McDermott and Wikle,394

2017), and access to high performance computing resources is increasingly common. Given these395

developments, future ecological forecasting efforts should explore spatiotemporal approaches396

and assess whether they improve predictions at intermediate time scales relative to traditional397

time-series or space-for-time approaches.398

Our simulation studies have important implications for the emerging field of ecological fore-399

casting. First, they suggest that evaluating model performance at both short and long forecast400

horizons will be essential as research on forecasting methods accelerates. Second, while single401

approaches may perform reasonably well for either short or long horizons, skillful predictions at402

intermediate forecast horizons may require a combination of information from spatial and tem-403

poral statistical models. Intermediate time horizons pose challenges in other forecasting contexts404

as well. Weather forecasts based on regional-scale meteorological models are very effective for405

forecasting a week to ten days in advance, but then become largely uninformative. Forecasting406

these intermediate scales has been challenging in meteorology and will likely be challenging in407

ecology as well. While the recent emphasis on near-term iterative forecasting (Dietze et al., 2018)408

is the logical and tractable starting point, we also need to build understanding and capacity for409

forecasting ecological dynamics across all forecast horizons of interest.410
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Figure 1: Fast and slow processes operate at different time scales, and are reflected in different
kinds of datasets. Fast processes, such as births, deaths, and individual growth, operate at all
time scales, but are the exclusive drivers of the short-term dynamics captured in most time series
datasets. Slower processes, such as evolutionary selection on genotype frequencies, ecological
selection on species abundances, and colonization and extinction, interact with fast processes to
drive dynamics over the long-term. The influence of these slow processes is seen in very long
time series, or in spatial gradients. Understanding dynamics at intermediate time scales requires
integrating information from spatial and temporal data sources. We propose a model weighting
approach; mechanistic spatiotemporal modeling is another alternative. The time scales shown
here were chosen with vascular plants in mind, but the same concepts would apply for much
shorter-lived organisms but at shorter time scales.
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Figure 2: (A) Mean biomass by species (colors) across the temperature gradient during the base-
line period. The focal species, dominant at the site in the center of the gradient (vertical gray
line), is shown in dark blue. The dashed blue line shows predictions from the spatial statistical
model. (B) Annual biomass of the focal species at the central site during the baseline period. The
dashed line shows predictions from the temporal statistical model.
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Figure 3: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. (B) Simulated focal species biomass and forecasts
from the spatial, temporal and weighted statistical models at the focal site in the metacommunity
model. (C) Simulated changes in biomass of the focal species (black) and all other species (grey),
and the weight given to the temporal statistical model for focal species biomass (blue). Time 1000
(years) in each panel corresponds to the start of the temperature increase.
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Figure 4: (A) Reaction norms of the three genotypes. (B) The spatial pattern of individual geno-
types (colors) and total population abundance (black) at sites arrayed across a gradient of mean
annual temperature. The dashed black line (almost entirely hidden by the slid black line) shows
predictions from an empirical, spatial statistical model, a linear regression that describes mean
population size as a function of mean temperature. (C) The relationship between annual tem-
perature and per capita growth rate at a location with a mean temperature that favors the cold-
adapted genotype. Colors show population size (the green to brown gradient depicting low to
high population density), which influences the population growth rate through density depen-
dence.
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Figure 5: (Top) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts. (Bottom) Simulated population size and forecasts from the spatial,
temporal and weighted statistical models.
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Figure 6: The rate of change in the weight of the temporal forecast (y-axis) depends on (A) the
fraction of propagules dispersing in the community turnover example and (B) on the temperature
tolerance of genotypes, given by σT (larger values indicate wider thermal niches) in the eco-
evolutionary example. Time 0 (years) in these figures corresponds to the start of the temperature
increase.
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Appendices

A Spatial, temporal and spatial-temporal-weighted models503

The two simulation models in the main text describe how population size, N(x, t), at location x504

changes over time (t). We assume that the temperature, K(x, t), at each location can vary in time505

and space. To forecast the dynamics generated by these simulations models, we fit a series of506

statistical models.507

The spatial model, which we refer to as S, is a quadratic regression of the mean long-term508

population density at a location (N̄(x)) against the mean temperature at that location (K̄(x)).509

