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ABSTRACT

We show how to exploit graph sparsity in the FLoYD-WARSHALL
algorithm for the all-pairs shortest path (Apsp) problem. FLoyD-
WARSHALL is an attractive choice for Apsp on high-performing
systems due to its structural similarity to solving dense linear
systems and matrix multiplication. However, if sparsity of the
input graph is not properly exploited, FLoyD-WARSHALL will
perform unnecessary asymptotic work and thus may not be a
suitable choice for many input graphs. To overcome this limita-
tion, the key idea in our approach is to use the known algebraic
relationship between FLoyD-WARSHALL and Gaussian elimi-
nation, and import several algorithmic techniques from sparse
Cholesky factorization, namely, fill-in reducing ordering, sym-
bolic analysis, supernodal traversal, and elimination tree par-
allelism. When combined, these techniques reduce computa-
tion, improve locality and enhance parallelism. We implement
these ideas in an efficient shared memory parallel prototype
that is orders of magnitude faster than an efficient multi-
threaded baseline FLoyD-WARsHALL that does not exploit spar-
sity. Our experiments suggest that the FLoyD-WARSHALL algo-
rithm can compete with Dijkstra’s algorithm (the algorithmic
core of Johnson’s algorithm) for several classes sparse graphs.
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1 INTRODUCTION

In this paper, we improve the performance of the classic
Floyd-Warshall algorithm (FLoyD-WAaRsHALL) for the all-pairs
shortest path (Apsp) problem on shared memory parallel ma-
chines for sparse graphs. FLoYD-WARSHALL is appropriate
when the graph is dense or nearly so, in which case one can
achieve good parallel scalability and high-performance by ex-
ploiting the algebraic connection between FLOYD-WARSHALL
and the Gaussian elimination process for solving linear sys-
tems [3, 6, 12]. Through that lens, FLoYD-WARSHALL reduces
to matrix-multiplication-like (level-3 BLAS-like) operations,
thereby enabling fast computations of Apsp on, for instance,
GPUs [5] or distributed memory platforms [38]. But if the
graphis sparse, then the implementation of FLoyD-WARSHALL
must change. Our key insight, similar to matrix multiplication,
is that the full body of algorithmic techniques from sparse direct
solvers can be applied [9] for FLOYD-WARSHALL on sparse graphs.

Formally, we consider Apsp on a weighted undirected graph
G = (V,E) with n = |V| vertices and m = |E| edges. The
weights may be negative, but we preclude cycles whose sum of
weights is negative. If, furthermore, the graph is dense, so that
m=0(n?), then one may use the FLoYD-WARSHALL algorithm.
Its overall algorithmic structure consists of three nested-loops
(Algorithm 1), each iterating over all vertices, so its sequential
complexity is O (n®) operations. Throughout, it updates a ma-
trix {Dist};; that stores the length of the current shortest path
between any two vertices v; and vj; this distance is initialized
to oo if no path has yet been discovered. FLoYD-WARSHALL
maintains, at each iteration k, the invariant that the {Dist};;
is minimum with at most k vertices as intermediaries. Hence,
as shown in Fig. 1, FLoyD-WARsHALL discovers more paths
between vertices and the number of infinite {Dist},;; entries
decreases.

For sparse graphs, m=O(n) and we prefer methods with
better asymptotic scaling. One option is Johnson’s algorithm,
which scales like O (n?logn+nm) [21]. However, Johnson’s
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Figure 1: In FLoyD-WARSHALL algorithm, the distance matrix
which is initially sparse, quickly become dense if vertex ordering is
not optimal

algorithm cannot effectively use the features of modern com-
puter architecture such as long SIMD vector units or cache,
and therefore, it underutilizes modern high-performing com-
puting systems. It is natural to ask whether we can exploit
sparsity in FLoYD-WARSHALL to reduce its asymptotic com-
plexity while retaining its parallel-scalability.

Our approach to doing so derives from the known technique
of vertex reordering [26, 33]. During the execution of FLoYD-
WaRsHALL, infinite values of {Dist};; will play the role of “zero
entries” in sparse numerical linear algebra, and certain oper-
ations on infinite values may be avoided. By choosing the op-
timal vertex order of the outer-loop of FLoyD-WARSHALL, we
can defer replacement of infinite values for more iterations of
the algorithm. The so-called fill-in reducing orderings used in,
for instance, sparse Cholesky factorization to keep the factor
matrix sparse, are also optimal in the case of FLOYD-WARSHALL.
If a graph has a minimal vertex separator of size S that par-
titions the graph into two components of roughly equal size,
then the use of a fill-in reducing ordering in FLoyD-WARSHALL
will incur only O (n?S+S?) operations. This can be asymptot-
ically lower than O (n?). For instance, in a planar graph like
a road network, the separator size is S = O(\/ﬁ); therefore,
FLoyD-WaRsHALL would incur O (n?®) operations. Evenin the
case of graphs with S=O(n), using the fill-in reducing order-
ing, a constant-factor reduction in the number of operations
can be substantial. Therefore, using an optimal reordering is
necessary for good performance of a sparse FLOYD-WARSHALL.

