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Abstract. We analyze the linear stability of the base state of the problem of coupled flow and deformation in a long and shallow
rectangular soft hydraulic conduit with a thick top wall. Specifically, the steady base state is computed at low but finite Reynolds
number. Then, we show that with the upstream flux fixed and the outlet pressure set to gauge, the flow is linearly stable to
infinitesimal flow-wise perturbations. Multiple oscillatory but stable eigenmodes are computed in a range of the reduced Reynolds
number, R̂e, and the so-called fluid–structure interaction (FSI) parameter, λ , indicating the stiffness of this FSI system. These
results provide a framework to address, in future work, the individual effects of various aspects of two-way FSI coupling on
instability and flow transition in soft hydraulic conduits.

INTRODUCTION

The fluid–structure interactions (FSIs) between external or internal flows (either viscous or inviscid) and elastic struc-
tures, as well as the linear stability of such coupled mechanics problems, is a research subject with a a time-honored
history [1]. While FSI topics such as aeroelasticity [2] and blood flow in large arteries [3] are now quite classical,
the mechanical interaction between slow viscous flows and compliant conduits [4] has opened new avenues of FSI
research [5, 6], both at the microscale for, e.g., for lab-on-a-chip applications [7], and at the macroscale for, e.g., soft
robotics applications [8].

In the present work, motivated by recent “ultrafast mixing” experimental studies in compliant microchannels [9, 10],
we wish to determine the linear stability of finite-Reynolds-number perturbations to the steady flow and deformation
solution for FSI in a rectangular soft hydraulic conduit with a thick top wall. We derived the vanishing-Reynolds-
number steady FSI solution in our previous work [11]. Unlike the prior study [9], herein we do not use experimental,
computational, or other empirical information to derive our linear stability model (beyond the standard assumptions
on separation of length scales, and the smallness of relevant parameters in the system). In doing so, we address the
linear stability consequences of different FSI effects in soft-walled microchannels, such as the non-constant axial
pressure gradient and the non-flat (deformed) base state of the flow conduit, by extending the results from our recent
rigorous mathematical theory [11].

Furthermore, we investigate the relative importance and effect of the flow inertia (quantified by the reduced
Reynolds number, R̂e), and the compliance of the top wall (quantified by the FSI parameter, λ ), on the linear stability
problem. In particular, the base state is found to be stable in the range of R̂e and λ considered herein, which is a
typical range for microfluidic systems. We conclude with a discussion of possible extensions to the present theory.

GOVERNING EQUATIONS

To consider finite-Reynolds-number perturbations to the steady Re = 0 base flow, we allow a finite reduced Reynolds
number: R̂e = εRe = O(1) as ε → 0, where ε � 1 is the undeformed-height-to-length ratio of the long and shallow
microchannel (see Fig. 1 for notation and schematic of the physical setup). Then, the leading-order (in ε) governing
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FIGURE 1. Diagram of one-half of an x-symmetric thick-walled microchannel, labelled with the dimensional variables (lower
case) of the problem. The origin of the coordinate system (labeled with a red a dot) is set at the centerline (x = 0) of the rigid bottom
wall of the channel. Here, h0, w, and ` represent the undeformed channel height, width and length, respectively, while t is the top
wall’s thickness. The deformed fluid–solid interface is defined as y = h0 +u0

y(x,z), where the compliant top wall’s y-displacement
evaluated at y = h0 is denoted by u0

y . The Newtonian fluid flow, with a given volumetric flow rate q, is in the positive z-direction,
as indicated by arrows, from the inlet at z = 0 to the outlet at z = `. The reduced Reynolds number introduced in Eq. (1) can be
defined using the dimensional variables in the figure as R̂e = εRe = qh0/(νw`), where ν is the kinematic viscosity of the fluid,
and ε = h0/` is the axial aspect ratio. Reproduced and adapted with permission from Ref. [11] c© 2019 The Author(s) (X.W. and
I.C.C.) Published by the Royal Society.

