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ABSTRACT
Identifying critical information in real time in the beginning of a
disaster is a challenging but important task. This task has been
recently addressed using domain adaptation approaches, which
eliminate the need for target labeled data, and can thus accelerate
the process of identifying useful information. We propose to inves-
tigate the effectiveness of the Domain Reconstruction Classification
Network (DRCN) approach on disaster tweets. DRCN adapts infor-
mation from target data by reconstructing it with an autoencoder.
Experimental results using a sequence-to-sequence autoencoder
show that the DRCN approach can improve the performance of
both supervised and domain adaptation baseline models.
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1 INTRODUCTION
In recent years, social media platforms, such as Twitter or Facebook,
have become effective communication tools, complementing more
traditional communication networks (e.g., 9-1-1 centers), which are
not always well-equipped to handle the large volume of requests
posted by disaster-affected individuals [15]. Early works in disaster
management have discussed the usefulness of social media data in
improving disaster resilience, situational awareness, and emergency
response [8]. To facilitate the use of social media data posted by
eyewitnesses of disasters, machine learning approaches have been
developed to filter informative tweets. Many of the existing studies
have employed supervised learning to train a classifier on data from
a disaster of interest, and used the classifier to assign labels to new
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data from that same disaster. In supervised learning, data need to
be manually labeled before a classifier can be trained. The data
labeling process is usually expensive and time-consuming, making
it hard to use supervised learning in the beginning of a disaster.
However, unlabeled data from a target disaster accumulates quickly.
In addition, labeled data from a prior source disaster is readily
available. A supervised classifier trained on the source disaster may
not perform well on the target disaster due to differences in the
distributions of the two disasters (a.k.a., covariate shift).

Domain adaptation approaches that use labeled source disas-
ter data, together with unlabeled target disaster data, to train a
classifier on source and adapt it to the target, represent a promis-
ing solution to the filtering of information posted on social media
during disasters. While domain adaptation eliminates the need for
labeled target data, and has produced promising results on this task
[1, 9–12], its potential is largely unexplored.

A challenge for domain adaptation is how to effectively use the
information from unlabeled target data to adapt a classifier trained
on labeled source data [13]. One idea is to reduce the shift between
the source and target data distributions. Domain adversarial neural
networks (DANN) [4] implement this idea by co-training a feature
extraction network together with a source classification network.
The feature extraction network aims to transform the source and
target features to make them indistinguishable. Given domain in-
variant features, the source classification network trained on labeled
source data can be effectively used to classify target data. Another
way to reduce the covariate shift is to utilize domain reconstruction-
classification networks (DRCN). The reconstruction network con-
sists of an autoencoder (i.e., encoder-decoder) that reconstructs
the target data in a self-supervised manner [5]. The autoencoder
network is co-trained with a source classification network that
shares the encoder component of the autoencoder. Being shared
between the two networks, the encoder will learn information from
both source and target data. As a consequence, the source network,
trained on labeled source data, can be used to classify target data.

In the context of disaster tweet classification, Alam et al. [1]
proposed a domain adaptation approach which combines domain
adversarial training and graph embeddings with a classification
network. Li et al. [11] proposed an approach based on a domain ad-
versarial neural network, with a large convolutional neural network
(CNN) as its backbone, to identify disaster images that show damage.
However, there is no study on the use of domain reconstruction-
classification networks on social media disaster data.

To fill in this gap, in Section 3, we describe a domain adaptation
approach for tweet classification, which implements the domain
reconstruction-classification idea using a sequence-to-sequence
autoencoder [14]. Both the encoder and the decoder components of
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Figure 1: Architecture of the proposed domain adaptation
with reconstruction network.

the autoencoder represent recurrent neural networks (RNN), specif-
ically long short-term memory (LSTM) networks. Our experimental
results in Section 4 show that the DRCN approach outperforms su-
pervised learning approaches and also the existing approach based
on domain adversarial networks and graph embeddings [1]. We
conclude the paper and present ideas for future work in Section 6.

