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ABSTRACT

Traffic networks are one of the most critical infrastructures
for any community. The increasing integration of smart and
connected sensors in traffic networks provides researchers
with unique opportunities to study the dynamics of this crit-
ical community infrastructure. Our focus in this paper is on
the failure dynamics of traffic networks. By failure, we mean
in this domain the hindrance of the normal operation of a traf-
fic network due to cyber anomalies or physical incidents that
cause cascaded congestion throughout the network. We are
specifically interested in analyzing the cascade effects of traf-
fic congestion caused by physical incidents, focusing on de-
veloping mechanisms to isolate and identify the source of a
congestion. To analyze failure propagation, it is crucial to
develop (a) monitors that can identify an anomaly and (b) a
model to capture the dynamics of anomaly propagation. In
this paper, we use real traffic data from Nashville, TN to
demonstrate a novel anomaly detector and a Timed Failure
Propagation Graph based diagnostics mechanism. Our nov-
elty lies in the ability to capture the the spatial information
and the interconnections of the traffic network as well as the
use of recurrent neural network architectures to learn and pre-
dict the operation of a graph edge as a function of its imme-
diate peers, including both incoming and outgoing branches.
Our results show that our LSTM-based traffic-speed predic-
tors attain an average mean squared error of 6.55 x 1074
on predicting normalized traffic speed, while Gaussian Pro-
cess Regression based predictors attain a much higher aver-
age mean squared error of 1.78 x 1072, We are also able
to detect anomalies with high precision and recall, resulting
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in an AUC (Area Under Curve) of 0.8507 for the precision-
recall curve. To study physical traffic incidents, we augment
the real data with simulated data generated using SUMO, a
traffic simulator. Finally, we analyzed the cascading effect of
the congestion propagation by formulating the problem as a
Timed Failure Propagation Graph, which led us in identifying
the source of a failure/congestion accurately.

1. INTRODUCTION

Since the emergence of smart cities, a major focus has been
in the area of Intelligent Transportation System. These sys-
tems provide researchers with unique opportunities to study
the dynamics of road traffic. In this paper, we study the failure
dynamics of traffic networks, focusing on the detection and
diagnostics of traffic anomalies based on traffic-prediction
models. Traffic predictions can be performed based on two
different approaches: model-driven and data-driven [Barros,
Araujo, and Rossetti (2015)]. In model-driven approaches,
we have a physical model that represents the network topol-
ogy, incorporating information about intersections, road seg-
ments, signals, geographical coordinates of Traffic Message
Channel (TMC), etc. In data-driven approaches, informa-
tion regarding various forms of traffic measurements, such as
speed and congestion factor, are needed for training, which
can be obtained from sensors, such as induction-loop detec-
tors placed in the road network.

Our aim here is to combine model-driven and data-driven
approaches to build an effective traffic prediction architec-
ture. We use the physical model of the network to gen-
erate a directed graph that captures the spatial interconnec-
tions within the network. The temporal dependencies of
the flow patterns are captured by training recurrent neural
network architectures using significant amounts of sensor
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data. Thus, combining the model-driven and data-driven ap-
proaches, we can assess the evolution of the traffic state of
the entire road network. We demonstrate our approach us-
ing real traffic data from Nashville, TN, USA obtained via
the HERE API [HERE Developer (2019)]. In particular, we
study the efficacy of building traffic-speed predictors using
two different approaches, Long-Short Term Memory Net-
works (LSTMs) and Gaussian Process Regression (GPR). For
both approaches, we model the speed of each road segment
in the network as a function of its neighboring road segments,
and build specialized traffic predictors for each edge of the
entire network.

We develop the traffic speed prediction model keeping two
objectives in mind: 1) detection of anomalous sensor read-
ings and 2) a model to capture the dynamics of congestion
propagation in a cascaded way. The disruptive events in the
traffic network causing anomalous sensor readings can be due
to malicious sensor attacks involving data manipulation as
well as real physical incidents creating congestion. For sen-
sor anomaly and attack detection, we introduced additive and
deductive anomalies in the real-time traffic data and showed
the ability of the trained traffic predictors to identify the at-
tacks using statistical control charts. We also analyzed the
precision and recall of this anomaly detection scheme.

Next, the cascading effect of congestion in a traffic network
is analyzed where congestions/perturbations created at a lo-
cal level at a targeted road segment can propagate backwards
like a wave to affect a larger part of the network leading to
chained congestions. To analize such effects in a large-scale
traffic network, we use the SUMO (Simulation of Urban MO-
bility) [“SUMO” (2019)] traffic simulator to access real-time
traffic simulation and monitor as well as analyze traffic pat-
terns under the influence of congestion. We trained traffic
predictors with data collected from SUMO under normal op-
erating conditions and showed that the pre-trained models ef-
fectively predicted the real-time cascading effect of conges-
tions spreading out to the neighboring road segments. Once
a persisting congestion is noted in a road segment, we identi-
fied the root-cause of the cascaded congestion by finding the
target road where the congestion started using Timed Failure
Propagation Graphs (TFPG) [Abdelwahed, Karsai, Mahade-
van, and Ofsthun (2009)].

