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Despite the rising importance of enhancing community resilience to disasters,
our understandings on when, how and why communities are able to recover
from such extreme events are limited. Here, we study the macroscopic popu-
lation recovery patterns in disaster affected regions, by observing human
mobility trajectories of over 1.9 million mobile phone users across three
countries before, during and after five major disasters. We find that, despite
the diversity in socio-economic characteristics among the affected regions
and the types of hazards, population recovery trends after significant dis-
placement resemble similar patterns after all five disasters. Moreover, the
heterogeneity in initial and long-term displacement rates across communities
in the three countries were explained by a set of key common factors, including
the community’s median income level, population, housing damage rates and
the connectedness to other cities. Such insights discovered from large-scale
empirical data could assist policymaking in various disciplines for developing
community resilience to disasters.
1. Introduction
Following the series of natural hazards with unprecedented severity and mag-
nitude including Tohoku Tsunami and Hurricanes Harvey, Irma and Maria, the
concept of urban resilience has gained significant attention [1]. For many cities,
it is of utmost importance to build institutional and infrastructural capacities to
minimize economic loss and maintain the well-being of their citizens in case
of extreme events [2,3]. Recent disasters have shown the existence of large var-
iance in recovery trajectories across communities that have experienced similar
damage levels [4,5]. We have witnessed manifold cases where cities experience
significant drainage of population even with sufficient recovery of infra-
structure systems [6,7]. Understanding the interplay between the recovery of
infrastructure systems and population movement (displacement and return)
after such large-scale disasters is essential for developing policies that could
enhance effective population recovery in communities, and foster sustainable
development in hazard-prone areas [8].

Human displacement andmigration due to climate change and disasters have
long been studied based on surveys and census data [5,6,9–15]. Studies have
made future projections of migration patterns due to climate change and their
implications for income inequality [16,17]. These studies reveal important factors
that are associated with post-disaster displacement [18,19]; however, they fail to
capture the detailed temporal patterns of recovery and their spatial heterogeneity.
The increase in the availability of large mobility datasets including mobile phone
call detail records (CDRs), GPS logs, and social media posts, has made it easier to
collect spatio-temporally detailed observations of individual mobility from a
large region [20,21]. Large-scale datasets are being used for inferring population
distributions and migration patterns [22–26], which are applied in various
domains to solve societal challenges including alleviating traffic congestion [27]
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and preventing disease spread [28–30] . Several studies have
used mobile phone data to understand the human mobility
patterns during and after disasters such as earthquakes [31–
34], hurricanes [35,36], and other anomalous events and
shocks [37,38]. Lu et al. analysed mobile phone data to under-
stand both the short-term and long-term migration patterns
after a cyclone in Bangladesh [39]. Despite such progress, the
current body of literature lacks a general understanding of
population displacement and recovery patterns after disasters.
More specifically, the following research questions are yet to be
answered: When do communities recover from population displace-
ment, and why? Can we characterize population recovery patterns
across different disaster events? How heterogeneous are recovery
patterns across locations and disaster instances? Can we explain
such heterogeneity using a common set of factors?

Inorder to answer these questions andbridge thegaps in the
current literature, we analysed large scale mobile phone GPS
datasets collected before and after multiple disasters across
different counties. We collaborated with three different compa-
nies across the US and Japan that collect GPS location data
from mobile phones, and studied the movements of more
than 1.9 million mobile phones of affected individuals over a
six-month period. We studied the recovery patterns after
Hurricane Maria (Puerto Rico, USA, 2017), Hurricane Irma
(Florida, USA, 2017), Tohoku Tsunami (Tohoku area,
Japan, 2011), Kumamoto Earthquake (Kyushu area, 2016)
and Kinugawa Flood (Ibaraki area, Japan, 2015), shown in
figure 1a. These five disasters, in total, destroyed more than
1.5 million residential buildings, caused power outages in
more than 8million households and causedmore than $350 bil-
lion in economic loss (electronic supplementary material). The
five disasters were diverse in various aspects including the
typeofdisaster (tsunami, earthquake, hurricane, flood), location
of occurrence (Puerto Rico, Florida, Tohoku, Kumamoto) and
the socio-economic characteristics of the affected regions.

2. Data and methods
For each disaster, we analysed the longitudinal population
recovery patterns in the affected areas. The affected areas were
defined as the set of local government units (LGUs), which
experienced damage to residential buildings due to the
hazard. LGUs correspond to counties in Florida and Puerto
Rico, and ‘shichoson (cities/wards)’ in Japan in this study.

There are mainly three reasons to why we perform our
analysis on the LGU scale. Firstly, due to the limitation in the
number of mobile phone user samples, analysis at a further
finer scale would yield statistically insignificant results
especially in rural areas. Second, the LGU scale is the finest
scale in which we can obtain socio-economic data in Japan,
unlike the US where data are available on the census tract
level through the American Community Survey. Third, gov-
ernment agencies often make policy decisions on the LGU
scale, thus insights on that spatial scalewould provide decision
makers with relevant and useful insights.

Housing damage data collected from official sources are
used to understand the spatial extent of damage inflicted to
each of the communities. For disasters in the US, the ‘housing
damage rate’ of a given LGU refers to the rate of houses
approved for the Individuals and Households Program of
FEMA in each LGU [40]. For disasters in Japan, it refers to
the rate of residential buildings classified as ‘totally destroyed’
or ‘half destroyed’ by the Cabinet Office of Japan (COJ) in each
LGU [41]. Both datasets are publicly accessible. Seventy-eight
LGUs in Puerto Rico, 49 LGUs in Florida, 30 LGUs in
Tohoku, 33 LGUs in Kumamoto and 10 LGUs in Kinugawa
were classified as affected areas with housing damage, and
were included in the analysis (electronic supplementary
material, table S1). Figure 1a shows the LGUs that were
included in the analysis along with the housing damage rates
in red colours.