The use of fill-reducing orderings poses several challenges.
First, one must design a careful data structure that can accom-
modate new entries in {Dist},;. Secondly, the data structure
should also support blocked operations, to effectively use the
memory hierarchies in modern architectures [17]. These is-
sues motivate our supernodal FLOYD-WARSHALL, or SUPERFW,
inspired by supernodal sparse Cholesky factorization [9]. In
the supernodal approach, we group nodes having a similar ad-
jacency structure into supernodes, and operate on supernodes
instead of individual vertices, thereby leading to a blocked
algorithm. To accommodate new entries in the {Dist};;, we
use symbolic analysis, which can efficiently extract the fill-in
structure of the {Dist},; matrix. We perform symbolic anal-
ysis and extract supernodal structure to set up a supernodal
block sparse matrix, which allows blocked operations while
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Table 1: List of symbols used

Symboltype Symbol Description
x®y min(x,y)
xX®y x+y
PxQ Cartesian Product of non-empty sets £, Q
n Dimension of the matrix A

Granhs np Dimension of every block of Dist matrix

E G(V,E) InputGraph G with V vertices and E edges

Dist Distance matrix
B Elimination tree of A

Supernode S Top level separator of E
C1, Cy Children etrees of E
Ala) set of ancestors of a supernode a
D(a) set of descendents of the supernode a

exploiting the sparsity. Finally, the operation and task depen-
dencies in SUPERFW can be represented by an elimination tree.
Its structure indicates what operations may execute concur-
rently and, therefore, guides parallelism.

Applying these ideas from sparse Cholesky factorization
results in an efficient shared-memory parallel SUPERFW im-
plementation. We show that it can in practice be orders of
magnitude faster than an efficient implementation of FLoyD-
WarsHALL that does not exploit the sparsity (Section 5). More-
over, despite performing asymptotically more operations, Su-
PERFW’s better match to modern hardware can make it com-
parable to or even faster than Johnson’s algorithm for many
sparse graphs, as well as more scalable. Finally, given the rich
literature for optimizing sparse Cholesky high-performance
systems, we believe many of these techniques are also applica-
ble to graph path problems. We discuss potential scenarios in
which graph path analysis would benefit from optimization
techniques in linear systems, and vice versa.

2 BACKGROUND

Many path problems in graph analysis can be described suc-
cinctly in a semiring algebra. We review this formalism and
the resulting classical and blocked FLoyD-WARSHALL algo-
rithms for Apsp, below.

Notation and terminology. Let G = {V,E,W} be an undi-
rected weighted graph with a vertex set V containing n=|V/|
vertices or nodes, edge set E with m=|E| edges, and weights
W, defined below. Denote the i-th vertex by v; and an edge
between v; and v; by e; ;. The weights are represented by W,
a sparse symmetric matrix whose entry w; ; denotes the dis-
tance between vertices v; and v; if e; ; € E; otherwise, w; j = oo.

During the computation of Apsp, FLoyD-WARSHALL main-
tains and updates a 2-D array of distances, Dist. Each entry
Dist[i,j] holds the current shortest distance between v; and
v; discovered so far, with its value at termination of the al-
gorithm being the shortest such distance. We will assume
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for simplicity that the graph G consists of a single connected
component, in which case the Dist eventually becomes fully
dense; however, our implementation will work when there
are multiple connected components.

2.1 Classical FLoyD-WARSHALL algorithm

Algorithm 1 FLoyD-WARsHALL algorithm for Apsp

1: function FLoypWARSHALL(G =(V,E)):
2:  Letne«dim(V)

3 LetDistlij]= " 1R)EE
otherwise
4. fork={1,2...,n} do:
5 fori={1,2...,n} do:
6: for j={1, 2...,n} do:
7 Dist[i,j] = min{Dist[i,j], Dist[i,k]+Dist[k,j]}
8 Return Dist

FLoYD-WARSHALL uses a dynamic programming approach
to computing Apsp, as shown in Algorithm 1. It initializes
Dist with the input weights W. Then, in the k-th iteration, it
checks for all pairs of vertices v; and v; if there is a shorter path
between them via the intermediate vertex vy. If so, FLoyD-
WarsHALL updates Dist[i,j]. Therefore, Dist[i,j] after k steps,
which we denote by Distk (i,j), may be defined recursively as

Dist*[i,j] — mm{Dist"—1 [i,j],Dist*1[i k] + Dist* [k, j]}.

This computation may be done in place, with Dist*[i,j] over-
writing Dist*'[1,j]. It can also be shown that after k iterations,
Dist¥[i,j] is the shortest of all paths between v; and v; that
use only vertices from the set {v;,vs,...,0x }.! Therefore, at
the end of the n-th iteration Dist"[i,j] will be the length of the
shortest path between v; and v;.

2.2 MiN-PLus Matrix Multiplication

Arsp may be understood algebraically as computing the ma-
trix closure of the weight matrix, W, defined over the tropical
semiring [12]. In more basic terms, let ® and ® denote the two
binary scalar operators

min(x,y)
x+y,

x®y
x®y

where x and y are real values or co. Next, consider two matrices
AeR™k and BeRF" The MiN-PLus product C of Aand B is

®
C[j — ZAik ®Bkj :l’l’lkin(Aik +Bkj) ’
k

This product is the analogue of matrix-matrix multipli-
cation over the reals. To see its connection to graph path
analysis, consider an example of the complete tripartite graph

IThis fact holds only if there are no cycles of negative weight sum. In the
presence of negative cycles, the minimum path length between any two
vertices in the cycle will be co.
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Source Nodes

(a) MinPlus product C=AQ®B

(b) Substeps of Algorithm 2

Figure 2: Fig. 2a shows the shortest path between source vertices
and destination vertices that goes through bridge vertices (see Sec-
tion 2.2). Fig. 2b illustrates substeps of Apsp on the diagonal sub-
graph, panel (block row and column) update, and outer-product up-
date of the trailing subgraph.

in Fig. 2a. This graph has three disjoint subsets of m+n+p
vertices: m source vertices, {s1,52:**Si }; n destination vertices,
{d1,dz---d,, }; and p bridge vertices, {bl,bg ---bp}. Every source
and destination connects to every bridge, but no vertices
within each subset are adjacent. Let A;x denotes the weight
of the edge (s;,b) and let By ; be the weight of (bx,d;). Then
Ak ®Byj = Ajx+Byj denotes the length of path from s; to d;
via by Thus, the shortest path between s; and d; via any vertex
by is the minimum of A;; ® By over all k. This interpretation
of the MIN-PLUSs product helps to understand the following
blocked version of FLoyD-WARSHALL (Algorithm 2).