Contributions Our contributions in this paper are:

* Building efficient LSTM based traffic predictors in an
unique way of modelling each road segment in a large
scale traffic network as a function of its neighboring
roads and comparing its performance with that of Recur-
rent Neural Network and Gaussian Process Regression.
We achieved an accurate prediction model with an aver-
age loss of 6.55 x 10* on normalized speed values.

* These traffic predictors combined with statistical con-
trol chart CUSUM are able to detect anomalies in sensor

reading with high precision and recall indicating an AUC
of 0.8507 of the precision-recall curve.

e We formulated the traffic congestion propagation as a
Timed Failure Propagation Graph to identify the root
cause of failure in the network.

Outline The rest of the content is organized as follows. Sec-
tion 2 sets up the research problem that we solve. We provide
an outline of the research approach and compare it to related
works in Section 3. Next, we describe our main contribu-
tions. Section 4 presents the models that we use for traffic
speed prediction. We discuss our approach to anomaly detec-
tion and its comparison with the classical Gaussian Process
Regression based anomaly detection in Section 5. Then, we
discuss the cascade analysis approach and root cause isolation
in Section 6. Section 7 concludes the paper and discusses fu-
ture research directions.

2. PROBLEM STATEMENT

We are interested in developing data-driven detectors to iden-
tify the following disruptive events: (a) sensor attacks, that is,
cyber-attacks against smart sensors by a networked adversary
which may change the measurements values arbitrarily, and
(b) physical incidents, such as motor vehicle accidents, that
occur randomly and may cause a cascade of traffic disrup-
tions throughout the road network by creating chained traffic
congestion. In such cases, identification of the root cause of
an event can help eliminate the cascaded propagation of con-
gestion. To help setup our problem, we first present a number
of definitions, which include the transportation network as a
graph and certain operators on the graph that we use later in
the paper.

2.1. Definitions

Definition 1 (Transportation Network Graph) A graph
representing our system model is defined as G = (V,E)
where V' is a set of nodes. E is the set of road segments
connecting the nodes. In the graph, let v; € V denote a node
and e;; = (v;,v;) € E represent an edge.

Definition 2 (in, out) The in operator in : V. — 2F gives
all the edges for which this node v is the destination. When
the out operator is applied to a node out : V- — 2F it gives
all the edge for which this node v is the source.

Definition 3 (in degree, out degree) 7he in degree of a
node v is the number of road segments incoming to the node
and can be calculated as |in(v)|, whereas, the out degree of
a node v is the number of road segments outgoing from the
node and is calculated as |out(v)|.

Definition 4 (Traffic Message Channels (TMC)) An edge
is called a traffic message channel (TMC) if it has a speed
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and jam factor sensor associated with it. We denote the set of
TMC as ES C E.

Definition 5 (Jam Factor) We also have a function J that
provides the jam factor, a value between 0 to I that describes
the congestion on road. 0 means no congestion and 1 means
the observed speed is zero.

Definition 6 (k-hop incoming neighbors) The k-hop in-
coming neighbors (N : E — 2F) of an edge are the
k-nearest hops of the incoming edges that can feed the traffic
into an edge. We define this function recursively. N} (e) =
Usein(sre(ey (in(sre(@))). Given the set NE=L the set N,

can be defined as N}, (e) = Usent—1()(in(sre(z))).

Definition 7 (k-hop outgoing neighbors) The k-hop out-
going neighbors (NX, : E — 2F) to an edge are the k-
nearest hops of edges that take traffic away from an edge
via its out node. We define this function recursively as

well. N}L,(e) = Useout(aste) (out(dst(x))). Given the
set NE~1 the set N, can be defined as NE,(e) =

T

Usent=1 (o) (out(dst(x))).

Definition 8 (Physical incident) By physical incidents, we
mean the failure circumstances such that the real speed of
the edge is significantly below maximum speed. This can
typically be explained by motor-vehicle accidents that oc-
cur randomly and may cause a cascade of traffic disruptions
throughout the road network. An incident can cause disrup-
tions (i) directly through traffic congestion, which may propa-
gate to connected roads, and/or (ii) indirectly by forcing vehi-
cles to take alternative routes, even before reaching the areas
that are not affected by direct congestion.

Definition 9 (Logical incident) A logical incident is the
hypothesis that the observed speed of the edge is significantly
different from its speed under normal operating condition. A
logical incident can be caused by a fault in the sensor or by
an adversary. The disruptive events alter the traffic speed
attribute where physical incidents have effect on real traffic
speed, but the sensor failures and attacks change the observed
or sensed traffic speed but not the real speed.

Definition 10 (AUC) AUC is the area under the precision
recall(PR) curve. It is used as an indicator of efficiency of the
anomaly detection approaches discussed in the paper. The
greater the AUC of the PR curve, the better is the detection
model.

