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a b s t r a c t 
Emerging Vehicle-to-Vehicle (V2V) technologies are expected to significantly contribute 
to the safety and growth of shared transportation provided challenges towards their de- 
ployment can be overcome. This paper focuses on one such challenge: characterizing the 
fraction of vehicles which have received a message, as a function of space and time, and 
operating under different traffic and communication conditions. V2V technologies bridge 
two infrastructures: communication and transportation. These infrastructures are intercon- 
nected and interdependent. To capture this inter-dependence, which may vary in time and 
space, we propose a new methodology for modeling information propagation between 
V2V-enabled vehicles. The model is based on a continuous-time Markov chain which is 
shown to converge, under appropriate conditions, to a set of clustered epidemiological dif- 
ferential equations. The fraction of vehicles which have received a message, as a function 
of space and time may be obtained as a solution of these differential equations, which can 
be solved efficiently, independently of the number of vehicles. Such characterizations can 
form the basis of assessing several attributes of V2V systems, some of which we demon- 
strate. The characterizations lend themselves to a variety of generalizations and capture 
various interdependencies between communication and mobility. As tests of the model 
we provide applications both in real-world settings using microscopic traffic traces and in 
postulated scenarios of outages and system perturbations: we find good model agreement 
with microscopic trajectory from two actual trajectory datasets, as well as a synthetic tra- 
jectory dataset generated from the origin/destination matrix. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 
1.1. Motivation and applications 

Vehicle-to-Vehicle (V2V) technology is poised to significantly impact the functioning and management of transportation 
networks ( Harding et al., 2014; NHTSA, 2016 ). With V2V, vehicles can communicate directly with each other, or with bikes, 
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wheelchairs, and devices held by pedestrians, to share information about road conditions ahead. We consider all these 
communications within the purview of V2V. In 2016, the National Highway Traffic Safety Administration (NHTSA) of the U.S. 
Department of Transportation proposed to mandate the integration of dedicated short-range communications (DSRC) for V2V 
on all lightweight vehicles ( NHTSA, 2016 ); a final decision on the proposal is awaited. In 2019, the European Commission 
implemented new rules stepping up the deployment of Cooperative Intelligent Transport Systems (C-ITS) which enables V2V 
communication ( European Commission, 2019 ). Several automakers are already deploying V2V; for example, General Motors 
has already incorporated V2V technology into the 2017 Cadillac CTS sedan ( Bonelli, 2017 ), and by March 2018 there were 
over 10 0,0 0 0 Toyota and Lexus vehicles equipped with V2V in Japan ( Toyota, 2018 ). Volkswagen has also announced plans to 
begin deploying V2V technology in Europe starting in 2019 ( Cain, 2018 ). In view of these market and regulatory forces, we 
may safely anticipate a rise in market penetration of V2V in the near future. Thus, it is wise to both plan for its immediate 
deployment and currently unforeseen future uses in traffic congestion, safety, and monitoring. 

V2V can substantially enhance public safety. It can provide advance warnings to drivers about developing dangerous 
situations, through for example forward collision warning, intersection movement assist, left turn assist, and blind-spot 
warning ( Harding et al., 2014 ); the latter two applications alone could prevent an estimated 60 0,0 0 0 crashes and save over 
10 0 0 lives each year in the U.S. ( Bertini et al., 2016 ). V2V can inform drivers about the incipient arrival of emergency and 
service vehicles such as police cars, ambulances, and fire brigades. For example, police vehicles in an active pursuit could 
use V2V communication to pull over vehicles or deliver warnings to drivers, and ambulances with critical patients and fire 
services could send messages to clear roadways in advance of their arrival — it is difficult for drivers to determine the 
direction of approach of an emergency vehicle and react appropriately based on auditory cues of traditional sirens alone, 
since auditory localization of warning alarms is imprecise within the confines of a closed vehicle ( Caelli and Porter, 1980 ). 
V2V can also propagate warnings of disruptive conditions—flash floods, flooded roads, and damaged bridges, for instance—to 
vehicles approaching from a distance. 

V2V may be used to alleviate traffic congestion as several works in the existing state of the art suggests. Beyond the 
usual suspects such as poorly designed narrow streets, traffic accidents, and inefficient traffic signals, traffic congestion arises 
from small perturbative effects when the traffic density is high. For example, in phantom jam (documented through aerial 
photography ( Helbing, 2001 ) and confirmed experimentally ( Sugiyama et al., 2008 )) a small perturbation initiated through 
braking by an individual vehicle slows down the speed of the vehicles behind and, when the traffic density is high, this 
can cause a chain reaction with the phenomenon amplifying as the waves spread farther back ( Qian et al., 2017; Patire and 
Cassidy, 2011 ). This can quickly result in severe traffic congestion throughout a relatively large area, especially in peak traffic. 
V2V communications can mitigate such phenomena by timely and efficient distributed communication. In recent work, 
Won et al. (2017) , for instance, have proposed an efficient phantom jam control protocol leveraging V2V communication. 
Autonomous vehicles may be particularly susceptible to such perturbations because of higher traffic densities enabled by 
automation. V2V-equipped autonomous vehicles will however be able to anticipate and mitigate phantom traffic jams by 
receiving relevant information to automatically adjust speed, space headway, and routes. 

For effective remediation, congestion must be detected early and be communicated to relevant parties efficiently. Con- 
gestion can be detected by floating vehicles equipped with GPS ( Wang et al., 2019; Hellinga et al., 2008; He et al., 2017b ) 
or cellular devices ( Wang et al., 2012; Demissie et al., 2013 ). However, traffic status estimation based on floating vehicles 
is not accurate enough ( Mandal et al., 2011; Yong-chuan et al., 2011 ) and the instantaneity and stability of urban traffic 
congestion estimation remain challenging ( Kong et al., 2016 ). V2V can facilitate smoother traffic flow overall by quickly dis- 
seminating relevant traffic information, e.g., vehicle speed, acceleration, and location of neighboring vehicles, to detect traffic 
congestion and estimate its severity as it builds ( Chen et al., 2006; Lakas and Chaqfeh, 2010; Chou et al., 2011; Knorr et al., 
2012; Forster et al., 2014; Jiang et al., 2014; de Souza et al., 2015; Wang et al., 2016 ). V2V can also facilitate autonomous 
exchanges of routing plans between vehicles and suggest alternative routes to optimize overall traffic flow. For example, 
Gupte and Younis (2012) proposes to factor in microscopic data incorporating the destination and routes of nearby vehicles 
in deciding whether rerouting is advisable, in contrast to centralized schemes that only provide macroscopic information on 
congestion. 

Traffic conditions are known to vary widely and sometimes abruptly in a variety of unexpected events. For example, at 
the end of a major sporting event, unexpected victories can cause sudden increases in traffic in areas of celebration. Un- 
scheduled personal visits by high-ranking officials (e.g., presidents) and celebrities can also significantly increase local traffic 
volumes. The congestion from such hot spots can spread all over the city, including the peripheries. This congestion can be 
ameliorated through the use of V2V communications originating from vehicles at or near the epicenter of the disturbance 
allowing the recipients the option to bypass the congested region. 

All in all, V2V is likely to have widespread applications in ameliorating congestion, improving routing, enhancing safety, 
and improving profitability. Many of these applications save time and money of participants of ride-sharing services, who are 
likely to use transportation networks more than the rest of the populace. Through participation in these applications, shared- 
ride services also contribute to society by improving the travel experience of the overall populace. Early adopters of V2V or 
connected and automated vehicles (CAV) may be commercial vehicles including ride-sharing, shared taxis and shuttles and 
transit services etc., rather than private vehicles of individual consumers ( Sweatman, 2017 ): individual consumers tend to 
hold on to personal vehicles for many years; consider that the average age of cars and light trucks reached 11.6 years in 2016 
( U.S. Department of Transportation, 2017 ). As to the ride-sharing companies, Uber has invested heavily in CAV research and 
development ( McGuckin et al., 2017 ). Since May 2018 any one with the Lyft app in Las Vegas can hail a V2V-enabled CAV 
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( Blanco, 2019 ). As of January 2019, they currently have 30 CAVs and have provided over 30,0 0 0 rides. These developments 
suggest that CAVs enabled with V2V may be expected to facilitate growth and change in commercial shipping and in the 
shared mobility industry. Once a critical mass is achieved, the exchange of information between such commercial vehicles 
will also benefit unaffiliated or otherwise affiliated vehicles, especially in the context of safety and traffic conditions. 

V2V technologies need not however constitute an unmitigated blessing - they can also bring new threats, e.g., by serv- 
ing as vectors to infect vehicles with malware ( Checkoway et al., 2011; Koscher et al., 2010; Miller and Valasek, 2015 ). 
Infected vehicles can proceed to infect other vehicles with the malware. Malware can disrupt functionalities of vehicles, 
the automated ones certainly, but also manually driven ones, and thereby constitute a public-safety hazard. Malware may 
contaminate the information that vehicles receive or transmit. Routing information could be manipulated to direct the ve- 
hicles to locations causing maximum harm, e.g., 1) to roads with poor visibility condition, thereby causing accidents, 2) to 
areas of heavy traffic, for example, to block the roads surrounding a busy sports coliseum at the conclusion of a game, 3) 
to congregate to maximize malware propagation, for example, to launch a denial of service (DoS) on the communications 
infrastructure associated with critical facilities (e.g., transportation hubs). Alternatively, the information communicated to 
other vehicles informing of precarious road conditions ahead may be suppressed, leading to a chain of collisions. Malware 
can cause serious malfunctions in assisted driving, e.g., adaptive cruise control, forward collision warning, lane departure 
warning ( Miller and Valasek (2015) , p. 11), leading to accidents. Malware may also be able to record and leak private infor- 
mation of individuals in the vehicles, e.g., their driving patterns, the address books in their phones, their pictures ( Miller and 
Valasek (2015) , p. 15). 

V2V can also constitute part of the solution for this security threat. It can be used for sharing security patches that 
would render vehicles immune to malware (of types that are anticipated or detected), and certificates for privacy and au- 
thenticity, that would help blacklist infected vehicles and enable other vehicles to ignore messages from vehicles which do 
not have these certificates. Certification Authorities (CAs) issue certificates to trusted vehicles, and certificates of untrusted 
vehicles must be immediately revoked. The Certificate Revocation Lists (CRLs) must be continuously updated, thoroughly se- 
cured, and quickly delivered over large areas like entire cities. A recent report from the U.S. Federal Highway Administration 
(FHWA) ( Green et al., 2018 ) noted that epidemic routing over V2V may be utilized for the distribution and revocation of 
cryptographic materials. Various other studies have also advocated the secure distribution of CRLs using V2V ( Haas et al., 
2011; Chen et al., 2011; Laberteaux et al., 2008 ). 

Characterizing the spread of malware, security patches, and CRLs over V2V constitute the first step in countering the 
spread of the malware and enhancing the efficacy of the defense mechanisms, both of which would help shared transporta- 
tion companies to consider their vulnerability to cyber attacks and devise plans to protect against intrusions. 

We seek to characterize the spatio-temporal propagation of information (whether it be hazards, traffic conditions, safety, 
emergency protocols, malware, CRLs, or something else) through local messaging between vehicles, regardless of the specific 
content of the messages. Such characterizations would reveal the fraction of vehicles who have the information of interest, 
i.e., the fraction of informed vehicles, as a function of time and location. Obtaining such a characterization is of central 
importance for ensuring the efficacy and security of all the applications in question. Given the diverse set of applications 
of V2V, the models for such characterizations need to apply regardless of specific content, be flexible, easy to compute and 
scale efficiently with size. 
1.2. Challenges 

Different applications that utilize V2V would need to populate vehicles over different areas with the pertinent messages - 
we refer to such an area for a given application as its Region of Interest or RoI . Geocast can be used to provide information 
only to vehicles in the RoI ( Navas and Imielinski, 1997 ). The RoI will be of different shapes and sizes for different applica- 
tions. The characterization of the spatio-temporal propagation of information would be of value provided the RoI spans at 
least a few blocks. In many applications of V2V, the RoI varies from an area spanning a few blocks to a large area spanning 
the entire city, or areas of intermediate sizes. From domain knowledge, we now suggest the sizes of the RoIs for different 
applications mentioned in Section 1.1 . In urban areas, such as Manhattan or Hong Kong, which are always suffering from 
traffic congestion, information pertaining to 1) incipient arrival of emergency vehicles such as police cars, ambulances, and 
fire brigades, 2) sudden development of disruptive conditions—flash floods, flooded roads, ice formation, damaged bridges 
etc., or 3) possibility of a phantom jam, must be transmitted in advance to a region of at least 10 blocks radius around 
the epicenter of the event or the current location of the emergency vehicle in question. Thus, the RoI is of the order of 
100 blocks for such applications. The relevant information may also have to be shared in certain key arteries connecting a 
larger area to warn vehicles directed towards the epicenter of the events in question or to clear arterial roads in advance of 
the arrival of the emergency vehicles. In these cases, the size of the RoI would be larger, especially in the city center and 
at peak traffic, because it takes longer to clear arterial roads. In urban areas with heavy traffic congestion, even informed 
vehicles may require more time to change trajectories rather than following the road ahead. Incidentally, information has 
to be spread to the vehicles not only traversing the same road as the emergency vehicles, but also those traversing the 
intersecting roads; otherwise, vehicles in these intersecting roads may congest by arriving unaware into the road taken by 
the emergency vehicle. Thus, information must be spread over two dimensions. The same observation applies for messages 
pertaining to the development of emergency conditions or phantom jams. The RoI for these local events may not however 
exceed radii of 20 blocks or so. 
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The RoI for security applications may constitute entire cities, large counties or nationwide highways, etc. since malware 

can quickly spread throughout large areas causing large scale instability and chaos. On the other hand, the RoI for the spread 
of information concerning routes and congestions due to unanticipated events, such as unexpected victories in major sport- 
ing events, unscheduled personal visits by dignitaries and celebrities, may span anywhere between radii of 10 −20 blocks to 
entire cities, counties, long highways, etc. 