2 RELATEDWORK
Social media data contributed by eyewitnesses of a disaster have
been shown to be very useful for disaster management and re-
sponse [8]. Domain adaptation approaches have been used to to
handle the lack of labeled data in the beginning of a target disaster.
Some of the proposed approaches are based on traditional machine
learning [9, 10, 12], while others are based on deep learning [1, 11].
For example, Li et al. [9] proposed a self-training type approach,
with Naïve Bayes as a base classifier. Li et al. [10] combined a fea-
ture adaptation approach with the self-training approach, while
Mazloom et al. [12] proposed a hybrid feature-instance adaptation
approach. Andugula and Durbha [3] applied a domain adaptation
approach, which uses spatial relationship information, to identify
images that show damaged buildings post-disaster. Finally, Graf
et al. [6] proposed a cross-domain classifier, which can be applied
across different disaster events and different disaster types. In terms
of deep learning, Alam et al. [1] and Li et al. [11] used approaches
inspired from the DANN approach, as described in the introduc-
tion. In this paper, we study the DRCN approach in the context of
disaster tweet classification.

3 APPROACH
In this section, we describe the components of the proposed ap-
proach. The overall architecture is shown in Figure 1.

3.1 Domain Adaptation
Let 𝑋𝑠 = {

(
𝑋𝑠
𝑖 , 𝑦

𝑠
𝑖

)𝑛𝑠
𝑖=1} be a labeled source dataset, where 𝑛𝑠 repre-

sents the number of instances in the source dataset, 𝑋𝑠
𝑖
contains a

sequence of words 𝑋𝑠
𝑖
= {𝑥 𝑗 }

|𝑋𝑠
𝑖
|

𝑗=1 and 𝑦𝑠
𝑖
is the sequence label. Let

𝑋𝑡 = {
(
𝑋 𝑡
𝑖

)𝑛𝑡
𝑖=1} be an unlabeled target dataset, where 𝑛𝑡 represents

the number of instances in the target dataset, and 𝑋𝑡 contains a se-
quence of words𝑋 𝑡

𝑖
= {𝑥 𝑗 }

|𝑋 𝑡
𝑖
|

𝑗=1 . The task in domain adaptation is to
learn a classifier for the target domain using the labeled source data,
𝑋𝑠 , together with unlabeled target data 𝑋 𝑡 . The source data and
target data may share some patterns but generally have different
distributions. For example, the source data may consist of tweets
posted during an earthquake, while the target data may consist of
tweets posted during a hurricane.

3.2 Recurrent Neural Networks
Recurrent Neural Networks (RNN) have been widely used for many
tasks in Natural Language Processing, as they can capture depen-
dencies in sequence data. Among other tasks, RNNs can be used
to classify text. Formally, given a sequence (𝑥1, 𝑥2, ..., 𝑥𝑛), an RNN
model can predict the label𝑦 using the following forward equations:

ℎ𝑖 = 𝑅𝑁𝑁 (𝑥𝑖 , ℎ𝑖−1), 𝑖 ∈ 1, ..., 𝑛; 𝑦 = 𝑅𝑁𝑁 (ℎ𝑛) (1)

where ℎ𝑖 represents the hidden state at time step 𝑖 and acts as the
memory of the network (ℎ0 is initialized with a zero vector). General
RNNs suffer from the gradient vanishing and exploding problem [7],
when used with long sequences. Long short-term memory (LSTM)
networks avoid this problem by introducing a cell state, in addition
to the hidden state, which carries information across the sequence.

3.3 Seq2seq Autoencoder
The seq2seq model was proposed by Sutskever et al. [14] in the
context of machine translation. It uses an RNN network to encode
an original sequence into a hidden vector and then uses another
RNN network to decode the hidden vector into another output se-
quence. If the original sequence and the output sequence are from
different languages, the task achieved is translation. If the original
sequence and the output sequence are the same, the task corre-
sponds to autoencoding, and the model is called an autoencoder.
An autoencoder can produce a sequence representation in a self-
supervised manner. The representation retains all the information
needed to reconstruct the original sequence itself.