2.2. Problem Definition and Dataset

In this paper, we are concerned with the following prob-
lem. Given a transportation graph and a sequence of real-
time speed readings, detect the occurrence of the anomalous

events. Performance in detecting anomalies is provided by
quantifiable measures such as false positives, true positives,
false negatives, true negatives as well as precision and recall.
Second, we want to identify the root cause of an event (e.g., if
a congestion event on a road causes a large disruption through
cascades of reroutes, we need to identify the original conges-
tion event as the root cause).

In this paper, we specifically study this problem for the trans-
portation network of Nashville, TN. In particular, we use the
data collected by our team from HERE to setup the problem.
The data contains timestamped representation of information
regarding speed, jam factor, free flow speed, etc. for each
Traffic Message Channel (TMC) ID. Each TMC ID identifies
a specific road segment and represents the sensor information
for that particular segment.

To inject physical incidents and study their effect, we use the
microscopic traffic simulator SUMO, which we have config-
ured for Nashville.

3. RELATED WORK

The approach that we will describe later in this paper is com-
bining three active areas of research (a) building a predic-
tor to forecast the normal congestion events and the expected
speeds on the road network; (b) using these predictors to build
anomaly detectors; and (c) developing a cascade model to
study the progression of congestion and effectively isolate the
root causes. In this paper we make the assumption of single
root failure (physical incident). The model of computation we
use and describe later in this paper can support multi-failure
hypothesis. But we leave that for our future work.

3.1. Existing Work on Traffic Forecast with Machine
Learning

Ma, Tao, Wang, Yu, and Wang (2015) presented an LSTM
neural network to predict travel speed using microwave de-
tector data. They collected 1-month traffic speed data from
two sites in Beijing expressway. They compared three differ-
ent typologies of recurrent neural network (i.e. Elman NN,
TDNN and NARX NN) as well as other non-parametric and
parametric methods (i.e. SVM, Time Series and Kalman Fil-
ter) with the LSTM NN based on the same dataset. The nu-
merical experiments proved that the LSTM NN performes
better than other algorithm in terms of accuracy and stability.
Tian and Pan (2015) introduced a model called Long Short-
Term Memory Recurrent Neural Network (LSTM RNN)
which represents long-term dependencies and determines the
optimal time lags for time series problems. The study used
data from the Caltrans Performance Measurement System
(PeMS) and included a comparison of the LSTM RNN model
with other four established prediction models, i.e., RW (Ran-
dom Walk), SVM (Support Vector Machine), FFNN (Feed
Forward NN) and SAE (Sum of Absolute Errors). This study
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mainly analyzed the temporal influence on traffic flow but
does not consider other factors, such as spatial impact from
neighbour observation stations, weather conditions, etc.

Polson and Sokolov (2017) developed a deep learning archi-
tecture which combined a linear model that was fitted us-
ing [; regularization and a sequence of tanh layers. The
first layer identified spatiotemporal relations among predic-
tors and other segments modelled nonlinear relationships.
The study provided a twofold analysis of short-term traffic
forecasts from deep learning. It demonstrated that deep learn-
ing provides a significant advancement over linear models. A
good review of Deep Learning technologies used in forecast-
ing analysis can be found in Sengupta, Basak, Saikia, et al.
(2019). Prior work on traffic forecasting has also been car-
ried out with multi agent based approaches. Hu, Gao, Yao,
and Xie (2014) used Particle Swarm Optimization for traffic
flow prediction. Some recent swarm-based algorithms listed
in [ Sengupta, Basak, and Peters (2019), Sengupta, Basak,
and Peters (2018)] can also be used in this purpose.

For short term traffic volume forecasting, Zhao, Chen, Wu,
Chen, and Liu (2017) proposed a cascaded LSTM network
by combining the interaction among the road network in both
the time and spatial domain. They showed that the pro-
posed LSTM network approach for traffic volume prediction
is sturdy and had a minimum MRE (Mean Relative Error)
compared to other models such as ARIMA (Autoregressive
Integrated Moving Average) model, SVM (Support Vector
Machine) and SAE (Stacked Auto-encoder). LSTM and RNN
architectures also outperformed other techniques in numerous
applications, such as language learning [Gers and Schmidhu-
ber (2001)], connected handwriting recognition [Graves and
Schmidhuber (2009)], Remaining Useful Life Prediction of
hard disks [Basak, Sengupta, and Dubey (2018)].

In comparison our approach we model each road segment in
the network as a function of its neighboring roads and use
that relationship for prediction. When we compared our per-
formance with that of RNN and Gaussian Process Regression
we saw that we achieved a better prediction model with an
average loss of 6.55 x 10~* calculated on Normalized Speed.

