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RILaaS: Robot Inference and Learning as a Service
Ajay Kumar Tanwani , Raghav Anand , Joseph E. Gonzalez, and Ken Goldberg

Abstract—Programming robots is complicated due to the lack
of ‘plug-and-play’ modules for skill acquisition. Virtualizing de-
ployment of deep learning models can facilitate large-scale use/re-
use of off-the-shelf functional behaviors. Deploying deep learning
models on robots entails real-time, accurate and reliable infer-
ence service under varying query load. This letter introduces a
novel Robot-Inference-and-Learning-as-a-Service (RILaaS) plat-
form for low-latency and secure inference serving of deep models
that can be deployed on robots. Unique features of RILaaS include:
1) low-latency and reliable serving with gRPC under dynamic
loads by distributing queries over multiple servers on Edge and
Cloud, 2) SSH based authentication coupled with SSL/TLS based
encryption for security and privacy of the data, and 3) front-end
REST API for sharing, monitoring and visualizing performance
metrics of the available models. We report experiments to evaluate
the RILaaS platform under varying loads of batch size, number
of robots, and various model placement hosts on Cloud, Edge,
and Fog for providing benchmark applications of object recogni-
tion and grasp planning as a service. We address the complexity
of load balancing with a reinforcement learning algorithm that
optimizes simulated profiles of networked robots; outperforming
several baselines including round robin, least connections, and
least model time with 68.30% and 14.04% decrease in round-trip
latency time across models compared to the worst and the next
best baseline respectively. Details and updates are available at:
https://sites.google.com/view/rilaas

Index Terms—Networked robots, transfer learning, industrial
robots, behaviour-based systems, distributed systems.

I. INTRODUCTION

ROBOT programming has evolved from low level coding to
more intuitive methods. Common ways of programming

robots include use of a teaching pendant to record and playback
a set of via-points, offline programmingwith the use of a simula-
tor, programming by demonstration such as kinesthetic teaching,
and/or programming by exploration for trial and error learning
of the desired task. Despite the variety of interfaces, teaching a
new task to a robot requires skilled personnel for data collection,
labeling and/or learning a control policy from hundreds of hours
of robot training [1]. Instead of retraining a skill for every
new situation, we advocate the need of a programming-by-
abstraction approach where high-level skills such as grasping
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Fig. 1. RILaaS uses a hierarchy of resources in the Cloud-Edge continuum
to distribute inference/prediction serving of deep learning models such as grasp
planning and object recognition on a fleet of robots. Users can manage robots
and models with a front-end API that interacts with the inference loop through
a metrics server, authorization cache, and a Docker model repository.

and object recognition etc. can be acquired in a ‘plug-and-play’
manner to facilitate programming of new skills.
Recent advancements in deep learning have led to a rise

of robotic applications that rely on computationally expensive
models such as deep neural networks for perception, planning
and control. Typical usage of a deep learning model involves:
training, adaptation and/or inference. The training stage in-
volves estimation of model parameters on large scale data,
adaptation is the process of transferring/fine-tuning the model to
a new domain/environment, while inference requires predicting
themodel output for a given input.While training and adaptation
of a deep model is computationally and resource intensive,
inference decouples model from applications and must be done
in real-time to meet the performance requirements of the appli-
cation. As an example, training a deep object recognition model
on ImageNet-1k may last for days, adaptation may take hours,
but the inference time is often less than 100 milliseconds.
Robots are increasingly linked to the network and thus not

limited by the onboard resources for compute, storage and
networking with Cloud and Fog Robotics [2], [3]. By offloading
the computational and storage requirements over the network,
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the robots can share training, adaptation and inference of deep
learning models and reduce the burden of collecting and la-
belling massive data for programming a separate model for each
robot. Once trained, the models can be deployed to an inference
serving system to meet the performance requirements of the
application such as bandwidth, latency, accuracy and so on. To
our surprise, there is very little research on how to use/re-use and
deploy suchmodels once they are trained. The focus of this letter
is on scalable inference serving of deep models on networked
robots.
In this letter, we introduce a novel Robot-Inference-and-

