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A B S T R A C T

Large-scale disasters often trigger mass evacuation due to significant damages to urban systems.
Understanding the evacuation and reentry (return) process of affected individuals is crucial for
disaster management. Moreover, measuring the heterogeneity in the individuals' post-disaster
behavior with respect to their socio-economic characteristics is essential for policy making.
Recent studies have used large-scale location datasets collected from mobile devices to analyze
post-disaster mobility patterns. Despite the availability of such data and the societal importance
of the problem, no studies have focused on how income inequality affects the equity in post-
disaster mobility. To overcome these research gaps, we overlay mobility data with income in-
formation from census to quantify the effects of income inequality on evacuation and reentry
behavior after disasters, and the resulting spatial income segregation. Spatio-temporal analysis
using location data of more than 1.7 million mobile phone users from Florida affected by
Hurricane Irma reveal significant effects of income inequality on evacuation behavior. Evacuees
with higher income were more likely to evacuate from affected areas and reach safer locations
with less damage on housing and infrastructure. These differences were common among evacuees
from both inside and outside mandatory evacuation zones. As a result of such effects of in-
equality, significant spatial income segregation was observed in the affected areas. Insights on
the effects of income inequality on post-disaster mobility and spatial segregation could contribute
to policies that better address social equity in pre-disaster preparation and post-disaster relief.

1. Introduction

The rise in both the frequency and intensity of natural disasters in recent years have significantly impacted human lives and has
caused massive economic losses (Unisdr, 2005). Such large-scale disasters often trigger mass evacuation activities of people from the
affected areas due to various factors including significant structural damages to buildings and infrastructure systems, risks due to
flooding, and severe wind shear. For example, Hurricane Irma which made landfall in September 2017 caused one of the largest mass
evacuation events in the history of the country, where over 6 million people were ordered to evacuate in Florida (Cangialosi et al.,
2018). To implement effective traffic management strategies that allow efficient and safe mass evacuation from affected regions,
evacuation behaviors of individuals have been studied extensively, and is also currently an active field of research (for a recent review
on evacuation modeling, see Murray-Tuite and Wolshon (2013)). Studies have revealed the high complexity of evacuation decision
making mechanisms, where the outcomes are affected by various critical factors such as race and ethnicity, gender, income levels,
risk perception, and social ties (Dash and Gladwin, 2007). Such insights are often applied to construct agent-based evacuation models
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that are used to simulate spatio-temporal mobility patterns of mass evacuation (e.g. Ukkusuri et al., 2017), which may be used for
transportation management and urban planning.

Among the various dimensions of disaster management, social equity (Guy and McCandless, 2012) is understood to be an im-
portant concept that needs to be addressed for effective disaster relief and recovery (Burton and Cutter, 2008). Social equity during a
disaster is defined as the state where all affected people are given equal access to resources and opportunities that enable them to
meet their needs for safe evacuation and recovery (Emrich et al., 2019). In the context of social equity in disaster evacuation and
reentry, it is essential to quantify and understand the effects of inequality that exist between socio-economic groups using ob-
servations from past disasters. More specifically, quantifying how the evacuation rates and destination characteristics differ across
different income groups is crucial for addressing policies that enhance social equity. Although findings differ across disasters, in
general, past studies have used survey data collected after disasters to show that higher income households are able to evacuate more
and further away compared to low income households (e.g. Whitehead et al., 2000). Such effects of inequality on evacuation behavior
could allow higher income households to evacuate to safer locations compared to lower income households, which would increase
the social inequity across population groups after disasters, leading to depletion of social resilience of communities (Doorn et al.,
2019). A quantitative understanding of the effects of socio-economic inequality on evacuation and reentry behavior are needed,
however, such efforts have been hindered by the low spatio-temporal resolution and limited scale of data collected from household
surveys.