3.2. Existing Work on Traffic Anomaly Prediction

Zygouras et al. (2015) presented an approach to identify
anomalous sensors and resolve whether irregular measure-
ments are due to faulty sensors or unusual traffic. The pro-
posed method was implemented by using the Lambda Ar-
chitecture which combined a batch processing framework
(i.e. Hadoop3) and a distributed stream processing system
(i.e. Storm4) for efficiently processing both historical and
real-time data. The authors also developed a Crowdsourcing
system to extract answers from the human crowd based on
the MapReduce paradigm. The study recognised anomalous
SCATS (Sydney Coordinated AdaptiveTraffic System) sen-

sors from Dublin city with three methods; Pearsons correla-
tion, cross-correlation and multivariate ARIMA model. The
three different outlier detection techniques identified a com-
plementary set of faulty sensors. The study gave a detailed
experimental evaluation to prove that their proposed approach
effectively resolved the source of irregular measurements in
real-time.

Lu, Varaiya, Horowitz, and Palen (2008) provided a system-
atic study of previous loop fault detection and data correction
methods, and also systematic classification of possible faults
and the reasons behind them at different levels. According
to the study, existing work on loop fault detection and data
correction/imputation may be divided into three levels which
lead to different viewpoints for loop fault detection and data
correction: macroscopic such as: (a) TMC/PeMS level; (b)
mesoscopic a stretch of freeway; and (c) microscopic control
cabinet level. These three levels of approaches are comple-
mentary to each other although they study the problem from
different aspects using a different level of data.

In this work we used statistical control chart CUSUM to iden-
tify malicious sensor attacks with high precision and recall
indicating an AUC of 0.8507 of the precision-recall curve.

3.3. Existing Work on Cascading Failures

Dagqing, Yinan, Rui, and Havlin (2014) studied the long-range
spatial correlation of cascading failures and their evolution
with time to predict system collapse in case of power grid fail-
ures and traffic congestion. Zhang, Lu, Lu, Chen, and Ding
(2015) employed an improved form of Coupled Map Lat-
tice(CML) model to analyze the cascading failures on Beijing
Traffic network. They considered the traffic network topology
and tested on various attack strategies and how the scale of
failure varies with external perturbations, coupling strengths
and attack strategies. Liang, Jiang, and Zheng (2017) pro-
posed a data-driven approach C'asIn f to study the cascading
patterns of traffic propagation through maximizing the like-
lihood function from the available data. They treated it as a
submodular function maximization problem providing near-
optimal performance guarantees.

In this paper, other than analyzing the cascading effect of
traffic congestion on the neighboring road segments of the
network, we show that the source of congestion can be iso-
lated by formulating the congestion propagation problem as a
Timed Failure Propagation Graph.

4. TRAFFIC SPEED PREDICTION MODEL

For the Nashville dataset, we have 3,724 unique TMCs. For
each TMC we have collected speed values for a total of 6000
timesteps. Each timestep specifies a small time interval of 10
minutes.

First, a matrix of dimension (total number of timesteps X traf-
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fic speed for all unique TMC IDs) (6000 x 3724) is formed.
Some of the TMCs do not have speed value recorded. To in-
terpolate the missing speed value of a particular TMC, we are
considering the speed values of all the neighbouring TMCs
for the preceding and succeeding timestep using data imputa-
tion.

Since we consider the speed of the neighbors for predicting
the speed of a TMC we must ensure that we normalize the
speeds (see definition 11). The normalized speeds are de-
fined to be in between O and 1 and help ensure data ranges
are balanced between the road segments. This is required for
building a good predictive model.

Definition 11 (Normalized speed) The normalized speed
of a TMC (definition 4) is a ratio of its current speed with the
average of speeds for times when the jam factor (definition 5)
is zero.

For each TMC, N} (TMC') and N}, (T M C) give the set of
its immediate incoming and outgoing neighbors respectively.
For each TMC, the normalized speed values for each of its
neighbors (including incoming and outgoing) are treated as
input features whereas the normalized speed of the target
TMC is treated as the label. We applied both Recurrent Neu-
ral Networks and Long Short Term Memory Networks to
build the traffic predictors for each TMC in the traffic net-

work.

The number of timesteps to look back in order to predict the
result for current timestep has been chosen in a way that pro-
duces the least loss. The timesteps are varied from 5 to 20.
From the experimental results, we have seen that for RNN,
ten timesteps provide a stable outcome whereas LSTM gives
better result with 15 timesteps. Table 1 shows the average
loss on test data calculated over normalized speeds for differ-
ent timesteps produced by RNN and LSTM.

Table 1. Average Loss with Different Number of Timesteps

Number of Timesteps || Average Loss | Average Loss
to Look Back from RNN from LSTM

5 0.0007797 0.0007032

10 0.0006966 0.0007063

15 0.0006976 0.0006805

20 0.0006966 0.0006853

RNN and LSTM take the input as a three dimensional matrix
of dimension (Samples X timesteps X features) where
number of features is equal to the total number of Neigh-
bouring TMCs. As the sample labels for a particular TMC
is the normalized traffic speed value of that TMC, the net-
work learns to predict the speed at any timestep for the target
TMC given past 10 timesteps of data inputs form its neigh-
bors. The sample matrices are split randomly into Training
Set and Test Set (70% Training and 30% Testing).