Learning-as-a-Service (RILaaS) platform to meet the service
level objectives in inference serving of deep models on robots.
RILaaS abstracts away applications from the training phase
with virtualized computing and storage of models and datasets,
thereby, removing hardware and software dependencies on cus-
tom middleware. It allows users to easily upload, test, share,
monitor and deploy trained models on robots for querying the
service ubiquitously. The service optimizes for low latency and
scalable inference across a fleet of robots by distributing queries
over Cloud and Edge using an adaptive load balancing strategy
(see Fig. 1). We observe that using reinforcement learning to
optimize the load profiles of networked robots outperforms
several baselines including round robin, least connections, and
least model time. We show the application of RILaaS to deep
object recognition and grasp planning, where the robots send
RGB and/or depth images of the environment over a wireless
network as input, and retrieve the object locations and/or grasp
configurations as output. We investigate the performance of RI-
LaaS platform under varying batch sizes, number of robots, and
simulated dynamic loads for vision-based decluttering, where a
mobile robot grasps objects from a cluttered floor and sorts them
into respective bins.

A. Contributions

This letter makes three contributions:
1) We present RILaaS: a novel user-based low-latency infer-

ence serving platform to facilitate large-scale use/re-use
of deep models for robot programming.

2) We provide examples of deep object recognition and grasp
planning as a service with RILaaS and benchmark their
performance with varying number of robots, batch sizes
and dynamic loads.

3) We optimize the round-trip latency times for scalable
inference serving by distributing queries over Cloud and
Edge servers with a reinforcement learning algorithm that
outperforms several baselines under simulated dynamic
loads by at least 14.04% reduction in round-trip latency
time compared to the next best least-connections strategy.

II. RELATED WORK

A. Cloud and Fog Robotics

Cloud Robotics provides on-demand availability of config-
urable resources to support robots’ operations [2]. The cen-
tralized Cloud approach alone often limits the latency and

throughput of data than deemed feasible for many robotics ap-
plications. Fog Robotics distributes the resource usage between
the Cloud and the Edge in a federated manner to mitigate the
latency, security/privacy, and network connectivity issues with
the remote Cloud data centers [3]–[5]. Popular cloud robotics
platforms include RoboEarth [6] – a world-wide web style
database to store knowledge generated by humans and robots
accessed via Rapyuta platform; KnowRob [7] – a knowledge
processing system for grounding the knowledge on a robot;
RoboBrain [8] – a large scale computational system that learns
from publicly available resources over internet; cloud-based
motion planners [9]; rosbridge [10] – a communication package
between the robot and the Robot Operating System (ROS) over
Cloud; while Dex-Net as a Service (DNaaS) [11] are recent
efforts to provide Cloud-based services for analytical grasp
planning.
To the best of our knowledge, RILaaS is the first user-based

data-driven general purpose inference serving platform for pro-
gramming robots. We provide grasp planning and single-shot
object recognition services as an example where the robots
send RGB and/or depth images of the environment and re-
trieve the recognized objects and the grasp locations for robotic
manipulation.

B. Inference Serving

Inference serving is emerging as an important part of a ma-
chine learning pipeline for deploying deepmodels. The growing
demand of machine learning based services such as image
recognition, speech synthesis, recommendation systems etc. is
resulting in tighter latency requirements and more congested
networks. Large tech companies have built their private model
serving infrastructure to handle scaling, performance, and life
cycle management in production, however, their adoption in
a wider machine learning and robotics community is rather
limited.
A simple way to deploy a trained model is to make a REST