3.4 Domain Adaptation with Reconstruction
Our proposed domain adaptation with reconstruction model com-
bines the techniques discussed above. For the source data 𝑋𝑠 , we
initialize a set of word embedding𝑤𝑠 corresponding to words 𝑥𝑠 in
a sequence 𝑋𝑠

𝑖
, and then train network to predict the label for 𝑋𝑠

𝑖
:

𝑦𝑠
𝑖
= 𝐹𝐶 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋𝑠

𝑖
)) (2)

where the Encoder is an RNN network which extracts the encoded
representation of the sequence𝑋𝑠

𝑖
, and FC is a fully-connected layer

which predicts the label of 𝑋𝑠
𝑖
using the representation. For the

target data 𝑋 𝑡
𝑖
, we train a seq2seq autoencoder on the initialized

word embeddings. Formally, for each target instance 𝑋 𝑡
𝑖
, we have:

𝑋 𝑡
𝑖
= 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋 𝑡

𝑖
)) (3)

The seq2seq model and the RNN classification network share the
encoder layer. Thus, the RNN encoder layer learns a good classi-
fier on the labeled source data while using information from the
unlabeled target data. The model will be trained by optimize

𝐿 =𝑚𝑖𝑛(L(𝑦𝑠
𝑖
, 𝑦𝑖

𝑠 ) + L(𝑋 𝑡
𝑖
, 𝑋 𝑡

𝑖
)) (4)
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where L is cross-entropy loss. The pseudocode for the training
phase of the proposed model is shown in Algorithm 1.

Algorithm 1 Model Training Using SGD

Input: Source 𝑋𝑠 = {
(
𝑋𝑠
𝑖 , 𝑦

𝑠
𝑖

)𝑛𝑠
𝑖=1}, and target 𝑋𝑡 = {

(
𝑋 𝑡
𝑖

)𝑛𝑡
𝑖=1}

Output: 𝜃𝐸 , 𝜃𝐷 , 𝜃𝑃 (where 𝜃𝐸 , 𝜃𝐷 , 𝜃𝑃 represent the parameters in
the Encoder, Decoder and Predictor components, shown in Fig. 1).
1: 𝜃𝐸 , 𝜃𝐷 , 𝜃𝑃 ← random initial weights
2: for 𝑘 from 1 to 𝑠𝑡𝑒𝑝𝑠 do
3: for each source batch {(𝑋𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑚
𝑖=1 do

4: Sample target unlabeled batch (𝑋 𝑡
𝑗
)𝑚
𝑗=1

5: Update 𝜃𝐸 , 𝜃𝑃 to minimize the loss L(𝑦𝑠
𝑖
, 𝑦𝑠

𝑖
)

6: Update 𝜃𝐸 , 𝜃𝑃 to minimize the loss L(𝑋 𝑡
𝑖
, 𝑋 𝑡

𝑖
)

4 EXPERIMENTAL SETUP
4.1 Research Questions
Our experiments are designed to answer the following questions:

1) How do the results of our domain adaptation with recon-
struction approach compare with the results of the domain
adversarial with graph embeddings approach [1]?

2) How do the results of our domain adaptationwith reconstruc-
tion approach compare with the results of the corresponding
cross-domain supervised RNN classification models?

3) How do the results of the experiments that use one disaster
as source compare with the results of the experiments that
use the union of all-but-one disaster as source?

4.2 Datasets
We used two datasets in our experiments. The first dataset was
published byAlam et al. [1], whomade available the train, validation
and test split they used. The dataset contains tweets crawled during
Queensland Floods (QFL) and Nepal Earthquake (NEQ). Each tweet
was labeled as relevant or non-relevant. Statistics about the dataset
and its train/validation/test split are shown in Table 1.

Dataset Relevant Non-Relevant Train Validation Test
NEQ 5527 6141 7000 1166 3502
QFL 5414 4619 6019 1003 3011

Table 1: Statistics of the dataset published by Alam et al. [1]

For a source-target pair, we used the train split of the source data
to train the RNN classification network, we used the validation split
of the target data to train the seq2seq autoencoder, and finally the
test split of the target data to evaluate the model.