2.3 Blocked FLoyD-WARSHALL algorithm

Suppose we divide Dist into n; X np blocks, each of size
bxb (ie., ny = 7). Let A;j denote the (i,j) block of A, where
1 < i,j < np. Then a blocked version of FLoyD-WARSHALL,
called BLockEDFw in Algorithm 2, can carry out the same
Apsp computation as FLoyD-WARSHALL in the following three
steps, as illustrated in Fig. 2b:

o Diagonal Update: Perform the classic FLoyD-WARSHALL
algorithm on a diagonal block, Ag.

e Panel Update: Update the k-th block row and column. For
any block A(k,j), j#k in the block row, the update is a MIN-
Prus multiply with Agy from the left, and for block A(i,k)
on the k-th block column is MIN-PLus multiply with Ay
from right, i.e.,

A(k,j) —A(k,j)® A(k,k)RA(k.j)
A(ik) —A(iLk)® A(i,k)®A(k,k)

j*k
ik
Here, ® denotes element-wise application of the corre-
sponding scalar operator, and ® denotes MIN-PLUS product.
e MinPlus Outer Product: Perform the outer product of k-

thblock row and block column, and update all the remaining
blocks of matrix A

A(i,J) — A(i,))® A(i,k)®A(k,)) i,j+k.
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[4]

Figure 3: An illustration of BLocKkEDFwW on a 3 X 3 block-
partitioned matrix.

A23

A33

This step is analogous to a Schur-complement update in LU
or Cholesky factorization.

Algorithm 2 A blocked version of FLoyD-WARSHALL algo-
rithm for Apsp
1: function BLoCKEDFLOYDWARSHALL(A):
2:  fork={1,2...,n;} do:
Diagonal Update
3: A(k,k) «—FLoyp-WARsHALL(A(k,k))
Panel Update
4 Alk,:) — Ak, P Alk,k)®A(k,:)
5: A(k) — A(LK)ED AL k)®A( k)
MinPlus Outer Product
fori={1,2...,np},i#k do:
for j={1,2...,np}, j#k do:
A(L)) — AP A(i,k)®A(k.))
Return A

3 SUPERNODAL FLOYD-WARSHALL

When the Dist matrix is sparse, we can use ideas from sparse
direct solvers to transform the BLockeEDpFw algorithm into one
that can maintain and exploit that sparsity. There are three
critical concepts: (i) reordering, which helps to control the dy-
namically evolving sparsity structure of Dist, thereby control-
ling the amount of asymptotic work incurred by BLOCKEDFw;
(ii) supernodes, which help manage and organize this struc-
ture, thereby exploiting locality; and (iii) the elimination tree,
which helps express the operational and data dependencies,
thereby exposing parallelism.

3.1 Effect of ordering on BLOCKEDFw

When running BLOCKEDFW, the sparsity of Dist in any given
iteration determines how that sparsity will change in subse-
quent iterations. We illustrate these dependencies in Fig. 3.
There, we show a 3x3 block-partitioned sparse matrix with
a particular sparsity pattern in which the Ay; and A;, blocks
are “empty,” meaning that all the entries in them are infinity.

The first iteration of BLOCKEDFW, i.e., k =1, performs a D1-
AGUPDATE on the A;; block followed by PANELUPDATE on the
block A3 and As;. Since A;; and Ay; are empty, they remain
empty after the PANELUPDATE step. In the OUTERUPDATE step,
the blocks Az, Azs, and Asy remain unchanged since any up-
dates thereto depend on A or Ay, which are empty. We only
perform an update on the block As3 as follows:

Azz A3z ® A31®A;3.
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Figure 4: Nested Dissection (ND) on a 5x5 grid graph. Under an ND
ordering, we find a graph separator (highlighted in yellow Fig. 4a),
and label the nodes in the separator in the end. Fig. 4b shows the ad-
jacency matrix of the graph permuted in ND ordering. The elimina-
tion tree (Fig. 4c) captures the dependency in elimination of different
nodes. The Fig. 4d shows the final block sparse matrix obtained after
steps described in Sections 3.2 and 3.3.

(d) supernodal matrix

Similarly, when k = 2, we perform D1AGUPDATE on the
block Aj;, and PANELUPDATE on Aj; and Asy, and we only
perform update on the block As3

Azz — A3z ® A3p®@Ajs.

In the 3rd iteration, we perform DIAGUPDATE on the block
A3z, PANELUPDATE from the left on A3; and A3z, and from the
right on A3 and Ajs. Since none of the third row and column
blocks are empty, we update all the remaining blocks in the
OUuTERUPDATE step. The blocks Ay, and Az; which had been
empty so far finally become full blocks:

A —A13®A3
Az — A3 ®As;.

This example reveals two essential aspects of BLOCKEDFw.

(1) For this particular example, the block sparsity is main-
tained until the last iteration. That is, only when k=3
does execution of the OUTERUPDATE step require an
update on the complete matrix in which empty blocks
(of all oo values) become finite. This change from infi-
nite to finite values is the graph-path analog of nonzero
fill-in in sparse linear algebra.
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(2) The OUTERUPDATE step in the first iteration does not
involve updating any block of second block row or col-
umn, i.e. Ay, Ass and Ajsz, and vice versa. Therefore,
the D1AGUPDATE and PANELUPDATE of iterations k=1
and k =2 do not have any data dependencies, and may
therefore proceed in parallel. However, both iterations
update the As3 block. Nevertheless, since MiN-Prus Ma-
trix Addition is associative, the updates from the two
iterations can be done in any order. Thus, the final As3
after the two updates will be given by

A3z A33® A3 ®A3® A31®A;3.