API using Flask. Although simple and quick, it often causes
scale, performance, and model life cycle management issues in
production. Tensorflow-serving uses SavedModels to package
the trained models for scaling and sharing of the deployed
models [12]. The serving, however, does not support arbitrary
pre-processing and post-processing of the data which limits
a range of applications. Clipper supports a wide variety of
frameworks including Caffe, Tensorflow and Scikit-learn for
inference serving in the Cloud. Additionally, it uses caching and
adaptive batching to improve the inference latency and through-
put [13]. InferLine combines a planner and a reactive controller
to continuously monitor and optimize the latency objectives
of the application [14]. Rafiki optimizes for model accuracy
with a reinforcement learning algorithm subject to service level
latency constraints [15]. INFaaS automatically navigates the
decision space on behalf of users to meet user-specified ob-
jectives [16]. Recently, a number of companies have entered
the model serving space with Amazon Apache MXNet, Nvidia
TensorRT, Microsoft ONNX and Intel OpenVino to satisfy the
growing application demands. All these services are typically
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optimized to serve specific kinds of models in the Cloud only.
Moreover, creation or updating of the models at the back end
is manual and cumbersome. In comparison to these services,
RILaaS allows users to upload trained deep models, share with
other users and/or make them publicly available for others to
test models with custom data and easily deploy on new robots
for querying the trained models. It distributes the queries over
Cloud and Edge to satisfymore stringent service level objectives
than possible with inference serving in the Cloud only.

C. Inference Optimization

Deploying deep learning models is not just about setting up
the web server API, but ensuring that the service is scalable
and the requests are optimized for service level objectives. The
Cloud provides auto-scalable resources for compute and stor-
age, whereas resources at the Edge of the network are limited.
Edge and Fog Computing brings Cloud-inspired computing,
storage, and networking closer to the robot where the data is
produced [17], [18]. Quality of service provisioning depends
upon a number of factors such as communication latency, energy
constraints, durability, size of the data, model placement over
Cloudand/orEdge, computation times for learning and inference
of the deep models, etc [19]. Nassar and Yilmaz [20] and Baek
et al. [21] allocate resources in the Fog network with a rein-
forcement learning based load balancing algorithm. Chinchali
et al. use a deep reinforcement learning strategy to offload robot
sensing tasks over the network [22].
RILaaS takes a distributed approach to inference serving

where a load-balancer receives inference requests from nearby
robots/clients at the Edge and learns to decidewhether to process
the requests on Cloud or Edge servers based on their resource
consumption. We show its application to vision-based grasping
and object recognition and investigate the inference scaling
problem by simulating increasing number of requests in the
network.

III. PROBLEM FORMULATION AND CHALLENGES

Consider a multi-agent setting of M robots 〈r1 . . . rM 〉 each
having access to a set of trained models or policies 〈π1 . . . πD〉
that are deployed on a set of N servers. Each model may be
deployed on one or more servers, and the location of each
server is fixed either on Cloud, Edge or anywhere along the
continuum.Them-th robot observes the state of the environment
as {ξ(m)

t }TB
t=1 in a mini-batch of size TB , sends the request asyn-

chronously to the inference service and receives the response
{y(m)

t }TB
t=1. The job of the inference service is to compute the

responses {y(m)
t = πd(ξ

(m)
t )}TB

t=1 for the requested d-th model
such that the round-trip latency time t(rtt) is optimized in com-
munication with the set of robots, while preserving the privacy
and security of the data. Note that we do not consider the transfer
problem of adapting the model output to new environments in
this work, and only address the scalability issues in inference
serving of deep models on a fleet of robots.
To this end, we introduce a novel user-based inference serving

platform for deploying deep learning models on robots, and

apply reinforcement learning for optimizing the round-trip la-
tency times under dynamic loads. Next, we describe the specific
challenges in developing the general purpose inference serving
platform and discuss the RILaaS methodology to address the
outlined issues.
Model Support: Prominent machine learning frameworks

such as PyTorch, Tensorflow, Spark, Caffe are widely used
for training and adaptation of deep models. Deploying these
multiple frameworks on a robot or a set of inference servers
is complex because of conflicting dependencies between each
framework. RILaaS accepts any arbitrary model for deployment
by using Docker containers to allow each framework to exist
independently of the other. Each container can be customized
to the requirements of a particular framework. The containers
accept inputs ofMap<name, numeric array> and return
outputs of the same form, where the map function adapts the
model inputs and outputs to the RILaaS format.
Rapidly Deployable: RILaaS abstracts away applications

