

1 **Title**

- 2 • **Title:** Structural response of α -quartz under plate-impact shock compression.
- 3 • **Short title:** Structure of shock-compressed quartz.

4

5

6 **Authors**

7 Sally June Tracy^{1,2*}, Stefan J. Turneaure³, and Thomas S. Duffy¹

8 **Affiliations**

9

10 ¹ Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA.

11

12 ² Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA.

13

14 ³ Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA.

15

16 *To whom correspondence should be addressed; E-mail: sjtracy@carnegiescience.edu

17

18 **Abstract**

19 Due to its far-reaching applications in geophysics and materials science, quartz has been one of
20 the most extensively examined materials under dynamic compression. Despite 50 years of active
21 research, questions remain concerning the structure and transformation of SiO_2 under shock
22 compression. Continuum gas-gun studies have established that under shock loading quartz
23 transforms through an assumed mixed-phase region to a dense high-pressure phase. While it has
24 been often assumed that this high-pressure phase corresponds to the stishovite structure observed
25 in static experiments, there has been no atomic-level structure data confirming this. In this study,
26 we use gas-gun shock compression coupled with *in-situ* synchrotron X-ray diffraction to
27 interrogate the crystal structure in shock-compressed α -quartz up to 65 GPa. Our results reveal
28 that α -quartz undergoes a phase transformation to a disordered metastable phase as opposed to
29 crystalline stishovite or an amorphous phase, challenging long-standing assumptions about the
30 dynamic response of this fundamental material.

31 **Introduction**

32 Laboratory shock wave experiments have long played an important role in characterizing
33 properties of geophysical materials at the high pressure and temperature conditions of the deep
34 Earth (1). Shock-compression experiments yield pressure-temperature states comparable to
35 planetary adiabats, thus requiring minimal extrapolation for geophysical application. Moreover,
36 shock loading presents a unique capability to study impact phenomena in real time, providing
37 insight into natural impact processes relevant to planetary formation and evolution. Quartz (SiO_2)
38 is one of the most abundant minerals of Earth's crust and is widely distributed in different rock

39 types. As a result, characterizing the dynamic response of SiO_2 is important for interpretation of
40 shock metamorphism in samples from terrestrial impact sites (2, 3). Furthermore, quartz serves as
41 an archetype for the silicate minerals of the crust and mantle. As such, characterizing high-
42 pressure, high-temperature behavior of quartz is important for understanding potential silica-rich
43 regions of the deep Earth.

44 The high-pressure behavior of quartz has been the subject of extensive experimental
45 studies. At ambient conditions, the stable polymorph of SiO_2 is the trigonal α -quartz structure
46 ($P3_21$), composed of a corner-linked framework of SiO_4 tetrahedra. Based on the equilibrium
47 phase diagram, SiO_2 adopts a series of crystalline phases under pressure from quartz to coesite
48 ($C2/c$) to stishovite (rutile structure, $P4_2/mnm$) to the CaCl_2 -type phase ($Pnnm$) (4). In addition, a
49 number of metastable forms of SiO_2 have been observed experimentally or predicted theoretically
50 (5–10). Due to the high kinetic barriers associated with these transitions, when compressed in a
51 diamond anvil cell (DAC) at 300 K, quartz persists to above 20 GPa where it transforms to a
52 disordered, dense metastable phase (7, 11).

53 The behavior of quartz under shock compression differs markedly from its static response.
54 The Hugoniot (Fig. 1) is characterized by a highly compressible region often called the “mixed-
55 phase region” that initiates at ~15 GPa and reaches completion at ~40 GPa, at which point the
56 material compressibility decreases significantly. Based on impedance matching Hugoniot data and
57 thermodynamic considerations, it is often assumed that the high-pressure phase on the quartz
58 Hugoniot corresponds to crystalline stishovite (12–14). However, there is no direct evidence
59 demonstrating this, and the structure of the high-pressure phase remains a subject of continued
60 debate.

61 The sequence of phase transitions occurring in dynamically compressed quartz and the role
62 of kinetics remain unknown. For α -quartz shocked between 30 and 65 GPa, calculated Hugoniot
63 temperatures range from ~1500–4000 K (15). Recovery experiments and samples collected at
64 natural impact sites are found to consist primarily of amorphous material with trace quantities of
65 stishovite (3). Due to the high-temperature release path, it is an open question whether
66 amorphization occurs during compression or release. On more general grounds, it has been
67 suggested that reconstructive transformations involving tetrahedral to octahedral coordination
68 changes are kinetically limited on shockwave timescales and hence there is insufficient time for
69 formation of stishovite in a laboratory shockwave experiment (16). Accordingly, it has been
70 contended that the high-pressure phase of quartz instead corresponds to a metastable intermediate
71 or a dense amorphous structure (17, 18). Using traditional continuum diagnostics, the crystal
72 structure of high-pressure phases formed under dynamic compression cannot be determined
73 experimentally. As a result, key questions concerning the nature of the mixed-phase region and
74 the structure of the high-pressure phase(s) on the Hugoniot remain unresolved.

75 Recently, *in situ* X-ray diffraction measurements under gas-gun loading have shown that
76 fused silica remains amorphous under shock compression until 35 GPa and for higher stresses it
77 transforms to polycrystalline stishovite (19). Stishovite formation has also been observed in laser-
78 shock experiments in fused silica (20) and in recovery experiments on porous sandstone (21). Here
79 we use time-resolved X-ray diffraction measurements coupled with gun-based dynamic
80 compression to probe the crystal structure of α -quartz under shock compression. Plate impact

81 loading provides a uniform, well-defined state of uniaxial strain within the shocked quartz. The X-
82 ray diffraction data provide a complete picture of the material response by revealing new details
83 of the atomic-level structure for stresses from 31-65 GPa.

84 **Results**

85 Figure 2 shows representative two-dimensional (2D) X-ray diffraction (XRD) images from
86 Z-cut quartz shots at 31 and ~63 GPa. For the lower stress experiment (Fig. 2a), peaks
87 corresponding to compressed α -quartz can be identified. In the 2D image, the compressed peaks
88 appear as localized bright spots much broader than the ambient single-crystal Laue spots,
89 indicating that the shocked Z-cut quartz developed a mosaic spread of several degrees (Fig. 2a).
90 Based on peak fitting the intense (101) α -quartz peak, the density of the compressed quartz can be
91 estimated to be ~3.65 g/cm³. This density is consistent with an extrapolation of the 300-K equation
92 of state of α -quartz from static compression experiments (22), where the modest offset is consistent
93 with the higher temperature along the Hugoniot (Fig. 1). In addition to the α -quartz peaks, there
94 are a number of other peaks that cannot be assigned to the α -quartz structure, indicating that the
95 material has partially undergone a pressure-induced phase transformation. The combination of
96 low- and high-pressure phase material indicates that the Hugoniot state is a mixed-phase region
97 near 30 GPa. The scattering from the transformed material has more extended arcs, albeit with
98 pronounced azimuthal intensity variations. This finding indicates that preferred orientation (or
99 texture) persists above the phase transformation.

100 At ~63 GPa (Fig. 2b), the α -quartz peaks have disappeared, indicating complete
101 transformation to a high-pressure phase. For the higher angle peaks, the width of the profiles
102 indicates modest broadening on top of the expected instrumental contribution. These results
103 demonstrate that quartz transforms to a high-pressure phase with crystalline order and clearly
104 shows that the high-pressure phase is not amorphous as had been proposed in the literature (17,
105 18).

106 Figure 3 shows a series of azimuthally integrated diffraction patterns for Z-cut quartz
107 obtained for stress states ranging from 31 to 65 GPa. Other than the XRD profile collected at 65
108 GPa, all measured XRD profiles shown in Fig. 3 are from frames captured prior to the shock wave
109 having traversed the entire thickness of the Z-cut quartz sample and correspond to Hugoniot states.
110 The pattern collected at 65 GPa corresponds to a double-shock state produced by re-shock from
111 56 to 65 GPa at the lithium fluoride (LiF) window. Shocked Z-cut quartz diffraction data collected
112 for Hugoniot stresses at 31-35 GPa exhibit an intense peak at ~10° two-theta, consistent with the
113 compressed α -quartz (101) reflection. Additionally, new diffraction peaks are observed at 16° and
114 21°. For shock stresses above 35 GPa, the α -quartz (101) peak can no longer be detected and the
115 diffraction pattern contains a broad feature spanning 9-12° two-theta with distinctly sharper peaks
116 near 16° and 21°. These two new relatively sharp peaks are from discrete regions around the
117 diffraction rings (see Fig. 2) indicating significant texture both in the mixed-phase region and in
118 the high-pressure region.

119 Figure 4 shows a comparison of diffraction data from shocked X-cut, Y-cut, and Z-cut
120 quartz collected at 56-65 GPa. Similar to the Z-cut quartz results, the diffraction patterns for X-cut
121 and Y-cut quartz also indicate significant texture of the high-pressure phase as evidenced by the

122 observed large intensity variations around the diffraction rings. While the azimuthal intensity
123 variations of the diffraction patterns are different for different orientations, the integrated patterns
124 indicate that all orientations transform to the same phase under shock compression.

125 Figure 5 compares the diffraction data for the shocked polycrystalline novaculite (natural
126 microcrystalline quartz) with the diffraction patterns collected for Z-cut quartz and fused silica
127 shocked to similar peak stresses (63-66 GPa). In previous experiments at the DCS, we used *in situ*
128 XRD coupled with gun-based shock compression to examine the structure of shocked fused silica
129 (19). That study demonstrated that silica glass adopts a dense amorphous structure for shock
130 pressures up to 35 GPa, above which it transforms to nanocrystalline stishovite. A comparison of
131 the stishovite diffraction pattern obtained from fused silica starting material to the diffraction
132 patterns for α -quartz starting material show that while the integrated diffraction patterns for single-
133 crystal and polycrystalline quartz have similarities they are distinct from the stishovite pattern
134 observed for shocked fused silica.

135 The three shots in Fig. 5 all correspond to double shock measurements, where XRD data
136 were collected after the shock waves propagated through the SiO_2 sample reflecting from the LiF
137 window as a reshock resulting in a uniform final stress state. Diffraction data for polycrystalline
138 novaculite samples shocked to lower peak stresses show similar features (see Supplemental
139 Material, Fig. S7). In the polycrystalline data, the strong peak at 9.5 degrees corresponds to a
140 residual ghost peak from the ambient strong (101) α -quartz reflection. This peak is the result of
141 incomplete decay of the phosphor scintillator detector between successive X-ray frames and does
142 not arise from scattering from the compressed sample. The signal intensity is notably lower for the
143 polycrystalline data compared to the single-crystal data, yielding lower signal-to-noise. While the
144 integrated diffraction pattern is similar to single-crystal data, the diffraction rings are smooth and
145 continuous without the azimuthal intensity variations from preferred orientation observed in the
146 single-crystal data.

147 Discussion

148 A comparison of the diffraction patterns for the high-pressure phases of silica glass and α -
149 quartz (Fig. 5) at similar shock pressures highlights the clear distinction in the structure of the
150 high-pressure phase depending on starting material. Here, we reveal two key distinctions in the
151 structure of α -quartz under shock loading compared with fused silica: (1) As opposed to the
152 densification observed below 35 GPa for silica glass, the region on the α -quartz Hugoniot between
153 ~30-40 GPa represents a crystalline mixed-phase region, that is, a coexistence of compressed α -
154 quartz and transformed high-pressure material; (2) while α -quartz undergoes a phase
155 transformation to a crystalline phase at a similar shock-pressure as silica glass, the structure of the
156 high-pressure phase bears similarity to the stishovite structure but is distinctly different. In
157 particular, the diffraction pattern from α -quartz does not exhibit an intense low-angle peak
158 corresponding to the stishovite (110) reflection.

159 The absence of the strong stishovite (110) peak is consistent across multiple orientations
160 of single crystals (Fig. 4) as well as polycrystalline starting material (Fig. 5) and therefore cannot
161 be attributed to residual texture due to an orientation relationship between the starting material and
162 the high-pressure phase. While we do not observe a sharp low-angle peak in the XRD patterns,

163 there is a broad, weaker feature peaked at $Q \sim 2.3 \text{ \AA}^{-1}$ [$Q = 4\pi \sin(\theta)/\lambda$] that persists across the entire
164 measured stress range (Fig. 3). One possible explanation is that this feature corresponds to partial
165 amorphization of the sample (16–18, 23). However, this feature exhibits some azimuthal intensity
166 variation on the 2D diffraction image, inconsistent with scattering from an amorphous material.
167 Furthermore, this low-angle feature occurs at lower Q than the first sharp diffraction peak (FSDP)
168 of SiO_2 glass observed in static compression experiments in this pressure range (see Fig. S9) (24–
169 27). This differs from shocked silica glass (19), where the FSDP overlaps static data. While the
170 higher temperature of the Hugoniot states needs to be accounted for, recent results show that
171 elevated temperatures can enable additional compression mechanisms, allowing the glass to
172 achieve a denser state than it can at lower temperatures (28, 29). Additionally, the broad character
173 and low intensity relative to other peaks remain fairly constant with increasing pressure, despite
174 the large change in expected temperature over this range which should promote crystallization.

175 The textured Debye-Scherrer rings of the high-pressure phase (Fig. 2) are in marked
176 contrast with the results of recent molecular dynamics (MD) simulations for both α -quartz and
177 silica glass (30). In these simulations, uniaxial loading induces picosecond amorphization of the
178 α -quartz crystal structure, followed by nanosecond stishovite crystallization via a homogeneous
179 nucleation and growth. After amorphization, the simulations for α -quartz proceed via a
180 transformation mechanism that mirrors that of silica glass under similar loading conditions.
181 Unlike silica glass, where we observed smooth powder-like rings (19), the residual texture in our
182 data is hard to reconcile with a nucleation and growth model. It is unlikely that within the
183 timescale of our measurements (several hundred nanoseconds) the requisite grain growth could
184 occur to yield this degree of texture. Instead, the orientation-dependent texture suggests a
185 topotactic relationship between the α -quartz starting material and the high-pressure phase.
186 Accordingly, it is likely the transformation involves a displacive or shear mediated mechanism
187 preserving some degree of atomistic neighbor memories.