Mobile phone location data for the five disasters were pro-
vided by three different companies in Japan and the USA
Location data were collected by Yahoo Japan Corporation
(https://www.yahoo.co.jp/) for Kumamoto Earthquake and
Kinugawa Flood, by Zenrin Data Com (http://www.zenrin-
datacom.net/toppage) for Tohoku Tsunami and Earthquake
and Safegraph (https://www.safegraph.com/) for Hurricanes
Irma and Maria. All companies obtained the location infor-
mation (time, longitude, latitude) of mobile phones from
users who agreed to provide their location data for research
purposes, and all information was anonymized to protect the
security of users. Each mobile phone user’s home location
was estimated by performing aweighted mean-shift clustering
on the GPS location points observed during night-time prior
to the disaster date [42,43]. As a result, a total of 1.9 million
individual users were identified to be living in the affected
areas before the disaster (electronic supplementary material,
table S3). We refer to these users as ‘affected users’. Corre-
lations (both Pearson and Spearman rank correlations)
between the number of affected mobile phone users in each
LGUand the census population datawere very high in all data-
sets (electronic supplementary material, figure S2). Thus,
we assume that distribution of mobile phone users have
little spatial bias, and that they are representative of the entire
population on the macroscopic spatial scale, which is also
shown in previous works using other mobile phone datasets
[23,31,34]. The mobility trajectories of each user were tracked
during and after the disaster, and were used to quantify the
longitudinal population recovery patterns. The rate of displace-
ment on a given day was defined as the rate of affected users
who stayed outside their home LGU out of all affected users
on that day. To capture the short-term fluctuations in the popu-
lation recovery patterns, the raw observations of displacement
rates were denoized using Gaussian process regression, which
is a non-parametric probabilistic model for denoizing and
regression [44]. To capture the general trend of population
recovery, the raw observations were fitted using a negative
exponential function D(t) = (D160−D0)exp(− (t/τ)) +D160,
where D0, D160, and τ denote the displacement rates on
day 0, day 160 and recovery time parameter, respectively.
Furthermore, the fitted negative exponential functions were
normalized ~D(t) ¼ (D(t)�D160)=(D0 �D160) ¼ e(�t=t) to com-
pare the speed of population recovery across different disasters.
3. Modelling population recovery patterns
after disasters

Despite the differences in the disaster types and the hetero-
geneity in socio-economic characteristics among the affected
regions, the recovery of displacement rates after the five
disasters were all approximated well by a negative exponen-
tial function D(t) = (D0−D160)exp(− (t/τ)) +D160, where D0

and D160 denote the displacement rates on day 0 and day
160, respectively, and τ are the recovery time parameters.
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Figure 1. Similarity of macroscopic population recovery patterns across the five disasters. (a) Location, spatial scale and severity of disasters that were studied. Red
colours indicate the percentages of houses that were severely damaged in each community. (b–f ) Macroscopic population recovery patterns after each disaster. Raw
observations of displacement rates were denoised using Gaussian process regression and were then fitted with a negative exponential function. D0, D160 and τ
denote the displacement rates on day 0, day 160 and recovery time parameter of each fitted negative exponential function. Black horizontal dashed line
shows average displacement rates observed before the disaster. (g) Normalized population recovery patterns after Hurricane Maria (red), Tohoku Tsunami Tsunami
(blue), Hurricane Irma (green), Kumamoto Earthquake (cyan), Kinugawa Flood (orange).
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Figure 1b–f shows the observed daily displacement rates,
smoothed trend estimated using Gaussian process regression,
and the fitted exponential functions for each disaster. Good-
ness of fit measures were computed to show that the
exponential functional form fits the datawell, and that the esti-
mation of parameters are robust (electronic supplementary
material, figure S3). The observations were cut off on day 160
due to data limitation. Minor anomalies observed in the recov-
ery patterns were due to national holidays such as Christmas
(around day 100 of Hurricane Maria and day 110 of Hurricane
Irma), Thanksgiving Holidays (around day 80 of Hurricane
Irma), and ‘Obon Breaks’, which is a national holiday in
Japan (around day 120 of Kumamoto Earthquake). The base-
line (pre-disaster) displacement rates are shown in figure 1b–f
in horizontal grey dotted lines (mean) and the grey shaded
region (standard deviation) to compare the post-disaster dis-
placement rates with the ‘usual’ displacement rates that are
caused by activities such as travelling. In extreme disasters
such as Hurricane Maria and Tohoku Tsunami, we observe a
high long-term displacement even after 150 days from the dis-
aster. We can infer that this population segment could have
migrated out of the disaster affected areas to other locations.
Figure 1g shows the normalized displacement rate obser-
vations ~D(t) for each disaster in colours, along with the
negative exponential function (~D(t) ¼ e(�t=t)) shown in black.
The closeness between the standard negative exponential func-
tion and the normalized population recovery patterns show
that for all disasters, population recovery curves can be well
approximated by a negative exponential function.