from models to facilitate ease of deployment on custom hard-
ware with varying specifications. It only requires the public
SSH key of the robot for authenticating and subscribing to the
required models, after which the robot can readily access model
outputs over a network call.
Security and Privacy: Inference serving by transmitting sen-

sitive data over untrusted wireless networks (such as images
of private locations) is vulnerable to data infiltration and cyber
attacks. Additionally, targeted Denial of Service (DoS) attacks
can be a bottleneck to meet the bandwidth requirements of
time-sensitive applications [23]. Hosting models on the Edge of
the network can keep data private and the network secure, but it
comes at the cost of developing andmaintaining a heterogeneous
Edge infrastructure. RILaaS uses a Fog robotics approach to
place models on the Cloud and the Edge servers depending
upon the security requirements specified by the user. This allows
access to the auto-scalable compute and storage capacity of
the Cloud for low-sensitivity models while using secure but
less powerful Edge infrastructure for private data. Moreover,
RILaaS’s front end allows easy management of access controls
on a per-robot per-model basis.
Scalable Workloads: Robots may have to trade-off between

doing fast inference on a remote server using hardware ac-
celerators such as a GPU while incurring additional network
overhead or doing slow inference locally. Latency times need
be optimized to deal with dynamic application dependent work-
loads. RILaaS optimizes the inference serving latency for each
individual model by using reinforcement learning to distribute
queries over the Cloud and the Edge servers according to their
resource consumption.
Performance Monitoring: Monitoring the inference service

is useful to evaluate the empirical accuracy and latency char-
acteristics in comparison to the service level objectives of the
application. RILaaS allows users to specify and log metrics for
each model and each robot over a front-end.

IV. RILAAS ARCHITECTURE

RILaaS is divided into four modules: 1) Front-end, 2)
Management Server, 3) Inference Server and 4) Request
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Fig. 2. Front-end API snapshots (not shown to scale): (top) Users can up-
load, share and visualize models and datasets, (botom-left) interface to upload
new models and set access control policies, (bottom-right) interface to deploy
available models on robots.

Interceptor. The front-end provides a simple interface to upload
trained models and deploy them on robots. The management
server is responsible for storing the authorization policies and
deploying the containerized models on requested servers. The
inference server computes the response of the incoming queries
using specified models. The request interceptor authorizes the
use of specified models, while the load-balancer hosted on the
request interceptor learns to distribute queries over multiple
inference servers. Additionally, the monitoring server collects
metrics about the model and the robot performance. The user
first uploads or chooses a publicly shared model over the front-
end where it is containerized and deployed on the inference
server. Robots are added by specifying their public SSH key
and subscribing to the desired models. Robots can then query
the deployed models over the network using a minimalist client
library. The monitoring server runs in the background to log the
desired metrics for visualization via the front-end. The overall
architecture is summarized in Fig. 1.

A. User End: Front-End and Management Server

RILaaS provides a user-facing REST API that interacts with
the Django management server to create, view and update mod-
els, datasets, robots and metrics (see Fig. 2 for front-end snap-
shots). The front-end is a user-based platform that provisions
for:
Model Creation: Users upload the model folder containing

the pre-trainedmodelweights and specify the input, output types
and optional pre-processing and post-processing modules. The

management server containerizes the model automatically and
uploads the image in a docker repository hosted on AWS. We
package each model in a separate Docker container to resolve
system conflicts between models and prevent over-utilization of
system resources.
Model Sharing: Users can make their models private, public

or share with other users on the platform to facilitate re-usability
of models across applications.
Robot Creation: Users deploy the uploaded models on

robot(s) by adding their public SSH key for authentication.
Note that all publicly available models are automatically made
available to any robot registered with the service.
Dataset Creation: The front-end allows users to upload test

datasets for querying the uploaded models and visualizing the
model outputs. The test datasets can similarly be made public
for other users to test the models. This allows users to ensure
the functioning of their deployed models before querying them
from the robot.
Metrics Viewer: A flexible query interface through

Prometheus allows users to viewmetrics about theirmodel/robot
such as requests sent/received and the round-trip communication
latency times. Additional end-points for metrics can be added
via a dedicated endpoint that is asynchronously monitored by
the management server.