The quadratic term describes the unimodal relationship between N̄ and K̄. The spatial statistical510

model is511

N̄(x) = S(K̄(x)) = βS
0 + βS

1K̄(x) + βS
2K̄(x)2

+ ε (1)

The temporal model, which we call T, starts with a time-series of “observed” population512

sizes, or total biomasses, at one location, N(t), for t = 1...n (the spatial index is suppressed513

because we only focus on one location at a time). In the community turnover example, we fit the514

following regression, which predicts biomass at time t + 1 as a function of biomass (N(t)) and515

annual temperature (K(t)) at time t,516

ln(N(t + 1)) = T(N(t), K(t)) = βT
0 + βT

1 ln(N(t)) + βT
2 K(t) + ε (2)

In the eco-evolutionary example, the response variable is the log of the population growth rate.517

The regression, which includes a quadratic effect of temperature, is518

ln
(

N(t + 1)
N(t)

)
= T(N(t), K(t)) = βT

0 + βT
1 ln(N(t)) + βT

2 K(t) + βT
3 K(t)2 + ε (3)

This version of the temporal model returns a per capita growth rate on the log scale. To predict519

population size at the next time step, we exponentiate the growth rate and multiply it by the520

current population size: exp(T(N(t), K(t)))N(t).521

The weighted model is a weighted average of predictions from the spatial and temporal522

models, with the weights changing as a function of time, here expressed as the forecast horizon.523

The weights change as a function of the square root of the forecast horizon, to allow rapid shifts524

in the model weights.525

logit(ωt) = βW
0 + βW

1

√
t (4)

For the community turnover example, the predicted biomass from the weighted model is:526

N̂(t + 1) = ω · T(N(t), K(t)) + (1−ω) · S(K(t)) (5)
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Again, we suppress the spatial subscript (x) here because we are focused on densities at just527

one location. For the eco-evolutionary example, the predicted population size from the weighted528

model is:529

N̂(t + 1) = ω · exp(T(N(t), K(t)))N(t) + (1−ω) · S(K(t)) (6)

We used the optim function to estimate the βWs that minimize the sum of squared errors,530

(N̂(t + 1)− N(t + 1))2.531

In the main text, we show the point forecasts but not the uncertainty around the forecasts.532

After exploring that uncertainty, we decided that presenting it would be misleading. For the spa-533

tial and, especially, the temporal statistical models, the uncertainty is unrealistically low, because534

the models are estimated with very large samples sizes from the simulations. Furthermore, the535

simulations do not include noise; the only reason there is any uncertainty is because the statis-536

tical models are slightly mis-specified with respect to the process models. Showing uncertainty537

for the weighted model would be even less meaningful, because it is not a true, out-of-sample538

forecast (parameters are fit directly to the observations for which we make predictions). The R539

code to compute uncertainties for the spatial and temporal forecasts is available on our Github540

repository (https://github.com/pbadler/space-time-forecast), but is commented out.541

B Description of the meta-community model542

Alexander et al. (2018) developed a meta-community model to represent dynamics of local com-543

munities arrayed along a one-dimensional elevation gradient, as influenced by three main pro-544

cesses: temperature-dependent growth, competition, and dispersal. Here we adapt their notation545

to be consistent with our own.546

The population size of species i in cell x at time t + 1, Ni(x, t + 1), is computed in two547

steps. The first step accounts for changes in local population sizes due to dispersal. In each548

local community, all species export a fraction (d) of their local population to the two adjacent549

communities in the 1-dimensional landscape:550

N′i (x, t) = (1− d) · Ni(x, t) +
d
2
· (Ni(x + 1, t) + Ni(x− 1, t)) (7)

Here N′ distinguishes the post-dispersal population size from the pre-dispersal population size.551

The second step computes population growth, taking into account competition:552

Ni(x, t + 1) = N′i (x, t) + N′i (x, t)[gi(K(x)− Kmini)− ciN′i (x, t)− li ∑
k

N′k(x, t)] (8)