The negative exponential functional form of the population
recovery patterns across the five disasters imply that the
majority of users returned quickly within a couple of weeks
from the disaster, but the rest of the users gradually returned
over a longer time period. The exponential decay also indicates
that for each day, a constant rate (1/τ) of the remaining dis-
placed population decides to return to their original home
location. This variance in recovery timings can be explained
by observing the relationship between the temporal duration
and spatial distance of individual displacement mobility pat-
terns. Figure 2a shows that the average evacuation duration
increases with evacuation distance. Figure 2b shows the prob-
ability density plots of the maximum distance travelled from
his/her estimated home location on a usual day before the dis-
aster (grey), on the day of the disaster (brown), 10 days after the
disaster (red) and one month after the disaster (orange). More
people stayed further away (greater than 103 m) from their
home locations after disasters compared to before the disaster
due to evacuation activities. The distribution of evacuation dis-
tances is long tailed after all disasters at various time points,
which indicates themajority of people evacuate short distances
(thus short duration) and a small fraction evacuate extremely
long distances (thus long duration). This explains why we
observe the negative exponential function in population recov-
ery patterns after all disasters. The recovery times after
disasters that occurred in Japan and Florida were relatively
short (3 < τ < 8), but very long τ = 26.8 after Hurricane Maria.
The differences in recovery time parameter values τ across
disasters can be explained by the differences in the speed
of infrastructure recovery in each of the affected regions.
In Japan and Florida, power was restored in over 90% of the
households (that were not destroyed) within 10 days from
the disaster, while it took more than 200 days for Puerto Rico
(electronic supplementary material, figure S4).
4. Understanding the spatial heterogeneity
in population recovery

We now downscale our analysis to LGUs (counties in the USA,
cities/wards in Japan) within each affected area to understand
the spatial heterogeneity in population recovery patterns. Since
only one of few LGUs (10) was affected by the Kinugawa
Flood, with most of them (9) having little housing damage
(less than 1% housing damage rates), the Kinugawa Flood
was not included in the LGU-scale analysis. The LGU-scale
analysis was performed on the four major disasters
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Figure 2. Relationship between displacement distance and duration after disasters. (a) The longer the evacuation distance, the longer the average evacuation duration.
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common across disasters. The majority of people evacuating short distances (thus short duration) and a small fraction of the people evacuating extremely long distances (thus
long duration) explains why similar negative exponential functions were observed after the disasters.
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(HurricanesMaria and Irma, Tohoku Tsunami, andKumamoto
Earthquake). In total, there are 200 LGUswith large diversity in
socio-economic characteristics that were affected by the four
disasters. The inset in figure 3a shows the large heterogeneity
in recovery patterns across LGUs, even within each disaster.
Figure 3a shows moderate correlation (R = 0.612) between D0

and D160 for all LGUs.
To understand the effect of the independent variables on

the displacement rates and the speed of recovery, we apply a
generalized linear regression modelling framework. Because
the displacement rates are probabilities, 0 <D(t) < 1 holds
for any t. Therefore, we apply a logit link function to the
displacement rates in the regression model. Similarly, because
the recovery times take only positive values (0 < τ), we
apply a log link function to the speed parameter. Equations
(3) and (4) show the generalized linear regression model
where β are the regression coefficients, x are the independent
variables explained in the next section, and e � N (0, s 2) is
the error term. The model parameters are estimated via
maximum-likelihood estimation.

log
� D(t)
1�D(t)

�
¼ bTxþ e (4:1)

and

log (t) ¼ bTxþ e: (4:2)

In the regression models of population recovery, socio-
economic data (population, median income, housing damage
rates, power outage recovery time, connectedness to
surrounding cities) were used as independent variables (elec-
tronic supplementary material, table S4). In addition to
housing damage rates which directly quantify the magnitude
of the disaster effect on each LGU, socio-economic variables
(population and income) of LGUs were included in the
model to seek any inequality between the urban and rural,
and the rich and poor on the disaster recovery performances.
Infrastructure recovery (power outage duration) was included
in the model to assess the importance of the local agency’s
capacity to respond to extreme events. Moreover, we test
whether the geographical configurations and accessibility
between LGUs are important for post-disaster recovery, by
including variables related to the proximity to large and
wealthy cities. For Florida and Puerto Rico, population data
were obtained from the US National Census (https://www.
census.gov/), and median income data were obtained from
the American Community Survey (https://www.census.
gov/programs-surveys/acs). Similarly, for Japanese LGUs,
population and income data were obtained from the Statistics
Bureau (https://www.stat.go.jp/) of the Ministry of Internal
Affairs and Communications of Japan. Power outage data of
LGUs in Puerto Rico were collected from the website StatusPR
(http://status.pr/), which is a government operated website
that showed the recovery status of Puerto Rico after the Hurri-
cane. Power outage data of Hurricane Irmawere collected from
the Florida Division of Disaster Management (https://www.
floridadisaster.org/). Power outage information in the Japa-
nese disasters were collected from the utility companies.
The connectedness to surrounding cities were calculated by
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dp(i) ¼ (
P