B. Robot End: Request Interceptor and Inference Server

Request Interceptor receives the incoming requests from the
networked robots and distributes them to the inference servers.
The request interceptor may be deployed on the robot itself or
centrally at theEdge of the network for a fleet of robots. Note that
multiple request interceptors can also be deployed for the same
application. The request interceptor is responsible for SSHbased
authentication of the robots and authorizing access control for
the models. Authentication and authorization policies prevent
misuse of compute resources by intruders. Authentication is
done using JSON Web Tokens (JWT) signed with private SSH
key of the robot, while authorization policies are stored in a
database in the management server. Naively fetching model
access policies from remote databases for every request can
slow down inference, thereby, these access policies are stored
on a local Redis cache to minimize network calls to a remote
database for each robot query. The cache is updated using an
event-triggered system that maintains the most recent version of
access control policies from themanagement server. The request
interceptor subsequently directs the authorized queries to the
inference servers using a user-specified load balancing strategy
to optimize the round-trip latency times.
Inference Servers deploy the containerized models on provi-

sioned servers to process the incoming requests. The serversmay
be placed on Cloud, Edge and/or anywhere along the continuum
depending upon the application requirements.Modular resource
placement allows the robots to access resources from the Edge
and seamlessly switch to the Cloud for scalability if Edge
resources are not sufficient to meet the service level objectives.
Moreover, non-critical models can also be rate limited on a
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per-robot basis in order to prevent DoS attacks from occurring
at the Edge and ensure high availability of important models.

C. Inference Query Life Cycle

RILaaS abstracts away the hardware and software dependen-
cies required for inference of deep robot models. Once a model
has been deployed on the RILaaS platform, a robot or a fleet of
robots can readily access the deep models by a simple network
call after installing the minimalist RILaaS client python pack-
age. As shown in the code snippet below, the RobotClient
object contains the necessary parameters for authentication and
authorization of the robot and the required deepmodel. The robot
specifies the target address of the request interceptor, the model
name and the model version for inference, the private SSH key
of the robot for inference and the SSL certificate location. The
SSL certificate encrypts the communication between the robot
and the servers. The robot communicates with the servers using
gRPC, an open source Remote Procedure Call library built on
HTTP/2. Once it is created, the RobotClient object is used
to make predictions with a simple function call.

V. INFERENCE OPTIMIZATION WITH ADAPTIVE

LOAD-BALANCING

The inference requests from a robot or a fleet of robots can
be optimized for large-scale serving of deep models. A-priori
estimation of querying rate of the model and the round-trip
inference time of the model provide a useful criteria for infer-
ence optimization. Ensemble modeling is also useful to deploy
multiple models of the same task and optimize the inference
times. Appropriate model selection among ensembles provides
a trade-off between accuracy and latency to satisfy the service
level objectives [13], [15]. Optimizing the placement and use
of resources can also increase the overall system efficiency. For
example, simple application profiling may be used for resource
placement in a constrained network where there are many CPUs
and few GPUs. Finding an appropriate balance for performance
and cost, however, is challenging when the application demands
and the availability of resources keeps changing over time,
making continuous re-evaluation necessary [24].
Load balancing across multiple servers is useful for op-

timizing resource utilization, reducing latency and ensuring
fault-tolerant configurations [25]. Traditional load balancing
strategies supported in RILaaS include,
Round Robin: Requests are distributed in a cyclic order re-

gardless of the load placed on each server.
Least Connections: The next request is assigned to the server

with the least number of active connections.