188 Figure 1 shows the Hugoniot for α -quartz in pressure-volume space including selected
189 previous continuum data (31–34). Also shown are 300-K static compression data for stishovite
190 (35) along with the densities determined from fits to our XRD data in the high-pressure region.
191 The solid green symbols in Fig. 1 show the densities determined from Le Bail fits to the entire
192 diffraction line profile assuming the stishovite structure (see Fig. S3). Details of the fits, including
193 the accounting for the spectral shape of the pink X-ray beam, are described in the supplemental
194 material. X-ray densities derived from fits assuming the stishovite structure are denser than both
195 the continuum Hugoniot as well as the 300-K isothermal data for stishovite. The high temperatures
196 generated during shock loading require the Hugoniot necessarily be offset to lower densities
197 relative to the 300-K isotherm. As such, the assignment of the high-pressure phase under shock
198 loading to the stishovite structure can be ruled out.

199 Numerous metastable high-pressure polymorphs of SiO_2 have been reported both from
200 theoretical calculations and static compression experiments (5–10, 36–38). These structures can
201 generally be described as various silicon cation fillings of the octahedral voids within an
202 approximately hexagonal-close packed (hcp) oxygen lattice (6). A wide range of energetically
203 competitive structures can be generated by modifying the silicon filling pattern and the degree of
204 distortion of the oxygen sublattice. Within this context, stishovite can be described as a distorted
205 hcp array of oxygen anions where one-half of the available octahedral interstices are filled by

206 silicon ions forming linear chains of edge-sharing SiO_6 octahedra. When transposed into the rutile
207 unit cell, this silicon ordering represents a filling of every other void along the tetragonal $\langle 110 \rangle$
208 direction, yielding an intense (110) peak in the stishovite diffraction pattern. As a result, any
209 disorder in the silicon sublattice causes destructive interference along this direction, effectively
210 reducing the intensity of the (110) peak.

211 The defective niccolite structure (*d*-NiAs or Fe_2N -type) can be considered the most general
212 structure within this family of SiO_2 -oxygen close-packed phases. In this structure, the oxygen
213 anions are arranged in an ideal hcp lattice and silicon cations are distributed randomly across the
214 octahedral voids with an occupancy factor of $\frac{1}{2}$. This structure has been observed as a metastable
215 phase in heated diamond anvil experiments for pressures between 30-60 GPa and temperatures
216 between 900-1200 K (8, 37, 39). While the overwhelming majority of the many gas-gun shock
217 recovery experiments on SiO_2 report finding quartz or amorphous material, there are two reports
218 in which a very small amount of *d*-NiAs phase was identified together with quartz and glass (36,
219 40). Figure 3 includes simulated diffraction patterns for both the *d*-NiAs and stishovite structures.
220 While the patterns are generally similar, the stishovite pattern contains additional peaks that arise
221 from coherent scattering from ordered planes of silicon within the structure. Notably, the *d*-NiAs
222 pattern has no low-angle peak due to the lack of any long-range silicon order. Furthermore, for
223 structures of equivalent density, the stishovite peaks are offset to slightly lower angles. This shift
224 arises from the lower packing efficiency of the distorted oxygen framework as opposed to the ideal
225 hcp lattice of the *d*-NiAs structure. In addition to stishovite densities, Fig. 1 also includes densities
226 derived from fits to the *d*-NiAs structure. In this case, the two prominent peaks in the diffraction
227 patterns are indexed to the (101) and (102) peaks of the hexagonal *d*-NiAs unit cell as opposed to
228 the (111) , and (121) peaks of the tetragonal stishovite structure (Fig. 3). In comparison to the
229 unphysically high densities determined from the stishovite fits, Le Bail profile refinements
230 assuming the *d*-NiAs structure yield densities that are consistent with the continuum Hugoniot
231 data. Fits to diffraction data for X- and Y-cut quartz starting material as well as novaculite yield
232 an overall similar result (Supplemental Material, Fig. S6). The densities in the mixed-phase region
233 could not be accurately determined due to overlapping diffraction peaks for multiple phases.

234 While fits to the *d*-NiAs structure agree with the previous continuum pressure-volume
235 Hugoniot results (31–34), this structure cannot account for the diffuse low-angle peak observed
236 consistently across the high-pressure region (Fig. 3). It is possible to explain the XRD patterns in
237 terms of *d*-NiAs phase coexisting with some amount of dense amorphous material. In this case,
238 the diffuse peak could be attributed to retention of some amount of an amorphous metastable
239 intermediate, consistent with molecular dynamics simulations (30). Although, the azimuthal
240 intensity variation (Fig. 2b) as well as the discrepancy in the position of this feature compared to
241 the FSDP from SiO_2 glass under static compression complicates this interpretation.

242 A second explanation for the observed diffraction patterns in the high-pressure region is a
243 structure composed of a well-defined hcp oxygen framework filled with silicon cations lacking
244 well-defined long-range order. A comparison of diffraction patterns for the various metastable
245 high-pressure polymorphs of SiO_2 reveals an overall similarity in the high scattering angle peaks
246 yet distinctions in the low-angle peak position(s) (Supplemental Material, Fig. S8). These
247 differences can be attributed primarily to various silicon ordering schemes within an hcp-like

248 oxygen lattice. The diversity of metastable SiO_2 phases indicates a complex energy landscape with
249 numerous competing structures of similar energy.

250 There is a large body of work exploring both the structural interrelationships and
251 transformation mechanisms between low-pressure SiO_2 tetrahedral-coordination structures and
252 various high-pressure six-coordinated phases, both stable and metastable (6, 41–43). Within this
253 context, each structure is defined by an ordering of the silicon cations within the tetrahedral and
254 octahedral voids in a quasi-close-packed oxygen framework. The pathways between structures can
255 be broken down into sets of transformations involving some combination of displacive and
256 ordering mechanisms. In recent years, new studies have revisited this subject with various
257 phenomenological approaches including excited-state transition pathway calculations and *ab initio*
258 molecular dynamics (9, 10, 30). These simulations suggest that under non-hydrostatic conditions,
259 the quasi-body-centered cubic (bcc) oxygen sublattice that describes α -quartz can transform via a
260 martensitic mechanism (Burgers path) to an hcp oxygen lattice (9, 38). Such calculations give
261 credence to a model in which the oxygen scaffolding responds rapidly to compression via a
262 diffusionless mechanism, followed by a slower reordering of the silicon cations within their newly
263 formed environment.

264 Due to the fast timescales of dynamic compression experiments, it is likely that the oxygen
265 sublattice responds readily to loading but the motion of the silicon cations is kinetically limited. A
266 plausible model involves a shear-mediated transformation of the oxygen lattice to a quasi-hcp
267 structure followed by the diffusion-limited reordering of silicon. Within the nanosecond timescale
268 of shockwave experiments, kinetic barriers may prevent the silicon cations from finding the
269 absolute energy minimum and instead local regions may minimize energy by adopting various
270 local arrangements. The diffraction pattern from this type of partially disordered structure would
271 contain well-defined peaks associated with an oxygen lattice, but lack the low-angle peak
272 associated with fixed silicon order. As opposed to the fully disordered case represented by *d*-NiAs,
273 within the structure there are local regions of short-range order, representing a distribution of
274 periodicities centered about a *d*-spacing consistent with the observed low-angle peak. In this way,
275 the structural transformation on the Hugoniot represents a metastable intermediate arising from a
276 bi-modal transformation yet to reach completion.

277 In addition to probing the structure under compression, the time resolution of our
278 measurements allows us to probe the structural evolution of the sample on release. Targets without
279 a window bonded to the SiO_2 will have a release wave propagate back into the sample when the
280 shock wave reaches the free surface. While the temperature can remain high as the sample releases
281 isentropically, pressure releases rapidly when rarefaction waves from the sample free surface
282 and/or edges of the target reach the sample center. Figure 6 shows the results of one such
283 experiment in which a novaculite sample was shocked to 35 GPa. Two XRD frames were recorded
284 while the sample was in the partially shocked state, and two XRD frames were recorded between
285 200–600 ns after the onset of longitudinal stress release from the novaculite free surface. The
286 impact velocity was chosen so that the peak Hugoniot pressure was below 40 GPa to avoid
287 potentially crossing the liquidus during shock release based on the predicted isentropic release path
288 (15).

289 In Figure 6, the reemergence of a strong peak at 9 degrees two-theta at late times is
290 consistent with the ambient pressure α -quartz (101) diffraction peak. In addition, it appears that a
291 portion of the sample is amorphized, evidenced by the broad feature peaked at ~8-9 degrees two-
292 theta. While it is possible that trace amounts of the high-pressure phase are retained on release,
293 there is no evidence for this within the resolution of our measurements. Scattering from the
294 quenched glass is peaked at a distinctly higher Q than the FSDP for ambient fused silica, while the
295 α -quartz (101) peak indicates that pressure is fully released. Due to overlap of the α -quartz (101)
296 peak, amorphous scattering from the polycarbonate impactor, and amorphous scattering from the
297 sample, it is challenging to assess the FSDP of the quenched glass with a high degree of accuracy.
298 However, a comparison of the amorphous feature observed after release from the shocked state
299 ($\sim 1.75 \text{ \AA}^{-1}$) to the expected peak position for ambient silica glass (1.54 \AA^{-1}), indicates the released
300 material is consistent with a densified glass. This is evidence that the material forms a densified
301 (diaplectic) glass during rapid stress release from the shocked state. In shock recovery experiments
302 for Hugoniot stresses between 25-50 GPa, recovered samples show primarily amorphous material
303 ~5-10% denser than ambient silica glass. Above a threshold pressure, where the material is
304 expected to melt on release the recovered material corresponds to low-density glass with a structure
305 similar to ambient fused silica. This result is consistent both with samples recovered from natural
306 impact sites (2) and recent laser compression experiments that reported evidence for diaplectic
307 glass formation in shock-compressed fused silica (20). In the present work, the sample undergoes
308 a complex loading/unloading history due to multiple wave interactions and further experiments
309 are needed to better constrain the released state.

310 X-ray diffraction measurements provide direct crystallographic evidence of the phase
311 transition from α -quartz to a disordered high-pressure crystalline phase under shock compression,
312 challenging long-standing assumptions regarding the structure of shocked quartz (12-14). Upon
313 shock compression to 31-35 GPa, our XRD results show evidence for compressed α -quartz in
314 combination with new XRD peaks from transformed material, indicating that the material is being
315 shocked into a mixed-phase state. For shock pressures from 39-65 GPa, quartz fully transforms to
316 a new structure. The compressed α -quartz densities derived from fits to the XRD patterns in the
317 mixed-phase region are consistent with an extrapolation of the 300-K equation of state of α -quartz
318 from static compression experiments (22). The diffraction data from the transformed material are
319 distinctly different from the stishovite pattern observed for shocked fused silica (19). The
320 transformed phase exhibits a broadened low-angle peak arising from silicon site disorder within a
321 close-packed oxygen framework. This structure can be described as a defective-niccolite structure
322 with considerable silicon short-range order. This result indicates that α -quartz transforms to a
323 metastable high-pressure phase as opposed to crystalline stishovite, in contrast to the behavior of
324 fused silica under shock loading. For single-crystal samples, a high degree of crystalline texture
325 persists above the phase transformation ruling out the amorphous intermediate proposed by
326 molecular dynamics simulations (30). The disordered phase persists to the highest stresses
327 measured, indicating that a significant kinetic barrier hinders transformation of α -quartz to
328 stishovite on shockwave timescales. Regardless of the detailed structure of the high-pressure
329 phase, on release the Hugoniot phase is not quenchable. From the present data, it appears that upon
330 release the high-pressure phase reverts to the α -quartz structure in combination with
331 amorphization.

332 **Materials and Methods**

333 Time-resolved X-ray diffraction measurements coupled with gas-gun-based dynamic
334 compression were carried out at the Dynamic Compression Sector (DCS) located at the Advanced
335 Photon Source (APS), Argonne National Laboratory. DCS allows for the determination of the
336 phase(s) formed under ~100-ns timescale shock loading (44). Starting materials consisted of
337 synthetic single-crystal quartz and natural polycrystalline quartz. The single-crystal samples had
338 Z-cut (001), X-cut (110), and Y-cut (100) orientations. The polycrystalline quartz was Arkansas
339 novaculite, a nearly pure quartz rock. The novaculite was untextured, microcrystalline and low
340 porosity. The measured bulk density of the novaculite was $2.640(5)$ g/cm³. All samples were
341 characterized at ambient conditions using powder or Laue X-ray diffraction, longitudinal sound
342 velocity measurements and Archimedean density determination (Supplemental Material, Table
343 S1). The novaculite samples were also characterized with Raman spectroscopy and scanning
344 electron microscopy. All characterization results for ambient samples were consistent with
345 literature values.

346 The experiments followed procedures described previously (19, 44). The impact
347 configuration is shown schematically in Supplemental Material, Fig. S4. Quartz samples were cut
348 and polished to a thickness of 1-2 mm and parallelism of better than 1 mrad. For most experiments,
349 the quartz sample was backed by a [100]-oriented single crystal lithium fluoride window. Two
350 experiments were also performed with no window. Targets were impacted with a 10-mm diameter
351 [100]-oriented LiF single-crystal mounted in a polycarbonate projectile. Projectiles were launched
352 using the two-stage light-gas gun located at DCS. Projectile velocities ranged from 3.7–5.7 km/s
353 as determined using a measurement system based on four optical beams passing through holes
354 near the muzzle end of the gun barrel. The distance between the beams was calibrated and as the
355 projectile passed each beam a signal change was recorded on a fast photodiode allowing the
356 projectile velocity to be determined with a precision of better than 0.5%. For experiments on
357 single-crystal quartz samples, Photon Doppler Velocimetry (PDV) (45) was also used to record
358 the projectile velocity history until impact. Velocities measured with PDV were consistent with
359 those recorded using the optical beam interrupts. Quartz impact stresses were calculated using
360 impedance matching and ranged from 31–58 GPa (see Supplemental Materials). For some of the
361 experiments, an elastic shock wave propagates through the quartz followed by a slower phase
362 transformation wave, whereas for other experiments, a single shock wave brings the quartz from
363 the ambient state directly to the peak state (31, 46, 47). The elastic shock waves have a good
364 impedance match with the LiF windows resulting in minimal wave reflection. When the phase
365 transformation shock wave propagating through the quartz reflects from the LiF window, a shock
366 wave propagates back into the sample resulting in a ~15–20% stress increase (see Supplemental
367 Material, Fig. S1). Experimental parameters for all plate impact experiments including projectile
368 velocities, quartz type, sample and window thicknesses, and stresses are listed in the Supplemental
369 Material, Table S2.