4.1. Prediction Using Recurrent Neural Network

For Recurrent Neural Network (RNN) prediction model, we
have tried a different number of neurons (from 40 to 200) in
the input and hidden layers. We ran the models with a differ-
ent number of neurons for the first 100 TMC. From the aver-
age losses, we have found out that RNN works better with 80
neurons. Figure 1 shows the average losses produced by RNN
and LSTM for the different number of neurons. The average
losses provided by RNN show a downward trend for 40 to 80
neurons. Afterwards, as the number of neurons increases, the
average loss also increases.

0.00090

* RNN: Average Loss
e LSTM: Average Loss

0.00085

0.00080

0.00075

0.00070

Average Loss from Predicted Values

0.00065

40 60 80 100 120 140 160 180 200
Number of Neurons Per Input and Hidden Layer

Figure 1. Average loss from predicted speed values by RNN
and LSTM for different number of neurons

We have used Mean Squared Error as the loss function for
RNN. For training the deep neural model, we have used Adam
optimizer. Figure 2 shows the predicted speed value and ac-
tual speed value of the first TMC for the first 400 timesteps.
The loss of this prediction is 3.388 x 1075,

Normalized Speed Value

* Predicted Value
0.75 —— Actual Value
1

0 100 200 300 400
Timesteps

Figure 2. Predicted speed values by RNN vs actual speed
values for the test data of first TMC
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4.2. Prediction Using Long Short-Term Memory

For the LSTM model, we have predicted normalized speed
values for the different number of neurons (40 to 200). The
average losses show a downward trend with the increasing
number of neurons. According to our experiment, 180 neu-
rons in both input and hidden layer produces the least average
loss. The loss function is defined in terms of mean squared
error. Figure 1 shows the average loss produced by RNN and
LSTM with varying number of neurons. It is visible from
the figure that RNN converges with 80 neurons while LSTM
needs 180 neurons. So, in our LSTM model, we have used
180 neurons.

o
©o
o

Normalized Speed Value

* Predicted Value
—— Actual Value
I

0 100 200 300 400
Timesteps

Figure 3. Predicted speed values by LSTM vs actual speed
values for the test data of the first TMC

Figure 3 shows the predicted speed value and actual speed
value of the first TMC for the first 400 timesteps. The loss of
this prediction is 2.704 x 1075,

4.3. Comparison Between RNN and LSTM

To compare which model is producing a better result, we
have run the model with their optimal number of neurons and
timesteps. Based on our experiments, the optimal number
of neurons for RNN and LSTM is 80 and 180 respectively.
RNN works the best with 10 timesteps and LSTM with 15
timesteps. So, we ran both the models for the first 100 TMC
to see which delivers the best result. Figure 4 shows the
losses for the first 100 TMCs. It is visible in the figure that
LSTM produces the least loss in most cases. The average loss
from RNN is 7.04 x 10~%, and average loss from LSTM is
6.55 x 104, So, LSTM works best for this dataset.

4.4. Prediction Using Gaussian Process Regression

Other than neural networks, we have also used Gaussian Pro-
cess Regression [Rasmussen and Williams (2005)] which is
a Bayesian approach for modelling functional relationships
to build traffic predictors. The underlying assumption in this
process is that the prior distribution of the regression function

M RNN: Loss
I LSTM: Loss

4

I

Loss from Predicted Values

-6 |
10
TMC 0 TMC 10 TMC 20 TMC 30 TMC 40 TMC 50 TMC 60 TMC 70 TMC 80 TMC 90TMC 100
Traffic Message Channel (TMC)

Figure 4. Loss from predicted speed values by LSTM and
RNN for the first 100 TMC (difference is shown in Log scale)

is considered to be a multivariate Gaussian distribution. By
calculating the covariance matrix for the labeled data and co-
variance vector between labeled and new test data points and
taking the measurement noise into account, the prediction re-
sult for the test data points can be obtained [Ghafouri, Laszka,
Dubey, and Koutsoukos (2017)]. In this work, we have used
Radial Basis Function (RBF) as the kernel. Figure 5 com-
pares the root mean square losses of the prediction results
produced by LSTM and Gaussian Process Regression for the
first 100 TMCs. The average loss from Gaussian Process Re-
gression is 0.0178 whereas LSTM produces an average loss
of 6.55 x 10~* showing that LSTM works best for this traffic
speed prediction problem.

10 T T T T T T T T T

I 1STM:Loss
N Gaussian Process Regression:Loss

<
T

(N

< <
\J

=
L

Loss from Predicted Values

S,

10
TMCO TMC10 TMC20 TMC30 TMC40 TMC50 TMC 60 TMC 70 TMC 80 TMC 90 TMC 100
Traffic Message Channel (TMC)

Figure 5. Comparison of LSTM and Gaussian Process Re-
gression based on predicting the speed of a chosen TMC

5. DETECTION OF ANOMALIES

The goal here is to identify anomalous sensor readings in the
traffic networks. Anomalous sensor readings can arise due to
sensor attacks as faults can be artificially injected in the data
stream associated with a sensor by a networked adversary. So
it is important to build effective anomaly detectors so that we
can mitigate the effects by replacing the erroneous or miss-
ing data with predictions based on correct values from other
sensors through data imputation.