Any model developed must lend itself to simple computation regardless of scale. Consider that the number of vehicles 
registered in Los Angeles in 2017 was around 8 million ( California Department of Motor Vehicles, 2017 ) and the number 
of registered vehicles in Shanghai in 2015 was about 2.5 million ( Ningning, 2016 ). Although not all the registered vehicles 
may simultaneously ply a RoI, the number of vehicles plying the RoIs, particularly in urban areas and highways is large. 
For example, considering multiple lanes, at peak travel times at city centers, more than one thousand vehicles may simul- 
taneously ply even a modest-sized two-dimensional RoI of radius of five blocks (the area encompasses 25 blocks or so). 
This inhibits a simulation-based study because memory usage and execution time exponentially increases with the number 
of simulation vehicles in most of the V2V simulators (e.g., in VEINS, composed of OMNeT++ and SUMO, which is designed 
to capture microscopic aspects such as details of communication network protocols etc.); as such, these can simulate only 
transportation networks with far fewer number of vehicles. Thus, given the sheer number of vehicles and adding a multi- 
tude of non-motorized travelers to the mix, designing easy-to-compute analytical characterizations for the spatio-temporal 
spread, in which computation time gracefully scales with the number of entities, assumes paramount importance. 1 

Frustratingly, not only the size of the RoI but also the heterogeneity of vehicular networks complicates the task of 
obtaining a computationally simple mathematically tractable model for characterizing the fraction of informed vehicles 
as a function of time and space. Both vehicle mobility and wireless communication influence information propagation in 
the vehicular network, and both conditions vary temporally and spatially. Heterogeneity in vehicular mobility arises, for 
example, due to (1) different forms of transportation networks including grid networks (e.g., Manhattan), radial and circular 
road topologies (e.g., Paris, Moscow), and irregular narrow streets (e.g., medieval town centers); (2) regional characteristics, 
such as urban or rural; and (3) time of day, such as morning and evening rush hour. Heterogeneity in communication 
conditions can primarily be attributed to: (1) Obstacles like buildings and trees; (2) adverse weather conditions like heavy 
storms; (3) frequency of communication; and (4) user density and available bandwidth. Different admixtures of these trans- 
portation and communication conditions have different consequences for the dynamics of information propagation. Also, 
both mobility patterns and communication conditions continuously evolve over space and time because of (1) evolving road 
topologies (e.g., due to road constructions and temporary roadblocks), (2) varying traffic conditions (e.g., due to congestion 
and accidents), and (3) fluctuating link quality. Any model should therefore be readily adaptable to this temporal and 
spatial evolution to capture its impact on information propagation dynamics. Also, it is not sufficient to study how mobility 
(e.g., vehicle speed, traffic density, routing) and communications independently influence information propagation, as these 
factors mutually interact with each other and consequentially affect information propagation in a more complicated way. 

Finally, variations of mobility and communication in a vehicular network are inherently stochastic. A characterization of 
V2V information flow must hence begin by considering the stochastic components of the system. In such settings, the clas- 
sical theory of even well-behaved stochastic systems governed by Markov processes provides computation approaches only 
for the steady-state distributions (i.e., distribution as time approaches infinity) of the number of informed vehicles. These 
computation approaches are also computation-intensive as these rely on the inversion of a Q × Q transition probability 
matrix, where Q is the number of states, i.e., Q is at least J K , where J is the maximum number of vehicles in a city block 
and K is the number of blocks in the RoI. Such computations become intractable even for modest size RoIs. Obtaining 

1 A question that arises is if for large RoIs like entire cities, etc., the communication will necessarily have to be over cellular networks, rather than over 
V2V. Towards that end, note that DSRC technology for V2V can utilize the specified authenticated bandwidth to enable reliable communication, and it can 
also provide high-speed data transmission ( Ban and Li, 2018 ). For security applications, as noted before, several research papers and U.S. Federal Highway 
Administration (FHWA) make the case for transmitting CRLs over V2V; the medium for the propagation of malware will be determined by the designer and 
as such V2V can not be ruled out. According to a recent FHWA report (see Green et al. (2018) ), multi-hop dedicated short-range communication (DSRC) 
V2V is an example of a Mobile Ad-hoc Network (MANET), and that “A MANET can serve many needs that traditional physical infrastructure-dependent 
networks cannot. For example, MANETs can provide cellular network offloading. Network offloading can be crucial in situations where the number of 
users on a network approaches or exceeds the network capacity, causing delays and other interruptions in service. MANETs are capable of temporarily 
diverting traffic from traditional network infrastructure to reestablish service for, or increase the number of, users within a typical area of coverage. 
In a similar light, MANETs are able to expand the coverage of a given network to regions beyond what an infrastructure-dependent network usually 
covers. MANETs can also provide communication and information dissemination capabilities in areas that temporarily or permanently lack an efficient 
communication infrastructure.” Next, note that, V2V is only intended to provide autonomous communication in transportation environments and offers 
control over priority, channel, transmit power. Thus, special purpose V2V messaging networks may be optimized for inexpensive and efficient delivery of 
the specific messages they need to cater to, as opposed to the general-purpose cellular data networks which can not be optimized for the requirements of 
the transmission of any one specific category of messages. Thus, it is quite possible that transmission over V2V may cost travelers less. In fact, V2V may 
well be offered as public utility in due course since it provides public service by enhancing road safety and reducing congestion; if so, transmission over 
V2V may become free, while Cellular communication will cost users in the foreseeable future. Thus, a cellular network-based system may be replaced or 
at least supplemented, for at least data communication pertaining to transportation requirements, as market penetration of V2V increases, as is expected 
given the interests shown by automakers and regulators. In such an eventuality, equivalents of the popular tools like google maps and crowdsourcing-based 
apps like Waze, which are currently utilized over Cellular networks, for applications like congestion control and route selection, may be developed for V2V; 
their current design for utilization only over Cellular networks may be the artifact of the current reality that Cellular network is the only available network 
as V2V is not widely deployed. All the above constitute reasonable presumptions now, and the applications would become clearer as the V2V technology 
is widely deployed. 
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distributions at a given finite time is even more hopeless. On the other hand, one can envision more computationally 
tractable deterministic characterizations, but the challenge then becomes to show these as limits or some other mathe- 
matical derivations or statistic such as expectations of the governing stochastic process (e.g., Kim et al. (2016) notes the 
need to consider “stochastic modeling to introduce greater realism”, as future work). 
1.3. Positioning our contributions with respect to the state of the art 

Prior research on V2V has studied how to leverage the technology to smooth out congestion speeds in a transportation 
problem with communication exogenous ( Scholliers et al., 2016 ). Other work in a dual setting of a communications problem 
with transportation exogenous has focused on the relationship between the latency of different communication mechanisms 
and their impact on traffic flow and on vulnerable road users ( Whyte et al., 2013; Zhang et al., 2014a; Greenberg, 2015 ). The 
state of the art that considers both communication and mobility as endogenous has largely focused on characterizing and 
evaluating message propagation speeds. Here, certain destinations points are identified, and the speed is characterized as 
the ratio of the distance between the source and destination and the time message takes to reach the destination; the latter 
is referred to as the delay. Some existing works compute average message propagation speed (or delay) for various sys- 
tem attributes such as traffic densities, vehicle speed, etc.; some others obtain, using renewal processes, long-term average 
propagation speed, i.e., lim t → ∞ (distance/time). 

Most of the analytical works in the above genre have considered movement along a one-dimensional road, which 
we briefly review next. Wu et al. (2009) studied message dissemination on one-dimensional road, considering one- 
and two-way traffic, based on the inter-vehicle gap and vehicle speed distributions. For a one-dimensional road with 
bidirectional traffic, Agarwal et al. (2012) derived bounds on the average speed of information propagation, while 
Liu et al. (2013) and Saleet et al. (2011) investigated the influence on delay of traffic density, vehicle speed, and delivery 
distance. Baccelli et al. (2012) provided analysis of the information propagation speed in bidirectional vehicular delay 
tolerant networks, and showed that a phase transition occurs in the propagation speed with respect to vehicle density. 
Kesting et al. (2010) considered bidirectional traffic and presented an analytical model to study probability distributions for 
message transmission times, assuming an exponential distribution of inter-vehicle distances. Yin et al. (2013) also proposed 
an analytical model for the expected distance of information propagation on two parallel roads, considering the distance 
between the two roads and the general distributions of vehicle headways. Zhang et al. (2014b) considered multiple lanes 
of the one-dimensional road with bidirectional traffic and assessed the effect of traffic density and distribution of vehicle 
speed in different lanes on the speed of message dispersion. 

The literature on two-dimensional traffic models is much sparser and more recent. A recent paper studies the delay in 
forwarding messages along a selected path in a two-dimensional road topology assuming that the speed of all vehicles in the 
same direction on a road segment is identical ( He et al., 2017a ). In this paper, the authors considered a unicast scenario and, 
assuming communication delays may be ignored, introduced an algorithm to choose the path with the minimum expected 
delay. In another recent work Kim et al. (2016) study the speed of the information propagation “wave”, approximating it at 
each time and location as a function of only the deterministic traffic flow at that time and in the vicinity of the location, 
and evaluate the approximation through comparison with a synthetic stochastic process. 

To summarize, the state of the art has focused mostly on analyzing expected propagation speed (or expected delivery 
delays) for given vehicle speed, traffic density, and distance between vehicles, with investigations limited primarily to one- 
dimensional roads and, rarer, two-dimensional networks. To the best of our knowledge, characterizations of fractions of 
informed vehicles at a given time and location, that have been verified through either mathematical proofs, or synthetic 
simulations, or empirical studies involving actual microscopic trajectory data, have remained elusive for both one and two- 
dimensional vehicular networks, regardless of size. Such fractions are more informative of the message propagation process 
than expected propagation speed (or expected delivery delays), in the same manner as cumulative probability distributions 
or densities are more informative of a stochastic process than an expectation. We obtain such characterizations following 
rigorous mathematical proofs, and evaluate the same through extensive synthetic simulations, and utilization of several 
actual microscopic trajectory data. Such characterizations can form the basis of assessing several attributes of V2V systems, 
some of which we demonstrate. The characterizations are computationally tractable and lend themselves to a variety of 
generalizations and capture various different interdependencies between communication and mobility. We elaborate our 
contributions in the next Section. 
1.4. Our contribution 

We start with by modeling V2V information flow in a transportation network, i.e., the number of informed and un- 
informed vehicles as a function of time and space, as a continuous-time Markov chain (CTMC) following the extensive 
precedents of utilization of CTMCs in transportation networks, e.g., in estimation of freeway travel time in both routine and 
perturbed states ( Ramezani and Geroliminis, 2012; Dong and Mahmassani, 2009; Geroliminis and Skabardonis, 2005; Alfa 
and Neuts, 1995 ). We are immediately confronted with the perils of the stochastic essence of such systems. As mentioned 
before, even well-behaved stochastic processes like CTMCs are known to be computationally challenging in providing prob- 
ability distributions which are only accentuated in the context of information flow in vehicular networks (last paragraph of 



J. Kim, S. Sarkar and S.S. Venkatesh et al. / Transportation Research Part B 131 (2020) 160–190 165 
Section 1.2 ). Our key insight to bypass the computational bottleneck in this setting is to finesse the computational limita- 
tions by appeal to the ergodic theorem to argue that the propagation process converges, in the mean field limit, to a solution 
of a set of clustered epidemiological differential equations which provide the fraction of informed vehicles at any given time 
and space, and also lend themselves to fast computation. One of the main virtues of this modeling approach is that, in the 
mean field limit, the computation time needed to solve the equations does not depend on the number of entities including 
vehicles, pedestrians, bikes, and wheelchairs, while computation time increases only modestly with topographical complex- 
ity (we demonstrate the computational tractability in Section 5 ). In fact, as the number of vehicles in the system grows, the 
better is the fit of the model to the underlying traffic patterns, which renders our tool suitable for most of the applications 
that arise in practice. In Section 2 , we also show how our framework caters to various interdependence between mobility 
and communication that arise in practice-namely, temporal variation of the traffic density and routing to capture the vehic- 
ular movement pattern during rush hour, a location-dependent mobility model that reflects speed limits applied differently 
depending on the region, and finally a traffic density dependent mobility model that reflects reduced vehicle speed due to 
high traffic density. 

Continuum limit and mean field models have been used in the ride-sharing literature to control shared transportation 
systems for ride-sharing services. The goal of these platforms is to maximize fulfilled demands, revenue, or other objectives 
by employing tools from optimal control ( Banerjee et al., 2018 ). Specifically, Banerjee et al. (2018) focuses on the scheduling 
policy, where the platform can determine which vehicle to allocate in response to an incoming ride request. They proposed 
policies to minimize the proportion of dropped requests. In Braverman et al. (2019) and Braverman et al. (2017) , empty-car 
routing in a ride-sharing network was considered under a condition where supply and demand for vehicles tend to infinity. 
They provided a comprehensive analysis of the design of an optimal empty-car routing policy based on an asymptotic fluid 
analysis. And Yang et al. (2018) studied the equilibrium behavior of nomadic agents for different resources depending on 
time and location, arising in ride-sharing economies. The utilization of these models in the context of information flow in 
transportation networks is new to our knowledge. 

The analytically sanitized theoretical model lives in the mean field limit of an idealized propagation process which 
converges to the solution of a coupled system of ordinary differential equations when vehicles follow exponential sojourn 
times and the number of vehicles goes to infinity. In contrast, in practice, we deal with a finite number of vehicles with 
sojourn times governed by an unknown underlying process. It is legitimate to wonder then how closely our models hew to 
reality. We therefore conduct detailed empirical verifications of our model, intentionally considering settings which stress 
the model assumptions ( Section 3 ). For this purpose, we use synthetic stochastic models and microscopic traffic traces - 
two actual trajectory datasets on highways, two-way roads with intersections, and one synthetic trajectory dataset gleaned 
from origin/destination information on a roundabout. Our empirical validations confirm that, even for a moderate number 
of vehicles and a variety of road topologies, the output of the differential equations matches the results of the trace propa- 
gation process quite well even in the settings of the microscopic trajectory data where there are a finite number of vehicles 
and there is no compelling reason to believe that vehicles have exponential sojourn times, and even when vehicles follow 
shortest-path destination-specific routes (as opposed to our modeling abstraction of using routing probabilities agnostic 
of the destination). We have made publicly available a software that can model the spread of V2V messages in arbitrary 
transportation networks using the clustered epidemiological differential equations ( Kim, 2019 ). 

We next present case-studies demonstrating the usefulness of our model to characterize the behavior of V2V systems 
in various practical situations ( Section 4 ). Here is a sampling of the results. We show how traffic congestion can be alle- 
viated through an intelligent application of V2V technology. We also assess how quickly information about the location of 
disruptive changes (i.e., temporary roadblocks) can be disseminated. Lastly, we examine how the initial location of informed 
vehicles determines the spread of information throughout the transportation network. Our study reveals a counter-intuitive 
phenomenon: message propagation is not necessarily accelerated if the initially informed vehicles are centrally located. 

Finally, we show how our mathematical framework can be readily generalized to accommodate information propagation 
under the condition of destination-dependent vehicle routing mechanisms (e.g., the shortest path routing) and also han- 
dle the simultaneous spread of multiple pieces of information ( Section 6 ). We discuss the various computation tradeoffs 
associated with the generalizations. We conclude by summarizing our research findings in Section 7 . 
2. Model formulation 

Section 2 introduces models pertaining to various forms of vehicle mobility and communication. We first introduce a 
general mathematical framework for the propagation of messages in V2V systems ( Section 2.1 ). We subsequently show 
how the general framework caters to various specialized cases that arise in practice ( Section 2.2 ): temporal variation of 
the traffic density and routing to capture the vehicular movement pattern during rush hour ( Section 2.2.1 ), a location 
dependent mobility model that reflects speed limits applied differently depending on the region ( Section 2.2.2 ), and finally 
a traffic density dependent mobility model that reflects reduced vehicle speed due to high traffic density ( Section 2.2.3 ). 
These various scenarios can occur simultaneously, which can easily be represented by combining these models. All models 
are based on continuous-time Markov chains. We show that information propagation based on the Markov chain can be 
very well approximated by differential equations for the various vehicular mobility and communication patterns mentioned 
above. 
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Fig. 1. Clustered road topologies. The figures represent various road topologies such as grid roads, radial with circular roads, and irregular roads. In arbitrary 
types of topologies, roads can be divided into multiple smaller segments, so clusters can be defined as shown by the red dotted rectangle in the illustration. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
2.1. Clustered epidemiological differential equation model 

We develop tools to model information propagation under general types of transportation network and various commu- 
nication conditions. Transportation networks exist in various forms such as highways connecting cities; coastal roads; and 
urban roads. Unlike highways or coastal roads, which are relatively simple one-dimensional forms, urban roads exist in com- 
plex networks of different types depending on the characteristics of the area. In most areas, however, these road topologies 
are superposed in a complex manner. We introduce mathematical tools that can be used to model and analyze information 
flow across arbitrary complex road networks as shown in Fig. 1 , which can potentially be used for prediction of information 
propagation through vehicle-to-vehicle communication. 