370 X-ray diffraction data were collected in a transmission geometry such that the incoming
371 X-ray beam made an angle of 28 degrees with the impact surface (Supplemental Material, Fig.
372 S4a). X-rays from the third harmonic of the 2.7-cm period undulator at DCS were used. The
373 experiments were performed in the APS 24-bunch mode of operation, which provides X-ray
374 bunches of ~100 ps duration every 153.4 ns. The energy spectrum of the undulator source is peaked

375 near 23 keV and has an asymmetric shape with a bandwidth of \sim 1 keV (Supplemental Material,
376 Fig. S4b). Each X-ray bunch contains \sim 10⁹ photons. Use of hard X-rays with energy greater than
377 20 keV allowed us to use millimeter thickness quartz samples without excessive X-ray absorption
378 in the transmission geometry. The lower-order X-ray harmonics were filtered using 250- μ m thick
379 Al and 25- μ m thick Ag foils in the incident beam path, and higher X-ray harmonics were removed
380 by reflecting/focusing the X-rays with Kirkpatrick-Baez mirrors. The typical X-ray beam size
381 incident on the sample was \sim 300 μ m horizontal x 800 μ m vertical. The incident X-ray beam was
382 centered vertically on the sample but initially offset horizontally on the impact surface such that
383 the X-ray beam sweeps towards the center of the target between frames due to sample translation.
384 The initial offset was selected to maximize the time before edge release waves intersect the direct
385 incident X-ray beam. With the exception of the late-time data shown in Fig. 6, all diffraction data
386 shown and analyzed correspond to the X-rays probing a uniaxially strained state unaffected by
387 longitudinal or edge release waves.

388 A four-frame X-ray detection system was used to record diffraction patterns. The X-ray
389 detector has a 150-mm diameter active area and is positioned perpendicular to and nominally in
390 the center of the direct X-ray beam. Before each shot, an XRD image was collected from a thin
391 polycrystalline silicon calibration target. The sample-detector distance and the instrumental
392 resolution function were determined by performing a Rietveld refinement (48) of this silicon
393 diffraction pattern (see Supplementary Material, Fig. S2). Typical sample-to-detector distances
394 were approximately 140 mm allowing us to record diffraction up to scattering angles of about 28
395 degrees.

396 The detector system at DCS utilizes a fast phosphor scintillator that converts scattered X-
397 rays to visible light, which is then directed to one of four intensified CCD cameras resulting in
398 each XRD frame corresponding to a single \sim 100 ps X-ray diffraction snapshot. Because of the
399 finite X-ray phosphor decay time, particularly strong diffraction peaks are sometimes retained as
400 a ghost image in the following diffraction frame. For most experiments, diffraction images from
401 four consecutive X-ray bunches (153.4 ns between bunches) were recorded. X-ray bunches can
402 also be skipped allowing the late-time released state to be examined.

403 The experiments were designed such that at least one X-ray diffraction frame was obtained
404 while the phase transformation shock wave was propagating through the SiO₂ but before the phase
405 transformation wave reached the rear quartz surface. These XRD frames correspond to Hugoniot
406 states and for single-crystal quartz samples, the last such XRD frame recorded (corresponding to
407 the most fully shocked material) was analyzed in detail to determine the structure of the shock-
408 compressed quartz on the Hugoniot. For polycrystalline quartz samples, diffraction rings from
409 uncompressed material ahead of the initial shock front overlap with diffraction rings from the
410 shocked material precluding quantitative analysis of the singly shocked Hugoniot state. Therefore,
411 analysis of polycrystalline samples was restricted to double-shock data collected after the initial
412 phase transformation shock wave reshocks from the LiF window. A similar analysis of the
413 reshocked state was also performed on some of the single-crystal quartz samples. For reshocked
414 states, the latest XRD frame recorded (before arrival of release waves) corresponding to the most
415 fully reshocked material was analyzed in detail to determine the structure of the reshocked quartz.

416 The X-ray measurement frame times relative to shockwave breakout at the rear surface of
417 the quartz samples were determined using laser interferometry measurements either at the
418 quartz/LiF interface or the quartz free surface. Both PDV and Velocity Interferometer System for
419 Any Reflector (VISAR) (49) probes were used. The LiF windows had a vapor deposited Al mirror
420 on the side bonded to the quartz sample. Samples without LiF windows had a vapor deposited Al
421 mirror on the rear surface of the quartz. A VISAR probe was used to record the shock arrival time
422 at the center of the rear surface of the quartz. Two additional PDV probes located at the same
423 radius from sample center and co-linear with the sample center also provided shock arrival time at
424 the rear of the quartz sample. The recorded VISAR and PDV signals were correlated to the times
425 at which X-rays were incident on the quartz samples. The four XRD frame times relative to shock
426 breakout are listed in Supplemental Material, Table S5.

427 VISAR measurements also provided particle velocity histories at the quartz/LiF interfaces
428 (Supplemental Material, Fig. S5). The Hugoniot elastic limit (HEL) for Z-cut quartz is ~15 GPa
429 with an elastic wave velocity of 7.52 km/s (31, 50). Because of the relatively high HEL and
430 relatively large elastic shock speeds (31) for Z-cut quartz, an elastic precursor is observed in all
431 recorded wave profiles for the Z-cut quartz plate impact experiments. For other quartz crystal
432 orientations as well as novaculite, the HEL is lower and the elastic shock velocities are also lower.
433 The reported elastic velocities are 6.15 km/s for polycrystalline quartz (46) and 6.01 km/s and 6.20
434 km/s for X- and Y-cut quartz, respectively (31). This results in the elastic precursor being
435 overdriven by the phase transformation wave for some of the higher stress experiments, consistent
436 with previous measurements (31).

437 References

- 438 1. P. D. Asimow, in *Treatise on Geophysics*, G. Schubert, Ed. (Elsevier, 2015), pp. 393–416.
- 439 2. D. Stöffler, F. Langenhorst, Shock metamorphism of quartz in nature and experiment: I.
440 Basic observation and theory. *Meteoritics*. **29**, 155–181 (1994).
- 441 3. T. G. Sharp, P. S. DeCarli, in *Meteorites and the Early Solar System II* (University of
442 Arizona Press, Tucson, AZ, 2015, 2015), pp. 653–677.
- 443 4. R. Hemley, C. T. Prewitt, K. J. Kingma, High-pressure behavior of silica. *Rev. Mineral.* **29**,
444 41–81 (1994).
- 445 5. R. M. Wentzcovitch, C. da Silva, J. R. Chelikowsky, N. Binggeli, A new phase and
446 pressure induced amorphization in silica. *Phys. Rev. Lett.* **80**, 2149–2152 (1998).
- 447 6. D. M. Teter, R. J. Hemley, G. Kresse, J. Hafner, High pressure polymorphism in silica.
448 *Phys. Rev. Lett.* **80**, 2145–2148 (1998).
- 449 7. J. Haines, J. M. Léger, F. Gorelli, M. Hanfland, Crystalline post-quartz phase in silica at
450 high pressure. *Phys. Rev. Lett.* **87**, 155503 (2001).

452 8. L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Prakapenka, F. Seifert, F. Langenhorst, V.
453 Dmitriev, H.-P. Weber, T. Le Bihan, A class of new high-pressure silica polymorphs.
454 *Physics of the Earth and Planetary Interiors*. **143–144**, 231–240 (2004).

455 9. Y. Liang, C. R. Miranda, S. Scandolo, Atomistic pathways of the pressure-induced
456 densification of quartz. *Phys. Rev. B*. **92**, 134102 (2015).

457 10. Q. Y. Hu, J.-F. Shu, W. G. Yang, C. Park, M. W. Chen, T. Fujita, H.-K. Mao, H. W. Sheng,
458 Stability limits and transformation pathways of α -quartz under high pressure. *Phys. Rev. B*.
459 **95**, 104112 (2017).

460 11. R. J. Hemley, A. P. Jephcoat, H. K. Mao, L. C. Ming, M. H. Manghnani, Pressure-induced
461 amorphization of crystalline silica. *Nature*. **334**, 52–54 (1988).

462 12. R. G. McQueen, J. N. Fritz, S. P. Marsh, On the equation of state of stishovite. *J. Geophys.*
463 *Res.* **68**, 2319–2322 (1963).

464 13. G. A. Lyzenga, T. J. Ahrens, A. C. Mitchell, Shock temperatures of SiO_2 and their
465 geophysical implications. *J. Geophys. Res.* **88**, 2431 (1983).

466 14. J. A. Akins, T. J. Ahrens, Dynamic compression of SiO_2 : A new interpretation. *Geophys.*
467 *Res. Lett.* **29**, 31-1-31-4 (2002).

468 15. S.-N. Luo, T. J. Ahrens, P. D. Asimow, Polymorphism, superheating, and amorphization of
469 silica upon shock wave loading and release: Shock polymorphism of silica. *J. Geophys.*
470 *Res.* **108** (2003).

471 16. F. Langenhorst, A. Deutsch, Shock metamorphism of minerals. *Elements*. **8**, 31–36 (2012).

472 17. S. L. Chaplot, S. K. Sikka, Molecular-dynamics simulation of shock-stress-induced
473 amorphization of α -quartz. *Phys. Rev. B*. **61**, 11205–11208 (2000).

474 18. W. R. Panero, L. R. Benedetti, R. Jeanloz, Equation of state of stishovite and Interpretation
475 of SiO_2 shock-compression data. *J. Geophys. Res.* **108**, (2003).

476 19. S. J. Tracy, S. J. Turneaure, T. S. Duffy, *In situ* x-ray diffraction of shock-compressed fused
477 silica. *Phys. Rev. Lett.* **120**, 135702 (2018).

479 20. A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, R. G. Kraus, R. Sandberg, W.
480 Yang, F. Langenhorst, W. L. Mao, Time-resolved diffraction of shock-released SiO_2 and
481 diaplectic glass formation. *Nat Commun.* **8**, 1481 (2017).

482 21. U. Mansfeld, F. Langenhorst, M. Ebert, A. Kowitz, R. T. Schmitt, Microscopic evidence of
483 stishovite generated in low-pressure shock experiments on porous sandstone: Constraints on
484 its genesis. *Meteorit Planet Sci.* **52**, 1449–1464 (2017).

485 22. K. S. Scheidl, A. Kurnosov, D. M. Trots, T. Boffa Ballaran, R. J. Angel, R. Miletich,
486 Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa. *J*
487 *Appl Crystallogr.* **49**, 2129–2137 (2016).

488 23. A. J. Gratz, W. J. Nellis, J. M. Christie, W. Brocious, J. Swegle, P. Cordier, Shock
489 metamorphism of quartz with initial temperatures -170 to +1000 °C. *Phys Chem Minerals.*
490 **19** (1992).

491 24. Y. Inamura, Y. Katayama, W. Utsumi, K. Funakoshi, Transformations in the intermediate-
492 range structure of SiO₂ glass under high pressure and temperature. *Phys. Rev. Lett.* **93**,
493 015501 (2004).

494 25. T. Sato, N. Funamori, Sixfold-coordinated amorphous polymorph of SiO₂ under high
495 pressure. *Phys. Rev. Lett.* **101**, 255502 (2008).

496 26. C. J. Benmore, E. Soignard, S. A. Amin, M. Guthrie, S. D. Shastri, P. L. Lee, J. L. Yarger,
497 Structural and topological changes in silica glass at pressure. *Phys. Rev. B.* **81**, 054105
498 (2010).

499 27. C. Prescher, V. B. Prakapenka, J. Stefanski, S. Jahn, L. B. Skinner, Y. Wang, Beyond
500 sixfold coordinated Si in SiO₂ glass at ultrahigh pressures. *Proc Natl Acad Sci USA.* **114**,
501 10041–10046 (2017).

502 28. G. Shen, H.-P. Liermann, S. Sinogeikin, W. Yang, X. Hong, C.-S. Yoo, H. Cynn, Distinct
503 thermal behavior of GeO₂ glass in tetrahedral, intermediate, and octahedral forms.
504 *Proceedings of the National Academy of Sciences.* **104**, 14576–14579 (2007).

505 29. M. Guerette, M. R. Ackerson, J. Thomas, F. Yuan, E. Bruce Watson, D. Walker, L. Huang,
506 Structure and properties of silica glass densified in cold compression and hot compression.
507 *Sci Rep.* **5**, 15343 (2015).

508 30. Y. Shen, S. B. Jester, T. Qi, E. J. Reed, Nanosecond homogeneous nucleation and crystal
509 growth in shock-compressed SiO₂. *Nature Mater.* **15**, 60–65 (2016).

510 31. J. Wackerle, Shock-wave compression of quartz. *Journal of Applied Physics.* **33**, 922–937
511 (1962).

512 32. R. F. Trunin, G. V. Simakov, M. A. Podurets, B. N. Moiseyev, L. V. Popov, Dynamic
513 compressibility of quartz and quartzite at high pressure. *Izv. Acad. Sci. USSR Phys. Solid*
514 *Earth.* **1**, 8–11 (1971).

515 33. D. E. Grady, W. J. Murri, G. R. Fowles, Quartz to stishovite: Wave propagation in the
516 mixed phase region. *J. Geophys. Res.* **79**, 332–338 (1974).

517 34. S. P. Marsh, *LASL Shock Hugoniot Data* (University of California Press, Los Angeles,
518 1980).

519 35. D. Andrault, R. J. Angel, J. L. Mosenfelder, T. Le Bihan, Equation of state of stishovite to
520 lower mantle pressures. *American Mineralogist*. **88**, 301–307 (2003).