incompressible Navier–Stokes flow equations are as follows (see Ref. [11] for the derivation and discussion):
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These equations, and all capital letters used herein are dimensionless. The non-dimensionalization is standard and
discussed in Ref. [11]. For the present purposes, since we will not use the dimensional variables at all in the discussion
below, we do not go over the non-dimensionalization. Equation (1a) is the continuity (conservation of mass) equation,
which is balanced at the leading order. Equations (1b), (1c), and (1d) are the conservation of linear momentum
equations in the X , Y , and Z directions respectively. Owing to the long and shallow nature of the microchannel, the X
and Y equations simply state there is no pressure gradients in those directions at the leading order in ε , and the flow is
primarily unidirectional in the Z direction.

We are interested in the flow regime in which the characteristic time scale set by the compliant wall’s inertia is
much smaller than the characteristic flow time scale. In other words, we assume that the inertia of the elastic solid
is negligible, and the unsteadiness in this FSI system is fully determined by the fluid flow. This assumption is often
invoked when studying the relaxation time [12] or the start-up time [13] of compliant microchannels. Note, however,
it is also possible that, in some regimes, the inertia of the compliant wall may play a role in the unsteady inflation or
relaxation of the soft wall, due to the interplay between the deformation and flow [13, 14].

Here, having restricted to a prototypical microsystem in which we can neglect the inertia of the elastic wall, the
displacement field developed in Ref. [11] can be transferred smoothly into the unsteady problem. Specifically, for
a thick top wall, as considered herein, with (t/w)2 � 1, the (dimensionless) deformation profile at the fluid–solid



interface (again, see Ref. [11] for the derivation and discussion) is

U0
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, (2)

where Am = 2
mπ

[1− (−1)m]. Thus, the deformed channel height is

H(X ,Z,T ) = 1+λU0
Y (X ,Z,T )

by Eq. (2)
= 1+λP(Z,T )G(X). (3)

Here, λ = uc/h0, which is the ratio of the characteristic deformation scale uc of the elastic solid to the undeformed
channel height h0, is termed the FSI parameter; for λ = 0, there is no deformation, while for λ = O(1) significant
FSI-induced deformation of the flow conduit occurs.

Unlike the case in Ref. [11], here we retain the R̂e terms as ε→ 0, which yields a nonlinear governing equation (1d)
for VZ . To make progress, it is standard to integrate Eqs. (1) across a deformed axial cross-section (fixed Z) and to
introduce the flow rate, Q(Z,T ) ≡

∫ +1/2
−1/2

∫ H(X ,Z,T )
0 VZ(X ,Y,Z,T )dY dX , into the formulation (see, e.g., [15] and the

references therein). However, after this integration, we still need a relation between VZ and Q to deal with the integral
in Y . Here, motivated by prior studies on inertial fluid effects in microchannels [14, 15], we apply the von Kármán–
Polhausen approximation [16] for the velocity profile:

VZ(X ,Y,Z,T ) =
6Q
[
H(X ,Z,T )−Y

]
Y∫ +1/2

−1/2 H(X ,Z,T )3 dX
. (4)

Essentially, this assumption enforces a parabolic (Poiseuille) profile in each axial cross-section, while simultaneously
accounting for the flow-wise variation of the height H. Also, note that the assumed closure relation (4) is consistent
with the previous result [11] in the limit R̂e→ 0. Furthermore, the kinematic boundary condition is imposed at the
moving fluid–solid interface:

∂H
∂T

= VY |Y=H(X ,Z,T ) . (5)

Then, performing the cross-sectional integration of the governing equations (1), substituting the ansatz (4), using
the condition (5), and simplifying, we obtain

∂Q
∂Z

+λI1
∂P
∂T

= 0, (6a)
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where

Ii =
∫ +1/2

−1/2
Gi(X)dX , i = 1,2, . . . ,5, (7a)