j[S(i) Nj)=(Ni), whereNi is the number of households
in city i, and S(i) is the set of cities that can be reachedwithin 1 h
by vehicles from city i. dp would be large for small cities that
have large cities around it, and small for more isolated cities.
For cities with similar population levels, dp would be pro-
portional to the total population of surrounding cities.
Similarly, we propose the proximity to wealthy cities by
using the median income value instead of the household
number in the previous equation. This value would be large
if the origin city has a relatively low income and it is sur-
rounded by wealthier cities nearby. Note that these two
complex variables capture not only the characteristics of the
origin city, but that of the receptor cities. Correlations among
variables in all disasters were not significantly high, thus
we included them in the regression analysis (electronic sup-
plementary material, table S5). Power outage recovery time
was excluded in the models for estimating D0, since this infor-
mation would not be available on day 0. The probability
densities of the four attributes in each disaster are shown in
figure 3b. Housing damage rates andmedian income levels sig-
nificantly differ across the four disasters, however the number
of households and the connectedness of cities have more simi-
lar distributions. The set of independent variables for the best
model for each disaster was chosen based on the lowest AIC
value and statistical significance (p < 0.1). Regression results
are shown in detail in electronic supplementary material,
tables S6–S9. Figure 3c plots the observed values and esti-
mated D0. Although we use only key variables in our model,
the estimated values had high correlation with observed
values (R = 0.864). For LGUs in Japan (Tohoku Tsunami and
Kumamoto Earthquake) and Florida (Hurricane Irma), hous-
ing damage rates were good estimators of D0 (figure 4a–d ).
On the other hand, housing damage rates had low and insig-
nificant correlation with log (D0/(1−D0)) in Puerto Rico after
Hurricane Maria. Rather, as shown in figure 4e–g, median
income levels and number of households for each community
had significant and stronger correlations with initial displace-
ment rates. Median income and the proximity towealthy cities
had negative correlations with initial displacement rates, indi-
cating that communities with lower incomes in isolated areas
had higher initial displacement rates (electronic supplemen-
tary material, table S6). Figure 3d shows that D160 values
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Figure 5. Connectedness to neighbouring cities as a key factor to recovery. (a) Map of Ciales and Guanica, Puerto Rico. Light coloured areas show the area that can
be reached from each city within 1 h of driving time. (b) Recovery patterns of both communities, showing the faster recovery of Ciales. (c) Comparison of factors for
both cities. Factors other than connectedness to other large cities (e.g. San Juan) were similar between the two communities. (d–f ) Similar phenomenon was seen
after Tohoku Tsunami in Japan. Minamisanriku City and Ohtsuchi City shared similar characteristics except for the connectedness to large cities (e.g. Ishinomaki),
resulting in differences in recovery patterns.
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were predicted by the five variables with high accuracy
(R = 0.848). Median income and housing damage rates had
positive effects on long-term displacement, implying that
people with more income were able to evacuate from the
affected regions (electronic supplementary material, table
S7). In addition to such socio-economic variables, infrastruc-
ture recovery speed had a significant effect on long-term
displacement rates. Recovery speed log (τ) had the lowest pre-
dictability out of all objective variables. The significant
variables varied across different disasters, however, the con-
nectedness to large cities and wealthy cities was a common
variable with significant impact on recovery speed across
three disasters (electronic supplementary material, table S8).
The negative coefficient implies that if a city is surrounded
by larger or wealthier cities, it has a shorter time needed for
recovery. To check the temporal robustness of these findings,
We performed the regression analysis on various time points
(D10, D20, D30, D60, D90, D120), and summarized the results
in electronic supplementary material, table S9. We found
that the set of important variables generally stay similar for
all disasters across different timepoints. However, as time
progresses, infrastructure recovery variables become more
significant while the significance of housing damage rates
gradually decrease.
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Figure 5 shows pairwise comparisons after Hurricane
Maria and Tohoku Tsunami where a pair of similar LGUs
with different levels of connectedness to neighbouring cities
have distinct recovery outcomes, even though other socio-
economic characteristics such as population, housing damage
rates and income levels are similar.
lishing.org/journal/rsif
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5. Discussion and conclusion
In this study, we used large-scale mobile phone datasets from
five disasters across the US, Puerto Rico and Japan to uncover
the macroscopic population recovery patterns after disasters.
We found that population recovery patterns across the five
disasters can be approximated with a common negative expo-
nential function, where the majority of the displaced users
return to their residential areas quickly after the disaster,
while some decide to stay away for longer periods. Previous
studies of post-disaster human migration using household
surveys [5,10,11,15] had failed to obtain a continuous and
longitudinal understanding of the recovery dynamics due to
limitations in data. Revealing the negative exponential function
common across different disasters and locations could signifi-
cantly contribute to the efforts in modelling and simulating
human mobility patterns after disasters [45]. Further analysis
using the individual evacuation mobility patterns showed
that these patterns emerge because of the combined effect of
long-tailed distributions in evacuation distances and positive
correlation between evacuation distance and duration. The
long-tailed distributions of evacuation distance had been
observed in previous studies using other datasets from Haiti
[31] and Japan [34], however, the latter relationship had not
been shown in previous studies. A more detailed analysis on
the population recovery patterns of 200 communities (LGUs)
across different disasters and locations showed that the
heterogeneity in short-term (day 0) to long-term (day 160) dis-
placement rates can be well explained by key common factors
including population, median income, housing damage rates
and infrastructure recovery time. Previous studies on individ-
ual case studies have noted the relationship between such
variables and population recovery (reentry) decisions. For
example, studies on Hurricanes Katrina and Rita show that
the rate of disadvantaged populations (characterized by
variables including household income), density of the built
environment, and housing damage contribute to migration
and displacement [7]. This work contributes to the literature
regarding disaster resilience and population migration by test-
ing the insights obtained from individual case studies with
multiple disasters in different locations. Moreover, the impor-
tance of connectivity to surrounding cities has been
understudied in the current literature, despite its significant
implications on policymaking for disaster resilience. This con-
tradicts previous findings on non-disaster human mobility
patterns (e.g. commuting), where out-migration increases
with amount of opportunities available in surrounding cities
[25]. This finding shows that after disasters, the existence of
neighbouring cities act as catalysts that enhance recovery
rather than attractors that drain population from damaged
cities. This extends the theories on the importance of social
capital and social support [4,15] to an inter-city scale. One
example of this effect is how Tono City, an inland city close
to the Tohoku area towns that were affected by the tsunami,
acted as a recovery support hub after the Tohoku Tsunami
[46]. The coastal cities were provided humanitarian, informa-
tional, and material support from surrounding nearby cities
such as Tono City which experienced less damage due to the
tsunami/earthquake. The effect of inter-city connectivity on
community recovery is understudied in the urban resilience lit-
erature, and could have significant implications on the
planning of inter-city networks to enhance the resilience of
communities.