The extent to which information is spread between moving vehicles is determined through vehicle movement and wire- 
less communication. The mobility of vehicles on the transportation network depends on topology which will continuously 
evolve (addition of new roads, blockage of existing roads due to maintenance), traffic conditions (traffic congestion, the 
presence of an accident), time of day, and the characteristics of the individual travelers (urban, rural, land use interactions). 
Communication on these transportation networks is influenced by traffic conditions (packet collisions due to high traffic 
density) and communication conditions (frequency of communication between vehicles, fading due to obstacles such as 
buildings, trees, etc., vehicle occlusion, multipath transmissions, rate and power control, the hidden terminal problem, etc). 
We present a mathematical model that can capture information flow in arbitrary vehicular network that contains all of 
these complex elements. 

We divide the entire RoI into a collection of J clusters, with each cluster corresponding to a specific region of the road; 
thus each vehicle is located in one of the J clusters. One possible way to form a cluster is to set the cluster size to the 
communication range as it is natural to assume that the vehicles located within the same cluster are within the V2V com- 
munication range. However, vehicles located at the boundary of one cluster can communicate with vehicles in other adjacent 
clusters if they are within the communication range. Our model can cater to this communication between vehicles located 
near the boundary of two adjacent clusters by considering that the vehicles located in the different clusters can communi- 
cate at a reduced rate. When considering the communication of vehicles in adjacent clusters, it is reasonable to apply the 
reduced rate because not all cars in the two adjacent clusters can communicate with each other and only vehicles located 
near the boundary can communicate. 

Vehicles can both communicate and move across clusters or within clusters. Clearly, a vehicle cannot communicate be- 
tween every pair of clusters because of the technical limitations of the wireless communication range. Similarly, a vehicle 
cannot move between each pair of clusters due to the nature of the road and traffic rules. Both of the above are influenced, 
but not solely determined, by geography. For example, although two clusters are close enough to permit communication, the 
vehicle may not be able to move between them. Fig. 2 shows cluster i and j located on the same road segment of the two- 
way roads; these vehicles are close enough to permit communication but traffic rules do not allow them to travel across 
the median. Similarly, even between two adjacent clusters where vehicles can move, the success rate of communication 
between two clusters may become low or 0 due to obstacles (buildings, trees, etc.). 

Fig. 2. Mobility and communication networks. The mobility network is a directed network and the communication network is an undirected network. The 
edges of these two networks may overlap but need not be exactly the same. 
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Table 1 
Mathematical notation. 

G ( V, E ) Directed network of mobility on road topology 
G ′ ( V, E ′ ) Undirected network of communication on road topology 
V Set of clusters, | V | = J
E Set of directed mobility edges 
E ′ Set of undirected communication edges 
N Total number of vehicles 
n I j (t) Number of informed vehicles in cluster j at time t 
n S j (t) Number of non-informed vehicles in cluster j at time t 
X ( t ) Continuous-time Markov process 
X N ( t ) Scaled Markov process, X ( t )/ N 
λI 

i j (·) Mobility rate from cluster i to j for informed vehicles 
λS 

i j (·) Mobility rate from cluster i to j for non-informed vehicles 
λ Upper bound for mobility rate 
β ij / N Communication rate between a vehicle located in cluster i and a vechicle in j 
N G ( j ) Neighborhood of cluster j ; set of clusters connected from cluster j 
p jk Probability that a vehicle in cluster j move to k 
ρ( t ) Proportion of informed vehicles at time t 

We define two networks and corresponding adjacency metrics: communication network and mobility network. While 
both depend on the geographical characteristics of the roads, they do not necessarily have to be the same. We first describe 
the mobility network. Let G = (V, E) be the directed mobility network on the road topology, and the directed network G 
consists of a set of nodes V = { 1 , 2 , . . . , J} corresponding to clusters and a set of mobility edge set E . If clusters j, k ∈ V are 
adjacent roads and vehicle movement is possible from cluster j to k , the directed edge is specified as the edge e ∈ E from 
j to k (equivalently, e : = j → k ). The corresponding adjacency matrix of G is the J × J matrix A = (a jk ) where a jk = 1 if 
j → k ∈ E and a jk = 0 otherwise. We now introduce the communication network. Let G ′ = (V, E ′ ) be the undirected network 
of communication with the set of same nodes V and set of wireless communication edge set E ′ . If two clusters j, k ∈ V can 
directly communicate amongst each other then there exist an edge e ∈ E ′ between j and k (equivalently, e : = j ↔ k ). The 
corresponding adjacency matrix G ′ is the J × J symmetric matrix a ′ = ( a ′ jk ) where a ′ jk = a ′ k j = 1 if j ↔ k ∈ E ′ and a ′ jk = 
a ′ k j = 0 otherwise. Through the adjacency matrices G and G ′ we have discussed, the characteristics of any road topology can 
be extracted. 

We model the information propagation in transportation networks based on the Susceptible-Infective(SI) epidemiological 
model that has been adopted in numerous infectious disease and information propagation research. This epidemiological 
model assumes that susceptible individuals have not yet incurred the disease but are vulnerable to it, and susceptible in- 
dividuals can become infected after receiving the disease through contact with infected individuals. These newly infected 
individuals can spread the disease to susceptible individuals. In this study, we use the mathematical formulation where the 
vehicles which carry information are referred to as infective, vehicles which do not yet have the information are called sus- 
ceptible. From hence, we denote the vehicle that carries the information as informed vehicles, and vehicles that have not 
received the information as non-informed vehicles. Table 1 summarizes the mathematical notations used in this paper. 

Suppose that N vehicles are located in the network with each vehicle in one of the J clusters corresponding to different 
road segments. We will suppose for now that the network is closed and that there are no exogenous arrivals into, or de- 
partures from, the system. Let n j I ( t ) and n j S ( t ) respectively represent the number of informed and non-informed vehicles in 
cluster j ∈ V at time t . The 2 J -dimensional lattice vector 

(
n I (t) , n S (t) ) = (n I 1 (t) , n I 2 (t ) , . . . , n I J (t ) ; n S 1 (t ) , n S 2 (t ) , . . . , n S J (t ) )

then represents the instantaneous state of the system, semicolon and extra spacing have been added merely for visual 
separation of informed and non-informed vehicular counts in the various clusters. The state space on which we model the 
dynamics of information propagation accordingly is the set of lattice points in Z J × Z J satisfying 

S N := 
{ 

(n I , n S ) | n I j ≥ 0 , n S j ≥ 0 , j = 1 , . . . , J; J ∑ 
j=1 

(
n I j + n S j ) = N 

} 
. 

The basic transitions in this state space capture one of three types of phenomena: the movement of an informed vehicle to 
a neighbouring cluster; the movement of a non-informed vehicle to a neighbouring cluster; and the conversion of a non- 
informed vehicle to an informed vehicle by the successful transmission and receipt of information. A little notation helps 
grease the wheels: write k = (n I , n S ) for the current state and let 1 j represent the 2 J -dimensional unit vector whose j th 
element is 1 with all other elements being 0. For j , k ∈ { 1 , . . . , J} with j * = k , the state transition k → k − 1 j + 1 k captures 
the movement of an informed vehicle from cluster j to cluster k ; the state transition k → k − 1 J+ j + 1 J+ k represents the 
movement of a non-informed vehicle from cluster j to cluster k ; and the state transition k → k + 1 k − 1 J+ k represents a 
successful communication of information to an uninformed vehicle in cluster k which now joins the informed ranks in that 
cluster with a concomitant reduction of the non-informed ranks in that cluster. 
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We now develop the stochastic underpinnings of the time evolution of the state process X(t) = (n I (t ) , n S (t )) . We model 

mobility delays by assuming that the time taken by a vehicle to move to a neighboring cluster is exponentially distributed 
with possibly state-dependent parameters. Likewise, we model communication delays, within and across clusters, by sup- 
posing that the time taken for a successful transmission of information from an informed vehicle to a non-informed vehicle 
is exponentially distributed, again with possibly state-dependent parameters. Under these assumptions, the state evolution 
process X ( t ) forms a continuous-time Markov chain (CTMC). We flesh out the structure of the CTMC in what follows. 

We recall that the CTMC exhibits the following three types of state transitions: (1) an informed vehicle moves from 
cluster j to cluster k, k * = j ; (2) a non-informed vehicle moves from cluster j to cluster k, k * = j ; and (3) a non-informed 
vehicle in a cluster k receives a successful transmission from an informed vehicle located in the same cluster or in a different 
cluster. 

The first two types of transition capture vehicle mobility. Write λI 
jk (·) for the rate at which informed vehicles from cluster 

j migrate to cluster k , and λS 
jk (·) for the rate at which non-informed vehicles migrate from cluster j to cluster k . These rates 

may be the same but there is no cost in the model to assuming potentially different mobility rates for informed and non- 
informed vehicles and we may as well do so. We assume that both λI 

jk (·) and λS 
jk (·) are bounded functions of 1 

N (n I , n S ) 
if a jk = 1 and are 0 otherwise. In other words, the model permits mobility-based transitions only between neighboring 
clusters, the transition rates between neighboring clusters are permitted to vary boundedly across clusters as a function of 
both the (geographic location of) the clusters as well as the density of vehicles in the clusters, and these rates may depend 
on whether the vehicle is informed or non-informed. 

The third type of state transition that we encounter deals with a successful communication of information from an in- 
formed vehicle to a non-informed vehicle resulting in the non-informed vehicle attaining informed status. We posit fixed, 
non-negative constants β jj and β jk , for each j and k , such that intra-cluster communications between vehicles in a clus- 
ter j occur at rate β jj / N while inter-cluster transmissions of information from cluster j to a distinct cluster k occur at rate 
β jk / N . (To keep away from unnecessarily burdening notation, we suppose that β jk = 0 if a ′ 

jk = 0 , that is to say, there is no 
direct communication across clusters not connected by a wireless communication link.) The model explicitly captures the 
phenomenon that communication rates diminish due to reductions in shared bandwidth as the number of vehicles in the 
clusters increase. There is an implicit ergodic model assumption here: effectively, we assume that the number of vehicles 
in each cluster is proportional to the total number N of vehicles in the network where the proportion of the population 
that is captured within each cluster may be cluster-dependent—these cluster-dependent constants of proportionality may be 
folded into the specification of the parameters β jj and β jk . This type of phenomenon is familiar in ergodic chains where, 
with a large population N , the occupancy in each cluster will be close to its expected value. The implicit mobility network 
modelling assumption here, of course, is that the model clusters represent settings in which road segments may be rea- 
sonably considered to have an ergodic character where, with a sufficiently large population of vehicles, each cluster sees a 
non-trivial vehicular occupancy. 

The communication parameter will be drawn from the underlying, well-studied communication pathways, commu- 
nication conditions, capacities, and protocols. The capabilities of the physical devices such as antennas can provide the 
maximum rate that can be transmitted, and also the maximum capacity of the medium restricts the amount of information 
that can be transmitted over a certain period of time. In this respect, the capabilities and capacity which are closely related 
to the network performance can also be reflected in the communication parameter. Besides, one can analyze the commu- 
nication protocol and draw the corresponding parameter based on what is feasible in the given protocol. Hartenstein and 
Laberteaux (2008) present a tutorial survey on the network protocols, communication technologies, potential applications, 
and challenges of vehicular ad hoc network (VANET), and many protocols for VANET have also been discussed ( Almalag et al., 
2013 ). Any given combination of protocols would translate to a certain attainable communication parameter. Furthermore, 
as protocols and physical devices are redesigned for better network performance, we can get a corresponding higher 
communication rate, which can be used to inform our communication parameters. 

To summarize, state transitions in the Markov chain are governed by exponential processes, the transitions from a given 
state k = (n I , n S ) to a state k ′ = k + h occurring at a rate 

q ( k , k + h ) = 

 
         
         

λI 
jk 
(

k 
N 

)
· n I j if h = −1 j + 1 k and j * = k , 

λS 
jk 
(

k 
N 

)
· n S j if h = −1 J+ j + 1 J+ k and j * = k , 

β jk 
N · n I j · n S k if h = 1 k − 1 J+ k , 

0 otherwise. 
(1) 

This follows a well-worn pathway in the theory of continuous-time Markov chains. The key to a dramatic asymptotic sim- 
plification in our setting is that the transition rates given by (1) have a certain density-dependent property which reduces 
considerations via the ergodic theorem to a system of ordinary differential equations in the continuum. 

Proceed to the continuum limit and introduce the set E := { (I , S ) | I i ≥ 0 , S i ≥ 0 , i = 1 , 2 , . . . , J; ∑ J 
i =1 (I i + S i ) = 1 } where, 

in the natural vector notation, we write (I , S ) = (I 1 , I 2 , . . . , I J ; S 1 , S 2 , . . . , S J ) . The continuous analog of (1) is a continuous 
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function f ( x, h ) on E × Z 2 J given, for each x = (I , S ) ∈ E and h ∈ Z 2 J , by 

f ( x , h ) = 
 
    
    

λI 
jk ( x ) · I j if h = −1 j + 1 k and j * = k , 

λS 
jk ( x ) · S j if h = −1 J+ j + 1 J+ k and j * = k , 

β jk · I j · S k if h = 1 k − 1 J+ k , 
0 otherwise. 

(2) 
The discrete formulation (1) can be imbedded in the continuous formulation (2) by the simple observation that q ( k , k + h ) = 
N f ( k 

N , h ), hence the connection to a continuum density—in the nomenclature introduced by Kurtz, we say that the Markov 
chain is density-dependent . In such cases a very general theorem of Kurtz (Kurtz, 1970) asserts that, in the asymptotic limit 
as N → ∞ , state evolution in the CTMC may be represented by a system of ordinary differential equations. 

Introduce the formal notation 
lim 

N→∞ n I (t) 
N = I (t) , lim 

N→∞ n S (t) 
N = S (t) . 

The formal quantities I ( t ) and S ( t ) represent the asymptotic fraction of informed and non-informed vehicles, respectively, in 
each cluster. The following is the key consequence of Kurtz’s theorem adapted to our model assumptions. 