This dependency between operations in iteration k =3
on those from k=1 and k =2 can be described by a tree,
as shown in Fig. 3 (last).

3.2 Nested-Dissection Ordering

From the theory and practice of sparse matrix reordering, it is
well understood that “arrow” patterns for Gaussian elimina-
tion work well in reducing fill-in. Indeed, we can reorder the
adjacency matrix of the graph G to obtain block-arrow struc-
ture through a process known as nested-dissection (ND) [14],
which graph partitioning tools like Metis or Scotch can be
used to obtain [22, 31].

The ND process may be summarized as follows. Our initial
goal is to compute a vertex separator S C'V that partitions the
vertices of the graph G into three disjoints sets, V =C; USUCy,
so that following holds:

(1) there are no edges between any vertex in C; to any
vertex in Cy;

(2) |C1] and |C;| are roughly equal; and

(3) Sisassmall as possible.

Using this partition, we can reorder the adjacency matrix A
so that the vertices within each set C; and C, have consecutive
indices; and vertices in S have a higher index than any vertex
in C; and C,. For example, in Fig. 4, we show a grid graph G,
a separator, its adjacency matrix, and the 3 X3 block-arrow
matrix obtained by reordering the matrix as described above.
This process may be performed recursively within C; and C,
to obtain a more fine-grained ordering for the entire matrix.

3.3 Supernodal structure extraction

The goal of this step is to obtain a blocked sparse matrix as
shown in Fig. 4b that we shall call supernodal matrix, from the
permuted matrix using ND ordering (shown in Fig. 4d); and to
calculate the so-called elimination tree (shown in Fig. 4c) that
guides the scheduling and parallelism of our algorithm. We
borrow the so-called symbolic analysis used in sparse direct
solvers to do so.
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Symbolic analysis: Symbolic analysis is the calculation
of the exact fill-in structure in sparse Cholesky factorization.
It enables preallocation of memory for any fill-ins.

Elimination tree: Recall the 3 X 3 block sparse matrix
shown in Fig. 3. Elimination can proceed in either {1,2,3}
or {2,1,3} order while maintaining low fill. Such an elimi-
nation ordering can be described using a tree Fig. 3, called
elimination tree or ETREE. The ETREE is also calculated during
the symbolic analysis step. ND ordering leads to a multilevel
ETREE as shown in Fig. 4c.

Supernodes: A supernode is a collection of vertices or
nodes that have a similar fill-in structure. When that occurs,
these vertices may be grouped together to obtain block-sparse
matrix. The supernodal partition is obtained by perform-
ing vertex contraction on the ETREE, yielding a supernodal
ETREE. For subsequent discussion, ETREE refers to a supern-
odal ETREE.

Ancestor and descendant supernodes: Further, we de-
fine the ancestors of a supernode as the set of supernodes that
consist of its parent, the parent of parent, and so on. Similarly,
if supernode a is an ancestor of another supernode b, then
we say b is a descendant of a. In the ETREE representation,
the ancestors of a node occupy a higher spot than that node
and descendants appear below it. We denote ancestors and
descendants of a supernode v by A(v) and D(v), respectively.

3.4 The SuPERFw algorithm

Algorithm 3 The SurerFw algorithm

1: ng := Number of supernodes
2: function SurerFw(G=(V,E)):
3 fork={1,2...,ns} do:

Diagonal Update

4: A(k,k) < FLoyD-WARSHALL(A(k,k))
Panel Update

5: for ie A(k)UD(k) do

6: A(ik) — A(i,k)® A(i,k)QA(k k)

7: Alk,i) — A(k,i)® A(k,k)®A(k,i)
MinPlus Outer Product

8: for (i,j) e {A()UD(k)} x {A(k)uD(k)} do:
A(i,j) — A(1,))® A(i,k)®A(k,))

b

Algorithm 3 describes the sequential SUPERFw algorithm.
At a high-level, it performs FLoyD-WARSHALL iterations on
the supernodal matrix. However, this algorithm exhibits some
subtle behaviors.

Consider the elimination of a supernode v. Its elimina-
tion only requires updating blocks corresponding to A(v),
D(v), and v itself. The D1AGUPDATE and PANELUPDATE are
performed in place. The regions updated in the OUTERUPDATE
step can be divided into four subsets:

(1) D(v)xXD(v) (top-left region, relative to a),
(2) D(v)xA(v) (top-right region),
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(b) The ETREE view
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Figure 5: Parallel OUTERUPDATE of two cousin supernodes. The
regions that updated in the OUTERUPDATE step of elimination of sec-
ond and fifth supernode are highlighted under blue and green trans-
parency, respectively.

(3) A(v)xD(v) (bottom-left region), and
(4) A(v)xA(v) (bottom-right region).

Theese different regions associated with the elimination of a
node appear in Fig. 5a. In conventional Cholesky factorization,
we only need to update A(v) X A(v), also called the trailing
matrix. This operation involves only sparse blocks, and it
updates the supernodal block sparse matrix. The OuTERUP-
DATE on D(v)XD(v), D(v)x A(v) and A(v)x D(v) directly
updates the distance matrix, which is dense. At the end of the
computation, the supernodal matrix contains the semiring
equivalent of Cholesky factors and the dense distance matrix
contains final pairwise lengths of all shortest paths.

3.5 Parallel SupErFw algorithm

Recall from the baseline BLockEDFwW algorithm that, in the
k-th OUTERUPDATE step, all the updates on all the A;; blocks
could be performed in parallel. Relative to that available par-
allelism, the enhancement in SUPERFW comes from exploiting
the ETREE.