Each TMC ID is associated with a sensor s; whose value is
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predicted through the set of sensors (s; € S,i # j) placed
in the neighboring (incoming and outgoing) road segments.
The anomalous sensor readings can be detected by calculat-
ing the difference between the prediction and the real-time
sensor measurement. The time series data representing this
difference can be used for identifying anomaly. The anoma-
lies in the sensor data can be introduced in two ways: additive
or deductive. In case of additive anomalies, the sensor read-
ings are increased arbitrarily compared to normal operating
conditions. Conversely, for deductive anomalies, the sensor
readings are decreased compared to the normal conditions.
We must inject anomalies artificially into the real data since
we need ground-truth labels for anomalies in order to validate
the detection approach, but we do not have any labels corre-
sponding to anomalous readings of real data. Figure 6 shows
and example of differences between the predicted and the ac-
tual real-time sensor measurements during an additive sensor
attack.

1.4

1.2

1.0

Normalized speed values

—— Predicted Speed of target TMC from neighboring TMC
--- Attacked Sensor measurement of target TMC

0.2

1] 50 100 150 200
Timesteps

Figure 6. Introducing additive anomaly into sensor readings
of a TMC

In this work, we use Cumulative Sum Control chart
(CUSUM) [Page (1954)], which is a statistical control chart
to track the variation of timeseries data. This algorithm is
used to identify the timestamp when the anomaly started and
ended, the amplitude of change, and an alarm (timestamp of
when the anomaly was detected).

By choosing a threshold, we can control the number of false
positives and negatives, i.e., we can modulate the sensitivity
of the algorithm for anomaly detection. The upper (usum!)
and lower (Isum!) cumulative sums are defined as:

usum?® = max{0, usum’~' + 2t — p — k} (1)

lsum! = min{0, lsum’ " + 2! — u+ k} )

The CUSUM criterion detects a sample z! of sensor s
to be anomalous at timestamp ¢, if (usuml >ns) or
(Isum? < ny), where 7; is the detection threshold for sensor

S.

' "' + Begin
o 06 $,0 00 % End
3 T i = Alarm
& 04 ! § vt
m ! |
o ! \
< 0.2 ' | N
& n . £'1) o
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-0.2
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Figure 7. Detection of anomaly through CUSUM algorithm

Figure 7 shows the detection of anomaly for the case de-
scribed in Figure 6. We introduced an additive sensor attack
between the time window of (80,100) and the difference be-
tween the predicted speed through LSTM and the sensor data
subjected to the attack has been fed to CUSUM, which trig-
gered the alarm at 80th and 100th instant, identifying the ac-
tual time of attack. This anomaly identification can be carried
out online as we continuously feed the difference between the
prediction and sensor measurements. This validates the fact
that using traffic predictors combined with change detection
algorithm CUSUM, online identification of anomalies is pos-
sible.

To compare the efficiency of the anomaly detection scheme
between the approach combining LSTM based traffic predic-
tors and CUSUM and on the other hand, Gaussian Process
Regression based traffic predictors and CUSUM, we show the
Precision-Recall curve for both the approaches by varying the
anomaly detection thresholds similarly. Series of randomly
generated additive and deductive anomalies have been intro-
duced in the sensor data and the above mentioned approaches
have been applied on the same altered data to identify the
anomalies. Figure 8 shows the Precision Recall curves of
LSTM and Gaussian Process Regression showing their com-
parative efficiency in identifying anomalies. The Area Un-
der Curve (AUC) for Gaussian Process Regression is 0.4070
whereas the AUC for LSTM based approach is 0.8507 show-
ing its superiority in identifying anomalies all other condi-
tions remaining equal. We expected LSTM to perform better
in anomaly detection because we had already seen in Figure
5 that it predicts traffic speed more accurately

It is to be noted that anomalies in sensor data can also be due
to physical incidents. However, the presence of any physi-
cal incidents can be deduced by Timed failure Propagation
Graphs indicating a sequence of anomalies. This is described
in detail in Section 6.
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Figure 8. Precision Recall curves of LSTM and Gaussian

Process Regression showing their comparative efficiency in
identifying anomaly

6. CASCADING EFFECT OF TRAFFIC CONGESTION

In a large-scale interconnected system such as a traffic net-
work, congestion in one (or some) parts can lead to conges-
tion in other, connected parts as well. In this paper, our goal is
to identify the pattern of how congestion originating from one
road segment propagates backwards to the incoming branches

of the road segment, creating a cascading effect of traffic con-
gestion.