Under the conditions of our model, for a given choice of initial conditions (I (0) , S (0)) , the time-evolution , (I (t) , S (t)) , of the 
distribution of the asymptotic fraction of informed and non-informed vehicles across clusters is governed by the following system 
of ordinary differential equations: 

˙ I j (t) = − J ∑ 
k * = j λI 

jk ( I , S ) · I j + J ∑ 
k =1 βk j · I k · S j + J ∑ 

k * = j λI 
k j ( I , S ) · I k ( j = 1 , 2 , . . . , J) , 

˙ S j (t) = − J ∑ 
k * = j λS 

jk ( I , S ) · S j − J ∑ 
k =1 βk j · I k · S j + J ∑ 

k * = j λS 
k j ( I , S ) · S k ( j = 1 , 2 , . . . , J) . (3) 

This reduction to a system of differential equations is the jumping off point for our model analysis and a reader who is 
primarily interested in seeing applications of the model in diverse settings can begin with (3) and read on. The theoretically 
inclined reader who would like to see details of how Kurtz’s theorem, adapted to our setting, results in (3) will find the 
analysis and proofs in the Appendix. 
2.2. Specialization 

The general framework, that is the set of differential Eq. (3) , referred to as the clustered epidemiological differential 
equations (CEDE), cater to several special cases that arise in practice. For this, we consider the grid road topology in Fig. 3 
with six avenues and streets. In the center of the network is a representation of a Central Business District (CBD): the CBD 
acts as an attractor of trips from the surrounding locations in the city (periphery). In this network, we assume that all roads 
are two-way and allow vehicles to move in both directions, and a road segment consists of two clusters corresponding to 
the opposite directional roads. 
2.2.1. Temporal variation of traffic density and routing 

We now show how the differential Eq. (3) cater to the temporal variation of the traffic density and routing pertaining 
to vehicle movement during rush hour. We capture the morning rush from the periphery to the CBD in the morning and 
then the reverse at the conclusion of the work day. In the directed mobile network G ( V, E ), the neighborhood of cluster j is 
defined as the set of clusters connected from j ∈ V through a directed edge, denoted N G ( j ). Let D be the set of clusters in the 
CBD, and O = D c be the set of clusters in the periphery. As shown in Fig. 3 , the shaded area of the city center is generally 
located in the center of the city. Let p jk be the probability that vehicles in cluster j move to cluster k ∈ N G ( j ). In that case, 
the mobility rate set in this model is 

λI 
jk (·) = λS 

jk (·) = p jk λ (4) 
where λ is constant. Since the mobility rates for j = 1 , 2 , . . . , J and k ∈ N G ( j ) are constant, it is clearly Lipschitz continuous 
on E . Therefore, by results in the Appendix, the behavior of propagation process based on this temporal variation of traffic 
density and routing can be approximated by ordinary differential Eq. (3) . 

In the rest of this subsection, we describe how p jk can be computed. Suppose that, for the starting point j ∈ { 1 , 2 , . . . , J} , 
this probability is classified into two types: the probability p j 

d of moving towards the CBD, and the probability p j o of moving 
towards the periphery. Concretely, if the direction from cluster j to k is in the direction moving toward the periphery, p jk 
corresponds to p j o , and in the opposite case, p jk corresponds to p j 

d . We introduce the γ parameter defined by the ratio of 
probability p j 

d to p j o to control the temporal variation of the routing for these two directions, resulting in p j 
d = γ p j o . For 

example, if γ = 5 , the probability of moving towards the CBD is five times higher than the probability of moving towards 
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Fig. 3. Clustered grid road topology. We capture probabilities of a vehicle moving between the CBD and the periphery. As for the movement from j to s , 
the direction is classified as to the direction towards the CBD since d ( s, D ) < d ( j, D ). Movement from i to m is classified as movement towards the periphery 
because the vehicle stays in the periphery, and does not move in the direction toward the CBD. 
the periphery. Thus, γ > 1 indicates a movement pattern in which peripheral dwellers move into the city center, e.g., 
during morning commute time; 0 < γ < 1 indicates a movement pattern in which workers leave the CBD and go back to 
the periphery, e.g., during evening commute time. 

We define a decision rule for determining whether movement from one cluster to another cluster is toward or away 
from the CBD. Let d ( x, y ) denote the Euclidean distance between two geometric centers of x ∈ V and y ∈ V , and let d ( x, D ) 
denote the minimum distance between a cluster x ∈ V and a cluster in D as follows. 

d(x, D ) = min { d(x, y ) | y ∈ D } 
When vehicles move from cluster j to k , if d ( j, D ) < d ( k, D ) then it is classified as the movement towards the periphery, 
resulting in probability p jk being p j o . If d ( j, D ) > d ( k, D ), it is classified as the movement towards the CBD, and as a result, 
the probability p jk becomes p j 

d = γ p j o . In the case of d( j, D ) = d(k, D ) , the type of movement direction is classified according 
to the position of the origin cluster and the destination cluster. Specifically, if d( j, D ) = d(k, D ) and origin cluster j and 
destination cluster k are both in the CBD, p jk is considered to be p j 

d = γ p j o , since this direction corresponds to the movement 
to stay in the CBD rather than leaving the CBD. Similarly, if d( j, D ) = d(k, D ) and origin cluster j and destination cluster k 
are both in the periphery, p jk is regarded as p j o because it is a type of movement that stays in the periphery, not in the 
direction toward the CBD. Therefore, for all cluster j ∈ V and its neighborhood k ∈ N G ( j ), we have 

p jk = 
 
    
    

p j 
d , if d( j, D ) > d(k, D ) 

p j 
d , if d( j, D ) = d(k, D ) and j, k ∈ D 

p j o , if d( j, D ) < d(k, D ) 
p j o , if d( j, D ) = d(k, D ) and j, k ∈ O 

(5) 

From this decision rule, for cluster j ∈ V and k ∈ N G ( j ), p jk is classified into one of p j 
d and p j o , then these two proba- 

bilities p j 
d and p j o are determined by ∑ 

k ∈ N G ( j) p jk = 1 . More specifically, we now show how p j 
d and p j o can be computed 

for all j ∈ V . First, consider an arbitrary node j ∈ D and let A be the set of clusters k ∈ N G ( j ) such that d ( j, D ) ≥ d ( k, D ). 
By using ∑ 

k ∈ N G ( j) p jk = 1 , we have | A | p j 
d + | N G ( j) \ A | p j o = | A | γ p j o + | N G ( j) \ A | p j o = 1 , resulting in p j o = 1 

| A | γ + | N G ( j) \ A | and p j 
d = 

γ
| A | γ + | N G ( j) \ A | . Similarly, for arbitrary node j ∈ O , let A ′ be the set of clusters k ∈ N G ( j ) such that d ( j, D ) ≤ d ( k, D ). Through 
the same approach, we have p j o = 1 

| A ′ | + | N G ( j) \ A ′ | γ and p j 
d = γ

| A ′ | + | N G ( j) \ A ′ | γ . For example, in Fig. 3 , when a vehicle in cluster 
i moves to neighborhood clusters k, n , and m , the p ik , p in , and p im are classified as p i o , p i 

d , and p i o , respectively. Therefore, 
p i o = 1 / (γ + 2) and p i 

d = γ / (γ + 2) , resulting in p ik = 1 / (γ + 2) , p in = γ / (γ + 2) , and p im = 1 / (γ + 2) . 
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2.2.2. Location-dependent mobility model 

In this subsection, we show that how the differential Eq. (3) can capture location dependent mobility model that reflects 
different speed limits for various regions. Speed limits are applied differently depending on the local characteristics of each 
city and the type of road, and as a result the average speed of the vehicles will depend on these characteristics. In this 
model, two different mobility rates are applied to reflect different speed limits applied to the CBD and the periphery roads, 
respectively, and the mobility rate of the CBD is set to a lower value. Let λd be the mobility rate from a cluster located in 
the CBD to the neighboring clusters, so that the average time to stay in the cluster before moving to a neighboring cluster 
is 1 / λd . Similarly, let λo be the mobility rate from a cluster located in the periphery to the neighboring clusters, so that 
the average time to stay in the cluster before moving to a neighboring cluster is 1 / λo . The routing probability associated 
with γ is also applied. The location dependent mobility rate can be described as 

λI 
jk (·) = λS 

jk (·) = p jk λ j , 
λ j = {λd if cluster j is in the CBD 

λo if cluster j is in the periphery , (6) 
where λd and λo are constants, and p jk is computed by the decision rule (5) . Since the mobility rates for j = 1 , 2 , . . . , J and 
k ∈ N G ( j ) are constants, the behavior of propagation process can be approximated by ordinary differential equations (3) for 
the same reason as the previous model ( Section 2.2.1 ). 
2.2.3. Traffic density-dependent mobility model 

As in the previous two cases, the differential Eq. (3) can cater to traffic density dependent mobility model. Vehicle speed 
depends on the traffic density on the road with density being inversely related to speed; this is described by models such 
as the Greenshields model, the Drew model, and the Pipes-Munjal model. The generalized form of these models ( Haefner 
and Li, 1998; Kühne and Rödiger, 1991; Wang et al., 2009 ) can be expressed as v = v f [1 − (k/ k jam ) a ] b where v f is free flow 
speed, k jam is jam density, and v and k are speed and density respectively. 

Motivated by these studies, we introduce the traffic density-dependent mobility rate λjk ( · ) from cluster j to k ∈ N G ( j ), 
which depends on the relative density of both the clusters j and k , where the relative density is defined as the fraction of 
vehicles located in the clusters j and k . As the fraction of vehicles located in clusters j and k increase, the movement from 
cluster j to k is slowed down, which implies that the mobility rate from the origin cluster j to the neighboring cluster k 
decreases. Concretely, when the traffic density of the origin cluster j is high, movement beyond this region is restricted, and 
if the traffic density of the destination cluster k is high, it is also difficult to enter this region. The mobility rate reflecting 
this mobility characteristic is set to 

λI 
jk (·) = λS 

jk (·) = λ · p jk ·
[ 

1 −
( 

∑ 
i ∈{ j,k } (I i + S i ) 

) a ] b 
(7) 

where λ is constant, p jk is computed by the decision rule (5) , and a, b ≥ 1. By controlling parameters a and b , we can 
reflect a general form of relationship between vehicular speed and traffic density. The mobility rate function λjk is Lipschitz 
continuous on E for j = 1 , 2 , . . . , J and k ∈ N G ( j ) since the function is continuously differentiable on E . Thus, by results in the 
Appendix, the dynamics of the information propagation converge to the solution of the differential Eq. (3) . 
3. Results of empirical validation 

We now empirically validate the mathematical model ( Section 2 ) when the underline assumptions of the model are 
relaxed. The analytical result in the previous section ensures convergence of the propagation process results to solutions 
of differential equations only when the number of vehicles goes to infinity. In practice, however, the number of vehicles is 
finite. Therefore, we investigate the effect of a finite number of vehicles on various mobility and communication character- 
istics. We first consider statistical models which we call synthetic models ( Section 3.1 ), and subsequently consider the two 
actual and one synthetic vehicle trajectory data collected on different road topologies ( Section 3.2 ). In the latter case, the 
statistical communication process is superimposed on the trajectory data since there is no data currently available for the 
communication process. With a finite number of vehicles, we show that there is an excellent match between the result of 
the propagation process simulation and the model solution even for a moderate number of vehicles in the statistical models. 
We additionally show there is an acceptable match even for the trajectory data that does not satisfy the statistical as- 
sumption of exponential sojourn time under which convergence is guaranteed. Throughout this result section, the ordinary 
differential equations were solved using ode function from the deSolve package of R. 
3.1. Synthetic models 

We show that the output of the differential Eq. (3) matches simulations for different statistical mobility models with 
a finite number of vehicles. In Section 3.1.1 , we consider the mobility model of Section 2.2.1 which captures the temporal 
variation of the traffic density and routing. In Section 3.1.2 , we apply the location dependent mobility model of Section 2.2.2 . 
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In Section 3.1.3 , we apply the traffic density dependent model of Section 2.2.3 . In Section 3.1.4 , we consider that each 
vehicle chooses its destination randomly among the clusters, follows the shortest path towards it, and upon reaching chooses 
another destination, again uniformly. For the validation, we consider the grid road topology introduced in Section 2.2 (We 
will consider the other road topology in Section 3.2 ). As shown in Fig. 3 , there are six avenues and six streets. The CBD 
is the shaded area in Fig. 3 and the rest is the periphery. All road segments are assumed to be two-way roads which 
are set to be composed of two clusters corresponding to the opposite directional roads. Since two clusters on the same 
road segment are sufficiently close to each other, the vehicles located in these can communicate. Therefore, the adjacency 
matrix of the communication network G ( V, E ′ ) is given by a ′ 

i j = a ′ 
ji = 1 if i and j are in the same road segment, otherwise 

a ′ 
i j = a ′ 

ji = 0 . We set the communication parameter to βi j = 3 if a ′ 
i j = 1 and βi j = 0 otherwise. At initial time, N vehicles are 

uniformly distributed in J clusters, where J = 120 . Thus, each cluster has n = N/J vehicles at initial time. The information of 
interest initially begins to propagate from 10% of vehicles located in the lower left cluster (equivalently, 0.1 n vehicles), which 
are located in peripheral areas. To study the degree of information propagation, we introduce ρ( t ), the fraction of overall 
vehicles that are informed at time t . 
3.1.1. Temporal variation of traffic density and routing 

We show that the simulation of the propagation process with the mobility model in Section 2.2.1 closely matches the 
output of the differential Eq. (3) for a finite number of vehicles. We subsequently use the differential equations to under- 
stand the temporal and spatial propagation of the information. The mobility parameter λ in (4) is set to λ = 0 . 1 . We set 
n = 100 , thus N = n · J = 120 0 0 . Under these settings, we compare the solutions of the corresponding differential equations 
with an average of 200 runs of the propagation process simulations. Then, the results of the propagation process and the 
solution of the corresponding differential equations are compared. We consider different γ values reflecting the temporal 
variation of traffic density and routing. Fig. 4 a shows that the simulations of the propagation process closely match the so- 
lutions of the differential equations. The largest deviation between them is 0.0256 for γ = 1 , 0.0101 for γ = 3 , and 0.0222 
for γ = 5 . Now, we investigate the impact of a relatively small number of vehicles on our model. For non-rush hour ( γ = 1 ), 
Fig. 5 a shows that the greater the number of cars, the smaller the maximum deviation between the two results. Even 
for a small n , the solution of the differential equations well approximates the simulation of the propagation process: the 
maximum deviation between the two is (a) 0.0426 for n = 30 and (b) 0.1682 for n = 10 . This means that asymptotic results 
are obtained even for a very small number in practice. 