ETREE guided scheduling and parallelism. We say a supern-
ode a is a cousin of a supernode b if D(a) N D(b) = 0. For
instance any two leaf nodes in the ETREE are cousins. The
D1aGUPDATE and PANELUPDATE of any two cousin nodes can
be done in parallel as they operate on distinct regions of the
matrix. Next, consider the dependencies in the OUTERUPDATE
step of two cousins. Recall the four sets of blocks updated in
the OUTERUPDATE: D (v)X D(v), D(v) X A(v), A(v)XD(v),
and A(v) X A(v). Any block A(i,j) in the first three subsets
will have at least one of i and j in D(v). If two supernodes v
and u are cousins, then by definition D(v)ND(u)=0. There-
fore, the first three subsets of OUTERUPDATE of two cousin
supernodes are disjoint and can be updated concurrently. But
A(v)x A(v) and A(u) X A(u) can have some common blocks.
Therefore, those blocks are updated sequentially.
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To expose maximum parallelism, we perform a bottom-up
topological sort of the ETREE, which partitions the ETREE into
levels as shown in Fig. 5b. Since all the supernodes in the given
level are cousins to one other, their elimination can be done in
parallel. We refer to such ETREE-guided scheduling as ETREE
parallelism.

4 ASYMPTOTIC ANALYSIS

Table 2: Asymptotic work(W), depth(D) and
concurrency(C)

Algorithm w(n)f D(n)f C(n)*
BLOCKEDFW o(n?) O(n) 0o(n?)
SUPERFw 0(n?1)) O(IS|log?n) o(lo'gljn)
DIJKSTRA O(n?logn+nm) O(nlogn+m) O(n)
PATHDOUBLING [40] o(n?) O(logn) o ( ; :;n )

© n: #vertices, m: #edges, |S|: size of the top level separator.
 lower is better. & higher is better.

We use the work-depth model[4] to quantify the asymptotic
sequential work and the available parallelism for different
algorithms. The work is the total number of operations per-
formed and the depth is the length of the longest sequential
chain of data dependencies. Formally, if T(n,p) denotes the
time of execution of a parallel algorithm on p processors for a
problem of size n, then work W(n) and depth D(n) are defined
as follows:

W(n)=T(np=1) (1)
D(n)= 101330 T(n,p) (2)

Using W(n) and D(n), the average available parallelism, or
concurrency C(n), is defined as

W(n)

D(n)’

The concurrency C(n) indicates the average number of pro-
cessors an algorithm can fruitfully utilize.

C(n)=

We assume a parallel randomaccess memory (PRAM) model [1]

of parallel execution that supports concurrent read exclusive
write (CREW). In this model, all processors can access a mem-
ory location simultaneously, and only one processor can write
at alocation at a time. In terms of their depth costs, perform-
ing x; «— ay; + f has a depth of O(1); and reduction operation
Y < >;—1.,%; has a depth of O(logn).

4.1 Asymptotic Work

If |S| is the size of the top-level separator of graph G with n
vertices, then the cost of running SUPERFW is O (n?[S]). The
asymptotic cost reduction from O (n*) to O (n?|S|) comes from
the ND reordering. The asymptotic cost of ND reordering and
other equivalent reordering schemes can be found elsewhere
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as well [26]. Given the algebraic equivalence of SUPERFW with
sparse Gaussian elimination (Cholesky for the symmetric or
undirected case), its costs are the same; here, we sketch the
derivation of that cost and its implication for SUPERFw below.

Let V={C;USUC;} be a nested dissection vertex partition-
ing of the graph G = (V,E). Let |S|, |C4|, and |C;| denote the
number of vertices in each set. In the following discussion, we
assume the following. First, the separator is small, i.e., |S| <n
and the partition is balanced, i.e., |C;| =|Cs|. Therefore,

|Ci]=|Cs|=n/2.

Further we assume that size of separators as a function of num-
ber of vertices in the graph denoted by S(n), is monotonic, i.e.:

ny>n; = S(ny)>S(ny).

Consider the elimination of the separator S, which is the last
iteration of SUPERFw. It involves three steps: DIAGUPDATE,
PANELUPDATE and OUTERUPDATE. The cost of DIAGUPDATE
is equal to the cost of running FLOYD-WARSHALL on a graph
with |S| vertices, or O(|S|*). The PANELUPDATE step involves
MIN-PLus matrix multiplication of the two separator panels
of size |S| x (n—|S|)) with a |S| X |S| matrix; thus, its cost is
|S|2x(n—|S])). The OUTERUPDATE step involves computing
outer product of the two panels; (n—|S|)x|S| and |S| X (n—|S]);
thus, its cost is (n—|S|)?x|S]. Since |S| < n, the outer product
cost will dominate and so the total cost of elimination of the
top level separator is given by

WO(n)~n?S(n).

Here zero denotes the level of separator from the top, i.e., root
has a level zero and leaves have level h — 1, where h is the
height of the separator tree.

Now consider the elimination of the two first level separa-
tors in the ETREE. Again, OUTERUPDATE dominates the cost of
elimination. Recalling our assumption that the partitions are
approximately balanced, then OUTERUPDATE involves com-
puting outer product whose dimensions are (n/2+|S(n)/2|))x
|S(n/2)| and |S(n/2)|X(n/2+|S(n)/2|), so that the cost of elim-
ination of the two first level separator is

wim=2(5)'s()=55(3)

Similarly, the total cost of elimination of all the i-th level
separator is given by
-Zs(2).
2t \2¢

. (n\2 (n
w! ~2! ( —) S ( —)
(m=~2 35 ) S{ 5

There are approximately logn levels of the separator. There-
fore, summing over all levels yields the final cost,

logns(n/zi)
=n?S(n) - .
) IZ:(; 2iS(n)

logn

Wi~ 5

i=0
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S(Srz/nz)l) < 2, the coefficient of n%S(n)

inW(n)is < Zlfonl/zi < 1. Hence, the total work of SUPERFW

on a graph with n vertices is given by

W(n)=n%|S|.