A[P(Z)] =1+λI1P(Z), (7b)

B[P(Z)] =1+3λI1P(Z)+3λ
2I2P2(Z)+λ

3I3P3(Z) (7c)

C[P(Z)] =1+5λI1P(Z)+10λ
2I2P2(Z)+10λ

3I3P3(Z)+5λ
4I4P4(Z)+λ

5I5P5(Z). (7d)

Equations (6) and (3) describe the coupling between the fluid flow and the elastic wall’s deformation. Note that
H(X ,Z,T ) is completely determined by the pressure profile, P(Z,T ), because G(X) is a known function defined by
the Fourier series in Eq. (2). Likewise, the constants {Ii}5

i=1 are known; their values are pre-computed and listed in
Table I. Meanwhile, A, B and C are functionals of the pressure P and, thus, implicitly functions of Z.

Fixing the flow rate upstream, and keeping the outlet of the channel open to atmospheric conditions, we can impose
the following boundary conditions:

Q|Z=0 = 1, P|Z=1 = 0. (8)

Note that no restrictions are imposed on the wall’s deformation at the inlet and outlet. Those would require a matched
asymptotic calculation taking into account axial bending (see, e.g., Ref. [17] for a discussion of this issue in the
context of a slender microtube), which is beyond the scope of the present work.



TABLE I. The values of the constants {Ii}5
i=1 defined by Eq. (7a).

I1 I2 I3 I4 I5
0.542710 0.333333 0.215834 0.143959 0.097864

The Base State at Finite R̂e

At steady state, the boundary conditions (8) on the flow rate indicates that Q(Z)≡ 1, while P0(Z) and H0(X ,Z) should
satisfy

d
dZ

[
R̂e

6
5

C

B2 +

(
1+

1
2

λI1P0

)
P0

]
=− 12A

B
, (9a)

H0(X ,Z) =1+λP0(Z)G(X). (9b)

The unknown in Eqs. (9) is P0(Z), subject to the outlet boundary condition

P0(Z = 1) = 0. (10)

If R̂e→ 0, Eq. (9a) can be rewritten as −(B/12)dP0/dZ = 1, where B[P(Z)] is given by Eq. (7c). This ordinary
differential equation can be easily shown to match the previous result in Ref. [11].

Equation (9a) subject to Eq. (10) are solved together numerically as a “final value problem” using the classical
fourth-order Runge–Kutta (RK4) method implemented using the python package SciPy [18]. In particularly, within
each step of the RK4 method, a nonlinear algebraic problem must be solved because the functionals A, B and C
depend on the solution P0(Z). This nonlinear solution step is accomplished using optimize.fsolve from SciPy.
The scheme is validated for R̂e = 0 against the analytical result from Ref. [11].

As shown in Fig. 2(a), we observe that the inclusion of flow inertia (R̂e = O(1)) results in a larger total pressure
drop, ∆P ≡ P(1)−P(0), and a steeper pressure gradient dP/dZ at the outlet (Z = 1). After obtaining the pressure
distribution P0(Z), the shape of the deformed channel H0(X ,Z) is just a linear function of P0(Z) found from Eq. (9b).
Thus, as shown in Fig. 2(b), the interface deformation at the channel mid-plane, X = 0, has an identical shape to the
pressure distribution.
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FIGURE 2. Finite R̂e base state. (a) The steady pressure distribution P0 along the flow-wise Z direction. (b) The steady deformed
channel shape H0 along the mid-plane, X = 0. Both panels show a set of different R̂e with λ = 0.5 fixed. The pressure distribution
for the case R̂e = 0, computed with the present RK4 numerical method (dashed curve), agrees exactly with the analytical result
from Ref. [11] (symbols).