The presented empirical results should be considered in
light of some limitations. First, the mobile phone data did not
contain various attributes of households that are known to
affect evacuation and return decisions such as age, gender,
race [47], risk perception [48] and social network ties [4,15].
Although we were able to explain some of the variability in
population recovery patterns using several key factors, includ-
ing these variables by integrating mobile phone data with
household survey data would be a valuable next step in
future research. Second, although this study used mobile
phone data from a diverse set of countries, the number of
disaster cases need to be increased to be able to make robust
conclusions. Increasing the number of study locations
especially in the developing world would allow us to better
compare and understand the recovery after Hurricane Maria
in Puerto Rico. Moreover, although our study analysed the
longitudinal population recovery until 160 days after the disas-
ter, a longer study could provide more insights in the recovery
of communities. Especially, for Puerto Rico after Hurricane
Maria, observingmore longitudinal data to determinewhether
the displacement rate permanently stays high after 160 days
would provide valuable insights. With data for longer time
periods frommore instances of large-scale disasters in different
countries, wewill be able to obtainmore generalizable findings
on population recovery patterns after disasters. Third, in this
study, regression analysis on the recovery parameters were
conducted on the LGU scale (i.e. counties in Puerto Rico and
Florida, and city/ward/towns in Japan). This was mainly
due to the limitation in the number of mobile phone user
samples; analysis at a further finer scale would yield statisti-
cally insignificant results especially in rural areas. The LGU
scale was the finest scale in which we can obtain socio-
economic data in Japan, unlike the USA, where data are
available on the census tract level through the American
Community Survey. Despite such limitations in the data, the
intra-LGU variability in the socio-economic characteristics is
of great importance in understanding spatial heterogeneity
in population displacement and recovery patterns. We show
a case study of Miami-Dade county after Hurricane Irma,
which does not suffer from either of the data limitations; a
large city with enough mobile phone user samples, located in
the US with census-tract level socio-economic data (electronic
supplementary material, figures S7 and S8 and table S10).
The predictability of displacement rates were low compared
to the county (LGU) level analysis (figure 3). The small
sample size in each census tract (electronic supplementary
material, figure S9) could be the reason for the noisy estimate.
A more robust estimation using sparse mobile phone user
samples would be needed to give better estimations on the
census tract granularity. Finally, our primary focus of this
paper was on the returning mobility of the displaced popu-
lations after disasters. Extending this study to not only
returning behaviour but also incoming migration would be
of interest to understand the recovery and further development
of each community.
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First, the understanding of the underlying recovery process
using parsimonious models provides a way to characterize the
recovery process using a small number of parameters (initial
displacement and speed of recovery). Even when mobile
phone data could not be obtained by policy makers in real-
time, the negative exponential model can be combined using
other (often spatio-temporally low resolution) data sources to
make predictions of population recovery. For example, studies
have shown that social media data (e.g. Twitter) can be used as
a proxy to estimate human mobility [49]. Night light data col-
lected from satellite images may also be used as a proxy for
population recovery as well, after power has been restored in
the area [50]. Second, the revealed common function of popu-
lation recovery dynamics can be applied in developing agent-
based simulations of evacuation and returnmobility, which are
commonly used in practice to predict post-disaster mobility
and population recovery [45,51]. Predicted post-disaster mobi-
lity patterns can be used as a reference for policymakers to
make decisions on the spatio-temporal allocation of resources
and services such as evacuation shelters, emergency supplies,
public utilities (e.g. water, electricity, gas). Third, the LGU-
level analysis results can be used to estimate the impact of
policies on population recovery. For example, it was shown
that physical connectivity between LGUs was important for
effective recovery, in addition to characteristics of individual
LGUs. In the case of Puerto Rico after Hurricane Maria
(figure 5a), the arterial road that runs through the central
part of the island connecting communities in the southern
part to the northern cities (e.g. San Juan)was notwell designed,
with inefficient road structures and paths. Similarly, commu-
nities in the northern part of Tohoku region (figure 5d) were
severely isolated due to the mountainous terrains. This finding
suggests that policymakers need to evaluate the collective
capacity of the network of LGUs, rather than evaluating the
resilience of each LGU independently.
Data accessibility. Mobile phone location data are proprietary data
owned by private companies. Although such data are not available
for open access due to the users’ privacy, we will obtain permission
to post processed data that are sufficient to reproduce the results
obtained in this study. Data collected from other sources are available
from official documents that are openly accessible. Computer codes
used to process and analyse the data are posted on the author’s
github page. (https://github.com/takayabe0505).
Authors’ contributions. T.Y., K.T., N.F., Y.S. and S.V.U. designed the
research; T.Y., K.T., N.F. and S.V.U. performed the research; T.Y.
and K.T. analysed the data; T.Y., K.T., N.F., Y.S. and S.V.U. wrote
the paper.

Competing interests. The authors declare that they have no competing
financial interests.

Funding. The work of T.Y. and S.V.U. is partly funded by NSF grant no.
1638311 CRISP Type 2/Collaborative Research: Critical Transitions in
the Resilience and Recovery of Interdependent Social and Physical
Networks. N.F. was supported by JSPS KAKENHI grant number
JP17H01742.
Acknowledgements. We thank collaborators in Safegraph, Mr Hodaka
Kaneda of Zenrin Data Com and Mr Hiroshi Kanasugi of University
of Tokyo for preparing the mobile phone GPS data used in this study.
References
1. De Bettencourt UM. 2013 Building resilience:
integrating climate and disaster risk into
development – the World Bank Group experience:
Main report. See https://documents.worldbank.org/
curated/en/762871468148506173/Main-report.