521 36. T. Sekine, M. Akaishi, N. Setaka, Fe₂N-type SiO₂ from shocked quartz. *Geochimica et*
522 *Cosmochimica Acta*. **51**, 379–381 (1987).

523 37. V. P. Prakapenka, G. Shen, L. S. Dubrovinsky, M. L. Rivers, S. R. Sutton, High pressure
524 induced phase transformation of SiO₂ and GeO₂: Difference and similarity. *Journal of*
525 *Physics and Chemistry of Solids*. **65**, 1537–1545 (2004).

526 38. L. Huang, M. Durandurdu, J. Kieffer, Transformation pathways of silica under high
527 pressure. *Nature Mater.* **5**, 977–981 (2006).

528 39. L.-g. Liu, W. A. Bassett, J. Sharry, New high-pressure modifications of GeO₂ and SiO₂. *J.*
529 *Geophys. Res.* **83**, 2301 (1978).

530 40. O. Tschauner, S.-N. Luo, P. D. Asimow, T. J. Ahrens, Recovery of stishovite-structure at
531 ambient conditions out of shock-generated amorphous silica. *American Mineralogist*. **91**,
532 1857–1862 (2006).

533 41. H. Sowa, The oxygen packings of low-quartz and ReO₃ under high pressure. *Zeitschrift für*
534 *Kristallographie*. **184**, 257–268 (1988).

535 42. N. Binggeli, J. R. Chelikowsky, Structural transformation of quartz at high pressures.
536 *Nature*. **353**, 344–346 (1991).

537 43. V. P. Dmitriev, P. Tolédano, V. I. Torgashev, E. K. H. Salje, Theory of reconstructive
538 phase transitions between SiO₂ polymorphs. *Phys. Rev. B*. **58**, 11911–11921 (1998).

539 44. S. J. Turneaure, N. Sinclair, Y. M. Gupta, Real-time examination of atomistic mechanisms
540 during shock-induced structural transformation in silicon. *Phys. Rev. Lett.* **117**, 045502
541 (2016).

542 45. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, W. W. Kuhlow, Compact
543 system for high-speed velocimetry using heterodyne techniques. *Review of Scientific*
544 *Instruments*. **77**, 083108 (2006).

545 46. T. J. Ahrens, V. G. Gregson, Shock compression of crustal rocks: Data for quartz, calcite,
546 and plagioclase rocks. *J. Geophys. Res.* **69**, 4839–4874 (1964).

547 47. T. J. Ahrens, T. J. Rosenberg, in *Shock Metamorphism of Natural Materials*, F. M. French,
548 N. M. Short, Eds. (Mono Book Corp, Baltimore, 1968), pp. 59–81.

549 48. L. Lutterotti, R. Vasin, H.-R. Wenk, Rietveld texture analysis from synchrotron diffraction
550 images. I. Calibration and basic analysis. *Powder Diffraction*. **29**, 76–84 (2014).

551 49. L. M. Barker, R. E. Hollenbach, Laser interferometer for measuring high velocities of any
552 reflecting surface. *Journal of Applied Physics*. **43**, 4669–4675 (1972).

553 50. R. Fowles, Dynamic compression of quartz. *J. Geophys. Res.* **72**, 5729–5742 (1967).

554 51. Q. Liu, X. Zhou, X. Zeng, S. N. Luo, Sound velocity, equation of state, temperature and
555 melting of LiF single crystals under shock compression. *Journal of Applied Physics*. **117**,
556 045901 (2015).

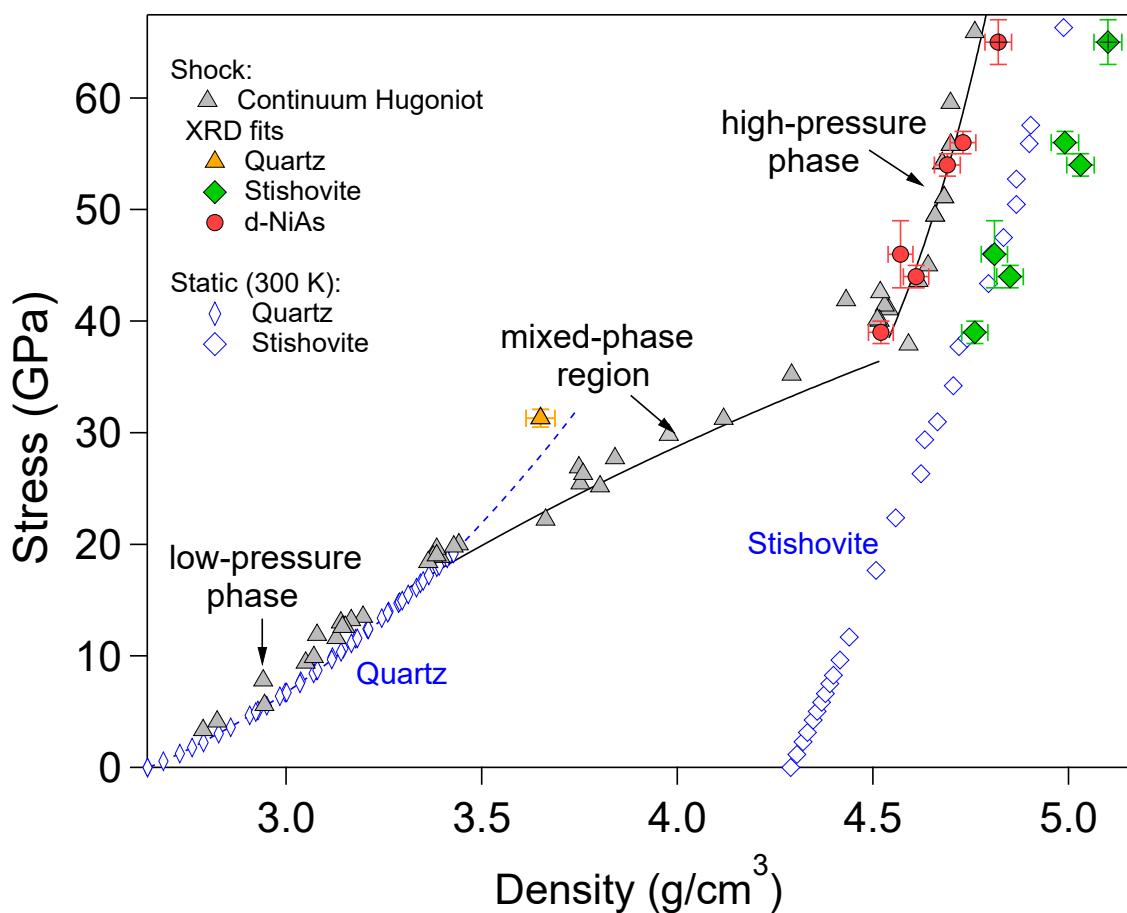
557 52. T. J. Ahrens, M. L. Johnson, Shock wave data for minerals, in *Mineral Physics &*
558 *Crystallography: A Handbook of Physical Constants*, T. J. Ahrens, Ed. (American
559 Geophysical Union, Washington, D. C., 1995), pp. 143–184.

560 53. T. J. Ahrens, G. E. Duvall, Stress relaxation behind elastic shock waves in rocks. *J.*
561 *Geophys. Res.* **71**, 4349–4360 (1966).

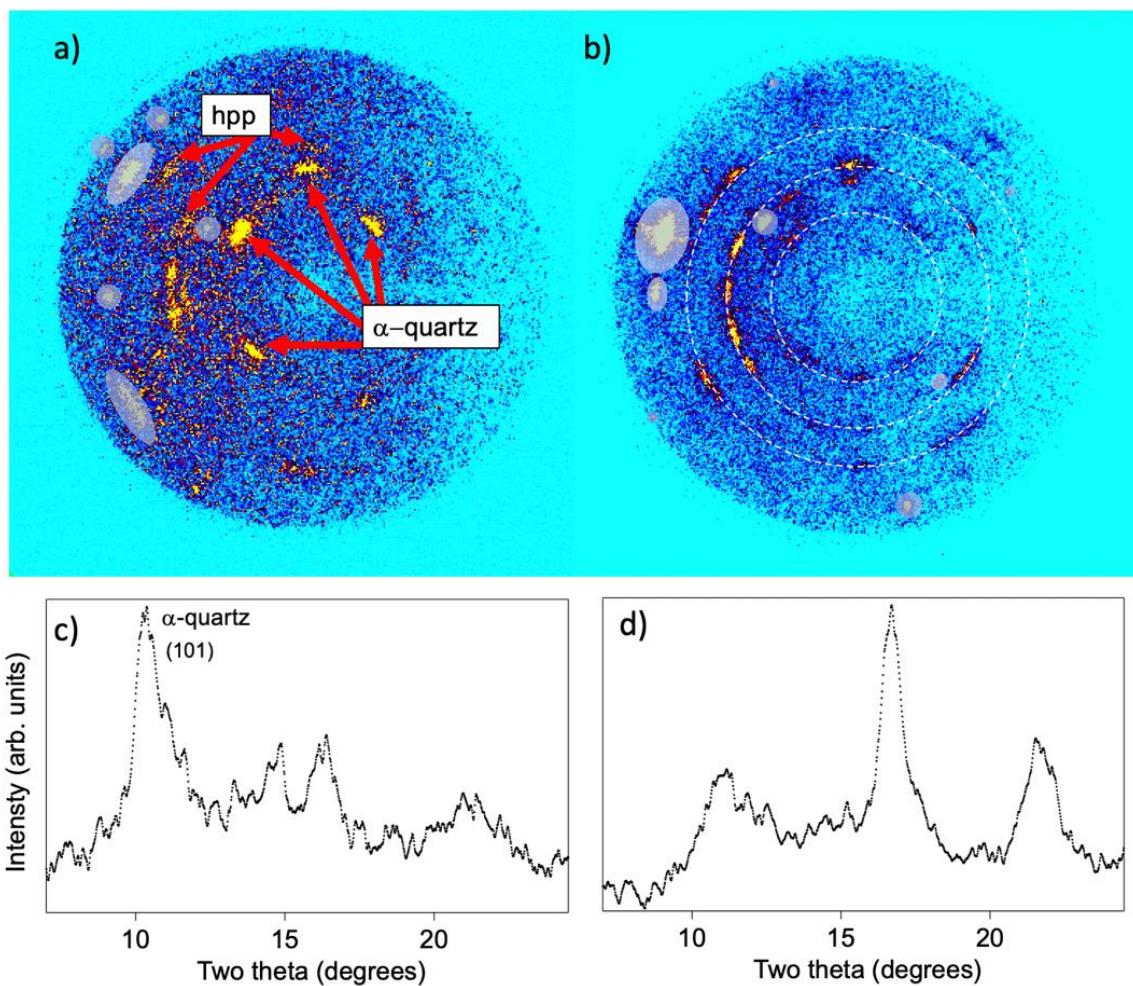
562 54. M. A. Podurets, G. V. Simakov, G. S. Telegin, On the phase equilibrium in shock-
563 compressed quartz and on the kinetics of phase transitions. *Izv. Earth Phys.* **7**, 3–11 (1976).

564 55. M. D. Knudson, M. P. Desjarlais, Adiabatic release measurements in α -quartz between 300
565 and 1200 GPa: Characterization of α -quartz as a shock standard in the multimegabar
566 regime. *Phys. Rev. B*. **88**, 184107 (2013).

567 56. A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Hausermann, Two-
568 dimensional detector software: From real detector to idealised image or two-theta scan.
569 *High Pressure Research*. **14**, 235–248 (1996).

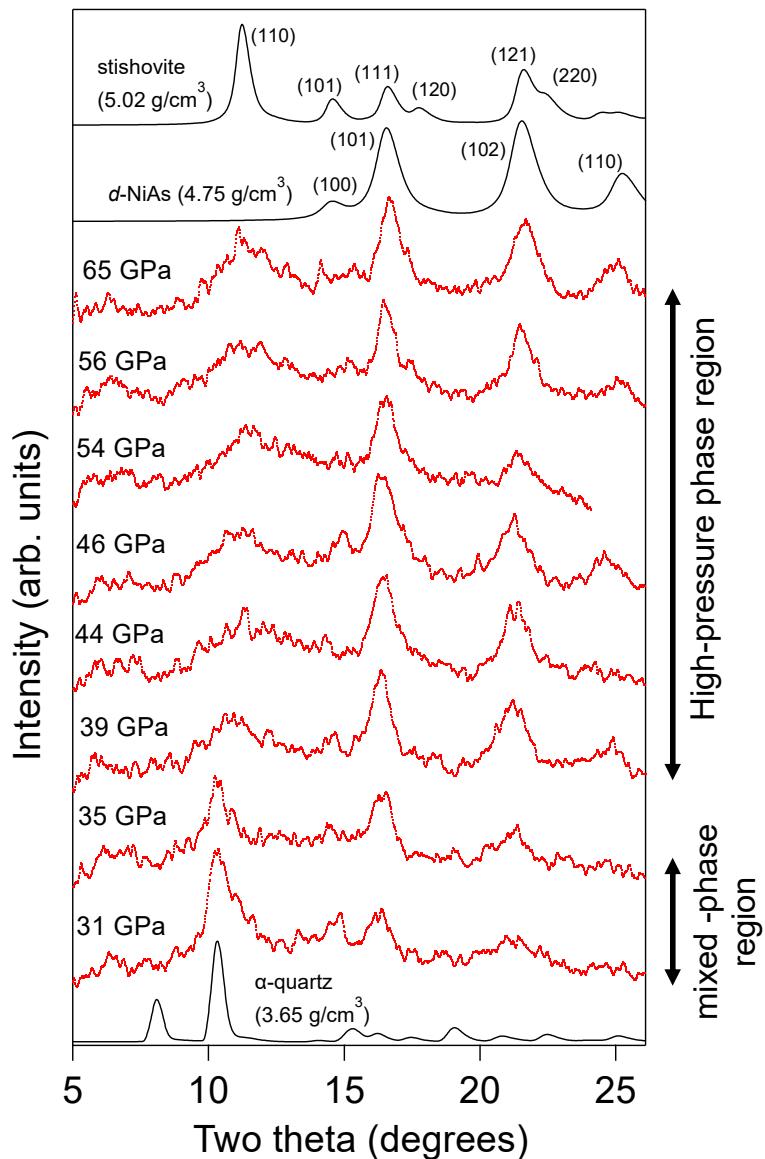

570 57. R. A. Fischer, A. J. Campbell, B. A. Chidester, D. M. Reaman, E. C. Thompson, J. S.
571 Pigott, V. B. Prakapenka, J. S. Smith, Equations of state and phase boundary for stishovite
572 and CaCl_2 -type SiO_2 . *American Mineralogist*. **103**, 792–802 (2018).