PERTURBATION AND LINEAR STABILITY PROBLEM

Let us introduce the following perturbations to the steady finite-R̂e base state {Q = 1,P = P0(Z)} derived in the
previous section:

Q(Z,T ) =1+αQ̃(Z,T ), (11a)

P(Z,T ) =P0(Z)+αP̃(Z,T ), (11b)

where α � 1 is an arbitrary small parameter quantifying the magnitude of the axial perturbations Q̃ and P̃. Then, it
follows that

H(X ,Z,T ) = H0(X ,Z)+αλ P̃(Z,T )G(X). (12)

Since the actual boundary conditions were imposed on the base state, the perturbations should satisfy homogeneous
boundary conditions:

Q̃|Z=0 = 0, P̃|Z=1 = 0. (13)

Next substituting Eqs. (11) into the governing equations (6), and only keeping terms up to O(α), we obtain the
linearized equations governing the evolution of perturbations:
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= 0, (14a)
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,

where A0 ≡ A[P0(Z)], B0 ≡B[P0(Z)] and C0 ≡ C[P0(Z)] are evaluated via Eqs. (7b)–(7d), and

B′0 =3λI1 +6λ
2I2P0(Z)+3λ

3I3P2
0 (Z), (15a)

C′0 =5λI1 +20λ
2I2P0(Z)+30λ

3I3P2
0 (Z)+20λ

4I4P3
0 (Z)+5λ

5I5P4
0 (Z). (15b)

Note that the variables with the subscripts “0” are obtained from the base state solution discussed in the previous
section. Thus, they are known for the purposes of the upcoming linear stability calculation.

We restrict our analysis to asymptotic stability of modal perturbations (excluding any effects of transient growth
arising from fact that the base state is non-constant and the linear operator is non-normal [19]). To this end, let

Q̃(Z,T ) = Q1(Z)e−iωT , P̃(Z,T ) = P1(Z)e−iωT . (16)

Further applying dQ1/dZ = iωλI1P1, Eqs. (14) can be rewritten in the matrix form:(
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where we have defined the following operators for convenience:
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The corresponding boundary conditions, obtained from Eq. (13), are

Q1(0) = 0, P1(1) = 0. (19)



Substituting the latter into Eqs. (17), we obtain two further boundary conditions:

dQ1

dZ

∣∣∣∣
Z=1

= 0,
[
LPP1 +

6
5

R̂e
2C0

B2
0

dQ1

dZ

]∣∣∣∣
Z=0

= 0. (20)

Equation (17) and the boundary conditions in Eqs. (19) and (20) constitute a generalized eigenvalue problem, in
which ω ∈ C is the eigenvalue and [Q1,P1]

> is the eigenfunction. The system is said to be linearly unstable if there
exist eigenvalues with Im(ω) > 0 for a combination of the parameters. To solve this eigenvalue problem, we shall
employ the Chebyshev pseudospectral numerical method. In this way, we can resolve the eigenspectra to determine
if the system exhibits linear stability (or instability).

RESULTS AND DISCUSSION

The Chebyshev pseudospectral method [20, 21] for the linear stability problem is implemented as described in [14],
using the python package SciPy [18]. Simply speaking, the eigenfunctions Q1 and P1 are approximated with an N-th
degree polynomial each, then the generalized eigenvalue problem (Eqs. (17), (19) and (20)) is discretized by enforcing
the satisfaction of the equations at N + 1 Gauss–Lobatto points. Specifically, Eq. (17) is required to be satisfied at
N−1 interior Gauss–Lobatto points while the boundary conditions (19) and (20) are imposed at the two end points.
Furthermore, since the boundary conditions are homogeneous, the right-hand-side matrix in Eq. (17) is singular.

The eigenspectra for our genearalized eigenvalue problem are discrete. Since the left-hand-side matrix is real while
the right-hand-matrix is purely imaginary, the resulting eigenspectra in C are symmetric about the imaginary axis.
Multiple eigenvalue pairs, which are complex conjugates and thus have the same magnitude, are observed in our
calculations (see Figs. 3 and 4). The eigenvalues are ordered with ascending magnitude and thus, the eigenvalue pairs
share the same position in the C plane.