2. Eakin H et al. 2017 Opinion: urban resilience efforts
must consider social and political forces. Proc. Natl
Acad. Sci. USA 114, 186–189. (doi:10.1073/pnas.
1620081114)

3. Kousky C. 2014 Informing climate adaptation: a
review of the economic costs of natural disasters.
Energy Econ. 46, 576–592. (doi:10.1016/j.eneco.
2013.09.029)

4. Aldrich DP. 2012 Building resilience: social capital in
post-disaster recovery. Chicago: University of Chicago
Press.

5. Finch C, Emrich CT, Cutter SL. 2010 Disaster
disparities and differential recovery in New Orleans.
Popul. Environ. 31, 179–202. (doi:10.1007/s11111-
009-0099-8)

6. McCaughey JW, Daly P, Mundir I, Mahdi S,
Patt A. 2018 Socio-economic consequences of
post-disaster reconstruction in hazard-exposed
areas. Nat. Sustainability 1, 38–43. (doi:10.1038/
s41893-017-0002-z)

7. Myers CA, Slack T, Singelmann J. 2008 Social
vulnerability and migration in the wake of disaster:
the case of Hurricanes Katrina and Rita. Popul.
Environ. 29, 271–291. (doi:10.1007/s11111-008-
0072-y)
8. Aerts JCJH et al. 2018 Integrating human behaviour
dynamics into flood disaster risk assessment. Nat.
Clim. Change 8, 193–199. (doi:10.1038/s41558-018-
0085-1)

9. Cutter SL, Barnes L, Berry M, Burton C, Evans E,
Tate E, Webb J. 2008 A place-based model for
understanding community resilience to natural
disasters. Global Environ. Change 18, 598–606.
(doi:10.1016/j.gloenvcha.2008.07.013)

10. DeWaard J, Curtis KJ, Fussell E. 2016
Population recovery in new orleans after Hurricane
Katrina: exploring the potential role of stage
migration in migration systems. Popul.
Environ. 37, 449–463. (doi:10.1007/s11111-015-
0250-7)

11. Fussell E, Curtis KJ, DeWaard J. 2014 Recovery
migration to the city of new orleans after Hurricane
Katrina: a migration systems approach. Popul.
Environ. 35, 305–322. (doi:10.1007/s11111-014-
0204-5)

12. Gray CL, Mueller V. 2012 Natural disasters and
population mobility in Bangladesh. Proc. Natl Acad.
Sci. USA 109, 6000–6005.

13. Kniveton DR, Smith CD, Black R. 2012 Emerging
migration flows in a changing climate in dryland
Africa. Nat. Clim. Change 2, 444–447. (doi:10.1038/
nclimate1447)

14. Piguet E, Pécoud A, De Guchteneire P. 2011
Migration and climate change: an overview. Refug.
Surv. Q. 30, 1–23. (doi:10.1093/rsq/hdr006)
15. Sadri AM, Ukkusuri SV, Lee S, Clawson R, Aldrich D,
Nelson MS, Seipel J, Kelly D. 2018 The role of social
capital, personal networks, and emergency
responders in post-disaster recovery and resilience:
a study of rural communities in Indiana. Nat.
Hazards 90, 1377–1406. (doi:10.1007/s11069-
017-3103-0)

16. Hauer ME. 2017 Migration induced by sea-level rise
could reshape the US population landscape. Nat.
Clim. Change 7, 321–325. (doi:10.1038/
nclimate3271)

17. Shayegh S. 2017 Outward migration may alter
population dynamics and income inequality. Nat.
Clim. Change 7, 828–832. (doi:10.1038/
nclimate3420)

18. Chen J, Mueller V. 2018 Coastal climate change, soil
salinity and human migration in Bangladesh. Nat.
Clim. Change 8, 981–985. (doi:10.1038/s41558-018-
0313-8)

19. Mueller V, Gray C, Kosec K. 2014 Heat stress
increases long-term human migration in rural
Pakistan. Nat. Clim. Change 4, 182–185. (doi:10.
1038/nclimate2103)

20. Blondel VD, Decuyper A, Krings G. 2015 A survey
of results on mobile phone datasets analysis. EPJ
Data Sci. 4, 10. (doi:10.1140/epjds/s13688-015-
0046-0)

21. Gonzalez MC, Hidalgo CA, Barabasi A-L. 2008
Understanding individual human mobility patterns.
Nature 453, 779–782. (doi:10.1038/nature06958)

https://github.com/takayabe0505
https://github.com/takayabe0505
http://documents.worldbank.org/curated/en/762871468148506173/Main-report
http://documents.worldbank.org/curated/en/762871468148506173/Main-report
http://documents.worldbank.org/curated/en/762871468148506173/Main-report
http://dx.doi.org/10.1073/pnas.1620081114
http://dx.doi.org/10.1073/pnas.1620081114
http://dx.doi.org/10.1016/j.eneco.2013.09.029
http://dx.doi.org/10.1016/j.eneco.2013.09.029
http://dx.doi.org/10.1007/s11111-009-0099-8
http://dx.doi.org/10.1007/s11111-009-0099-8
http://dx.doi.org/10.1038/s41893-017-0002-z
http://dx.doi.org/10.1038/s41893-017-0002-z
http://dx.doi.org/10.1007/s11111-008-0072-y
http://dx.doi.org/10.1007/s11111-008-0072-y
http://dx.doi.org/10.1038/s41558-018-0085-1
http://dx.doi.org/10.1038/s41558-018-0085-1
http://dx.doi.org/10.1016/j.gloenvcha.2008.07.013
http://dx.doi.org/10.1007/s11111-015-0250-7
http://dx.doi.org/10.1007/s11111-015-0250-7
http://dx.doi.org/10.1007/s11111-014-0204-5
http://dx.doi.org/10.1007/s11111-014-0204-5
http://dx.doi.org/10.1038/nclimate1447
http://dx.doi.org/10.1038/nclimate1447
http://dx.doi.org/10.1093/rsq/hdr006
http://dx.doi.org/10.1007/s11069-017-3103-0
http://dx.doi.org/10.1007/s11069-017-3103-0
http://dx.doi.org/10.1038/nclimate3271
http://dx.doi.org/10.1038/nclimate3271
http://dx.doi.org/10.1038/nclimate3420
http://dx.doi.org/10.1038/nclimate3420
http://dx.doi.org/10.1038/s41558-018-0313-8
http://dx.doi.org/10.1038/s41558-018-0313-8
http://dx.doi.org/10.1038/nclimate2103
http://dx.doi.org/10.1038/nclimate2103
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/10.1038/nature06958