Fig. 4. The gray points represent the average of 200 simulation runs of the information propagation, and the red lines are the solutions of the ordinary 
differential equations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Both (a) and (b) show that with the increase in the number of vehicles per cluster, simulation results approach the solutions of the differential 
equations. We consider the average of 200 simulation runs in both cases. Even for n = 30 , the maximum deviation is as little as about 0.0426. 
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Fig. 6. Geographical representation of traffic density and information propagation for various γ s under the same initial conditions with n = 10 0 (i.e., 20 0 
vehicles per road segment). The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness corresponding 
to one vehicle is x , the thickness of the vehicle v is expressed by v · x . The number written on each road segment indicates the number of vehicles. The 
upper row of red corresponds to the number of vehicles informed in each road segment, and the lower row of gray corresponds to the total number of 
vehicles in each road segment. The first column shows the initial distribution of vehicles, which is the same for all γ . The remaining columns show the 
distribution of vehicles at time t = 90 s for different γ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Now that we have verified that the differential Eq. (3) can capture information propagation reasonably accurately even 
with a moderate number of vehicles, we now use them to understand the characteristics of information propagation. In the 
case of non-rush hour ( γ = 1 ), as shown in Fig. 4 b, the information slowly spreads over the entire area without an upsurge 
in particular areas. On the other hand, in the case of morning rush hour ( γ > 1), there is a significant increase in the 
number of vehicles in the CBD, and as a result, information spreads very quickly. The larger the γ , the higher the traffic 
density in the CBD; thus, the information spreads quicker in the CBD than in the periphery, as shown in the geographical 
representation ( Fig. 6 ). 
3.1.2. Location dependent mobility rate 

We now consider the location dependent mobility model introduced in Section 2.2.2 . In this subsection, two different 
mobility rate values are applied to roads in the CBD and the periphery respectively, which we call two-level mobility rate . 
We set the mobility rate of the CBD to a lower value, reflecting a lower speed limit in the CBD. For the two-level mobility 
rate case, we choose λd = 0 . 05 for the CBD and λo = 0 . 1 for the periphery in (6) ; for the uniform mobility rate case, we 
choose λd = λo = 0 . 1 for both the CBD and the periphery. The number of vehicles per cluster is set to n = 100 at t = 0 . Also, 
γ is assumed to be 1 (non-rush hour). Fig. 7 a shows that the propagation process for this two-level mobility rate is also 

Fig. 7. The curves and points of the two-level λ are the result of applying a different λ value depending on whether the region is CBD or peripheral region, 
and the uniform λ case is the result of applying the same λ regardless of region. The simulation results are averaged over 200 runs. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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well approximated by solutions of the corresponding differential Eq. (3) : The maximum deviation between them is only 
0.0484. We now compare the propagation of information under the two-level mobility rate with that for uniform mobility 
rate. Since the mobility rate in the CBD is lower than in the periphery, the average speed of vehicles in the CBD is slower. 
Therefore, even in the case of non-rush hour with γ = 1 , once vehicles enter the CBD, the vehicles in the CBD take longer 
to move, resulting in the concentration of vehicles in the CBD ( Fig. 7 b). Concentrated traffic leads to faster information 
propagation as shown in Fig. 7 a. 
3.1.3. Traffic density dependent mobility model 

Next we consider the mobility model of Section 2.2.3 where the mobility rate depends on the traffic density of both the 
origin and destination clusters. We have the mobility rate depend on the traffic densities of both the origin and destination 
clusters. For (7) , we choose λ = 0 . 1 . Recall that the sensitivity of the mobility rate to traffic density is determined by param- 
eters a and b of (7) . As Fig. 8 a shows for fixed b , the mobility rate λjk decreases with traffic density of cluster j and k ; this 
is sharp for relatively small a and more gradual as a increases. To illustrate, we fix the parameter b = 40 and compare the 
results for a = 1 and a = 5 . In both cases, we consider the movement pattern of the morning rush hour ( γ = 5 ). As Fig. 8 b 
shows, the differential equations closely approximate the propagation process; the maximum deviation between them is 
0.0304 at a = 1 and 0.0208 at a = 5 . 

Now using the geographical representation of information propagation in Fig. 9 , we investigate how information propa- 
gates for the traffic density dependent model. Since we are considering morning rush hour, the vehicles congregate in the 
CBD over time, thus information propagates faster therein. This phenomenon is pronounced for larger values of a as the 
mobility rate increases with a given fixed b and traffic density as can be seen in Fig. 8 a. 

Fig. 8. (a) The relation between mobility rate divided by a constant factor ( λ jk (·) 
λ·p jk ) and traffic density (I j + S j + I k + S k ) , for a given origin cluster j and 

destination cluster k . (Recall that the mobility rate in Section 2.2.3 is given by λ jk (·) = λ · p jk · [1 − (I j + S j + I k + S k ) a ] b ) (b) Fraction of informed vehicles 
over time. (c) Fraction of vehicles located in CBD over time. For both (b) and (c), the gray points are simulation results of averaging 200 simulation runs, 
and the red lines are the solutions of the approximate ordinary differential equations. For all three figure, b = 40 . (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. The upper row of red corresponds to the number of informed vehicles in each cluster, and the lower row of gray corresponds to the number of 
vehicles in each cluster. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness corresponding to 
one vehicle is x , the thickness of the vehicle v is expressed by v · x . The first column represents the initial distribution of vehicles, which is the same for 
all values of a . The remaining columns show the times and the values of a as indicated. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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3.1.4. Shortest-path routing 

In our model, the routing probabilities of the vehicles at the clusters depend only on the cluster but not on the des- 
tinations of the vehicles. Thus, with positive probability, vehicles retrace their paths. Retracing does arise in practice, for 
example, when people drive around for sight-seeing, trying to locate some eatery rather than a specific eatery, or an avail- 
able parking spot. A compilation of ten studies in eight cities between 1927 and 2011, reveal that an average of 34% of 
drivers cruise for parking in congested downtowns ( Pierce and Shoup, 2013 ). Next, in Carpooling services such as Uber Pool 
and Lyft Line, vehicles frequently move back and forth to pick-up and drop-off various riders who share the ride at their 
different sources and destinations. Then again vehicles that deliver goods or transport passengers, e.g., shared ride vehi- 
cles, taxis, (even without car-pooling) choose different destinations in quick succession, to transport different goods and 
different passengers. In the process, although they do not retrace their paths while traversing to a destination, with a pos- 
itive probability they retrace an earlier path while traversing to another destination, depending on the choice of successive 
destinations. Thus, paths are retraced over time. 

We next compare the solution of our model with the characteristics that emerges when vehicles do not retrace their 
paths. Towards that end, we consider the propagation of messages when every vehicle follows the shortest path from its 
source to its destination. This is a special case of an extensively utilized probabilistic routing model in the transportation 
community ( Yperman et al., 2005; Gentile, 2015 ) in which a vehicle randomly chooses its next hop at each node, with the 
probabilities of the choice depending on the destination of the vehicle in question. In our special case, each vehicle chooses 
at each node with probability 1 the next hop corresponding to the shortest path to its destination. We consider that the 
destination is chosen at the start of the travel, with uniform probability among all clusters. We also assume that when a 
vehicle arrives at its destination, the vehicle chooses another random destination cluster, uniformly, and travels along the 
shortest path route again. This is for example consistent with traveling patterns of delivery vehicles, shared rides (without 
car pooling) and taxis. These vehicles proceed along a recommended path to their chosen destination, which is often the 
shortest path or close to it, and after reaching the destination, choose another destination for transporting their goods or 
passengers, and follow the shortest path to it, and so on. 

We set λ = 0 . 05 , n = 50 , thus N = nJ = 60 0 0 . We average over 10 runs of the shortest path routing simulations. We then 
compare the solutions of the corresponding differential equations with the simulation result of the shortest path propaga- 
tion process, averaged over 10 runs. We extract the routing probabilities from the average of the 10 runs of the shortest 
path propagation process, and substitute them into the differential equations to get the model solution. As can be seen in 
Fig. 10 a, considering the averages over all clusters, the differential equations closely approximate the propagation process. 
Next, we focus on two specific example clusters respectively located in the center and upper-right corner. As Fig. 10 b shows, 
despite fluctuations in the number of informed vehicles over time in both clusters, the spatial and temporal propagation 
of information is relatively well approximated by the theoretical model that operates under the assumption of memoryless 
probabilistic routing at each cluster. Fig. 10 c shows that the match only improves, and the fluctuation of the simulation 
results decreases, as we increase the number of runs to 100. The match is close because, as mentioned previously, vehicles 
that choose different destinations in quick succession retrace some of their paths over time (with positive probability). The 
close match also suggests that in the memoryless probabilistic routing that we have assumed the probability that routes are 
retraced is not high. 
3.2. Empirical validation with traffic trace data 

When the mobility process is exponential, even for a finite number of vehicles, the solution of the differential equations 
closely approximates the dynamics of the propagation process ( Section 3.1 ). In this section, we show that the temporal and 
spatial flow of information is well approximated by the solution of differential equations even when the mobility process 
is not exponential, and the number of vehicles N is finite. Towards that end, we use microscopic vehicle trajectory data 

Fig. 10. (a) Fraction of informed vehicles over time from the average of 10 runs of the shortest path routing. (b) The number of informed vehicles over 
time in the cluster located at the center and the upper right corner. The gray lines represent an average of 10 simulation runs, and the red lines represent 
the model solution obtained by using the routing probabilities from the average of the 10 runs of the shortest path propagation process. (c) As we increase 
the number of runs to 100, the match improves, and the fluctuation of the simulation results decreases. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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collected to empirically validate our model. Thus far, we have only considered grid topology, but we will also consider 
other topologies in this section. In this case, we show that the output of the differential equations reasonably matches the 
dynamics of information propagation for various road topologies. 

The three vehicle trajectory data we use are collected from different road topologies of varying complexity, unlike the grid 
topologies considered earlier; U.S. Highway 101 in Los Angeles, California ( Section 3.2.1 ), Peachtree Street in Atlanta, Georgia 
( Section 3.2.2 ), and Europarc Roundabout in Creteil, France ( Section 3.2.3 ). We manually divide each topology into J clusters, 
and define the mobility network G and the communication network G ′ . The directed mobility network G , which consists 
of directed edges between clusters, is determined by the existence of a trajectory in which the vehicle moves from one 
cluster to another. To indicate that vehicle-to-vehicle communication in the cluster is possible, the diagonal element of the 
adjacency matrix corresponding to the communication network is set to 1 as a baseline for all three data sets. In addition, 
if the distance between neighboring clusters is close enough, the corresponding element is set to 1 to enable inter-cluster 
communication according to the characteristics of the road. The mobility rate between clusters is extracted from the vehicle 
trajectory data, and is applied to the ordinary differential equation of our model to estimate the information propagation. 
We superimpose the statistical communication process on the trajectory data, and compare the result with the solution of 
the differential equations. As a result, not only does this show that our model is applicable to arbitrary road topologies, but 
it also shows that simulation results using even trajectory data are well approximated by model solutions. To extract the 
mobility rates from the data, we will first classify the clusters into three categories. Let S be the set of clusters of the study 
area where information propagation occurs. Note that the mathematical model considers the fixed set of vehicles in the 
system. In the real transportation network, there would be entrances from outside and also exit to outside. To incorporate 
the impact of the entrances and exits, we introduce a set of virtual clusters A and B where A and B are the respective sets of 
clusters corresponding to the entry and exit roads respectively entering and leaving the study area. Let O = S ∪ A ∪ B . Here 
we consider that the mobility rate of a vehicle does not depend on whether it is informed or non-informed. 

We now describe how we obtain mobility rate λi,j of the analytical model from the trajectory data ( λi,j moving from 
cluster i ∈ S to j ∈ O , such that i * = j ). First, from the trajectory data, we compute λi , which is the reciprocal of the average 
time of staying in cluster i . Then we compute the fraction of vehicles that move to cluster j among the vehicles located 
in cluster i , and denote this as p i,j . By multiplying λi by probability p i,j , the mobility rate from cluster i to j, λi,j , can be 
computed. If the origin cluster of the movement is the entry road, it is assumed that a vehicle enter the study area at a 
fixed rate, regardless of the number of vehicles in the entry cluster. In this case, the mobility rate moving from cluster i ∈ A 
to j ∈ S , such that i * = j , is given by ̃  λi, j /N where N is the total number of vehicles and ̃  λi, j denotes the number of vehicles 
that enter cluster j ∈ S from cluster i ∈ A per unit time. 
3.2.1. U.S. Highway 101 in Los Angeles, California 

We use the microscopic actual vehicle trajectory data of the southbound U.S. highway 101 in Los Angeles, California, 
that had been collected under the auspices of the Next Generation Simulation (NGSIM) program ( dataset U.S. Department 
of Transportation, 2017 ). This data includes geographical location information for each vehicle on the southbound U.S. high- 
way 101 of 600 m in length. We consider the total number of vehicles that exist in the system at any point during the 
observation period ( N = 1993 ). As shown in Fig. 11 a, we divide the road into J = 12 clusters. The study area in which we 
conducted information propagation studies is a set of clusters S = { 2 , 3 , . . . , 9 } , which is depicted as a dotted rectangle in 
Fig. 11 a. Vehicles enter the system through clusters {8, 9}, and leave the system from clusters {2, 4}. We introduce a set of 

Fig. 11. (a) U.S highway 101 broken into clusters. The vehicles enter the study area from the cluster 10 or 12 and leave the study area toward the cluster 1 
or 11. (b) Fraction of informed vehicles over time. The information spreading simulation based on the trajectory data is well approximated by the theoretical 
predictions from the ordinary differential Eq. (3) . The gray points are simulation results of averaging 30 simulation runs for each β , and the red lines are 
the solutions of the differential equations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 12. (a) Peachtree street schematic ( dataset U.S. Department of Transportation, 2017 ). (b) Clustered Peachtree street (c) Fraction of informed vehicles 
over time. The information spreading simulation based on the actual trajectory data is well approximated by the theoretical predictions from the ordinary 
differential Eq. (3) . The gray points are simulation results of averaging 30 simulation runs for each β , and the red lines are the solutions of the differential 
equations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
virtual entry clusters and exit clusters as shown in Fig. 11 a; thus A = { 10 , 12 } and B = { 1 , 11 } . The set of clusters A and B 
corresponding to the entry and exit roads respectively are represented by shaded solid line rectangles. The actual trajectory 
data for the first 831.7 seconds out of the entire data was used for this study, and all vehicles entering the study area were 
regarded as separate vehicles. There is no vehicle in the study area at an initial time, and we assumed that approximately 
20% of all incoming vehicles, that is, 402 out of 1993 incoming vehicles, had already received the information before they 
entered the study area. The adjacency matrix for the communication network is set to a ′ 

i j = 1 if i ∈ S and i = j, otherwise 
a ′ i j = 0 . As shown in Fig. 11 b, there is an excellent match between the simulation result using the actual trajectory data and 
the solutions of corresponding differential equations. The maximum deviations between the average of 30 simulation runs 
and the solution of the differential equation are 0.0039 for β = 1 , 0.0112 for β = 3 , and 0.0151 for β = 10 . 
3.2.2. Peachtree Street in Atlanta, Georgia 

We use the actual microscopic vehicle trajectory data of the Peachtree street in Atlanta, Georgia, that had been also col- 
lected under the auspices of the Next Generation Simulation (NGSIM) program ( dataset U.S. Department of Transportation, 
2017 ). This data includes geographical location information for each vehicle on the two-way street of 640 meters in length 
with 5 intersections, which are more complex than the previous one-way road topology. We consider the total number 
of vehicles that exist in the system at any point during observation period ( N = 2298 ). As shown in Fig. 12 b, we divide 
the road into J = 55 clusters. The actual trajectory data for 1044.2 seconds was used for this study, and all vehicles enter- 
ing the study area were considered separate vehicles. 2 In addition, we clean up the data to exclude obvious instances of 
data error and vehicles which do not enter the study area; we consequentially use 98.4% of the original number of vehi- 
cles. As shown in Fig. 12 b, the study area in which we conducted information propagation studies is a set of clusters S = 
{ 31 , 32 , . . . , 35 , 38 , 39 , . . . , 45 } . Vehicles enter the study area from the virtual clusters A = { 1 , 2 , . . . , 14 , 36 , 47 , 49 , 50 , 54 , 55 } , 
and leaves the study area through the virtual clusters B = { 15 , 16 , . . . , 30 , 37 , 46 , 48 , 51 , 52 , 53 } . We consider that the vehi- 
cles in the study area are not informed at an initial time, but we assumed that 30% of vehicles entering the study area from 
the cluster 36 ∈ A and 47 ∈ A , that is, 231 out of 770 incoming vehicles, had received the information before they enter the 
study area. The adjacency matrix for the communication network is set to a ′ 

i j = 1 if i ∈ S and i = j. In addition, given their 
proximity, a ′ 38 , 39 = a ′ 39 , 38 , a ′ 40 , 41 = a ′ 41 , 40 , a ′ 42 , 43 = a ′ 43 , 42 , and a ′ 44 , 45 = a ′ 45 , 44 are also set to 1, and all other elements are set 
to zero. Under these conditions, the information propagation simulation using the actual trajectory data on Peachtree street 
is well approximated by the model solution as shown in Fig. 12 c. The maximum deviations between the average of 30 sim- 
ulation runs and the solution of the differential equations are 0.0456 for β = 1 , 0.0448 for β = 10 , 0.0376 for β = 100 , and 
0.0647 for β = 10 0 0 . 