In the following discussion, different modes are referred to as the eigenfunctions corresponding to eigenvalues with
different magnitudes |ω|. For example, the first mode corresponds to the eigenvalue with the smallest magnitude,
and the second mode has the eigenvalue with the second smallest magnitude, and so on. Furthermore, it is worth
pointing out that, for our generalized eigenvalue problem (17), in principle, the eigenspectra should consist of an
infinite number of discrete points, as the differential operators are infinite dimensional objects. However, since we
numerically solve the problem by pseudospectral discretization, the resolution of the eigenspectra is determined by
the number of Guass–Lobatto points. Therefore, considering the limits numerical linear algebra algorithms, the
eigenspectra shown are the part for which the magnitudes of the eigenvalues are relatively small, whose computation
is tractable using a finite number of grid points. The following results are calculated with N = 1000 Gauss–Lobatto
points for both eigenfunctions, Q1 and P1, with only the first 500 eigenvalues shown in Figs. 3 and 4. The accuracy of
the calculations is assured by comparing the latter results to those with N = 800 Gauss–Lobatto points for verification.

First, we investigate the eigenspectra by varying R̂e and fixing λ = 0.5, as shown in Fig. 3. With this value of λ ,
appreciable deformation is observed in the base state (see Fig. 2(b)). With the increase of R̂e, ranging from 0.01 to 3,
the imaginary parts of the majority of eigenvalues increase. However, no instabilities are observed as Im(ω) < 0 for
all cases considered. Several modes with purely imaginary eigenvalues are found. Specifically, for R̂e = 0.01, there
are 6 purely decaying modes, while only 2 such modes are observed for the other three cases. Among these modes,
the one closest to the real axis is of interest because it represents the slowest decaying mode of the system. Table II
lists the largest imaginary part of all modes for the four values of R̂e considered. Interestingly, we do not observe
a monotonic trend with the increase of R̂e. Indeed, even without FSI, it is expected that a duct flow becomes more
unstable as R̂e increases [20].

Let us now take a look at the real part of the eigenvalues. For each case, the difference in the magnitudes of the real
parts of two different modes is much larger than that of their imaginary parts, which is why the eigenspectra have a
“seagull” shape with a pair of relatively flat wings. The multiple eigenvalues with large-magnitude real parts evidence
the existence of the highly-oscillatory eigenmodes, indicating the inherent stiffness of this FSI system. Comparing
the cases of different R̂e in Fig. 3, the real parts of the eigenvalues display a decreasing trend with the increase of R̂e.

Next, we keep R̂e = 1 fixed while varying the FSI parameter, λ . Note that our system is governed by two dimen-
sionless groups, unlike classical hydrodynamics stability problems [20], which is the result of the coupled physics
involved in two-way FSI. Still, as shown in Fig. 4, no instabilities are observed by varying λ , but there are some
interesting differences with respect to varying R̂e. For instance, in a less compliant system with λ = 0.1, there are
no purely decaying modes; all modes have non-zero real parts, meaning they are intrinsically oscillatory. It is also
observed that Re(ω) decreases as λ increases.
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FIGURE 3. Complex eigenspectra of the linear stability problem (17)–(20) at different R̂e with λ = 0.5 fixed.

TABLE II. The largest imaginary part of the eigenvalues corresponding to different R̂e with λ = 0.5 fixed.