In the absence of competition, the growth rate (gi) is determined by the difference between the553

temperature at site x (K(x)) and the focal species’ minimum temperature tolerance, Kmini, the554

lowest temperature at which a species can maintain a positive growth rate. Growth is further555

reduced by intraspecific and interspecific competition, parameterized by ci and li. All species are556
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assigned the same value of ci, which represents an additional effect of intraspecific competition557

on top of interspecific competition. This stabilizes coexistence, since every species will exert558

stronger intra- than interspecific competition. However, values of l vary among species to create559

a trade-off between growth rates and competitive ability versus low temperature tolerance: fast-560

growing species (high gi) are more tolerant of interspecific competition (low li) but are more561

limited by temperature (high Kmini).562

To assign species-specific parameter values, the number of species in the metacommunity is563

specified. Next, each species is assigned an optimal temperature within a specified temperature564

range by drawing from a uniform distribution. Sensitivity to interspecific competition is then565

determined as a decreasing function of optimal temperature. Calculations are performed in the566

script SpeciesPoolGen.R.567

C Description of the eco-evolutionary annual plant model568

Haploid Model: Begin with a haploid model that describes the number of seeds present in

a population. We model a scenario in which all seeds germinate, so we can ignore seedbank

dynamics. Ni,t is the number of seeds of species i at time t. The model is

N1,t+1 =
λ1(K(t))N1,t

1 + α11N1,t + α12N2,t

N2,t+1 =
λ2(K(t))N2,t

1 + α21N1,t + α22N2,t

(9)

where λi(K(t)) is the seed production rate per plant, and K(t) is the temperature at time t. Below569

we refer to the αij as intra- and inter-genotype competition coefficients.570

Diploid Model: Consider a one-species diploid model. The genotypes are denoted by AA,571

Aa, and aa. The number of each genotype at time t is NAA(t), NAa(t), and Naa(t). The seed572

production rate for genotype AA is λAA(K(t)), and the analogous parameters for the other573

genotypes are similarly denoted. The competition coefficients are denoted by αi,j, e.g., αAA,AA or574

αAA,Aa. Throughout we assume that gametes mix randomly in the population.575

First consider the case where the competition coefficients are zero (αi,j = 0). Let T denote the576

total number of gamete-pairs produced in a given year,577

T = λAA(K(t))NAA(t) + λAa(K(t))NAa(t) + λaa(K(t))Naa(t). (10)

The first term is the number of gamete-pairs produced by AA individuals. The second and third

terms are the numbers of gamete-pairs produced by Aa and aa individuals, respectively. The

proportion of A gametes (φA) and the proportion of a gametes (φa) are given by

φA =
2λAA(K(t))NAA(t) + λAa(K(t))NAa(t)

2T
and φa = 1− φA. (11)
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Note that the T in the denominator of φA shows up because we are computing proportions.

Combining all of these we get the dynamics for each genotype,

NAA(t + 1) = φ2
AT

NAa(t + 1) = φAφaT

Naa(t + 1) = φ2
a T

(12)

Now consider the case where the competition coefficients are non-zero (αi,j 6= 0). Including

competition changes the way in which we compute T, φA, and φa. Specifically, because the total

number of seeds produced per year by each genotypes is reduced based on intra- and inter-

genotype competition, the total number of gamete-pairs becomes

T =
λAA(K(t))NAA(t)

1 + αAA,AANAA(t) + αAA,AaNAa(t) + αAA,aaNaa(t)

+
λAa(K(t))NAa(t)

1 + αAa,AANAA(t) + αAa,AaNAa(t) + αAa,aaNaa(t)

+
λaa(K(t))Naa(t)

1 + αaa,AANAA(t) + αaa,AaNAa(t) + αaa,aaNaa(t)
.

(13)

The first line is the number of gamete-pairs produced by AA individuals after accounting for the

effects of competition. The second and third lines are the numbers of gamete-pairs produced by

Aa and aa individuals, respectively. The proportions of A gametes and a gametes are

φA =
2

2T
λAA(K(t))NAA(t)

1 + αAA,AANAA(t) + αAA,AaNAa(t) + αAA,aaNaa(t)

+
1

2T
λAa(K(t))NAa(t)

1 + αAa,AANAA(t) + αAa,AaNAa(t) + αAa,aaNaa(t)

φa = 1− φA

(14)

Combining all of this results in the same model as above,

NAA(t + 1) = φ2
AT

NAa(t + 1) = 2φAφaT

Naa(t + 1) = φ2
a T,

(15)

but the definitions of T, φA, and φa are given by equations (13) and (14) .578
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Supplementary Tables579

Table SM-1: Parameters and parameter values for the community turnover case study. Values
are assigned at the start of comm turn master.R. “Name” refers to the variable declared in the
computer code. These names do not exactly match the symbols shown in the equations in
Appendix B; rather, the species-specific values of those parameters are calculated in the computer
code based on the values in this table.