Fig. 3. Inference optimization with adaptive load-balancing: A Q-Learning
algorithm adapts the distribution of the incoming requests from the robots
between the Cloud and the Edge resources to optimize the round-trip latency
time.

Least Model Time: Requests are assigned based on running
estimate of average round-trip latency for eachmodel. Toprevent
choosing a single server for extended periods of time, we ran-
domize the server selection with a small probability to explore
all available resources.
We use nginx [26] for load-balancing with round robin or

least connections. The nginx load balancing strategies naively
assume homogeneity of servers, i.e., each request takes a similar
amount of time to process on available resources. Moreover, the
heuristics used in these strategies are not suitable for handling
dynamic loads where the number of requests vary over time. In
thiswork,we seek tooptimize the inference timesunder dynamic
loads by distributing queries over a set of non-homogeneous
servers between the Edge and the Cloud (see Fig. 3 for an
overview).
We formulate the adaptive load-balancing as a reinforcement

learning problem to minimize the expected round-trip latency
for each request in a given time horizon on a per-model basis.
We assign an ‘agent’ to each model to distribute the incoming
queries, i.e., the number of agents scale linearly with the number
of models used. Each agent keeps an estimate of each server in
a Markov decision process tuple 〈S,A,R〉 where st ∈ S is the
state representation of the server at time t,at ∈ A is the action of
sending request to oneof theN serverswhich results in transition
to a new state s′t ∈ S′ along with the reward r(st,at) ∈ R as
an estimate of the round-trip latency, i.e.,

st =

⎡
⎢⎢⎢⎢⎣

pt,1 , qt,1

pt,2 , qt,2
...

pt,N , qt,N

⎤
⎥⎥⎥⎥⎦
, at =

⎡
⎢⎢⎢⎢⎣

1

2
...

N

⎤
⎥⎥⎥⎥⎦
, rt = − (1 + L(st,at))

2 ,

(1)
where pt,i is the number of requests of a model on server i at
time t, qt,i represents the total number of active requests of all
models on server i at time t, and L(st,at) ∈ R is the round-trip
latency of inference query cycle, i.e., time required to send the
request and receive the response from the service. Note that
the reward function penalizes the increase of latency times in
a quadratic manner. The agent learns to choose the server by
taking action at such that the expected latency in a given time
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Fig. 4. Comparison of the average round-trip latency times in seconds of the object recognition model on (left) and the grasp planning model on (right) with the
use of Edge or Cloud resources (same latency scale is used for both resources). Wemake two observations: 1) the round-trip communication time scales sub-linearly
with increasing batch size and number of robots across both models, 2) the difference between the Edge and the Cloud latency times is more dominant when the
computation time is less than the communication time as for the object recognition model in comparison to the grasp planning model.

horizon is minimized from inference request load profiles of
networked robots. The expected latency is estimated by the Q-
function Q(st,at) ∈ R,

Q(st,at) = E

[
T∑

t=0

γtr(st,at)

]
, at = argmax

at=1...N
Q(st,at),

(2)
where γ ∈ R is the discount factor of future rewards. The Q-
function is recursively updated using the Bellman equation [27].
With a small probability, a server is randomly chosen to en-
courage exploration of the state and action space. The agent
continuously optimizes the action selection to drive down the
latency times for eachmodel based on the observed load profiles
from the networked robots. Note that we assume the location and
the number of servers to be fixed and each model is deployed
on all servers without loss of generality. In case the number
of servers change as in starting additional Cloud instances on
performance drop, the adaptive load-balancing policy needs to
be retrained.

VI. EXPERIMENTS AND RESULTS

We now present experiments for evaluating the RILaaS plat-
form to serve deep models of object recognition and grasp
planning on a large scale. We empirically investigate the effect
of varying batch size, number of robots and resource placement,
followedby the adaptive load-balancing experiments to optimize
simulated dynamic load profileswith a fleet of robots.We use the
Amazon EC2 (East) p2.1xlarge instance with 1 Tesla K80
GPU inNorthernVirginia (us-east-1) for Cloud compute and use
Amazon S3 buckets for Cloud storage. The Edge infrastructure
comprises of a workstation with 1 NVidia V100 GPU located at
a nearby data center.