To study the spread of road congestion, we used SUMO,
which is a microscopic traffic simulator. SUMO allows us to
introduce congestion by manipulating a running simulation
and to measure road traffic using simulated traffic sensors.
All of the experiments in this section are based on SUMO
simulations. We simulated congestion scenarios on a part of
Nashville’s road network, which we downloaded from Open-
StreetMap [“OpenStreetMap” (2019)]. Figure 9 shows the
part of the road network that we used in our simulations.

For our experiments, we introduced congestion at road seg-
ment R1.

6.1. Congestion Simulation

Figure 10 depicts an instance of congestion simulation, where
the vehicles at the target road R1 completely stop due to some
incident. The graph shows how the effect of the congestion
propagates backwards to affect all the incoming road seg-
ments of R1. Following the congestion at R1, the observed
speed at its first hop neighbors R2 and R3 drops immedi-
ately; whereas the speed at its second hop neighbors R4 and
R5 drops one minute later. Vehicle speed at the third hop
neighbor R7 drops following the speed drop at RS5.

We trained traffic speed predictors for each road segment us-
ing the data collected from SUMO. For training the predic-
tors, we modeled the speed of each road segment as a function
of its neighboring road segments, all working under normal

Direction of
P traffic flow

R4

Source of
congestion

RIV i)

Figure 9. Part of the Nashville traffic network showing the
source of congestion and the direction of traffic flow

operating conditions, so that each predictor learns how speed
at the target road segment depends on its neighbors. Then, we
tested whether they can predict the speed at a road segment

based on the speed at its neighboring road segments under the
influence of congestion.

17.5] ====== * ,1" Y ®  RI1/Congestion source
0 \ / ‘\ —-—— R2/1st hop
\
...._.._-'\‘\ ! I it R3/1st hop
12.5 \\‘\ ] V- R4/2nd hop
\
- | emmm———— I
E o :\\‘ 1‘ RS5/2nd hop
£ 100 | === R7/3rd hop
= 1
2 75 |
\
7 1
5.0 \
1
\
25 \1
\
0.0 S P

0 2 4 6 8 10 12
Time (minutes)

Figure 10. Congestion instance: vehicles at target road R1
completely stop due to some incident.

6.2. Effect of Physical Incidents

In section 5 we discussed anomaly detection when anomaly
was introduced at a particular road segment whereas the
neighboring road segments were working under normal op-
erating conditions. So, the traffic predictors predicted the
speed of the target road based on the speed of the normally
operating neighbors. As a result, the prediction result for the
target road produced normal speed values as the output which
deviated from the anomalous sensor readings showing large
difference in the actual and predicted speed.

In case of a physical congestion in a road segment the traf-
fic speed of the target road segment experiences a sudden
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Figure 11. Prediction result for 1st hop neighbor R2

-8- Predicted Speed
10.0 —— Actual Speed
w
7.5
E
? 5.0
Q@
&
2.5 090008000000 000000
0.0
0 5 10 15 20 25

Time (minutes)

Figure 12. Prediction result for 2nd hop neighbor R4

decrease in speed while its neighbors are still operating un-
der congestion free condition. So the prediction of speed
for that road segment is off by some margin from the ac-
tual speed at that current time as the prediction is based on
speed of the neighbors who are still working normally. Un-
der this condition our LSTM based traffic predictors should
raise an alarm due to the large deviation between actual and
predicted speed. However, as time progresses and conges-
tion propagates to the neighboring roads, the traffic predictor
for the target road starts giving predicted result close to the
actual decreased speed as the neighbors are also getting con-
gested. Once the difference between the actual and predicted
result goes down the alarm turns off'. Figures 11 and 12 show
that the time at which the congestion started there is a large
difference between actual and predicted speed and then the
difference decreases with progression of time.

We observe this sequence of alarms (as they turn on) for each
road as a time series to hypothesize the source of the physical
incident.

6.3. Timed Failure Propagation Graph of Traffic Net-
work

We can identify the source of congestion efficiently using a
Timed Failure Propagation Graph (TFPG) [Abdelwahed et al.
(2009)]. TFPGs capture the causality and temporal pattern of
failure propagation in complex systems. A timed failure prop-
agation graph (TFPG) is a labeled directed graph where nodes

"Note that this is because the LSTM is predicting based on recent history

O Monitored Discrepancy Node

— Direction of Congestion Propagation
[...] Time interval (Seconds)

D Root Source of Failure

Figure 14. An illustration of a TFPG Model with Failure
Modes (FM), Discrepancies (D), and fault propagation links.
Labels on edges indicate delay in (min,max) values. For a de-
tailed understanding please refer to Abdelwahed et al. (2009).

are either failure modes or discrepancies. Discrepancies are
the failure effects, some of which may be observable. Edges
in TFPG represent the causality of the fault propagation and
edge labels capture operating modes in which the failure ef-
fect can propagate over the edge, as well as a time-interval by
which the failure effect could be delayed (see figure 14).