2 In the original dataset ( dataset U.S. Department of Transportation, 2017 ), we used data with Global_time attribute values between 1163019100 and 
1164063300. The Total_Frames attribute represents a total number of frames in which the vehicle appears in the system. The O_Zone and D_Zone 
attributes represent the place where the vehicles enter and exit the system respectively. There are records with the same value of Vehicle_ID but 
different values of Total_Frames , O_Zone , and D_Zone attributes. In this study, every time a vehicle enters the system, we have considered it a new 
vehicle even if the value of Vehicle_ID is same. 
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Fig. 13. (a) Clustered Europarc roundabout road. (b) Fraction of informed vehicles over time. The information spreading simulation based on the trajectory 
data is well approximated by the theoretical predictions from the ordinary differential Eqs. (3) . The gray points are simulation results of averaging 30 
simulation runs for each β , and the red lines are the solutions of the differential equations. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
3.2.3. Europarc Roundabout in Creteil, France 

We use the Microscopic vehicle trajectory data of the Europarc Roundabout in Creteil, France, that had been generated 
by Lèbre et al. (2015) . According to Lèbre et al. (2015) , traffic information for Europarc roundabout was based on actual 
observations of vehicle flow, and manual counting were performed to generate origin/destination (O/D) matrix. This O/D 
matrix faithfully mimics the daily movement of the vehicle, from which a realistic synthetic data set of vehicle mobility is 
presented by Lèbre et al. (2015) . We choose 800 seconds from the morning traffic data (7.15 AM to 9.15 AM) which have 
the peak number of vehicles (the peak occurs between time steps 4200 to 5000). This topology is much more complex than 
the previous two; specifically, this is not a grid topology, as it includes a roundabout road and 15 traffic lights. As shown 
in Fig. 13 a, we divide the road into J = 14 clusters. The study area in which we conducted information propagation studies 
is a set of clusters S = { 2 , 4 , 5 , 7 , 9 , 11 , 13 , 14 } . Vehicles enter the road from the set of virtual clusters A = { 1 , 3 , 6 , 10 , 12 } , 
and leave the study area toward the set of virtual clusters B = { 1 , 3 , 10 , 12 } . Suppose that all vehicles entering the study 
area were regarded as separate vehicles. We consider that the vehicles in the study area are not informed at an initial 
time, but we assumed that approximately 11% of vehicles entering the study area from the set of clusters A , that is, 66 
out of 591 incoming vehicles, had received the information before they enter the study area. The adjacency matrix for the 
communication network is set to a ′ 

i j = 1 if i ∈ S and i = j, otherwise a ′ 
i j = 0 . 

As shown in Fig. 13 b, there is a reasonable match between the solution of the differential Eq. (3) . The maximum deviation 
between the average of 30 simulation runs and the solution of the differential equation is 0.0124 for β = 0 . 1 , 0.0507 for 
β = 0 . 5 , 0.1185 for β = 1 , and 0.0741 for β = 30 . 

The model solution and the simulation results match well for data obtained from U.S. Highway 101, but for the other 
two trace data sets, there is a higher deviation between the model solution and the simulation. First, the total number 
of vehicles the for Europarc Roundabout in Creteil, France, is fairly low compared to the previous two data sets. More 
importantly, unlike the first data obtained on the U.S. Highway 101, the traffic movement becomes pulsed in the other two 
data sets because of the presence of many traffic lights (5 signals exist on Peachtree Street and 15 signals exist on Europarc 
Roundabout) in a segment of the topology. Each traffic signal results in traffic synchronization, because, all vehicles stop at 
a red light and start moving almost simultaneously when the light turns green. This causes a significant divergence between 
the actual mobility of this trajectory and the exponential mobility process, which our mathematical framework has assumed. 
The influence of multiple traffic signals is even more complicated due to possible correlations between the durations of red 
lights and green lights at each. 

Modeling information propagation with pulsed traffic, which is due to traffic signals, constitutes an open research chal- 
lenge. We briefly mention some possible directions for solving this open problem and postpone the details for our future 
research. We can consider a time-dependent mobility parameter λi,j ( · ) which equals 0 when the light in the corresponding 
cluster is red, and is at the normal values when it is green. 

We elucidate the impact of traffic synchronization due to traffic lights, utilizing our modeling innovation outlined above, 
considering a simple example. Consider a one-way road with two traffic signals ( Fig. 14 a). The road is divided into 16 small 
segments. The study area where information propagation occurs is the set of clusters S = { 6 , 7 , . . . , 15 } . Vehicles enter the 
study area from the set of clusters A = { 1 , 2 , . . . , 5 } and leave the study area toward the cluster B = 16 . Traffic signals are 
located between clusters 8 and 9 and between clusters 12 and 13. The traffic signals have cycle lengths of 80 s, and 40% 
of the cycle time is spent in red. Both signals begin their cycles in red at the start of the simulation. 1500 vehicles are 
uniformly distributed in the entry clusters {1, 2, 3, 4, 5}, and there is no vehicle in the study area and exit road at an initial 
time. We assume that 10% of all incoming vehicles had already received the information before they entered the study area. 
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Fig. 14. (a) Clustered road topologies. (b) We plot the ratio of the number of vehicles that are informed at a cluster to the number of non-informed vehicles 
that pass by it in the entire simulation time horizon, as a function of the cluster number in the study area. The ratio spikes exactly at those clusters 8 and 
12 located just before the two traffic signals. (c) We simulate the spread of messages in a straight road segment, with 16 clusters. The lines represent the 
average of 200 simulation runs of the information propagation. 
The mobility parameter λi,j ( · ), for i ∈ {8, 12} where there are traffic signals, switch along with the lights: they are 0 when 
the lights are red, and 0.2 when they are green. The mobility parameter λi,j ( · ), for i ∈ S !{8, 12} where there is no traffic 
signal in the study area, is set to 0.2, and λi,j ( · ), for i ∈ A in the entry clusters, is set to 0.01. The communication parameter 
β is set to 10. 

Fig. 14 b shows that V2V messages propagate rapidly among vehicles when they wait at red lights. The ratio of the 
number of vehicles that are informed at a cluster to the number of non-informed vehicles that pass by it spikes exactly 
at the clusters just before the two traffic signals. Thus, traffic signals have a significant impact on information propagation. 
The traffic movement becomes more synchronized, due to the presence of these lights, which results in faster information 
propagation ( Fig. 14 c). When there are many traffic signals on more complex roads, multiple traffic signals affect traffic flows 
in different directions simultaneously, which affects information propagation in a more complicated way. Our future study 
will investigate this mathematical model and its generalizations, through mathematical analysis, numerical computations 
and simulations, for a variety of traffic signal designs. 
4. Use of the model 

We have shown an excellent match between the solution of the approximated differential equation and the propagation 
process results for a finite number of vehicles in the statistical synthetic models that reflect diverse mobility and com- 
munication characteristics ( Section 3.1 ). We also showed that there is a fairly good match between the two results, even 
for trajectory data that does not satisfy the statistical assumptions under which convergence is guaranteed ( Section 3.2 ). 
Now, through concrete real world examples, we will explain how these differential equation based models for informa- 
tion propagation can be utilized. As in the result section on the synthetic model, we assume a grid topology consisting of 
two-way roads, but we consider a larger city consisting of nine avenues and nine streets with the total number of clusters 
J = 288 . Likewise, the adjacency matrix of the communication network G ( V, E ′ ) is given by a ′ 

i j = a ′ 
ji = 1 if i and j are in the 

same road segment, otherwise a ′ 
i j = a ′ 

ji = 0 . We apply the model with temporal variation of the traffic density and routing 
( Section 2.2.1 ). The communication parameter is set to βi j = β if a ′ 

i j = 1 and βi j = 0 otherwise, where β is a constant. Since 
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Fig. 15. (a) Clustered grid road topology. Location of the event is represented by a dark shaded square. (b) The red solid line represents the percentage of 
clusters in which information arrives, the solid black line represents the percentage of congested clusters that have increased by more than 15% over the 
initial traffic volume. The black dashed line represents the fraction of clusters with increased traffic (i.e. the fraction of clusters increases by more than one 
from the initial number of vehicles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
we have verified the validity of the approximation by differential equations, we now use differential equations to understand 
information propagation characteristics in this section. 
4.1. Unexpected events 

We now assess the efficacy of V2V technology in mitigating traffic congestion due to sudden events e.g., unexpected 
victories in a major sporting event, unscheduled personal visits by high-ranking officials (e.g., president) and celebrities) by 
studying how quickly V2V can help spread information about congestion. 

We model an unexpected event occurring in a central area of a city with a grid topology ( Fig. 15 a). It is also assumed 
that 12.5% of the total number of vehicles N = 14400 are located on 4 road segments (equivalently, 8 clusters) surrounding 
the event site, and 45 vehicles are uniformly distributed in all other clusters. We set the parameters to β = 10 , λ = 0 . 05 , 
and γ = 1 (non-rush hour). Using our model, we can estimate how the traffic changes over time due to the events, and 
investigate how the information about the traffic propagate during the dispersion of the gathered vehicles. Our numerical 
computations reveal that information about the expected traffic congestion propagates faster than the spread of traffic con- 
gestion itself. As can be seen in Fig. 15 b, the number of clusters in which information arrives (i.e., the number of clusters 
in which more than one vehicle receives information) increases much faster than the number of clusters with more than 
15% increase in traffic volume. These results have been demonstrated when the unexpected event occurs in the center of 
the grid. Because unexpected events can occur anywhere in a city, we investigate the impact of the location of the initial 
informed vehicles on information propagation in Section 4.3 . 
4.2. Obstructions 

In many cases, roads are obstructed for reasons such as traffic accidents or road maintenance. Vehicles upstream of 
the obstruction must be detoured while vehicles that are in the queue immediately upstream of the obstruction must be 
discharged. There are several obvious advantages associated with dispersing the location information of obstructions as early 
as possible. Drivers who are heading for the obstruction can choose an alternate route even from a distance, reducing their 
own inconveniences as well as traffic congestion around the area. Towards that end, we assess how quickly the location 
information of the obstruction can be spread through the utilization of V2V technology. 

We assume that two road segments in a central area of the city are blocked ( Fig. 16 a). Information is propagated from 
queued vehicles, stopped from the obstruction. Let R be the set of clusters that are blocked. If j ∈ R , a i j = 0 in the adjacency 
matrix of the mobility network, reflecting that the vehicle cannot enter the obstructed clusters. The mobility parameter λ is 
set to λ = 0 . 05 , and communication parameter β is set to β = 10 and β = 100 . The total number of vehicles N = 14400 is 
uniformly distributed in the total number of clusters J = 288 at initial time, thus the initial number of vehicles per cluster 
is set to n = 50 . In Fig. 16 , we plot as a function of time the number of clusters in which (a) vehicles containing information 
on the obstruction location reach, and (b) the initially informed vehicles located on the obstructed road reach. Fig. 16 reveals 
that the result of the former is significantly higher than the latter, which indicates that the information propagates much 
faster through V2V communication, as compared to vehicular mobility alone. Fig. 16 also shows that the difference in the 
extent to which information has been propagated becomes greater as the communication rate β increases, since the larger 
the β value, the greater the impact of V2V on information propagation. 
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Fig. 16. (a) Clustered grid road topology. Blocked road segments are represented by dark shaded squares. (b) The red solid line represents the fraction of 
clusters in which one or more informed vehicles reach when there is no communication ( β = 0 ). This represents the rate at which information propagates 
solely due to mobility. The black dotted and black dashed lines represent the fraction of clusters that one or more informed vehicles reach, in the pres- 
ence of both communication and mobility, where β = 10 and β = 100 , respectively. This represents the rate at which information propagates due to the 
combination of communication and mobility. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
4.3. Initial locations of informed vehicles 

In the previous two examples, we have respectively considered that the unexpected event and the road obstructions oc- 
cur in the center of the city. However, these can occur in anywhere in the city, so we investigate the impact of the location 
of initially informed vehicles on information propagation in this subsection. In particular, the impact of the location of ini- 
tially informed vehicles on information propagation is expected to be more accentuated in habitations that are limited by 
natural boundaries such as coastal areas (e.g., Hong Kong and Manhattan). Thus, one might think that the message propaga- 
tion is accelerated if the initially informed vehicles are centrally located because information can propagate simultaneously 
in all directions towards the boundary; using our framework, we will show that this is not necessarily the case even under 
the condition that vehicles are uniformly distributed in the entire region at an initial time (equivalently, no initial dispar- 
ity of traffic density exists). This is because the information propagation speed is also affected by the vehicular movement 
pattern; we show this counter-intuitive phenomenon through the following example. As an example of a coastal area, we 
consider the finite grid area like Manhattan and assume that the CBD is located in the middle of the city ( Fig. 17 a). We set 
the parameters to β = 10 , λ = 0 . 1 . The total number of vehicles N = 14400 is uniformly distributed at the initial time. We 
consider the evening rush hour mobility pattern with γ = 0 . 5 . When information is propagated from the lower left cluster 
located in the periphery, information propagates rapidly to vehicles located at the bottom of the periphery where traffic 
density is increasing as can be seen in Fig. 18 b. Hence, at an early stage, information propagates faster when it propagates 
from the lower left corner ( Fig. 17 b). However, from a certain point onwards, information propagates more quickly when 

Fig. 17. (a) Clustered grid road topology. The CBD area is represented by a dark shade. (b) The fraction of informed vehicles over time for γ = 0 . 5 (evening 
rush hour). The dotted line represents the fraction of informed vehicles when the information propagates from the center, and the solid line represents the 
fraction of informed vehicles when the information propagates from the bottom-left corner. 
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Fig. 18. The first row of gray represents the number of vehicles in each road segment over time, and the second and third rows of red represent the 
number of vehicles informed in each road segment over time when information is propagated from 10 vehicles located in the lower left cluster and in the 
center cluster respectively. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness corresponding 
to one vehicle is x , the thickness of the vehicle v is expressed by v · x . The number indicates the number of vehicles located in each road segment. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
information propagates from the center. When the information propagates from the bottom left corner, it takes time until 
the information is delivered to the top area of the periphery where traffic density is increasing as can be seen in the second 
row of Fig. 18 c. This counter-intuitive phenomenon shows that the effect of the initial location of informed vehicles on the 
dynamics of the information propagation can vary significantly depending on the temporal variation of the traffic density. 
5. Computation time 

A significant benefit of our model is that it is computationally tractable regardless of the number of vehicles. The statis- 
tics of the information propagation converge to the solution of the differential equations as the number of vehicles goes to 
infinity. Thus, the result becomes more accurate as the number of vehicles increase, and the computation time to numeri- 
cally solve the differential equations does not depend on the number of vehicles. The number of variables and the number 
of differential equations are linear (twice) in the number of clusters. Nonetheless, we show that the computation time is 
still tractable even for a large number of clusters. 