573 58. R. Martoňák, D. Donadio, A. R. Oganov, M. Parrinello, Crystal structure transformations in
574 SiO_2 from classical and *ab initio* metadynamics. *Nature Mater.* **5**, 623–626 (2006).

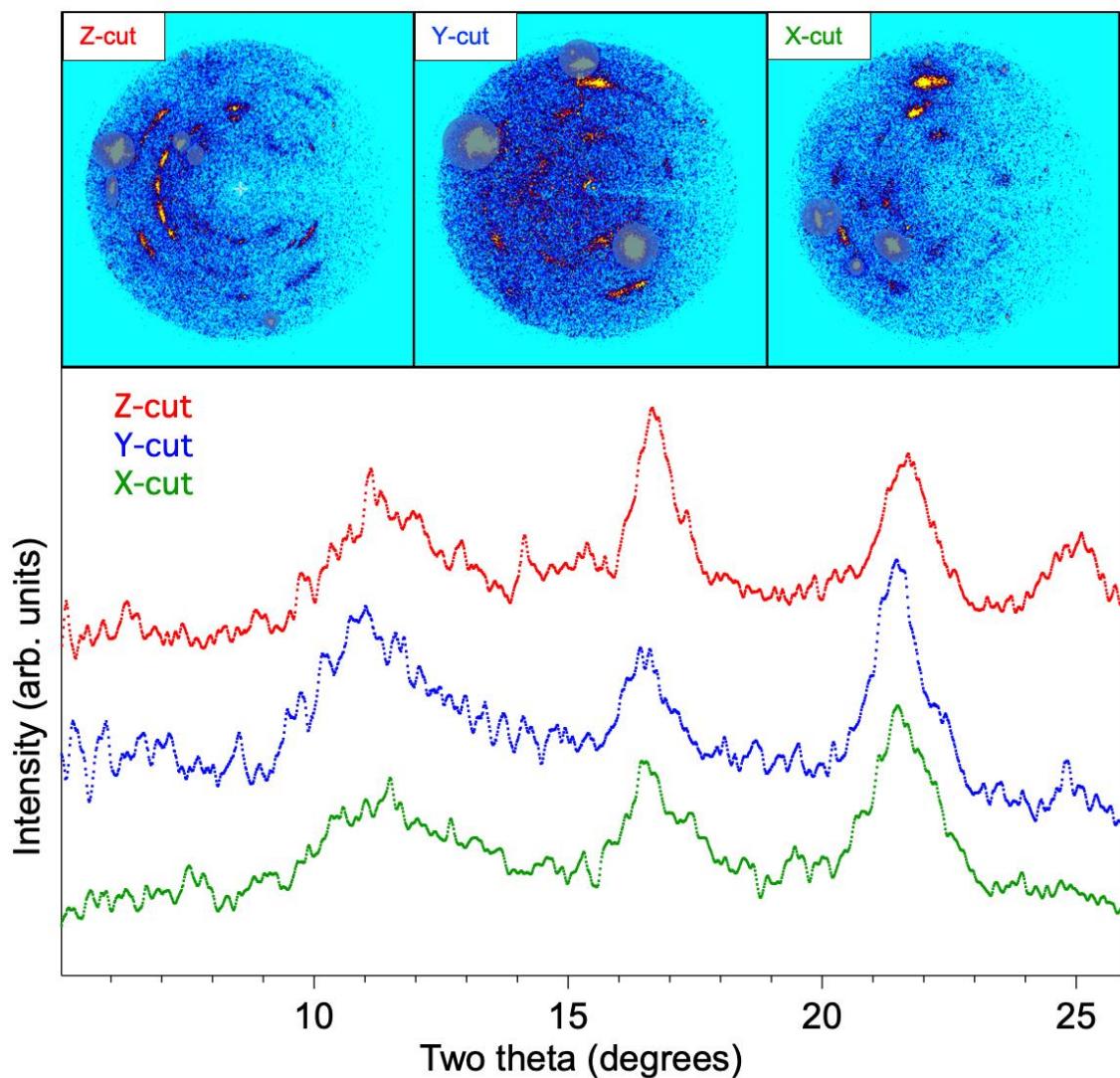

575 **Acknowledgments**

576 We thank Jeff Klug, Yuelin Li, Drew Rickerson, Adam Schuman, Nicholas Sinclair, Paulo Rigg,
577 and Brendan Williams of the Dynamic Compression Sector for assistance with impact
578 experiments. Binyamin Glam and Donghoon Kim provided experimental assistance. Kellie
579 Swadba assisted in the analysis of wave-profile data. Yogendra Gupta is thanked for providing
580 comments after a careful reading of the manuscript. The Arkansas novaculite samples were
581 obtained from the Princeton Mineral Collection. **Funding:** This research was supported by the
582 Defense Threat Reduction Agency (HDTRA1-15-1-0048) and the National Science Foundation
583 (EAR-1644614). Washington State University (WSU) provided experimental support through the
584 U.S. Department of Energy (DOE)/ National Nuclear Security Agency (NNSA) Award No. DE-
585 NA0002007. This work is based upon experiments performed at the Dynamic Compression Sector,
586 operated by WSU under DOE/NNSA Award No. DE-NA0002442. This research used the
587 resources of the Advanced Photon Source, a Department of Energy Office of Science User Facility
588 operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-
589 AC02-06CH11357. **Author contributions:** Tracy and Turneaure were responsible for the design
590 and execution of the experiments. All authors carried out the experiments and were involved in

591 discussions related to experimental design and data analysis. All authors contributed to the writing
592 of the manuscript. **Competing interests:** The authors declare that they have no competing
593 interests. **Data and materials availability:** All data needed to evaluate the conclusions in the
594 paper are present in the paper and/or the Supplementary Materials. Additional data related to this
595 paper may be requested from the authors.

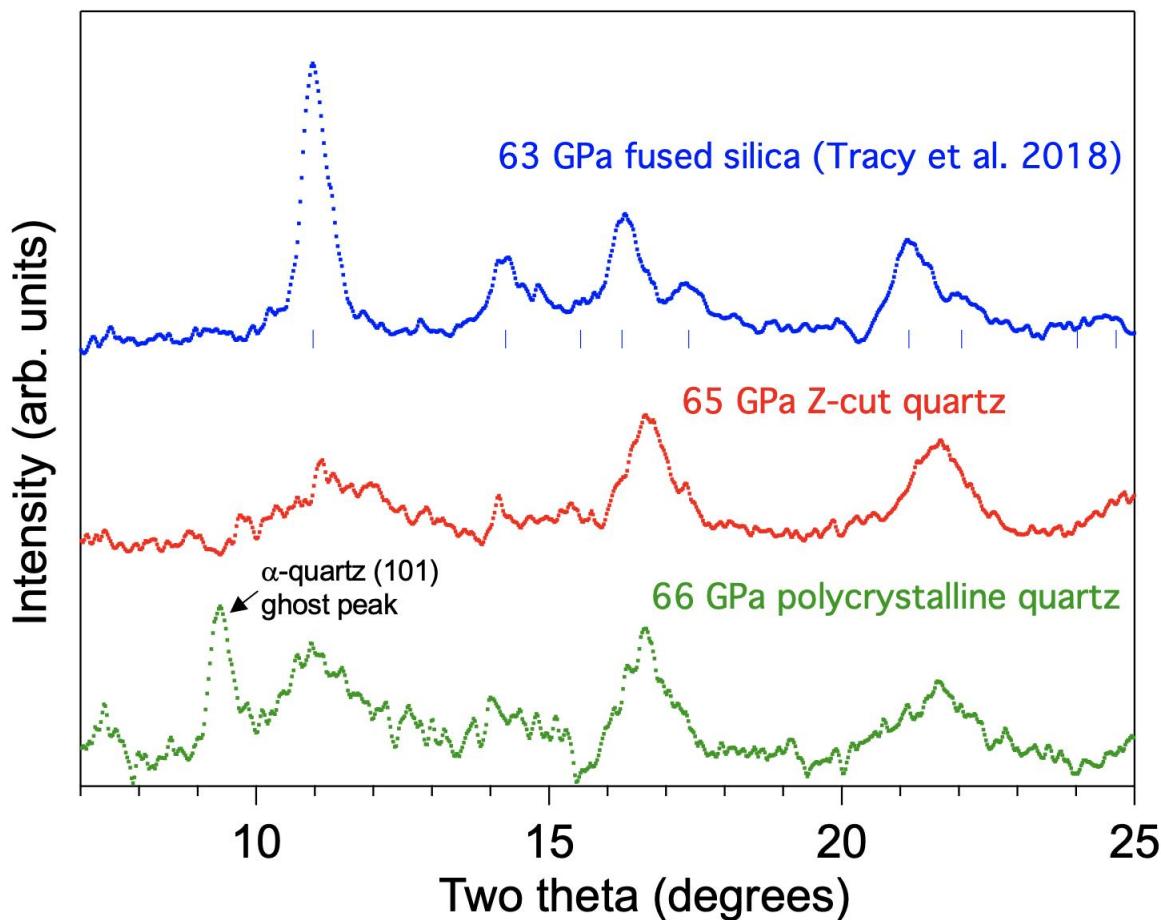


598 **Fig. 1. Shock Hugoniot curve for quartz.** Continuum Hugoniot data are shown as grey triangles
 599 (31–34). Black curves are guides to the eye. Blue open symbols are 300-K static compression data
 600 for stishovite (35) and α -quartz (22). The blue dashed line is an extrapolated equation of state fit
 601 to the 300-K quartz data. Densities derived from Le Bail fits to Z-cut quartz XRD data using α -
 602 quartz, stishovite, or *d*-NiAs structures are shown as solid orange, green, and red symbols,
 603 respectively. X-ray fits to the off-Hugoniot double-shock state at 65 GPa are indicated with
 604 crosses.

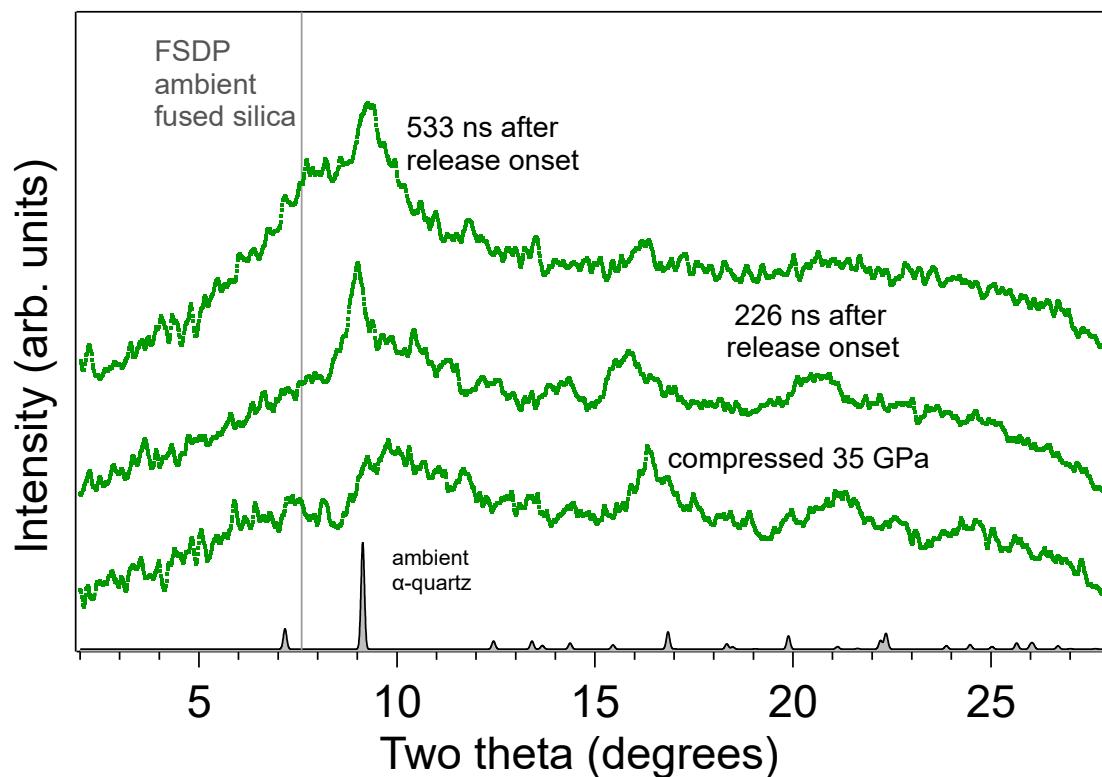


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

Fig. 2. Two-dimensional X-ray diffraction images and corresponding integrated XRD patterns. **a)** 2D XRD image for Z-cut quartz shock compressed to 31 GPa (shot 16-5-033, Frame 3). Diffraction is observed from both compressed α -quartz and a high-pressure phase (hpp), indicating the material has been shocked into a mixed-phase region. **b)** 2D XRD image taken for Z-cut quartz shock compressed to ~63 GPa (shot 16-5-118, Frame 3). This frame was captured after partial reshock from the LiF window and constitutes a combination of SiO_2 reshocked to 67 GPa and material in the initial 58 GPa single-shock state. Dashed lines indicate three strong reflections seen in the integrated pattern (below). Grey regions in (a) and (b) are diffraction from the LiF impactor, the LiF window, or Laue spots from uncompressed or elastically compressed α -quartz; these regions were masked during azimuthal integration. Due to the diffraction geometry (Fig. S4a), scattered X-rays recorded on the right half of the detector undergo higher attenuation due to greater sample absorption. **c)** Integrated XRD pattern corresponding to the 2D image shown above. Peak around $\sim 14^\circ$ is consistent with the LiF (200) peak. **d)** Integrated XRD pattern corresponding to 2D image shown above.