The second dataset used (called CrisisMMD) was published by
Alam et al. [2]. It contains tweets crawled during 7 disaster events.
Each tweet was labeled as informative or non-informative. Statis-
tics about the CrisisMMD dataset are shown in Table 2. For each
source-target experiment, we randomly split the target data into
70% unlabeled and 30% test. We used all the labeled source data to
train the RNN classification network. The target unlabeled data is
used to train the autoencoder, while the target test data is used to
evaluate the model. We conduct experiments where the datasets

Dataset Not-Informative Informative Total
D0 California Fire 324 1162 1486
D1 Hurricane Harvey 973 3027 4000
D2 Hurricane Irma 836 3201 4037
D3 Hurricane Maria 1490 2510 4000
D4 Iraq Iran Earthquake 85 402 487
D5 Mexico Earthquake 314 925 1239
D6 Srilanka Floods 544 287 831

Table 2: Statistics of the the CrisisMMD dataset [2]

D0, D1, D2, D3, D5 are used as source datasets, respectively. We
didn’t use the datasets D4 and D6 as sources, as they are relatively
small and unbalanced compared to the other datasets. In addition
to using one disaster as source, we also performed experiments
where we used all-but-one disasters as source and the remaining
disaster as target.

4.3 Implementation Details
In the seq2seq model, both the encoder and the decoder contain
one layer of LSTM cells. The dimension of the hidden vector repre-
sentation is 𝑝 = 200. We use the Adam optimizer to train the model
with a learning rate of 0.001 and a mini-batch of size𝑚 = 64.

5 EXPERIMENTAL RESULTS
The results of the experiments on the dataset introduced in [1]
are presented in Table 3. Specifically, we show accuracy (Acc),
area under the ROC curve (AUC) and F1-measure (F1). In the ta-
ble, RNN represents a model trained in a supervised manner (on
source), while RNN+AE represents the DRCN approach, where
RNN networks are used for the encoder/decoder components of
the autoencoder (AE). In addition to the results of the RNN and

Model (cross-domain) Acc AUC F1 Acc AUC F1

source -> target QFL->NEQ NEQ->QFL

GE + DA [1] n/a 58.81 59.05 n/a 66.49 65.92
RNN (supervised) 64.19 65.42 64.18 55.83 61.36 55.17
RNN+AE 68.82 72.29 68.38 81.24 87.79 81.18

Table 3: Cross-domain results for the dataset in [1]

RNN+AE models, Table 3 also shows the results of the adaptation
model (GE+DA) proposed in [1]. As can be seen, the RNN model is
better than the GE+DA model by a large margin. Furthermore, the
table shows that the RNN+AE model achieves better results than
the RNN model alone.