We report the computation time using a computer which is not computationally high-end; a 2.8 GHz Intel Core i7 pro- 
cessor and 16 GB of RAM. We solved the equations using the ode function from the deSolve package of R with lsoda 
integration method developed by Petzold (1983) . We solve the equations for 200 seconds, producing output every 1 second. 
We consider the size of a cluster to be the V2V communication range so as to enable all vehicles in the same cluster to 
communicate with each other. Note that the V2V messages have a range of over 300 meters ( NHTSA, 2016 ). We consider 
extensive, complex transportation networks with relatively long roads and calculate the number of clusters, and then obtain 
the computation time. First, a road of approximately 366 km from New York City to Washington, D.C. via the Highway I-95S 
can consist of approximately 1220 clusters. The computation time required to numerically solve the differential equations 
for the 1220 clusters is only about 150 seconds. Next, as a more challenging example, consider the entire metropolitan re- 
gion. The total road network size in Hong Kong is 2107 km ( Highway Department of the Hong Kong, 2018 ), which can be 
covered with 7024 clusters. The computation time for a one-dimensional road consisting of 7024 clusters is approximately 
172 minutes. Lastly, US Highway 101 is a North-South highway that runs through California, Oregon, and Washington State, 
with a total length of nearly 2,500 km. This entire West coast highway can be covered with 8334 clusters, and the compu- 
tation time is 240 minutes. These examples show that information propagation between vehicles can be identified within a 
reasonable time frame even in extreme cases using clustered epidemiological differential equation model. 
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6. Generalization 

We generalize our model to accommodate 1) arbitrary destination dependent probabilistic routing mechanisms 
( Section 6.1 ) 2) transmission of multiple messages in overlapping time intervals and RoIs ( Section 6.2 ). 
6.1. Destination-based routing 

In our model, the routing probabilities of the vehicles at the nodes (clusters) depend only on the node (cluster) but 
not on the destinations of the vehicles. Some of the extensively utilized probabilistic routing models in the transportation 
community consider that each vehicle chooses its next arc at each node with a probability that depends on the node in 
question and destination of the vehicle ( Yperman et al., 2005; Gentile, 2015 ). Considering an important special case of this, 
namely shortest path routing, we have presented simulations in Section 3.1.4 that reveal that there is a close match with 
our model, and have explained why the match may be intuited. We do not however have any analytical guarantee on the 
fit of the model. We therefore generalize our model to accommodate arbitrary destination dependent probabilistic routing 
mechanisms (as in Yperman et al., 2005; Gentile, 2015 ). Note, however, that vehicles may still retrace their routes in the 
arbitrary destination-dependent probabilistic routing mechanisms, as in our model, depending on the choice of the routing 
probabilities and the network topology. 

Recall that we have thus far denoted the fraction of informed and non-informed vehicles in cluster j as I j ( t ) and S j ( t ) 
at time t , respectively. We now subdivide each category based on the destinations of the corresponding vehicles. We con- 
sider a set of destinations { 1 , 2 , . . . , M} in the transportation network. Each destination corresponds to a class of vehicles 
headed towards the destination in question, M + 1 denotes the class of vehicles meandering around rather than seeking a 
particular destination (e.g., sight-seeing, trying to locate available parking, some eatery rather than a particular one, etc.). 
We now introduce destination-based mobility rates λI 

jk : m and λS 
jk : m for informed and non-informed vehicles, respectively, 

which represents the mobility rate from cluster j to k of vehicles whose destination is m ∈ { 1 , 2 , . . . , M} . These mobility rates 
incorporate the destination-dependent routing probabilities. As a specific example, if the path from cluster j to k is not in 
the direction toward the destination m , m ∈ { 1 , 2 , . . . , M} , then the corresponding mobility rates may be chosen as zero, and 
then these vehicles do not retrace their paths. 

Following the approach in Section 2.1 , the system may be modeled as a continuous-time Markov chain (if the sojourns 
of the vehicles in the clusters and the intervals between communications are exponentially distributed). Similar to the 
proofs in Section Appendix A , it may be shown that Lemma 1 and Kurtz’s theorem (Existing result 1 ) extend to this case, 
and the asymptotic fraction of informed and non-informed vehicles across clusters converge to the solution of a system of 
ordinary differential equations. Towards describing these differential equations, we let I j : m ( t ) and S j : m ( t ) denote the fraction 
of informed and non-informed vehicles of class m in cluster j at time t , for m ∈ { 1 , 2 , . . . , M + 1 } , respectively. The ordinary 
differential equations in question are: 

˙ I j: m (t) = − J ∑ 
k * = j λI 

jk : m ( I , S ) · I j: m + J ∑ 
k =1 βk j · M+1 ∑ 

m =1 I k : m · S j: m + J ∑ 
k * = j λI 

k j: m ( I , S ) · I k : m ( j = 1 , 2 , . . . , J) , 
˙ S j: m (t) = − J ∑ 

k * = j λS 
jk : m ( I , S ) · S j: m − J ∑ 

k =1 βk j · M+1 ∑ 
m =1 I k : m · S j: m + J ∑ 

k * = j λS 
k j: m ( I , S ) · S k : m ( j = 1 , 2 , . . . , J) . 

We now consider the computation time for the above system of differential equations. The number of variables and the 
total number of differential equations are now 2(M + 1) J each, rather than 2 J (recall that J is the total number of clus- 
ters). Thus, the number of differential equations increase linearly in the number of destinations. Utilizing characteristics of 
transportation networks that arise in practice, we suggest some values of M , next. 

First, in all large cities there exist some important destinations (such as airports, shopping malls, colleges, hospitals, 
etc.), referred to as trip attractors or special generators in the transportation community ( Mamun et al., 2010 ), that attract 
most of the traffic. For example, six and thirteen sites were treated as special generators to estimate trip attraction rates 
in Chittenden County in Vermont, U.S. and Des Moines Area in Iowa, U.S., respectively ( Resource Systems Group, 2008; 
Des Moines Area MPO, 2006 ). Also, the City of Philadelphia has roughly dozens of such important destinations, such as 
University of Pennsylvania, Hospital of the University of Pennsylvania, airport, baseball stadium, museum, etc. One may also 
consider distinct parts of a city as trip attractors, e.g., the Central Business District (CBD), old city, University city, North 
Philadelphia, etc. in Philadelphia. Then M becomes the number of such major destinations, and the vehicles headed to 
destinations other than these may be considered to belong to the M + 1 th category. Considering the above realistic values 
of M , the computation remains tractable. 

We now describe how the destination based probabilistic routing may be utilized to characterize the fraction of informed 
vehicles as a function of time and space, in one simple instance that arises in practice; this instance also helps us elucidate 
the details of this generalization. We consider a grid road topology with six avenues and streets, as in Section 2.2.1 ; thus, 
a total of J = 120 clusters. We consider the morning rush hour, and divide vehicles into two classes: Class 1 corresponds 
to vehicles heading only towards the CBD, and Class 2 corresponds to other vehicles. We obtain the routing probability 
of Class 1 vehicles, building on the model introduced in Section 2.2.1 . Recall that the mobility rate set in Section 2.2.1 is 
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Fig. 19. (a) An Example Destination-based routing. Even if there are multiple routes to the CBD, the vehicle only travels in the CBD direction by selecting 
one of these routes. (b) The fraction of informed vehicles over time. 
λI 

jk = λS 
jk = p jk λ. The mobility parameter λ is set to λ = 0 . 03 and the communication parameter is set to βi j = 10 . At the 

initial time, the total number of vehicles N = 120 0 0 is uniformly distributed, and 70% of the vehicles in each cluster belong 
to Class 1. For a vehicle in Class 1, that is currently in cluster j which is outside the CBD, the routing probability p jk is set to 
1 if k is the cluster adjoining j that is the closest to the CBD; if multiple clusters adjoining j are closest to the CBD, then the 
routing probability is equally divided among them; the routing probability is set to 0 towards other adjoining clusters. Thus, 
vehicles in Class 1 do not retrace their paths, i.e., do not move back and forth, while they are outside the CBD (see Fig. 19 a). 
The existing non-rush hour model (random walk) model of Section 2.2.1 applies to vehicles in 1) Class 1 once they reach 
the CBD, and 2) Class 2 anywhere. Thus, vehicles in Class 1 (Class 2 respectively) may retrace parts of their paths once they 
have reached the CBD (anywhere, respectively), to represent cruising to locate a parking spot, a cafetaria, etc. 

Fig. 19 b shows the fraction of informed vehicles obtained from the generalized differential equations, and Fig. 20 shows 
the corresponding geographical representation of traffic density and informed vehicles. The second and third rows in 

Fig. 20. Geographical representation of traffic density and information propagation, obtained from the generalized differential equations. The first and 
second columns of gray represent the number of vehicles in each road segment over time, and the third and fourth columns of red represent the number 
of vehicles informed in each road segment over time when information is propagated from 10 vehicles located in the lower left cluster. Class 1 corresponds 
to vehicles heading only towards the CBD, and Class 2 corresponds to roaming vehicles. The second row of Class 1 represents the movement of vehicles 
only towards the CBD and the propagation of information. The third row of Class 2 represents the movement of roaming vehicles and the propagation of 
information. The thickness of the road segment is linearly proportional to the number of vehicles, that is, when the thickness corresponding to one vehicle 
is x , the thickness of the vehicle v is expressed by v · x . The number indicates the number of vehicles located in each road segment. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 20 respectively represent the movement of vehicles in Classes 1 and 2 and the propagation of information. The sum 
of the second and third rows is the first row that depicts the traffic flow of the vehicles as a whole and the spread of 
information between all the vehicles. 

We conclude with some parting thoughts on the case that the RoI for the propagation of the message is a large city or a 
long nationwide highway (e.g., for propagation of malware or CRL, as in Section 1.1 ). In this case, we note that the routes to 
two blocks in a neighborhood do not usually diverge until a vehicle reaches the neighborhood, e.g., a vehicle traversing to a 
specific restaurant in Chinatown in a big city, first moves in the direction of the Chinatown regardless of the exact address 
of its destination, and only after it reaches Chinatown, does it move towards the particular restaurant. Thus, it ought to 
suffice to consider only the major destinations and the neighborhoods as distinct entities. Thus, M would not be large as 
discussed before, and the product 2(M + 1) J would be of the same order as J , therefore retaining computation tractability. 
But, when the RoI spans relatively smaller regions, e.g., small downtowns, or neighborhoods in large cities (e.g., when mes- 
sages pertaining to sudden development of disruptive conditions, driving conditions like icy roads, arrival of ambulances 
etc. are shared), then individual city-blocks ought to be considered as separate destinations as the routes towards these 
destinations would differ in most of the RoI. But, given that the RoI is small, relatively speaking, in this case, both J and 
M would be moderate. Thus, computation time would be manageable throughout. For example, neighborhoods like SoHo 
in Manhattan, New York City, USA and downtown Ottawa, Ontario, Canada, consist of approximately 40 and 50 city blocks, 
respectively, and there are respectively 7440 and 12700 differential equations. The com putation time for the corresponding 
differential equations is less than 3 hours using even modest computation facilities. Recall that the computation time for a 
total of 14,048 differential equations (corresponding to J = 7024 clusters) is approximately 172 minutes (See Section 5 ). 
6.2. Multiple types of information 

Our framework has been primarily designed for characterizing the spread of one kind of information, though in practice, 
the network has to handle the spread of multiple overlapping pieces of information. This may not however be a significant 
impediment as the RoIs of the multiple pieces of information that propagate simultaneously do not always overlap, and 
then the same vehicle would not need to simultaneously act on these pieces of information. Then again, even when the 
RoIs of different pieces of information overlap, the pieces may be unrelated to the extent that actions that the vehicles need 
to take based on these may be distinct. For example, traffic accident information and Certificate Revocation Lists (CRLs) 
are examples of unrelated pieces of information whose RoIs may overlap. In these cases, one can separately formulate and 
evaluate differential equations concerning these pieces of information, considering one piece of information at one instance. 

We now describe how our framework can be generalized to characterize the spatio-temporal characteristics of simul- 
taneous propagation over overlapping RoIs, of K kinds of related information, which together impact choices of a vehicle. 
Congestions, traffic accidents, driving conditions (e.g., ice formations), road obstructions, arrival of emergency vehicles at 
relatively close distances would constitute examples of such related information, as route choices would be influenced by 
simultaneous knowledge of all of these if their RoIs overlap. The generalization would involve increasing the state dimension, 
which in turn, increases the computation time. In this case, instead of classifying as non-informed and informed vehicles, 
vehicles can be indexed by a bit map consisting of K bits, in which each bit represents whether the vehicle has received 
the corresponding piece of information. Accordingly, a vehicle in each cluster is classified as one of 2 K types. In Section 2.1 , 
we have introduced a 2 J -dimensional vector (I , S ) = (I 1 , I 2 , . . . , I J ; S 1 , S 2 , . . . , S J ) to model the propagation of a single piece 
of information on a road topology consisting of a set of J clusters. The 2 J -dimensional vector for the single type of infor- 
mation is expanded to a vector in 2 K J dimensions described in the form ( I 0 , I 1 , · · · , I 2 K −1 ) , where I 0 represents the fraction 
of vehicles in different clusters which have not received any information, and plays the role of S in Section 2.1 . Thus, for 
i ∈ { 1 , 2 , . . . , J} and j = { 0 , 1 , . . . , 2 K − 1 } , I ij represents the fraction of informed vehicles located in cluster i and having re- 
ceived the information bits corresponding to j . Considering K = 2 , the state vector becomes ( I 0 , I 1 , I 2 , I 3 ) = ( I 00 , I 01 , I 10 , I 11 ) , 
e.g., I 13 (equivalently, I 1{11} ) represents the fraction of vehicles in cluster 1 that have received both kinds of information. 