A. Application Workloads

We consider real-world application scenarios where RILaaS
is used to provide object recognition and grasp planning as a
service for vision-based robot decluttering, building upon our
previous work in [3], [28].

Fig. 5. Vision-based decluttering applicationwhere the robots send the RGBD
image of the environment to the inference service and retrieves the object
categories and bounding boxes, alongwith their grasp locations to put the objects
in their corresponding bins.

Object Recognition: We use the MobileNet-Single Shot
MultiBox Detector (SSD) model with focal loss and feature
pyramids as the base model for object recognition. The input
RGB image is fed to a pre-trained VGG16 network, followed by
feature resolution maps and a feature pyramid network, before
being fed to the output class prediction and box prediction
networks. Themodel is trained on 12 commonly used household
and machine shop object categories using a combination of
synthetic and real images of the environment.
Grasp Planning: Grasping diversely shaped and sized novel

objects has a wide range of applications in industrial and con-
sumermarkets.Robots in homes, factories orwarehouses require
robust grasp plans in order to interact with objects in their envi-
ronment. We use an adaptation of the Dex-Net grasp planning
model to plan grasps from the depth images of the environment.
The model samples antipodal grasp pairs from a depth image
and feeds them to a convolutional neural network to predict the
probability of successful grasp as determined by the wrench
resistance metric. The sampled grasps are successively filtered
with a cross-entropy method to return the most likely grasp.
Note that the pre-processing step of sampling many different
grasps requiresCPUusage,whereas predicting the grasp success
requires GPU resources for efficient grasp planning.
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Fig. 6. Inference optimization of varying test load profiles for object recognition on (left) and grasp planning on (right). For each model, top row shows the
round-trip latency of load-balancing strategies, second and third row shows the Q-learning and least connections policy output in allocating Edge or Cloud resources,
fourth row shows the requests rate profile. Q-learning scales better with increasing loads than other load-balancing strategies by optimally figuring out how to use
Edge resources more frequently to reduce the average round-trip latency times.

TABLE I
COMPUTATION TIME FOR INFERENCE t(inf) VS ROUND TRIP COMMUNICATION

TIME t(rtt) (IN MILLISECONDS) FOR INFERENCE OVER EDGE AND EC2-EAST
CLOUD. RESULTS ARE AVERAGED ACROSS 6 TRIALS. COMMUNICATION TIME

DOMINATES THE COMPUTATION TIME AND INCREASES AS THE DISTANCE TO

THE SERVER INCREASES

Vision-Based Decluttering: We sequentially pipeline the ob-
ject recognition and grasp planning models together for vision-
based surface decluttering [3]. The robot sends RGBD images of
the environment, where the RGB image is used for object recog-
nition and the cropped depth image from the output bounding
box of the object recognitionmodel is used by the grasp planning
model to output the top ranked grasp for the robot to pick and
place the object into its corresponding bin (see Fig. 5).

B. Scalability of RILaaS

We deploy the trained models on the RILaaS platform to
receive images from the robot, perform inference, and send back
the output results to the robot. We measure the round-trip time
t(rtt), i.e., time required for communication to/from the server
and the inference time t(inf), i.e., time required to compute the
model response for a given input. We experiment with two hosts
for the inference service: EC2 Cloud (East), and Edge with GPU
support.
Resource Placement with Cloud vs Edge: Results in Table I

show that the communication time is a major component of
the overall round-trip latency time. Deploying the inference ser-
vice on the Edge significantly reduces the round-trip inference
time and the timing variability in comparison to hosting the
service on Cloud, while incurring a communication overhead
of around 100 milliseconds only. The difference in resource
placement is less pronounced for the grasp planning model
where CPU computation time in sampling grasp pairs is a

Fig. 7. A comparison betweenmean latency ofRILaaS and tensorflowServing
deployed on the Edge for the object detection model. RILaaS performs on par
with tensorflow serving and the gap closes further with more users.