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190532

9
22. Blumenstock JE. 2012 Inferring patterns of internal
migration from mobile phone call records: evidence
from Rwanda. Inf. Technol. Dev. 18, 107–125.
(doi:10.1080/02681102.2011.643209)

23. Deville P, Linard C, Martin S, Gilbert M, Stevens FR,
Gaughan AE, Blondel VD, Tatem AJ. 2014 Dynamic
population mapping using mobile phone data. Proc.
Natl Acad. Sci. USA 111, 15 888–15 893. (doi:10.
1073/pnas.1408439111)

24. Lai S, zu Erbach-Schoenberg E, Pezzulo C,
Ruktanonchai NW, Sorichetta A, Steele J, Li T, Dooley
CA, Tatem AJ. 2019 Exploring the use of mobile
phone data for national migration statistics. Palgrave
Commun. 5, 34. (doi:10.1057/s41599-019-0242-9)

25. Simini F, González MC, Maritan A, Barabási A-L.
2012 A universal model for mobility and migration
patterns. Nature 484, 96–100. (doi:10.1038/
nature10856)

26. Wardrop NA, Jochem WC, Bird TJ, Chamberlain HR,
Clarke D, Kerr D, Bengtsson L, Juran S, Seaman V,
Tatem AJ. 2018 Spatially disaggregated population
estimates in the absence of national population and
housing census data. Proc. Natl Acad. Sci. USA 115,
3529–3537. (doi:10.1073/pnas.1715305115)

27. Iqbal Md. S, Choudhury CF, Wang P, González MC.
2014 Development of origin–destination matrices
using mobile phone call data. Transp. Res. Part C:
Emerging Technol. 40, 63–74. (doi:10.1016/j.trc.
2014.01.002)

28. Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E,
Sallah K, Rebaudet S, Piarroux R. 2015 Using mobile
phone data to predict the spatial spread of cholera.
Sci. Rep. 5, 8923. (doi:10.1038/srep08923)

29. Finger F, Genolet T, Mari L, de Magny GC, Manga NM,
Rinaldo A, Bertuzzo E. 2016 Mobile phone data
highlights the role of mass gatherings in the
spreading of cholera outbreaks. Proc. Natl Acad. Sci.
USA 113, 6421–6426. (doi:10.1073/pnas.1522305113)

30. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor
AM, Snow RW, Buckee CO. 2012 Quantifying the
impact of human mobility on malaria. Science 338,
267–270. (doi:10.1126/science.1223467)

31. Lu X, Bengtsson L, Holme P. 2012 Predictability of
population displacement after the 2010 Haiti
earthquake. Proc. Natl Acad. Sci. USA 109,
11 576–11 581. (doi:10.1073/pnas.1203882109)
32. Song X, Zhang Q, Sekimoto Y, Shibasaki R.
2014 Prediction of human emergency behavior
and their mobility following large-scale disaster.
In Proc. of the 20th ACM SIGKDD Int. Conf.
on Knowledge discovery and data mining,
pp. 5–14. ACM.

33. Wilson R et al. 2016 Rapid and near real-time
assessments of population displacement using
mobile phone data following disasters: the 2015
nepal earthquake. PLoS Curr. Disasters 8. (doi:10.
1371/currents.dis.
d073fbece328e4c39087bc086d694b5c)

34. Yabe T, Sekimoto Y, Tsubouchi K, Ikemoto S. 2019
Cross-comparative analysis of evacuation behavior
after earthquakes using mobile phone data. PLoS
ONE 14, e0211375. (doi:10.1371/journal.pone.
0211375)

35. Wang Q, Taylor JE. 2014 Quantifying human
mobility perturbation and resilience in Hurricane
Sandy. PLoS ONE 9, e112608. (doi:10.1371/journal.
pone.0112608)

36. Wang Q, Taylor JE. 2016 Patterns and limitations of
urban human mobility resilience under the
influence of multiple types of natural disaster. PLoS
ONE 11, e0147299. (doi:10.1371/journal.pone.
0147299)

37. Bagrow JP, Wang D, Barabasi A-L. 2011 Collective
response of human populations to large-scale
emergencies. PLoS ONE 6, e17680. (doi:10.1371/
journal.pone.0017680)

38. Toole JL, Lin Y-R, Muehlegger E, Shoag D, González
MC, Lazer D. 2015 Tracking employment shocks
using mobile phone data. J. R. Soc. Interface 12,
20150185. (doi:10.1098/rsif.2015.0185)

39. Lu X et al. 2016 Unveiling hidden migration and
mobility patterns in climate stressed regions: a
longitudinal study of six million anonymous
mobile phone users in Bangladesh. Global
Environ. Change 38, 1–7. (doi:10.1016/j.gloenvcha.
2016.02.002)

40. FEMA. 2018 Fema housing assistance program data.
https://www.fema.gov/media-library/assets/
documents/34758. Accessed: 2018-09-07.