621
622 **Fig. 3. Azimuthally integrated X-ray diffraction patterns.** XRD patterns collected for a series
623 of plate-impact experiments for Z-cut quartz starting material with peak stress states between 31
624 and 65 GPa. Shot numbers and X-ray frame times relative to shock breakout at the rear surface of
625 the quartz are listed in Supplemental Material, Table S5. Note that the 54-GPa shot was collected
626 during an experiment with a longer sample-detector distance, leading to lower angle cut-off in the
627 data. Simulated diffraction patterns (accounting for spectral shape of the pink X-ray beam) are
628 shown for compressed α -quartz (3.65 g/cm^3) as well as both stishovite (5.02 g/cm^3) and the
629 defective niccolite structure (4.75 g/cm^3). The simulated patterns shown use lattice parameters
630 based on fits to data for α -quartz in the mixed-phase region and for stishovite and defective
631 niccolite structures in the high-pressure region.



632
633
634
635
636
637
638
639

Fig. 4. X-ray diffraction data for single-crystal quartz shock loaded to 56-65 GPa along different crystallographic axes. Data for Z-cut (shot 16-5-022, Frame 3) and Y-cut (shot 16-5-119, Frame 3) samples were collected during double-shock experiments at 65 and 64 GPa final stress, respectively. Data for X-cut quartz (shot 16-5-126, Frame 2) were collected while the initial shock wave was propagating through the sample bringing the material to 56 GPa shock stress. Two-dimensional images are shown at the top with LiF and uncompressed quartz spots masked and integrated patterns are shown at the bottom.

Fig. 5. Comparison of X-ray diffraction data collected for different starting SiO_2 materials after shock compression. Starting materials are fused silica (from experiment 17-5-037 of (19)), Z-cut α -quartz (experiment 16-5-022, Frame 3), and a polycrystalline natural α -quartz sample (experiment 17-5-011, Frame 3). Expected stishovite peak locations are shown as blue ticks below fused silica pattern. All patterns correspond to data collected after the initial shock wave reflects from the LiF window reshocking the sample to final stresses between 63-66 GPa.

648
649 **Fig. 6. Integrated X-ray diffraction patterns collected after release from a peak stress of 35**
650 **GPa for novaculite starting material (experiment 17-5-019). Compressed state data is from the**
651 **second frame and has been background subtracted to remove uncompressed α -quartz peaks from**
652 **material ahead of the shock front. Peak positions for ambient α -quartz are shown at bottom and**
653 **the first sharp diffraction peak (FSDP) position for silica glass at ambient pressure is shown as a**
654 **vertical gray line.**

655 **Supplementary Materials**656 **Table S1. Quartz sample properties.**

	Density (g/cm ³)	Longitudinal sound speed (km/s)
Z-cut quartz ^a	2.650(5)	6.38(2)
X-cut quartz ^b	2.650(5)	5.78(1)
Y-cut quartz ^b	2.650(5)	6.03(1)
Novaculite	2.640(5)	6.0(1)

658 ^aZ-cut quartz single crystal samples obtained from Boston Piezo-Optics.659 ^bX-cut and Y-cut single crystal samples obtained from MTI Corp.

660

661 **Table S2. Experimental parameters for plate-impact experiments.**

Shot Number	Quartz Sample Type/Window	Quartz Thickness (mm)	LiF Window Thickness (mm)	Projectile Velocity (km/s)	Impact Stress (GPa)	Reshock Stress ^a (GPa)
16-5-118	Z-cut/LiF	1.266(2)	0.749(2)	5.66(3)	58(1)	67(2)
16-5-022	Z-cut/LiF	1.267(2)	0.738(2)	5.52(2)	56(1)	65(2)
16-5-007	Z-cut/LiF	1.259(2)	0.750(2)	5.38(4)	54(1)	-
16-5-023	Z-cut/LiF	1.249(2)	0.740(2)	4.9(2)	46(3)	-
16-5-029	Z-cut/LiF	1.247(2)	0.706(2)	4.71(2)	44(1)	-
16-5-120	Z-cut/LiF	1.267(2)	0.697(2)	4.41(1)	39(1)	-
16-5-127	Z-cut/LiF	1.268(2)	0.705(2)	4.01(1)	34.5(9)	-
16-5-033	Z-cut/LiF	1.253(2)	0.744(2)	3.69(3)	31.3(8)	-
16-5-119	Y-cut/LiF	1.038(2)	0.681(2)	5.47(4)	55(1)	64(2)
16-5-126	X-cut/none	1.527(2)	-	5.51(1)	56(1)	-
17-5-011	Novaculite/LiF	1.156(2)	1.519(2)	5.59(3)	57(1)	66(2)
17-5-013	Novaculite/LiF	1.131(2)	0.995(2)	4.84(1)	45(1)	54(2)
17-5-014	Novaculite/LiF	1.183(2)	0.983(2)	4.06(2)	35.0(8)	42(1)
17-5-015	Novaculite/LiF	1.045(2)	0.680(2)	3.72(1)	31.6(8)	36(1)
17-5-019	Novaculite/none	1.738(2)	-	4.08(9)	35(1)	-

662 ^aReshock stresses only listed for shots where XRD measurements from reshock were analyzed.

663

664 **Table S3. Hugoniot equation of state parameters.**

Material	C ₀ (km/s) ^a	S ^a	u _p range (km/s)	Reference
LiF ^b	5.201 ± 0.025	1.323 ± 0.009	>0.451	Liu et al., 2015
Quartz	1.48 ± 0.10 5.29 ± 0.08	1.80 ± 0.03 0.20 ± 0.04	2.46-4.55 1.803-2.48	Ahrens & Johnson, 1995
Polycarbonate ^b	2.767 ± 0.054	1.249 ± 0.019	0.42-5.21	Marsh, 1980

665 ^aC₀ and S are the intercept and slope of the linear shock velocity-particle velocity relationship.666 ^bAmbient densities are 2.64(1) g/cm³ for LiF and 1.19(1) g/cm³ for Polycarbonate.

667

Table S4. Densities derived from Le Bail fits to XRD patterns

Shot Number	Sample	Stress (GPa)	stishovite density (g/cm ³)	d-NiAs density (g/cm ³)
16-5-022	Z-cut	65(2)	5.10(3)	4.82(3)
16-5-022	Z-cut	56(1)	4.99(3)	4.73(3)
16-5-007	Z-cut	54(1)	5.04(3)	4.69(3)
16-5-023	Z-cut	46(3)	4.81(3)	4.57(3)
16-5-029	Z-cut	44(1)	4.85(3)	4.61(3)
16-5-120	Z-cut	39(1)	4.76(3)	4.52(3)
16-5-119	Y-cut	64(2)	4.97(3)	4.76(3)
16-5-126	X-cut	56(1)	4.91(3)	4.78(3)
17-5-011	Novaculite	66(2)	4.95(3)	4.73(3)
17-5-013	Novaculite	54(2)	4.95(3)	4.69(3)
17-5-014	Novaculite	42(1)	4.82(3)	4.63(3)

668

669

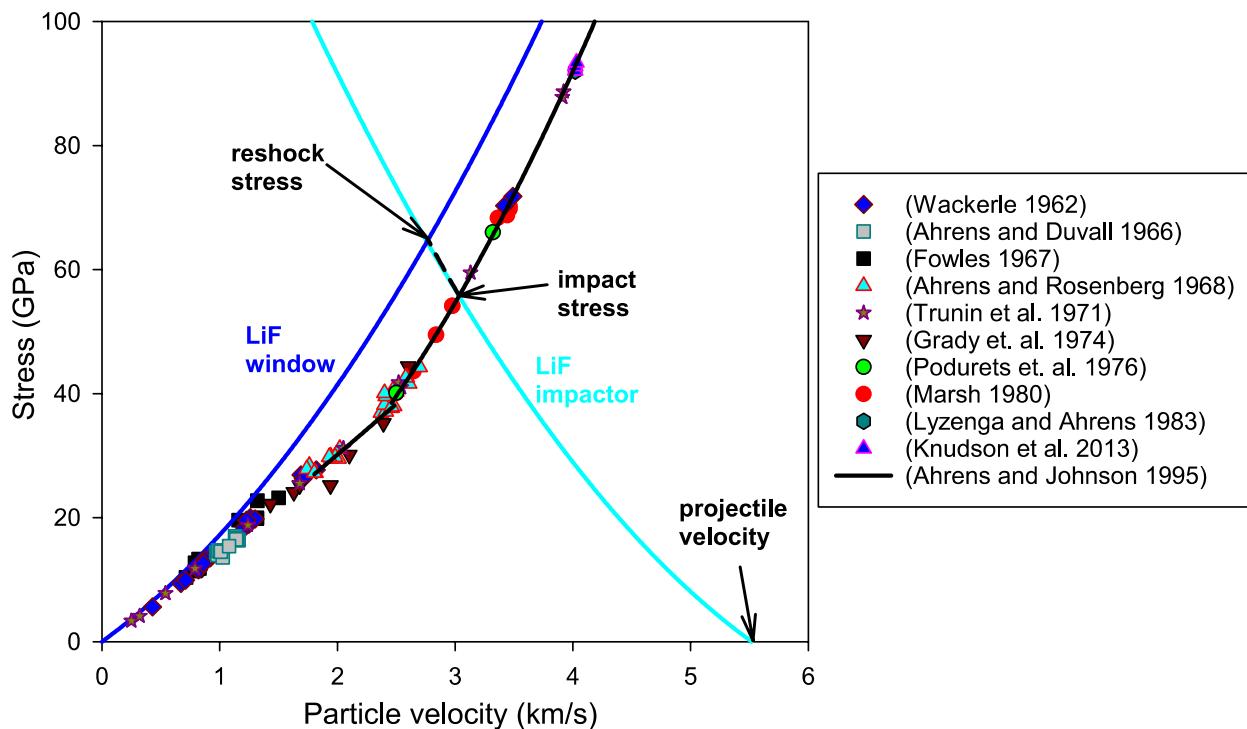
Table S5. XRD frame times relative to shock breakout at rear surface of quartz.

Shot Number	Frame 1 time (ns)	Frame 2 time (ns)	Frame 3 time (ns)	Frame 4 time (ns)
16-5-118	-260	-106	47*	201
16-5-022	-205	-52*	102*	255
16-5-007	-162	-9*	145	298
16-5-023	-299	-16	8*	161
16-5-029	-181	-28*	125	279
16-5-120	-175	-22*	132	285
16-5-127	-191	-38*	116	269
16-5-033	-271	-118	36*	189
16-5-119	-245	-91	62*	216
16-5-126	-214	-61*	93	246
17-5-011	-213	-60	93*	247
17-5-013	-80	73*	226	380
17-5-014	-202	-49	105*	258
17-5-015	-42	112*	265	418
17-5-019	-234	-81*	226*	533*

670

* Denotes frames shown in main text or Fig. S7.

671

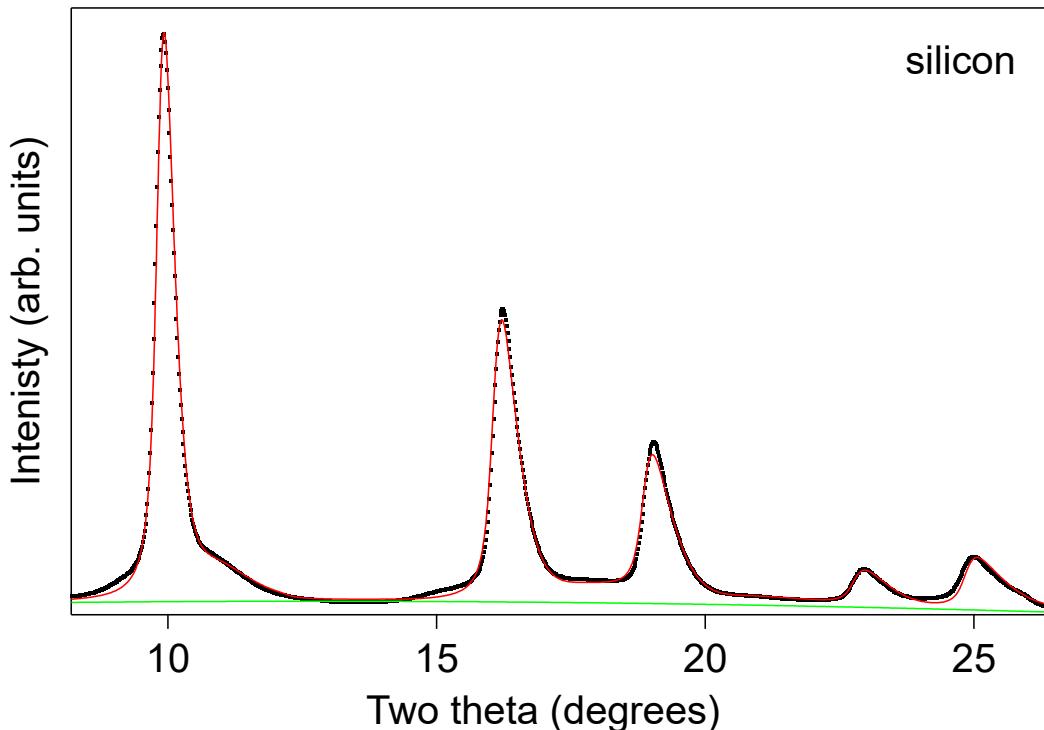

672

Section S1. Shock Stress Determination

673

674

Shock stresses were determined by impedance matching as shown in Fig. S1 for a representative experiment. The intersection of the LiF impactor Hugoniot with the quartz Hugoniot in the stress-particle velocity plane provides the impact stress. The LiF Hugoniot is determined using a linear shock velocity-particle velocity relationship, as described in Table S3 (51). The phenomenological shock velocity-particle velocity relations for quartz, also given in Table S3 (52), are used to calculate corresponding stress-particle velocity curves shown as solid black lines in Fig. S1; these curves provide a good match to published quartz Hugoniot states (13, 31–34, 47, 50, 53–55).