R̂e 0.01 0.1 1 3
Im(ω) −4.1459 −4.1582 −4.4004 −1.8194

As for the eigenfunctions, in Fig. 5 we show the first four modes for the case of R̂e = 1 and λ = 0.5 as an example.
The first two modes (labelled “mode1” and “mode2”) correspond to two eigenvalues with Re(ω) = 0 and Im(ω)< 0
from Fig. 3(c), for which the eigenfunctions are found to be real. In particular, Q1 is monotonically increasing from
the inlet to the outlet, while P1 is relatively flat for most of the channel, displaying a sharp decrease near the outlet.
For the other two modes (labelled “mode3” and “mode4”), the corresponding eigenfunctions exhibit spatially-varying
crests or troughs. The eigenfunctions of the fourth mode are “wavier” than the third mode. This observation is typical,
and more humps would be observed in the higher modes, if we were to plot them.

CONCLUSION

In this preliminary assessment of linear stability of the novel coupled flow and deformation solution in a thick-walled
rectangular microchannel from Ref. [11], we found that, within a range of the reduced Reynolds number, R̂e, and the
FSI parameter, λ , the inflated base state is linearly stable to infinitesimal flow-wise perturbations. With the Chebyshev
pseudospectral method, we were able to resolve multiple highly oscillatory but stable eigenmodes, which indicates the
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FIGURE 4. Complex eigenspectra of the linear stability problem (17)–(20) for (a) λ = 0.1 and (b) λ = 1.0 with R̂e = 1 fixed.
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FIGURE 5. Eigenfunctions: (a) Q1 and (b) P1 corresponding to the first four modes (ordered by |ω|) for R̂e = 1 and λ = 0.5. The
solid curves represent the real part while the dashed curves represent the imaginary part of the eigenfunctions.

stiffness of the FSI system. Unlike problems of classical hydrodynamic stability of duct flows [20], this FSI problem
is governed by two dimensionless groups (R̂e and λ ), and they both have a non-trivial influence on the eigenspectrum.

Importantly, unlike previous work [9], wherein the linear stability analysis was conducted locally on an approx-
imately flat base state and the nonlinear pressure gradient was imported from computational fluid dynamics (CFD)
simulations in a static but deformed geometry, the base state that we perturbed herein is non-flat, computed consis-
tently from two-way coupled FSI theory [11]. This base state, featuring a nonlinear pressure gradient, was derived
from the closed-form 1D model consisting of Eqs. (9) and (10). Indeed, in Ref. [9], the nonlinear pressure gradient
was conjectured to be the most important factor in triggering instability. The velocity profile, which was chosen in
Ref. [9] to be a quartic because it was closer to the output of CFD simulations than the parabolic profile, was thought to
be slightly less significant. In this respect, even though the velocity profile in our analysis is parabolic (to be consistent
with the R̂e→ 0 solution [11]), other profiles shapes (as function of Y ) are allowed within the von Kármán–Polhausen
approximation in Eq. (4), as long as the boundary conditions at the top and bottom walls are satisfied.

Admittedly, our different formulation of the linear stability problem led us to a different conclusion from Ref. [9],
and we did not reproduce the instabilities observed therein. Nevertheless, the experiments [9] are reproducible [10]
and the ultra-fast mixing phenomenon at low Reynolds number is striking. Therefore, the phenomenon of low-
Reynolds-number FSI-induced instabilities remains relevant to understand from scratch (without “infusing” the linear
stability calculation with CFD or experimental results) due to its potential relevance as new modality of mixing in



microfluidics [22]. One of the possible reasons that our reduced model did not predict an instability is that we fixed
the upstream flow rate and set the outlet pressure to gauge. These boundary conditions might not perfectly match the
experimental conditions in Ref. [9]. Another possibility may be that, the inertia of the elastic solid, which we have
neglected, plays a role in triggering the instability.

In future work, we would like to address the effect of different boundary conditions on the linear (in)stability
problem formulated herein. For example, we might consider fixing the total pressure drop ∆P across the length of
the channel, leaving the inlet flow rate to be “free.” Another extension of the present theory can be accomplished
by properly introducing the compliant wall’s inertia (and unsteadiness) into the formulation. This extension requires
updating the current solid mechanics model by properly justifying an independent time scale over which the elastic
deformation varies.
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