Following the approach in Section 2.1 , the system may be modeled as a continuous-time Markov chain (if the sojourns of 
the vehicles in the clusters and the intervals between communications are exponentially distributed). Similar to the proofs 
in Section Appendix A , it may be shown that Lemma 1 and Kurtz’s theorem (Existing result 1 ) extend to this case, and the 
fraction of vehicles with different kinds of information across clusters asymptotically converge to the solution of a system 
of ordinary differential equations involving ( I 0 , I 1 , · · · , I 2 K −1 ) . We now introduce the mobility rates λ(m ) 

jk , which represents 
the mobility rate from cluster j to k of vehicles having received information bits corresponding to the m -th category for 
m ∈ { 0 , 1 , . . . , 2 K − 1 } . We also introduce the communication parameter β (r) 

jk , which corresponds to the communication of 
each of the bits that is 1 in bit-map r between vehicles in clusters j and k , for r ∈ { 1 , 2 , . . . , K} . We now present the differ- 
ential equations in the example scenario that K = 2 : 

˙ I j3 (t) = − J ∑ 
k * = j λ(3) 

jk ( I , S ) · I j3 + J ∑ 
k =1 β (2) 

k j · I k 2 · I j1 + J ∑ 
k =1 β (1) 

k j · I k 1 · I j2 + J ∑ 
k * = j λ(3) 

k j ( I , S ) · I k 3 ( j = 1 , 2 , . . . , J) , 
˙ I j2 (t) = − J ∑ 

k * = j λ(2) 
jk ( I , S ) · I j2 − J ∑ 

k =1 β (1) 
k j · I k 1 · I j2 + J ∑ 

k =1 β (2) 
k j · I k 2 · I j0 + J ∑ 

k * = j λ(2) 
k j ( I , S ) · I k 2 ( j = 1 , 2 , . . . , J) , 
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˙ I j1 (t) = − J ∑ 

k * = j λ(1) 
jk ( I , S ) · I j1 − J ∑ 

k =1 β (2) 
k j · I k 2 · I j1 + J ∑ 

k =1 β (1) 
k j · I k 1 · I j0 + J ∑ 

k * = j λ(1) 
k j ( I , S ) · I k 1 ( j = 1 , 2 , . . . , J) , 

˙ I j0 (t) = − J ∑ 
k * = j λ(0) 

jk ( I , S ) · I j0 − J ∑ 
k =1 β (1) 

k j · I k 1 · I j0 − J ∑ 
k =1 β (2) 

k j · I k 2 · I j0 + J ∑ 
k * = j λ(0) 

k j ( I , S ) · I k 0 ( j = 1 , 2 , . . . , J) . 
In many cases, V2V messages pertaining to specific events, e.g., unexpected events, obstructions in roads do not need to 

propagate beyond a certain RoI or after a particular period. For a single message, i.e., when K = 1 , our model can directly 
accommodate this temporal and spatial context, by (1) computing the differential equations only in the time horizon in 
which the message is relevant, and (2) considering clusters only in the RoI. Thus, Geocast, i.e., propagation of messages in 
specific designated geographical areas, can be accommodated in our model as above, without increasing the state space and 
the number of differential equations. But, for multiple related pieces of information, different kinds of information may need 
to be propagated over different (but overlapping) RoIs and time intervals. Communication parameters associated with each 
type of information can be set to zero in the cluster outside the corresponding RoI and the time interval in which it needs 
to propagate. This generalization does not increase the state space and the number of differential equations. Suppose that 
two different pieces of information about traffic accidents at two distinct locations in Manhattan propagate simultaneously. 
The RoI of each piece of information may overlap, and each information is only valid for different time horizons until each 
traffic accident scene is cleared. In this case, the communication parameter β (2) 

jk , which corresponds to the communication 
of information about accident 2, is 1) positive when clusters j and k are located in the RoI of this message, and in the time 
interval in which the message is relevant, 2) 0 otherwise. 

The number of variables and the number of differential equations increase exponentially in the number of messages, by 
a factor of 2 K to be specific. We however expect that only a few important pieces of related information would need to 
simultaneously propagate in overlapping RoIs. Thus, K would be small. Moreover, such RoIs would be smaller than entire 
cities or long highways because the related pieces of information are typically relatively local in scope, e.g., congestions, 
traffic accidents, driving conditions like ice formations, road obstructions, arrival of emergency vehicles at relatively close 
distance etc. The kinds of information whose RoIs span entire cities or counties or long highways, like malware, CRL, are 
not related to the above. Thus, again the product 2 K J may not always be prohibitive. We elucidate this using some examples 
that arise in practice. We consider the situation in which seven different types of information are disseminated in SoHo (40 
blocks) in Manhattan and downtown Ottawa (50 blocks); there are respectively 11904 and 16256 differential equations. The 
computation time would be less than 4 hours using even modest computation facilities. Recall that the computation time 
for a total of 16,668 differential equations (corresponding to J = 8334 clusters) is approximately 240 minutes (See Section 5 ). 
7. Conclusion and future work 

V2V technologies bridge two interconnected and interdependent infrastructures: the communications infrastructure and 
the transportation infrastructure (including the vehicular infrastructure, the sensor infrastructure, and the physical road- 
way capacity). In this manuscript, proceeding from a continuous-time Markov chain model, utilizing rigorous mathematical 
proofs, we compute the fraction of informed vehicles as a function of time and space as a solution of a set of clustered 
epidemiological differential equations which lend itself to fast computation. We then demonstrate the applicability of this 
model in various scenarios: both real world scenarios, involving several generalizations and interdependence between com- 
munication and mobility and hypothesized scenarios of outages and system perturbations. We find that our models match 
microscopic trajectory data with acceptable error, demonstrating the applicability of our models. Our findings are of crit- 
ical importance in shared transportation, as many of the current commercial ventures are investing in and considering 
the deployment of Connected Autonomous Vehicles enabled with V2V technologies. Overall, our work captures the spatio- 
temporal dynamics of information propagation over connected vehicles, enabling shared mobility services, individuals, and 
transportation system operators to see the benefits and drawbacks of large-scale V2V-enabled vehicle deployments in dif- 
ferent transportation network typologies and for different densities of V2V-enabled vehicles and communication conditions 
of V2V-enabled vehicles. 

We now list some directions for future research. Reduction of the worst case computation times for the generaliza- 
tions considered in Section 6 through creative formulations that exploit specific temporal and spatial properties of given 
transportation networks deserves further investigation. Next, the traffic signals result in traffic synchronization, because, 
all vehicles stop at a red light and start moving almost simultaneously when the light turns green. This synchronization 
causes a divergence between the actual mobility of the traffic trajectory and the exponential mobility process, which we 
have assumed. Modeling information propagation with such pulsed traffic remains open. We can for example consider a 
time-dependent mobility parameter λi,j ( · ), whereby they are 0 when the lights are red, and at the normal values when 
they are green. When there are many traffic signals on more complex roads, multiple traffic signals affect traffic flows in 
different directions simultaneously, which affects information propagation in a complicated manner. We postpone the de- 
tails, including mathematical analysis, numerical computations and simulations, impact of the locations of traffic signal(s) 
for future research. 
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Appendix A. Proof of the result in Section 2.1 

The stochastic model for the information propagation can be approximated by a solution of ordinary differential 
equations (3) . To this end, we first present the results developed by Kurtz (1970) . 
Definition 1. One parameter family of Markov chain X ( t ) with state spaces contained in Z K is called density dependent 
if there exist continuous functions f (x , h ) : R K × Z K → R , such that the transition rates q (k , k + h ) from k to k + h is 
given by 

q (k , k + h ) = N f ( k 
N , h ), h * = 0 . 

We can obtain a new Markov chain by scaling with N, and the scaled process X N ( t ) is defined by 
X N (t) := X (t) 

N = 1 
N (n I (t) , n S (t)) . 

If a Markov process X ( t ) is density dependent, under certain conditions, a scaled process X N ( t ) can be approximated by a 
solution of ordinary differential equations determined by the following function 

F (x ) := ∑ 
h * = 0 h f ( x , h ) , (A.1) 

which is the limiting mean increment. The following result ( Kurtz, 1981; Ethier and Kurtz, 2009 ) provides sufficient condi- 
tions for convergence of the scaled process X N ( t ) to the unique trajectory of an deterministic path when N is large. 
Existing Result 1. Suppose for each compact E ∈ R K 

∑ 
h | h | sup 

x ∈ E f ( x , h ) < ∞ , (A.2) 
and there exist M E > 0 such that 

| F (x ) − F (y ) | < M E | x − y | x , y ∈ E. (A.3) 
Suppose lim N→∞ X N (0) = x (0) , and x ( t ) satisfies 

x (t) = x (0) + ∫ t 
0 F (x (s )) ds, 

for all t ≥ 0 (in particular sup s ≤t | x (s ) | < ∞ ). Then 
lim 

N→∞ sup 
s ≤t | X N (s ) − x (s ) | = 0 a.s. for all t > 0 . 

We now use this result to approximate the dynamics of infomation propagation through the solution of ordinary differen- 
tial equations. Recall a set E := { (I , S ) | I i ≥ 0 , S i ≥ 0 : i = 1 , 2 , . . . , J, ∑ J 

i =1 (I i + S i ) = 1 } with (I , S ) = (I 1 , I 2 , . . . , I J , S 1 , S 2 , . . . , S J ) . 
Note that S N / N is a subset of E and the scaled process X N ( t ) is contained in E . Also note that I and S respectively have 
physical connotations of fraction of informed and non-informed vehicles in each cluster as discussed. Let the function 
f ( x, h ), x ∈ E , h ∈ Z 2 J , be defined as 

f ( x , h ) = 
 
    
    

λI 
jk ( x ) · I j , h = −1 j + 1 k , j * = k 

λS 
jk ( x ) · S j , h = −1 J+ j + 1 J+ k , j * = k 

β jk · I j · S k , h = 1 k − 1 J+ k 
0 , otherwise . 

(A.4) 
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where x = (I , S ) . Since transition rate (1) can be written as the form of q ( k , k + h ) = N f ( k 

N , h ), h * = 0 , the Markov process 
satisfies density-dependent property ( Definition 1 ). From (A.1) and (A.4) , the function F (x ) = F (I , S ) , can be expressed as 

F (I , S ) = ∑ 
h * = 0 h f ( (I , S ) , h ) = 

 
                    
                    

−
J ∑ 

k * =1 λI 
1 k ( I , S ) · I 1 + J ∑ 

k =1 βk 1 I k S 1 + J ∑ 
k * =1 λI 

k 1 ( I , S ) · I k 
. . . 

−
J ∑ 

k * = J λI 
Jk ( I , S ) · I J + J ∑ 

k =1 βkJ I k S J + J ∑ 
k * =1 λI 

kJ ( I , S ) · I k 
−

J ∑ 
k * =1 λS 

1 k ( I , S ) · S 1 −
J ∑ 

k =1 βk 1 I k S 1 + J ∑ 
k * =1 λS 

k 1 ( I , S ) · S k 
. . . 

−
J ∑ 

k * = J λS 
Jk ( I , S ) · S J −

J ∑ 
k =1 βkJ I k S J + J ∑ 

k * = J λS 
kJ ( I , S ) · S k . 

Lemma 1. Suppose for i, j = 1 , 2 , . . . , J and i * = j, mobility rate functions λI 
i j : E → R and λS 

i j : E → R are bounded and Lipschitz 
continuous on E. Then, the function F is Lipschitz continuous on E. 
Proof. Let x = ( I , S ) = (I 1 , I 2 , . . . , I J , S 1 , S 2 , . . . , S J ) and y = ( ̄I , ̄S ) = ( ̄I 1 , ̄I 2 , . . . , ̄I J , S̄ 1 , S̄ 2 , . . . , S̄ J ) be points in E . Starting from 
| F i (x ) − F i (y ) | for i = 1 , 2 , . . . , J, we have 

| F i (x ) − F i (y ) | = 
∣∣∣∣∣
−

J ∑ 
k * = i 

(
λI 

ik (x ) I i − λI 
ik (y ) ̄I i ) + J ∑ 

k =1 βki (I k S i − Ī k ̄S i ) + J ∑ 
k * = i 

(
λI 

ki (x ) I k − λI 
ki (y ) ̄I k )

∣∣∣∣∣

= 
∣∣∣∣∣
−

J ∑ 
k * = i λI 

ik (x )(I i − Ī i ) − J ∑ 
k * = i 

(
λI 

ik (x ) − λI 
ik (y ) )Ī i + J ∑ 

k =1 βki I k (S i − S̄ i ) + J ∑ 
k =1 βki ̄S i (I k − Ī k ) 

+ J ∑ 
k * = i λI 

ki (x )(I k − Ī k ) + J ∑ 
k * = i 

(
λI 

ki (x ) − λI 
ki (y ) )Ī k 

∣∣∣∣∣
. 

for i = 1 , 2 , . . . , J. Suppose for i, j = 1 , 2 , . . . , J and i * = j , the mobility rate function λI 
i j and λS 

i j are bounded above by ̂ λI 
i j and 

̂ λS 
i j respectively. Suppose further that λI 

i j and λS 
i j are Lipschitz continuous in the sense that | λI 

i j (x ) − λI 
i j (y ) | ≤ L I 

i j · | x − y | 
with Lipschitz constant L I 

i j and | λS 
i j (x ) − λS 

i j (y ) | ≤ L S 
i j · | x − y | with Lipschitz constant L S 

i j . Then, we have 
| F i (x ) − F i (y ) | ≤ J ∑ 

k * = i ̂ λI 
ik ∣∣I i − Ī i ∣∣ + J ∑ 

k * = i L I ik | x − y | + J ∑ 
k =1 βki | S i − S̄ i | + J ∑ 

k =1 βki | I k − Ī k | + J ∑ 
k * = i ̂ λI 

ki | I k − Ī k | + J ∑ 
k * = i L I ki | x − y | . 

Since | I i − Ī i | ≤ | ( I , S ) − ( ̄I , ̄S ) | = | x − y | and | S i − S̄ i | ≤ | ( I , S ) − ( ̄I , ̄S ) | = | x − y | for i = 1 , 2 , . . . , J, we have 
| F i (x ) − F i (y ) | ≤ K i · | x − y | i = 1 , 2 , . . . , J 

where K i = ∑ J 
k * = i ̂ λI 

ik + ∑ J 
k * = i L I ik + 2 ∑ J 

k =1 βki + ∑ J 
k * = i ̂ λI 

ki + ∑ J 
k * = i L I ki . Through the same way, for i = J + 1 , J + 2 , . . . , 2 J, we have 

| F i (x ) − F i (y ) | ≤ K i · | x − y | i = J + 1 , J + 2 , . . . , 2 J 
where K i = ∑ J 

k * = i ̂ λS 
ik + ∑ J 

k * = i L S ik + 2 ∑ J 
k =1 βki + ∑ J 

k * = i ̂ λS 
ki + ∑ J 

k * = i L S ki . Thus, the component functions F i for i = 1 , 2 , . . . , 2 J are 
Lipschitz continuous on E ; consequently, the function F is Lipschitz continuous on E . !

By Lemma 1 , the mobility rate functions λI 
i j and λS 

i j for i, j = 1 , 2 , . . . , J and i * = j , are bounded and Lipschitz continuous 
on E , so the condition (A.3) is satisfied. The state space S N is finite and the function f ( x, h ) for each h is bounded, so the 
condition (A.2) is satisfied. Consequently, if lim N→∞ 1 

N (n I (0) , n S (0)) = ( I (0) , S (0) ) , the scaled process X N ( t ) converges to the 
solution of the ordinary differential equations (3) as the total number of vehicles N increases. 
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