Figure 13 shows a TFPG model capturing the propagation
of congestion among the edges of the network described in
Figure 9. To create a TFPG model for the traffic network,
we start with a directed graph of the traffic network, where
each road segment in the network corresponds to a discrep-
ancy node in the TFPG. The direction of the edges between
the TFPG nodes is opposite to the direction of traffic flows in
the traffic network since congestion propagates in the oppo-
site direction of traffic flow. The TFPG is comprised of a non-
empty set of discrepancy nodes (DN). Each edge e7rpg in the
TFPG model represents the direction of congestion propaga-
tion between two road segments with an approximate min-
imum egppg[tmin] to maximum ergpg[tmax] time bound.
The time for congestion propagation are subject to some fluc-
tuations depending on specific time of days and other exter-
nal factors. These time bounds are obtained from the simula-
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tion, which we set up by creating congestion scenarios in each
edge of the network and calculating the time bounds within
which the congestion propagates from one DN to other. All
the discrepancy nodes in the TFPG are OR type as they are
activated when the congestion propagates from any of their
parent nodes within the specified time bound. Certain dis-
crepancy nodes are consistently monitored, i.e., we have traf-
fic predictors for this discrepancy nodes;

Note that monitoring all the discrepancy nodes in a large-
scale traffic network is computationally expensive. There are
various ways for selecting monitored nodes of a graph un-
der the constraint of maximum number of allowed nodes that
can be monitored and can be treated as an optimization prob-
lem. Davis, Gera, Lazzaro, Lim, and Rye (2016) discussed
hill-climbing algorithm which starts with an initial seed node
for placing the first monitor and goes on placing the next
monitors on the highest degree neighbors. Wijegunawardana,
QOjha, Gera, and Soundarajan (2017) discussed strategies of
monitor placement based on graph topology and colors of
nodes. Other than some well-known monitor placement
strategies such as smart random sampling, red score, most
red neighbors, the authors proposed a learning based monitor
assignment strategy. As there are numerous well-established
methodologies for this problem, we do not discuss it any fur-
ther.

6.4. Diagnosis

In a traffic network, congestion created at a source road seg-
ment propagates to its incoming neighbors. So if the root
cause of an observed congestion at a certain road segment
is to be found, then the root must lie within its k-hop out-
going neighbors in the traffic network. Note that the direc-
tion of traffic flow in the network is opposite to the direc-
tion of the congestion propagation shown in TFPG. Hence,
once an alarm is observed from one of the monitored dis-
crepancy node, a hypothesis is made such that the root failure
node must lie within a subset of k-hop incoming discrepancy
nodes in the TFPG. So, starting from a monitored alarm at a
monitored discrepancy node, traverse through the TFPG, in
a backward manner, and check if their corresponding alarms
have been activated within the time range specified and go
up to k-hop incoming discrepancy nodes, until the alarm at
k-th hop discrepancy node is not activated but alarms till (k-
1) th hop discrepancy nodes have been activated, so that we
know that the source of congestion was at (k-1)th hop dis-
crepancy node. At each hop, the subset of DNs whose alarms
are not observed from the set of DNs at that hop are elimi-
nated from the hypothesis set, so that the hypothesis set for
finding the root of failure shrinks continuously and ultimately
boils down to a single discrepancy node which is the source
of congestion.

6.5. Case Study

Here we present a case study, where we try to find the source
of congestion for road segment R4 (see Figure 9) where an
alarm has been observed in the corresponding DN after 5
minutes from start of simulation. For the root cause diagno-
sis we first check for its first hop incoming neighbors R3 and
R13, out of which the alarm of R3 has been activated almost
60 seconds ago and the time bound for congestion propaga-
tion from R3 to R4 is (20-60) seconds as shown in the TFPG
model in Figure 13. However DN R13 is inactive following
by the same logic. Next we check when the alarms of the
immediate incoming neighbors of only R3 triggered, and find
the alarm of R1 to be activated within specified time bound.
Then we stop checking further as the alarms associated with
none of the immediate incoming neighbors of R1 is activated,
returning R1 as the source of congestion correctly.

7. CONCLUSIONS AND FUTURE WORK

We proposed a traffic prediction model considering a large-
scale traffic network as a connected directed graph and com-
pared two machine learning approaches, of which LSTM per-
formed the best with an average loss of 6.55 x 10~ on
Nashville traffic data. We employed CUSUM along with the
trained traffic predictor models to identify malicious sensor
attacks, which achieved a precision-recall curve with AUC
0.8507, demonstrating the effectiveness of the approach in
anomaly detection. Next, we analyzed cascading effect of
traffic congestion using a traffic simulator and predicted its
impact on the traffic speeds in the neighboring region of the
source of congestion. The most interesting contribution of
this paper lies in formulating the cascading effect of con-
gestion propagation problem as a Timed Failure Propaga-
tion Graph. We identified the source of congestion traversing
through the TFPG on observation of congestion at any edge
of the traffic network. In future work, we will analyze cas-
cading failures in other large-scale coupled systems, such as
electrical grids and water networks, and identify the sources
of failures using approaches that are similar to the ones intro-
duced in this paper.
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