The results of the experiments on the CrisisMMD dataset [2]
are presented in Table 4. We show the average accuracy, AUC
and F1 score over five independent runs. Each row has the same
target data, while each column has the same source data (except
for the last column that shows the all-but-one results). The table
also shows in-domain results (where the models are trained on
target). As can be seen from the table, the results of the RNN+AE
(DRCN) model are better than the results of the RNN network in
most cases (including for in-domain models). While the adaptation
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Method Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
Pair D0→D0 D1→D0 D2→D0 D3→D0 D5→D0 all-but-D0→D0
RNN 75.78 70.36 72.58 69.73 61.69 50.02 73.92 64.41 57.15 71.38 68.67 62.07 64.80 60.15 54.46 72.65 68.54 72.94
RNN+AE 75.11 71.37 72.11 78.25 66.77 52.88 79.45 71.71 60.27 73.99 68.43 60.37 77.88 68.74 57.44 80.27 73.27 76.24
Pair D0→D1 D1→D1 D2→D1 D3→D1 D5→D1 all-but-D1→D1
RNN 68.79 62.04 53.46 81.17 82.41 78.92 77.00 76.37 62.27 72.56 75.38 66.47 58.97 62.49 54.52 77.17 78.53 76.33
RNN+AE 72.00 67.79 60.97 80.92 81.84 78.66 77.53 78.56 63.92 78.25 78.37 69.29 70.22 69.46 61.32 76.92 77.79 77.55
Pair D0→D2 D1→D2 D2→D2 D3→D2 D5→D2 all-but-D2→D2
RNN 70.27 65.27 57.94 76.28 71.77 61.64 81.29 76.53 78.60 71.75 72.80 63.18 53.15 58.66 49.15 77.74 71.47 76.71
RNN+AE 73.21 69.59 59.87 77.05 75.94 64.14 80.54 76.91 78.13 74.00 75.13 63.64 58.56 64.65 53.65 78.48 75.26 78.68
Pair D0→D3 D1→D3 D2→D3 D3→D3 D5→D3 all-but-D3→D3
RNN 60.69 56.91 52.05 66.44 70.59 55.21 67.67 71.51 59.25 72.25 77.47 71.06 54.78 58.19 53.98 68.58 73.31 66.04
RNN+AE 65.36 67.70 59.07 68.53 72.84 60.15 67.14 69.98 56.21 72.00 79.68 72.46 61.33 60.20 52.50 73.17 77.09 72.05
Pair D0→D4 D1→D4 D2→D4 D3→D4 D5→D4 all-but-D4→D4
RNN 57.11 59.98 49.85 68.22 65.33 54.43 72.66 53.41 49.41 59.56 65.57 52.45 78.00 67.72 62.32 74.67 78.43 77.07
RNN+AE 77.56 65.77 55.25 81.56 67.29 52.10 79.11 51.39 51.36 81.11 66.97 58.86 77.78 69.21 55.98 79.33 77.31 78.44
Pair D0→D5 D1→D5 D2→D5 D3→D5 D5→D5 all-but-D5→D5
RNN 70.34 63.03 59.40 71.69 66.58 57.56 76.34 63.97 56.08 52.78 56.56 50.51 75.27 72.36 74.10 74.19 71.74 74.28
RNN+AE 75.54 70.13 59.65 74.46 73.24 50.82 77.42 68.83 58.38 73.48 70.56 60.54 77.15 76.83 74.91 77.42 73.04 74.45
Pair D0→D6 D1→D6 D2→D6 D3→D6 D5→D6 all-but-D6→D6
RNN 57.60 74.67 57.11 69.60 87.45 69.43 63.07 79.78 62.98 73.07 81.31 72.04 53.47 65.61 53.31 74.19 71.74 74.28
RNN+AE 65.73 80.62 65.15 71.33 92.19 71.18 57.60 82.52 57.38 69.07 86.93 68.71 56.00 77.45 55.71 78.00 90.30 78.14

Table 4: Cross-domain (e.g., D0→D1) and in-domain (e.g., D0→D0) results for CrisisMMD. The values that are statistically
significant (according to a paired t-test with p < .05) for each pair are highlighted in bold font.

from one source disaster to the target disaster improves the results
of the RNN classification network (especially, when the source and
target disasters are similar, e.g., both are hurricanes), overall, the
all-but-one models give the best results for a target, suggesting that
a larger amount of training data results in better performance.

Based on our results, we can conclude that: 1) The domain adap-
tation with reconstruction approach (RNN+AE) has dramatically
better performance than the domain adversarial with embeddings
approach (GE+DA), in all metrics considered. This suggests that
representation produced by the RNN-based seq2seq model is bet-
ter than the representation obtained with the domain adversarial
approach. 2) The domain adaptation with reconstruction has better
performance than the cross-domain supervised RNN classification
network in most cases, as it is specifically using unlabeled target
data to bias the representation of the source towards the target.
3) Using all the available sources for training (all-but-one experi-
ments) with the DRCN approach gives the best performance overall,
suggesting that more data results in better models.

6 CONCLUSIONS
In this paper, we proposed a domain adaptation approach for disas-
ter tweet classification. Experimental results show that the perfor-
mance of proposed model is better than the performance of another
adaptation model recently proposed for this task [1]. Given the
promising results, our approach can potentially help eliminate the
laborious process of labeling data in the beginning of a disaster. As
a consequence, disaster response can be accelerated and resources
can be better allocated. As part of future work, we plan to evaluate
other implementations for the autoencoder, including Transformers,
which have been shown to give good results in machine translation.
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