Since S(n) is monotonic, so

(3)

4.2 Asymptotic Depth

The depth of the baseline FLoyD-WARSHALL algorithm is O(n)
since each of n vertices of the graph is eliminated sequen-
tially. Within the elimination of a single vertex, DIAGUPDATE,
PANELUPDATE and OUTERUPDATE will each have depth O(1)
using O (n?) processors. If the SUPERFW does use the etree
parallelism and perform sequential elimination of vertex,
then it will have the same depth O(n) as the baseline FLoyD-
WARSHALL.

To calculate the depth of SUPERFW with etree parallelism,
we consider the elimination of top-level separator first. The
elimination of top-level separator uses the blocked FLoyD-
WARsHALL algorithm, thus its depth is S(n). In the first level,
we eliminate two separators each of size ~S(n/2) in parallel.

For the elimination of two separators in the first level, we
can perform DIAGUPDATE, PANELUPDATE, and OUTERUPDATE
involving regions of AX D, D X A and D x D, in parallel.
However, for performing OUTERUPDATE involving A X A,
we may update the same block from OUTERUPDATE step of
either separator. In general, in the elimination of separators
of the i-th level, multiple processes might try to update the
same block in A X A. Notice that the update is a reduction
operation, hence if p process try to update the same block, we
can perform the update using tree-reduction with a depth of
log,p—1=0(logp). Since any block in A XA will be updated
by at most O (2') processors at level i, hence the depth of up-
dating any block in OUTERUPDATE of update of any block in
the AXA will be at most log(2") =i. Therefore, the depth of
performing elimination in the i-the level of the separator tree
will be iS(n/2"). So the total depth of performing SUPERFW is
given by :

logn logn

D(n)= Z iS(n/2") < ZlognS(n) =S(n)log’n

i=0 i=0

4)

Therefore, the depth of performing SUPERFwW with etree par-
allelism is O (S(n)log?n) or just O(|S|log*n). Verily, we can
express the available parallelism or concurrency as :

W _ o
D(n) _O(logzn)

In Table 2, we summarize the work, depth, and concurrency
of SurERFw and BLockeDFw, along with two notable gen-
eral Apsp algorithms a) DIjkSTRA which is work optimal for

C(n)=

(5)

4.3 Discussion
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Table 3: Test sparse matrices used in experiments

Name Source n mEE
USpowerGrid Power network 4.9e3 2,66 6.2e2
OPF_6000 Power network 2.9e4 9.1  1.4e3
ndeék 3D 1.8e4 383 5.8
oilpan structural 7.3e4 291 1.7e2
finan512 Optimization 7.5e4 7.9  1.5e3
net4-1 Optimization 8.8e4 28 2.9e3
c-42 Optimization 1.0e4 10.58 1.5e2
c-69 Optimization 6.7e4 9.24  2.0e2
Iph Optimization 3.2e4 10 4.8e2
onera_dual Structural 8.5e4 49  1.5e2
email-Enron SNAP 3.7e4 9.9 52
delaunay_n14 DIMACS10 1.6e4 599  1.7e2
delaunay_n16 DIMACS10 6.5e4 5.99 1.7e2
fe_sphere DIMACS10 1.6e4 5.99 8.5el
luxembourg_osm  DIMACS10 1.1e5 21 6.7e3
fe_tooth DIMACS10 7.8e4 11.6 88
wing DIMACS10 6.2e4 3.9 1.0e2
t60k DIMACS10 6.0e4 3.0 1.1e3
G67 Random le4 4 5.0el
EB_8192_256 Barabasi - Albert 8.1e3 256 2.5e0
EB_16384_64 Barabasi - Albert 1.63e4 64 2.6e0
rgg2d_14 Random Geometric ~ 1.63e4  128.17  1.6el
rgg3d_14 Random Geometric ~ 1.63e4 910 2.57

hypercube_14 hypercube Graph 1.6e4 28 5.0e0

sparse graphs but offers only O(n) concurrency; and b) PaTH-
DouBLING is aknown theoretical variant of FLoYD-WARSHALL
algorithm with best known parallel complexity. Per Eq. (3), Su-
PERFW lowers the work complexity of FLoyD-WARSHALL by a

n

factor of O ( S ) ,while also reducing the asymptotic depth by

o ( m) Hence SuPERFwW improves the asymptotic work

complexity with little exacerbation of available parallelism. In
contrast, DIJksTRA’s algorithm has a lower asymptotic work
complexity, but it has a concurrency of O(n). Further, Diyk-
STRA uses the priority queue data structure, which may not
effectively utilize modern architectural features such as on
chip cache memory and large SIMD units found on modern
processors.

Per Eq. (3), a small vertex separator implies an asymptotic
reduction in the cost of SUPERFW relative to the naive (dense)
costof O (n®). The class of graphs with small separators largely
fallsinto the category of geometric graphs, as well as additional
classes of graphs derived from geometric graphs.Informally,
a geometric graph is one that can be embedded into a d < n-
dimensional grid [10]. For a d-dimensional grid graph, there

exists a separator of size O(nl_i ) The best-known example
isaplanar graph, which has a separator of size O (v/n)[27]. Ad-
ditionally, there are graphs with O(n) separators also known

as expander graphs [20]. Many random graphs tend to become
expanders as number of edges increase.
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5 RESULTS

We have implemented a shared memory multicore version of
the SUPERFw algorithm using OpenMP. The aim of our evalu-
ation is to quantify the impact of each algorithmic techniques
from sparse Cholesky on Apsp, though these techniques are
not specific to shared memory; Section 6 briefly discusses can-
didate implementations for other programming models and
frameworks, such as distributed memory. We present perfor-
mance of SUPERFw for both the sequential and multithreaded
implementation on different datasets listed in Table 3.