dominant factor. Moreover, the authentication time only takes 1
millisecond on average with Redis cache in comparison to 630
milliseconds with a relational database on AWS.
Effect of Batch Size and Number of Robots:We next vary the

batch size and number of robots making concurrent requests to
the service. Fig. 4 suggests that the average round-trip latency
grows sub-linearly with the batch size and the number of robots
querying the service. Moreover, deploying models on Edge
yields lower round-trip latency times across both models, but
the difference is more pronounced for the object recognition
model with lower inference time than the grasp planning model.
Comparison with Tensorflow Serving: Fig. 7 suggests that

RILaaS gives comparable results to tensorflow-serving for the
object recognition model deployed at the Edge. Note that
the tensorflow-serving does not provide out-of-the-box pre-
processing/post-processing, authentication, authorization and
metrics viewing for models that it supports. Consequently, the
grasp planning model cannot be hosted on tensorflow-serving as
it iterates over preprocessing and inference. RILaaS supports a
tensorflow-serving backendwhile providing the aforementioned
features to make it feasible for deploying a wide variety of
models.

C. Inference Optimization Under Dynamic Loads

We next simulate time-varying requests of different profiles
to evaluate the performance of inference optimization with
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adaptive load-balancing.Wequery the object recognition and the
grasp planning model alternatively at specified rates to simulate
the decluttering setup, and compare the Q-learning based adap-
tive load-balancing with round robin, least connections and least
model time strategies. The request profiles include: 1) uniform
loads of 1, 2, 4, 8 requests per second, 2) step-wise increasing
loads of 1, 2, 3, 4 requests per second, 3) spiked loads where
nominal load of 2 requests per second is augmented with 13
requests per second for up to 2 seconds, 4) Poisson distributed
loads where requests follow the Poisson process with arrival
rate of 1, 2, 4, 8 requests per second, 5) sinusoidal loads with
varying amplitudes and frequencies of 0.05, 0.01, 0.08 Hz. The
first 4 types of load profiles are used for both training and testing,
while the sinusoidal load profiles are only used for testing of the
optimal inference serving policy.
Fig. 6 shows the plots of the object recognition and grasp

planning model for various request profiles. It can be seen that
the Q-learning strategy outperforms the commonly used load-
balancing strategies. Least-connections performance is better
among the fixed load-balancing strategies and its performance is
similar to Q-learning for lighter workloads. The inference serv-
ing policy reveals that the Q-learning is able to decrease the av-
erage latency times by more frequently using the Edge resource
as compared to the Cloud. Overall, the adaptive load-balancing
strategy with Q-learning for object recognition gives 15.76%
and 70.7% decrease in round-trip latency time compared to the
next best least connections and worst performing round-robin
baseline. Similarly, the grasp planning model shows 12.32%
and 65.91% decrease in the round-trip latency time with Q-
learning in comparison to least connections and round-robin
strategies.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Virtualizing robot storage, compute and programming is a key
enabler for large-scale learning and inference of deepmodels for
robotic applications. In this letter, we have introduced RILaaS
as a novel user-based inference serving platform for deploying
deep learning models on robots that satisfies heterogeneous
model support, rapid deployment, security and privacy, and low
latency requirements of the applications.We used reinforcement
learning for scalable inference serving that adapts better with
dynamic loads than commonly used load balancing strategies.
We provide deep object recognition and grasp planning as a
service and showed its application to vision-based decluttering
of objects from the floor and depositing them in target bins. To
the best of our knowledge, RILaaS is the first of its kind user
based inference serving platform of deep models for robotic
applications.
In future work, we plan to couple the digital twin/simulator

with the uploaded models for efficient sim-to-real transfer and
federated learning with a fleet of robots. Moreover, we will
optimize the placement of the models in addition to optimizing
the queries. Further, we will test various models for segmenta-
tion, hierarchical task planning etc. in a multi-agent distributed
environment with a set of robots.
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