41. COJ. 2018 Disaster reports for disasters in Japan
(Japanese). http://www.bousai.go.jp/ (accessed 7
September 2018).
42. Ashbrook D, Starner T. 2003 Using GPS to learn
significant locations and predict movement
across multiple users. Pers. Ubiquitous Comput.
7, 275–286. (doi:10.1007/s00779-003-
0240-0)

43. Kanasugi H, Sekimoto Y, Kurokawa M, Watanabe T,
Muramatsu S, Shibasaki R. 2013 Spatiotemporal route
estimation consistent with human mobility using
cellular network data. In Pervasive Computing and
Communications Workshops (PERCOM Workshops),
2013 IEEE Int. Conf. on, pp. 267–272. IEEE.

44. Rasmussen CE, Williams CKI. 2006 Gaussian
processes for machine learning. Cambridge, MA: The
MIT Press. 38:715–719, 2006.

45. Ukkusuri SV, Hasan S, Luong B, Doan K, Zhan X,
Murray-Tuite P, Yin W. 2017 A-RESCUE: an
agent based regional evacuation simulator
coupled with user enriched behavior. Netw.
Spatial Econ. 17, 197–223. (doi:10.1007/s11067-
016-9323-0)

46. Shimizu M. 2012 Resilience in disaster management
and public policy: a case study of the Tohoku
disaster. Risk, Hazards & Crisis in Public Policy 3,
40–59. (doi:10.1002/rhc3.17)

47. Dash N, Gladwin H. 2007 Evacuation decision
making and behavioral responses: individual and
household. Nat. Hazards Rev. 8, 69–77. (doi:10.
1061/(ASCE)1527-6988(2007)8:3(69))

48. Riad JK, Norris FH, Ruback RB. 1999 Predicting
evacuation in two major disasters: risk perception,
social influence, and access to resources 1. J. Appl.
Soc. Psychol. 29, 918–934. (doi:10.1111/j.1559-
1816.1999.tb00132.x)

49. Jurdak R, Zhao K, Liu J, AbouJaoude M, Cameron M,
Newth D. 2015 Understanding human mobility from
twitter. PLoS ONE 10, e0131469. (doi:10.1371/
journal.pone.0131469)

50. Román MO et al. 2019 Satellite-based assessment
of electricity restoration efforts in Puerto Rico after
Hurricane Maria. PLoS ONE 14, e0218883. (doi:10.
1371/journal.pone.0218883)

51. Murray-Tuite P, Wolshon B. 2013 Evacuation
transportation modeling: an overview of research,
development, and practice. Transp. Res. Part C:
Emerg. Technol. 27, 25–45. (doi:10.1016/j.trc.
2012.11.005)

http://dx.doi.org/10.1080/02681102.2011.643209
http://dx.doi.org/10.1073/pnas.1408439111
http://dx.doi.org/10.1073/pnas.1408439111
http://dx.doi.org/10.1057/s41599-019-0242-9
http://dx.doi.org/10.1038/nature10856
http://dx.doi.org/10.1038/nature10856
http://dx.doi.org/10.1073/pnas.1715305115
http://dx.doi.org/10.1016/j.trc.2014.01.002
http://dx.doi.org/10.1016/j.trc.2014.01.002
http://dx.doi.org/10.1038/srep08923
http://dx.doi.org/10.1073/pnas.1522305113
http://dx.doi.org/10.1126/science.1223467
http://dx.doi.org/10.1073/pnas.1203882109
http://dx.doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
http://dx.doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
http://dx.doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
http://dx.doi.org/10.1371/journal.pone.0211375
http://dx.doi.org/10.1371/journal.pone.0211375
http://dx.doi.org/10.1371/journal.pone.0112608
http://dx.doi.org/10.1371/journal.pone.0112608
http://dx.doi.org/10.1371/journal.pone.0147299
http://dx.doi.org/10.1371/journal.pone.0147299
http://dx.doi.org/10.1371/journal.pone.0017680
http://dx.doi.org/10.1371/journal.pone.0017680
http://dx.doi.org/10.1098/rsif.2015.0185
http://dx.doi.org/10.1016/j.gloenvcha.2016.02.002
http://dx.doi.org/10.1016/j.gloenvcha.2016.02.002
https://www.fema.gov/media-library/assets/documents/34758
https://www.fema.gov/media-library/assets/documents/34758
https://www.fema.gov/media-library/assets/documents/34758
http://www.bousai.go.jp/
http://www.bousai.go.jp/
http://dx.doi.org/10.1007/s00779-003-0240-0
http://dx.doi.org/10.1007/s00779-003-0240-0
http://dx.doi.org/10.1007/s11067-016-9323-0
http://dx.doi.org/10.1007/s11067-016-9323-0
http://dx.doi.org/10.1002/rhc3.17
http://dx.doi.org/10.1061/(ASCE)1527-6988(2007)8:3(69)
http://dx.doi.org/10.1061/(ASCE)1527-6988(2007)8:3(69)
http://dx.doi.org/10.1111/j.1559-1816.1999.tb00132.x
http://dx.doi.org/10.1111/j.1559-1816.1999.tb00132.x
http://dx.doi.org/10.1371/journal.pone.0131469
http://dx.doi.org/10.1371/journal.pone.0131469
http://dx.doi.org/10.1371/journal.pone.0218883
http://dx.doi.org/10.1371/journal.pone.0218883
http://dx.doi.org/10.1016/j.trc.2012.11.005
http://dx.doi.org/10.1016/j.trc.2012.11.005

	Understanding post-disaster population recovery patterns
	Introduction
	Data and methods
	Modelling population recovery patterns after disasters
	Understanding the spatial heterogeneity in population recovery
	Discussion and conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