Name Value Definition
L land 20 Length of landscape
Tmin 0 Minimum of spatial gradient in baseline temperature
Tmax 15 Maximum of spatial gradient in baseline temperature
Tstdev 2 Standard deviation of temperature (interannual variation)
deltaT 4 Magnitude of directional change in temperature
burnin yrs 2000 Number of years to initialize simulation
baseline yrs 1000 Number of years at baseline temperature used to fit statistical models
warming yrs 200 Number of years over which temperature increases
final yrs 2000 Number of years at steady-state, elevated temperature
N 40 Number of species
Gmax 0.5 Maximum population growth rate
Gmin 0.2 Minimum population growth rate
Lmax 1.5 Maximum sensitivity to competition
Lmin 0.7 Minimum sensitivity to competition
Cmax 0.2 Maximum additional sensitivity to conspecific competition
Cmin 0.2 Minimum additional sensitivity to conspecific competition
d 0.01 Fraction of offspring dispersing from home site

Table SM-2: Parameters and parameter values for the eco-evolutionary case study. Values are as-
signed at at the start of genetic diversity master.R. “Name” refers to the variable declared in
the computer code. Where appropriate, the corresponding symbols from equations in Appendix
C are shown in parentheses.

Name Values Definition
Tstdev 1 Standard deviation of temperature (interannual variation)
baseT -1 Baseline temperature
deltaT 5 Total change in temperature
baseline yrs 500 Number of years at baseline temperature used to fit statistical models
warming yrs 100 Number of years over which temperature increases
final yrs 300 Number of years at steady-state, elevated temperature
fec Tmu -1,0,1 Optimal fecundity temperature for genotypes AA, Aa, and aa
fec Tsigma 8 Standard deviation in fecundity for all genotypes
fec max 100 Maximum fecundity for all genotypes
alpha (α) 1 All competition coefficients for all genotypes
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Supplementary Figures580

Figure SM-1: (A) Temporal shifts in the model weighting term for 10 independent simulations
of (A) the community turnover model, and (B) the eco-evolutionary model. For the community
turnover model, each simulation began with initialization of a new regional species pool. For the
eco-evolutionary model, genotype parameters were fixed, and only the sequence of annual tem-
peratures varied between runs. In all cases, the combined forecast is heavily weighted towards
the time-series model at short forecast time scales, and towards the space-for-time model at long
forecast time scales.
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Figure SM-2: (A) Simulated annual temperatures (grey) and expected temperature (black), which
was used to make forecasts, at the focal site. In contrast to Fig. 3, which shows results for a
period of warming followed by stationary temperatures, for this simulation we spread the same
temperature increase out over the entire simulation with no stationary periods. (B) Simulated
focal species biomass and forecasts from the spatial, temporal and weighted statistical models at
the focal site in the metacommunity model. (C) Simulated biomass of the focal species (black) and
all other species (grey), and the weight given to the temporal statistical model for focal species
biomass (blue). Time 1000 (years) in each panel corresponds to the start of the temperature
increase. 7



Figure SM-3: Results for total biomass from the community turnover model. Blue points show
mean total biomass during the baseline period at locations across the temperature gradient, and
the blue line shows predictions from the spatial model. Red points show annual total biomass
during the baseline period as a function of annual temperature at the central site on the gradient.
The red line shows predictions from the temporal model.
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Figure SM-4: Results for total biomass from the community turnover model. (A) Simulated an-
nual temperatures (grey) and expected temperature (black), which was used to make forecasts, at
the focal site. (B) Simulated total biomass and forecasts from the spatial, temporal and weighted
models. (C) Simulated changes in biomass of all species (grey) at the focal site in the metacom-
munity model, and the weight given to the temporal model for total biomass (blue). Time 1000
(years) in this figure corresponds to the start of the temperature increase.
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Figure SM-5: Simulated shifts in genotype abundances, and the model weighting term, ω, during
the warming phase and the following stationary temperature phase. Time 0 (years) in this figure
corresponds to the start of the temperature increase.
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