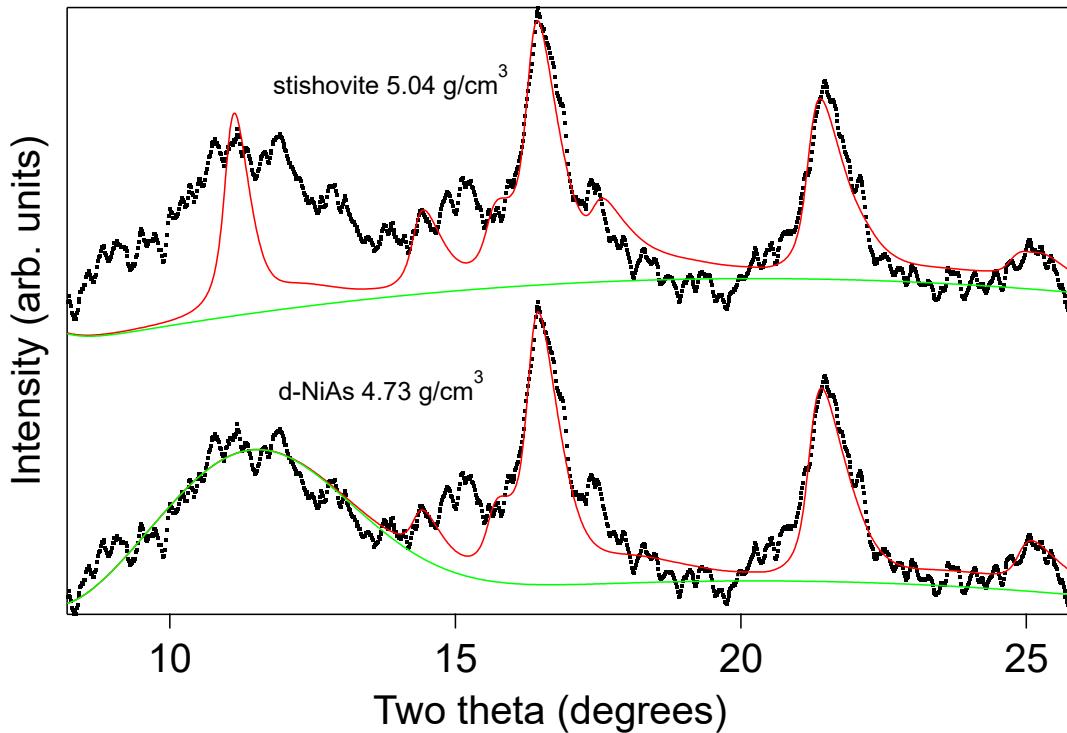

681
682 **Fig. S1. Stress-particle velocity diagram for quartz plate impact experiment 16-5-022.** The
683 Hugoniot shock states achieved upon impact are determined by the intersection of the LiF impactor
684 Hugoniot with an analytical form of the quartz Hugoniot (solid black lines). Symbols represent
685 reported Hugoniot states for quartz. The reshocked state obtained after reflection of the phase
686 transformation wave from the LiF window is also shown. The reshocked state is determined by
687 reflecting the quartz Hugoniot around the impact state (black dashed line) and finding the
688 intersection of this reflected Hugoniot with the LiF window Hugoniot. Calculated reshock stresses
689 are listed in Table S2 for experiments where XRD measurements from reshocked states were
690 analyzed.
691

692 Section S2. XRD Data Analysis

693 Two-dimensional XRD images are azimuthally integrated using the program FIT2D (56). Bright
694 diffraction spots from the single-crystal LiF impactor and uncompressed (or elastically
695 compressed) α -quartz were masked before integration. Measured diffraction patterns exhibit
696 characteristic peak broadening as a result of the width and asymmetry of the pink X-ray beam. The
697 spectral flux of the incident X-rays was measured using a channel-cut Si monochromator and a
698 positive-intrinsic-negative (PIN) diode (see Fig. S4b). To accurately calibrate the detector and
699 correctly determine d -spacings, structural refinements were performed by discretizing the
700 measured spectral flux.
701

702 Before each shot, an XRD image was collected from a thin polycrystalline silicon calibration
703 target. This was used to determine sample-detector distance and to assess the instrumental
704 broadening. The instrumental profile function was determined with a Rietveld refinement to the Si
705 calibration data using the software package Maud (48). The primary source of broadening is the
706

707 spectral flux, but additional instrumental broadening is treated with a Cagliotti function. A
708 representative silicon calibration pattern with the corresponding fit is shown in Fig. S2.

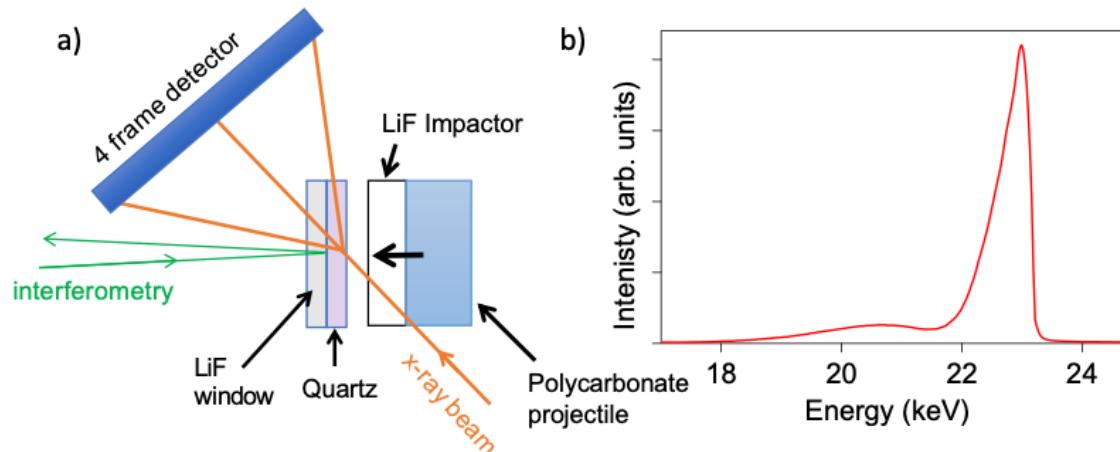

709
710 **Fig. S2. Representative Rietveld refinement for silicon calibration target.** Black curve is the
711 measured silicon line profile. Red and green curves show the overall fit and background portion
712 of the fit, respectively.

713
714 The sample-to-detector distance is corrected for the difference in thickness between the silicon
715 calibration target and the quartz targets. An additional correction for target translation after impact
716 is made using the quartz particle and shock velocities. This correction ensures the sample-detector
717 distance for each X-ray frame reflects the distance along the beam path between the detector and
718 the center of the shocked portion of the quartz sample.

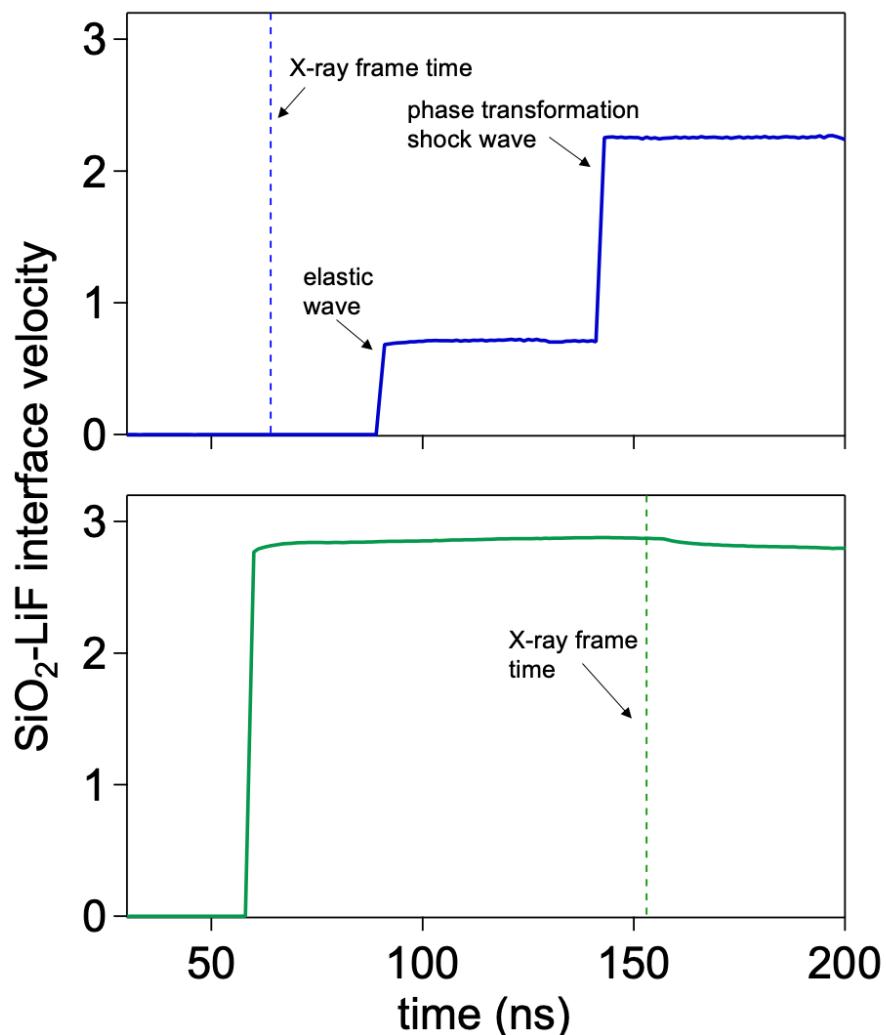
719
720 Densities were determined for both the stishovite and *d*-NiAs structures with Le Bail fits
721 incorporating the instrumental profile determined from the silicon calibration spectrum. The
722 background was fit using a cubic polynomial. Modest additional broadening was incorporated to
723 best capture the peak profiles. For fits to the *d*-NiAs structure, a Gaussian background peak was
724 incorporated at low angle to capture the broad feature at two-theta ~12 degrees. For both phases,
725 the unit cell volume was refined with a fixed *c/a* ratio from diamond anvil cell results (37, 57).
726 Representative fits for the two phases are shown in Fig. S3. For some patterns, weak peaks
727 consistent with compressed LiF are observed, most notably, the LiF (111) peak at two-theta ~15°
728 (Fig S3). For these cases, incorporating LiF into the Le Bail refinement improves the overall fit
729 but does not alter the lattice parameters derived for the stishovite or *d*-NiAs phase.

730
731 The densities in the mixed-phase region could not be accurately determined due to overlapping
732 diffraction peaks for multiple phases. However, it is possible to approximate the density of

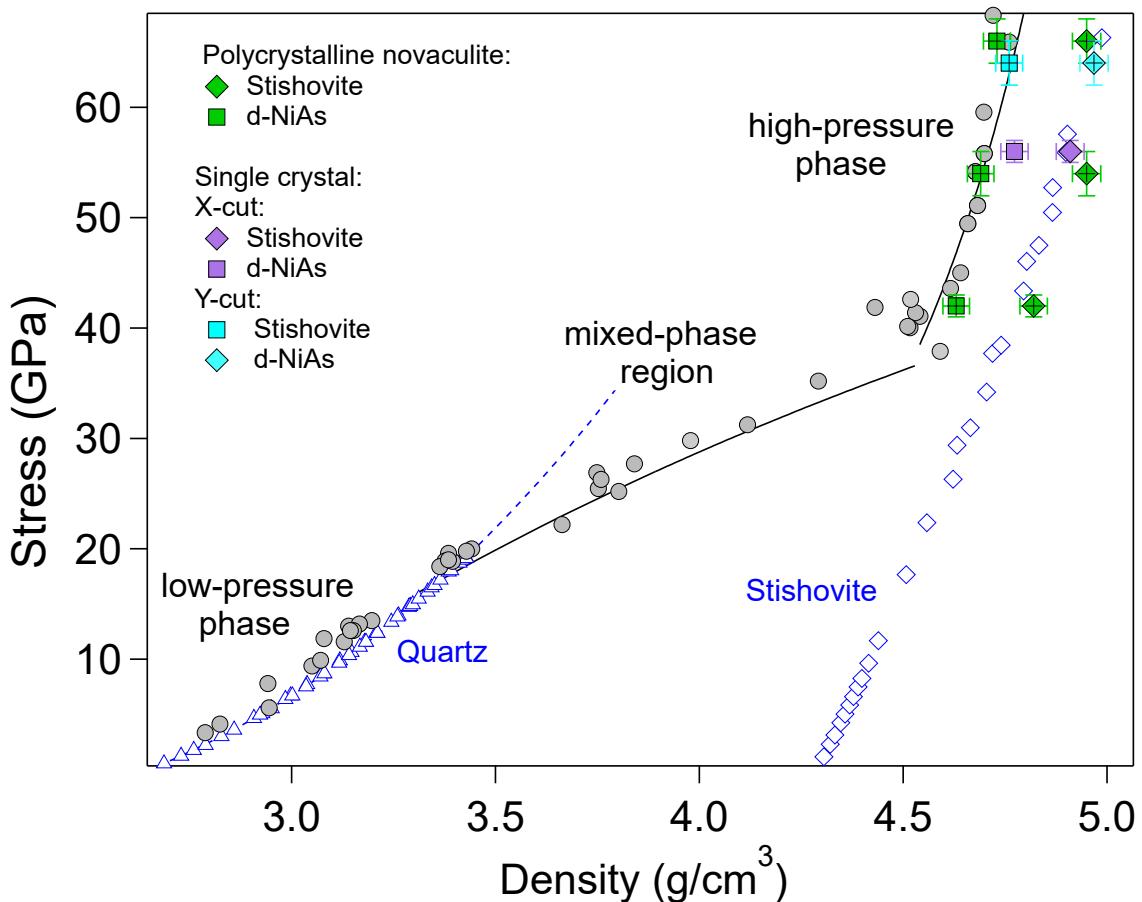
733 compressed α -quartz from the intense (101) α -quartz peak. Here, the method detailed above was
734 used but the fit region was restricted to two-theta between 9-13 degrees to isolate the (101)
735 α -quartz peak. In this way, the instrumental resolution and pink-beam peak profile are captured
736 accurately. The α -quartz density can then be approximated, assuming a c/a ratio from static
737 equation of state data (22).