5.1 Experimental Setup

In this section, we present the details of the Test Bed, Baselines
and the test graphs that we use for experiments.

5.1.1 Test Bed. We conducted our experiment in a shared
memory system that contains 32 cores as a dual-socket 16-
core Intel E5-2698 v3 “Haswell” processors. Each socket has
40-MB shared L3 cache. It has a total of 128 GB DDR4 2133
MHz memory arranged in four 16 GB DIMMs per socket. Each
core can support two hyperthreads, thus 64 threads in total.

5.1.2  Competing Apsp implementations . We compare the
SuPERFWwW implementation that uses the three optimizations
(a) ND ordering (b) Supernodal structure and (c) elimination
tree parallelism with the following three baselines.

e BLocKEDFw : this is an efficient multithreaded implemen-
tation of Algorithm 2 using OpenMP. This implementation
does not exploit the sparsity of the graph. This would per-
form n® operations.

o SUPERBFs: This algorithm does not use the optimal ND or-
dering. However, it does perform symbolic factorization and
set-up supernodal data structure. We perform BFS from the
vertex-0 and use the order in which vertices were discovered
as the ordering, to ensure that initial ordering of the ma-
trix has some structure, so supernodal approach might still
exploit the sparsity. This would perform O (n*) operations,
but coefficients might be much smaller than BLocKEDFwW

o D1yksTRA: This algorithm performs a single-pair shortest
path from all the vertices. It has the lowest asymptotic com-
plexity of all the methods considered herein, and is the core
of Johnson’s algorithm when there are no negative edge
weights. (That is, Johnson’s algorithm uses Dijkstra as a
subroutine and would be more expensive than Dijkstra for
graphs with only positive edge weights.)

o BoosTDIyKksTRA: Apspimplementation using off-the-shelf
implementation of Dijkstra’s algorithm from popular Boost
Graph Library (BGL) [37].2

2BGL also provides an implementation of both FLoyp-WARSHALL and John-
son’s algorithm, but their performance is not competitive to BOOSTDIJKSTRA,
and thus not considered.
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o A-STEP: We use the parallel A-stepping variant of Dijk-
stra’salgorithm [30] for computing the single-source-shortest
path in Johnson’s algorithm. We also use the parallel A-
stepping algorithm from the Galois Graph library [32]. The
A-stepping requires tuning the A parameter for each graph.

(@ wing Our A-STeEP-based Apsp is autotuned, i.e., it tries different

values of A of first few SSSP calls and picks the best A for
rest of the execution.

.,., (in seconds)

] 16
#Threads

tions for large graphs on a intel "Haswell" dual-socket system with

32 physical cores.

The core of all three FLoyD-WARsHALL algorithms BLOCKEDFw,
SupERBFS and SUPERFW use the same semiring double preci-
sion matrix-multiplication kernel SEMIRINGGEMM. The SEMIR-
INGGEMM kernel achieves 10.2 Gflop/sec per core which is
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28% of the theoretical peak of 36.8 Gflop/sec (18.4 Gflop with-
out FMA instructions) per core. The BLocKEDFw achieves a
maximum of 244 Gflop/sec on 32 cores. The operand sizes can
vary significantly in SUPERFw, thus per core flop rate varies
between graphs and ranges from 7.6-9.4 Gflop/sec.

5.1.3 Test Graphs. We used graphs from three different
categories (a) Real world Graphs (b) Graphs from DIMACS
competition and (c) Random graph generators with different
parameters. The details of the set of matrices such as the size
and density used for experiments are listed in Table 3. The
graph luxembourg_osm has 114k vertices, which requires
105GB of memory to store the distance matrix, is the largest
graph we could successfully try. The Djikstra’s and A-STEP
algorithms works on graphs with positive edge weights, so we
modify the adjacency matrices from real world and synthetic
to have only positive entries.

5.1.4  Pre-processing overhead. The worst-case pre-processing

cost is 18% of the multithreaded SUPERFwW execution time,
even though pre-processing (i.e. graph partitioning via Metis)
is not multithreaded. In sequential or single-node case, the
pre-processing step is not a a bottleneck for even for sparse
Cholesky (which is a O(S®) the operation, whereas SUPERFw
performs O(n?S) operations), thus many efforts are towards
improving the performance of the numerical factorization
step. In the subsequent performance and scalability analysis,
the time shown does not include the pre-processing costs.

5.2 Observations

5.2.1 Small Graphs. For small graphs, we compare the
performance of SUPERFW against BLOCKEDFwW, SUPERBFs
and DIJKSTRA, shown in Fig. 6a. The SUPERFW is faster over
BrLockeDFwW by upto 123X, and it represents the impact of
all the optimizations combined. The SUPERBFs is faster over
BrockeDFw by upto 3.9X. We highlight the following three
key observations.

o Impact of ND ordering:In the case of the test matrices, de-
launey_n14, OPF_6000, and fe_sphere,ND ordering yielded
significant benefit because of smaller separators. However,
there are many real world cases with smaller separators
that can benefit from SUPERFw.

o Impact of Supernodal structure: The asymptotic cost of
SUPERBFs is still O(n?), but it does exploit sparsity to some
extent, unlike blockFW. As in Fig. 6a, this offers an advan-
tage of 1-3.9X on many real world and synthetic graphs. We
also observe that in the case of hypercube_14 with lorgln

arator, reordering cannot reduce the asymptotic cost. Yet,

sep-

by using a supernodal data structure, we get a performance
improvement of 4.1x speedup over BLOCKEDFw.
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o Adversarial Cases:Finally, there are synthetic graphs like
extended_barbasi, where neither ND ordering nor supern-
odal structure offer any improvement. More generally, there
are graph classes, like expander graphs, that are sparse yet
well connected. Such graphs won’t have good separators
and we would not expect SUPERFW to provide any advan-
tage over BLocKEDFw. There are number of random graph
generators, such as Erdos-Renyi, Watts-Strogatz, that have
similar properties for graphs with large number of vertices.

We expect that the performance gap between BLOCKEDFwW
and SUPERFW will increase with increasing in problem size
due to asymptotic difference in the time-complexity, whereas
performance gap between BLockEDFw and SUPERBFs will
remain similar for larger graphs.

5.2.2 Large Graphs. For large graphs, we compare the
performance of SUPERFwW with DijksTRA, BOOSTDIJKSTRA,
and A-Step and leave out O (n?) algorithms shown in Fig. 6b.
The SuPERFW is faster by 0.2-52x than the D1jksTRA’s. We
expect that for larger graphs DijksTRA will outperform Su-
PERFw, nevertheless, SUPERFW is competitive to DIJKSTRA
for planar graphs of sizes on the order of 100k vertices, e.g.,
luxembourg_osm. The BoosTDJKsTRA and DIJKSTRA are al-
gorithmically very similar, yet BoosTDIJKSTRA is often slower
than our implementation of DiyksTRA. This difference mainly
stems from BoosTDIJKSTRA’s adjacency list data structure
for storing graphs vs compressed-sparse-row storage used
by DijksTRA. The A-STEP is neither work-optimal and nor
scalable, thus not competitive to either DIyksTRA or SUPERFw.

5.2.3 Scalability.

e Impact of ETREE Parallelism: In Fig. 8, we show the rel-
ative performance of two implementations of SUPERFw,
with and without ETREE parallelism on cores over sequen-
tial performance. ETREE parallelism can improve the scal-
ability of SUPERFw by 2X. The impact of ETREE parallelism
is more visible for small-graphs, e.g., USPowerGrid, where
SupeRFw performs very little per-iteration work. For larger
graphs ETREE parallelism has a little impact of performance
as they already enough parallelism in each iteration. Hence
ETREE-parallelism is essential for strong scaling.

o Scalability of different Apsp implementations: The
scalability of DIJKSTRA, BOOSTDIJKSTRA, A-STEP, and Su-
PERFW are compared in Figs. 7a to 7d. Our SUPERFw im-
plementation scales linearly up to 32 threads (= number of
physical cores) achieving a parallel efficiency of 74%. The
DijrsTRA and BoosTDIJKSTRA can effectively use hyper-
threading to hide the latencies of the priority queue data
structure, thus they can scale to 64 threads. The A-STEP
method only parallelizes each SSSP call, thus it requires sig-
nificantly more inter-thread synchronizations and scales
poorly compared to the other three implementations.
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6 RELATED WORK

This work builds upon principles from several different ar-
eas including semiring algebra, graph algorithms and sparse
direct solvers.

A number of other problems are equivalent to Apsp, e.g.
metricity, minimum-weight triangle, second shortest path,
etc. [43, 44]. While Apsp is the semiring equivalent of matrix
inversion, no no truly subcubic algorithm (i.e., equivalent of
Strassen’s algorithm) for Apsp is known. The best known com-

mn

plexity of Apsp for the dense case is O ( n"—;) [43],and O ( Togn
for sparse graphs [7]; for the parallel case, it is O(logn) [40].

The equivalence between finding the shortest path and
solving a system of linear equations goes back to the work of
Carre [3, 6]. He gave many interpretation of linear algebra op-
erations, including LU factorization and Sherman-Morrison
Woodbury formula for graph updates. Modern treatments of
this subject can also be found elsewhere [16, 28].

The method of nested dissection (ND) was discovered by
George [13] for solving linear system of equations from finite
element meshes. Its generalization by Lipton et al. [26], and the
planar separator theorem [27, 39] has had a large impact on a
number of graph and sparse linear algebra algorithms. In par-
ticular, several algorithms for path problems on planar graphs
are based on ND and the planar separator theorem [8, 11, 42].

Lastly, sparse direct solvers have been studied in great detail
in the context of parallel computing. Depending on sched-
uling, there are other variants namely, left-looking, right-
looking, multifrontal, and Crout’s variant. The effect of dif-
ferent scheduling strategies on performance can be found
at [19, 34]. The proposed SUPERFW closely resembles the right-
looking variant. Similarly, a number of works have focused
on improving scalability on accelerators such as GPU [15, 23—
25,29, 36,41, 46] and distributed memory [2, 18, 35, 45]. Most
distributed algorithms rely on some form ETREE parallelism
for reducing communication and data distribution [18, 35].

7 CONCLUSION

This paper is the first practical demonstration of how to ex-
ploit the algebraic structure of the all-pairs shortest paths
problem to create a parallel APSP algorithm for sparse graphs,
applying all of the machinery we know from sparse direct
solvers for linear systems. Although the observation about
the similarity of linear solver and shortest path is known, ours
is the first attempt to create a practical implementation and
conduct an empirical analysis. We believe that the algebraic
interpretation of APSP is important to explore, and our study
is just the first of many that we or others could carry out,
now that we have done this one. In particular, consider linear
systems. In that setting, there is a rich “hierarchy” of methods
that trade-off generality and robustness for speed and asymp-
totic optimality, with “dense LU” at one end and “multigrid”
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at the other. Sparse Cholesky/LU is in the middle of that spec-
trum. For APSP, we do not know yet fully understand what
the analogous hierarchy might look like. This study would be
just one a series of future studies that could try to fill in the
other analogous methods.
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