738
739 **Fig. S3. Two representative Le Bail refinements for stishovite and *d*-NiAs structures** for XRD
740 data collected at 56 GPa (shot 16-5-022, Frame 2). Red and green curves show overall fits and the
741 background portion of the fits, respectively. The weak peak at two-theta $\sim 15^\circ$ is consistent with
742 the LiF (111) peak from the impactor.


743
744 **Section S3. Uncertainties in pressure and densities**

745 Pressure error bars arise from uncertainties in measured projectile velocity (see Table S2) as well
746 as propagation of uncertainties in equation of state parameters (see Table S3) used in the
747 impedance matching.


748 Density error bars incorporate uncertainties in the sample-detector distance (± 200 μm) arising
749 from uncertainty in the ambient sample-detector distance calibration as well as changes in the
750 sample-detector distance due to calculated target translation after impact. The same uncertainties
751 in the impedance matching calculations that affect the pressure error bars also give rise to
752 uncertainties in the calculated shock and particle velocities that are used to calculate the target
753 translation. A small uncertainty in shock arrival time is also included in the calculated target
754 translation uncertainty. Additional density errors determined from standard uncertainties in lattice
755 parameters from the Le Bail refinements were added in quadrature to the sample-detector distance
756 error, although the reported error is dominated by the later.

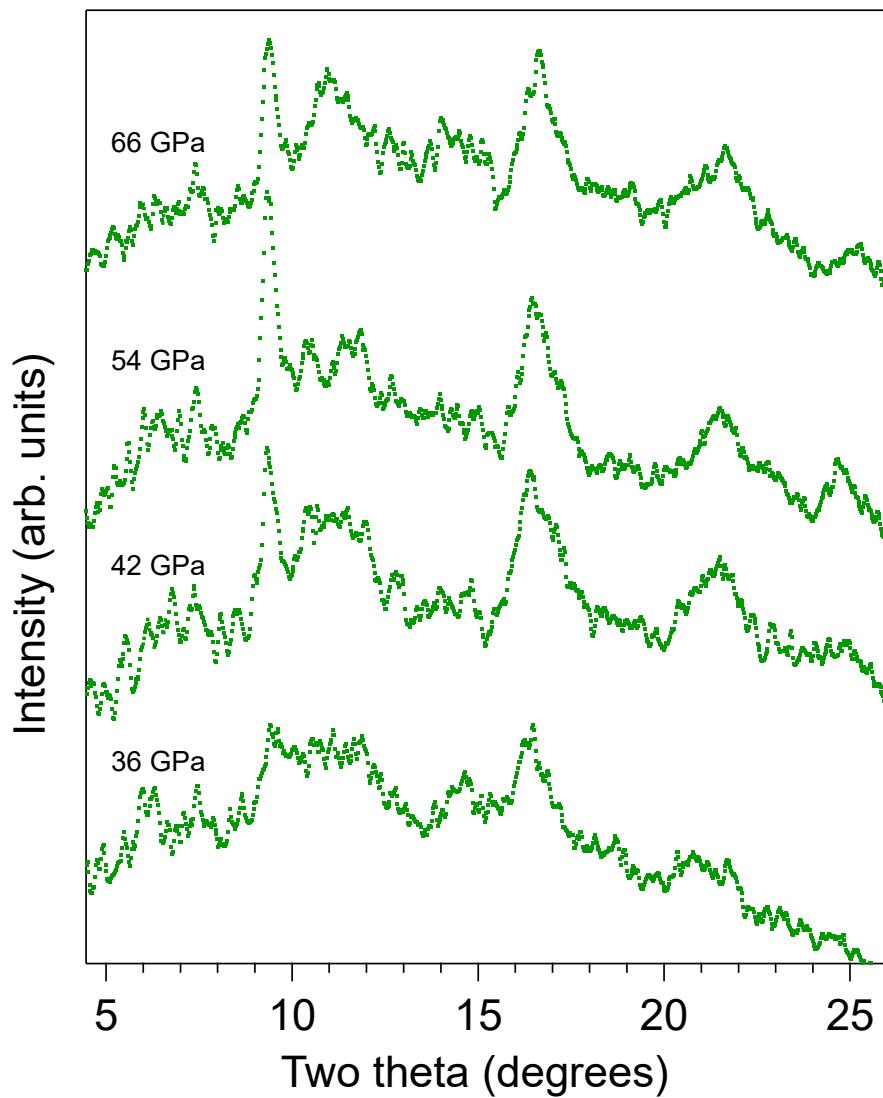
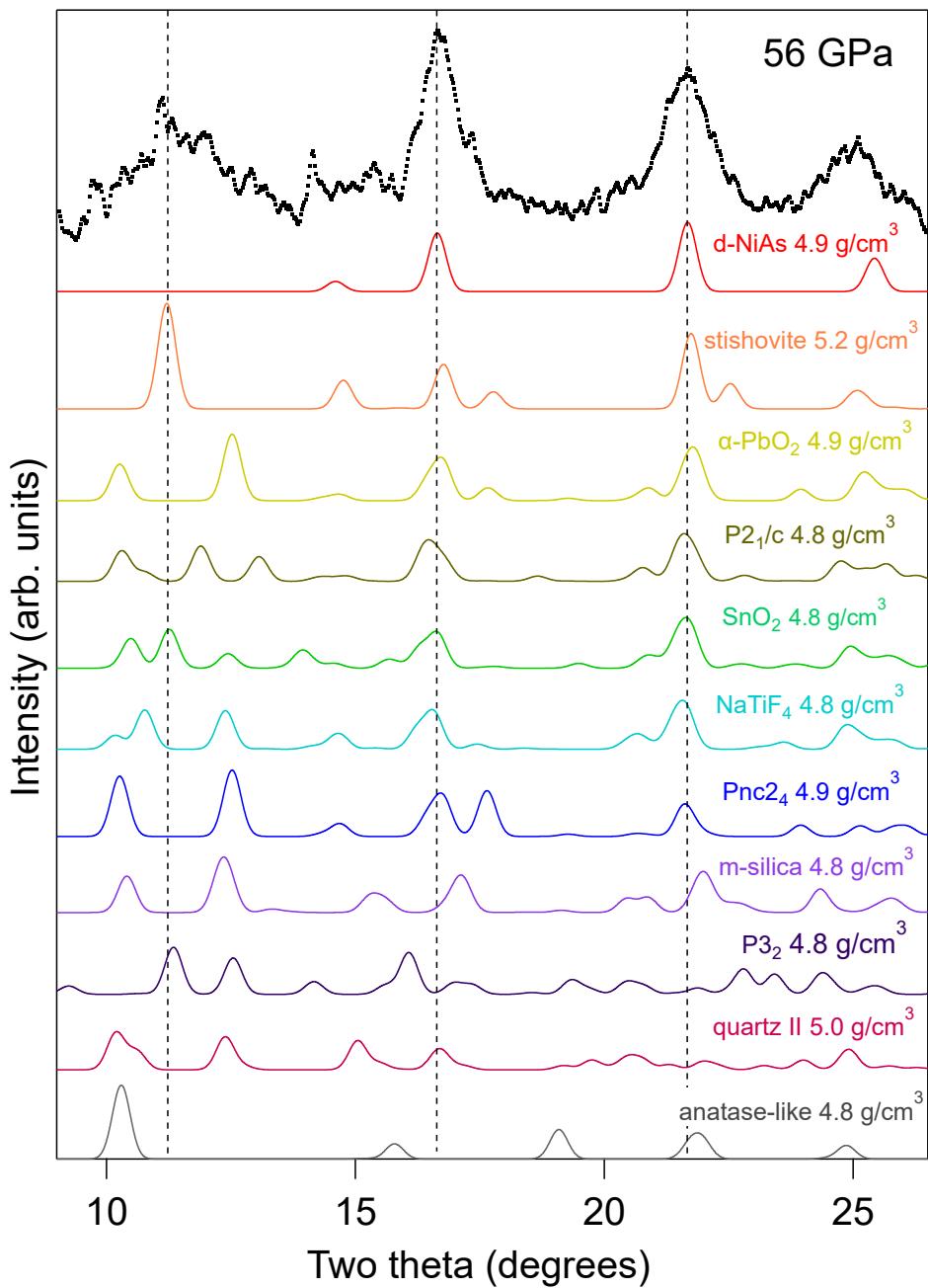
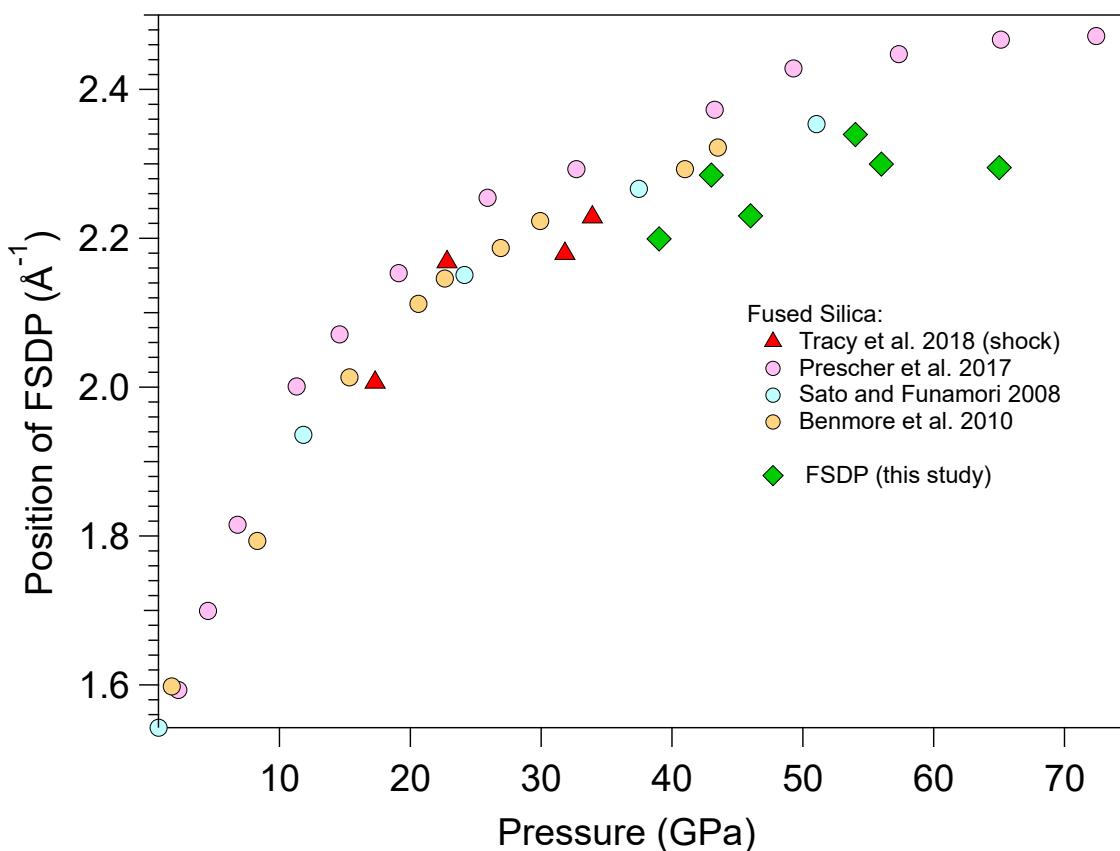

760
 761 **Fig. S4. a)** The experimental configuration for *in-situ* XRD measurements under shock
 762 compression (not to scale). The LiF window shown was not used in all experiments (see Table
 763 S2). The direct incident x-ray beam probes uniaxially strained material for all analyzed XRD
 764 frames other than the late time frames shown in Fig. 6. **b)** Representative measured spectral X-
 765 ray flux from the 2.7-cm undulator at DCS.
 766

Fig. S5. Representative SiO₂-LiF interface velocity histories for Z-cut quartz shocked to 44 GPa (blue, shot 16-5-029) and novaculite shocked to 57 GPa (green, shot 17-5-011). A two-wave structure consisting of an elastic precursor and a phase transformation wave is observed for Z-cut quartz, but the elastic precursor is overdriven by the phase transformation wave in the case of the polycrystalline novaculite sample. The vertical dashed lines show the times at which the analyzed XRD frames were recorded.



775
 776 **Fig. S6. Shock Hugoniot data for quartz.** Continuum Hugoniot data are shown as grey symbols
 777 (31–34). Black curves are guides to the eye. Blue open symbols are 300-K static compression data
 778 for stishovite (35) and α -quartz (22). The blue dashed line is an extrapolated equation of state fit
 779 to the 300-K quartz data. Densities derived from fits to polycrystalline novaculite, Y-cut quartz,
 780 and X-cut quartz are shown as solid green, cyan, and purple symbols, respectively. X-ray fits to
 781 off-Hugoniot ring-up shots are indicated with crosses.


782

783 **Fig. S7. Azimuthally integrated X-ray diffraction data collected for a series of plate-impact**
784 **experiments for polycrystalline novaculite starting material with peak stress states between 36**
785 **and 66 GPa. The sharp peak at 9.5 degrees corresponds to a ghost peak from the ambient strong**
786 **(101) α -quartz reflection. All results shown were collected after reshock from the LiF window**
787 **such that >85% of SiO_2 is in a reshocked state.**

788
789
790
791
792

Fig. S8. Comparison of simulated diffraction patterns for candidate high-pressure SiO₂ structures from theory and experiment (5–7, 10, 37, 58) with measured Z-cut quartz XRD line profile at 56 GPa (shot 16-5-022, Frame 2).

Fig. S9. Comparison of the position of the first sharp diffraction peak (FSDP) for fused silica starting material from shock and static studies (19, 25–27) compared to present results for the low-angle peak from Z-cut quartz shots (green diamonds).