The recent availability of large-scale mobility data collected from mobile devices and online platforms (e.g. mobile phones, social
media) have allowed us to observe and analyze the mobility patterns of individuals at an unprecedented scale and spatio-temporal
granularity (Blondel et al., 2015). Such large-scale datasets have been applied in various domains and have revolutionalized the ways
we tackle and solve urban challenges, such as preventing the spread of diseases (Bengtsson et al., 2015), estimating traffic demand
(Iqbal et al., 2014), and estimating poverty (Blumenstock et al., 2015). Furthermore, merging mobility data with socio-demographic
information (e.g. income data) collected from external sources such as national census has enabled us to analyze and quantify the
differences (or similarities) in behavior and mobility patterns across different socio-economic population groups (Moro et al., 2019).
In the context of natural hazards, studies have leveraged large-scale mobility data sources to understand the evacuation behavior
after disasters including hurricanes, earthquakes, and other anomalous events (e.g. Lu et al., 2012). Despite such efforts, no studies
have attempted to understand the effects of income inequality during mass disaster evacuation and reentry movements using large
scale mobility data.

While there are various socio-economic characteristics that affect social equity, we focus on the effects of income inequality in this
study. In this study, we aim to overcome the aforementioned research gaps by answering the following research questions using large
scale mobility data of affected individuals observed before, during, and after a severe disaster.

i. Do the dynamic patterns of evacuation and reentry rates differ across income groups? If so, by how much?
ii. Do the effects of income inequality hold under various settings, including evacuation from inside and outside mandatory eva-

cuation zones?
iii. How do the effects of income inequality on evacuation behavior result in macroscopic spatial segregation of income groups over

time after the disaster?
iv. Are there differences in evacuation destination characteristics across income groups?

To answer these research questions, we analyze mobility data collected from more than 1.7 million mobile phone users in Florida
affected by Hurricane Irma. The income level of each mobile phone user is estimated by spatially overlaying census-block level
median income information obtained from national census with the estimated home locations of mobile phone users. The spatio-
temporal movement trajectories of individual mobile phone users attributed with estimated income values are tracked over a 3 month
period from the landfall of the hurricane. The presented results on the effects of income inequality on social equity in disaster
evacuation and reentry behavior provide insights that could contribute to policies that better address social equity in pre-disaster
preparation and post-disaster relief.

2. Literature review

Household surveys and interviews have been the primary data sources to understand post-disaster evacuation behavior for the
past several decades (Baker, 1991). Surveys conducted after various disasters and events have revealed the high complexity of
evacuation decision making processes (Dash and Gladwin, 2007). Previous works have studied the effects of various factors on the
evacuation process (for a review on this topic, see Murray-Tuite and Wolshon, 2013). Although findings vary across disaster events
due to the differences in social context and the hazard characteristics, personal and household characteristics such as ethnicity,
gender and race (Peacock et al., 2012), as well as storm intensity (Whitehead et al., 2000) have been understood to affect evacuation
decisions. Moreover, risk perception (Riad et al., 1999) and past disaster experiences (Demuth et al., 2016) affect how individuals and
households react to disasters. In addition to such individual-level characteristics, how evacuation orders are delivered to households
during evacuation (Fischer et al., 1995) and also the type of sources the information is disseminated through are also known to be
important factors (Lindell et al., 2005). Also, recent studies have revealed the significant effect of social influences (Lovreglio et al.,
2016) through connected peers in their social networks (Sadri et al., 2017). A study in rural Indiana showed the importance of social
capital, personal networks, and emergency responders in evacuation decision making (Sadri et al., 2018). Studies have also used
survey data to understand evacuation activities after no notice disasters (Golshani et al., 2019). In terms of Hurricane Irma, a study
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analyzed survey data collected from surveys to show the importance of social connections on evacuation behavior (Collins et al.,
2018). Similar to evacuation behavior, the effect of various features on reentry behavior has been analyzed using data collected via
household surveys (Siebeneck et al., 2013). Another study analyzed the evacuation behavior after Hurricane Irma using discrete
choice models based on data collected from surveys, with 645 respondents (Wong et al., 2018).

Despite the various advantages of survey data (e.g. qualitative details on individual experiences), such data have several
drawbacks that limit our analysis on the evacuation behavior of the affected individuals. The main limitations are the number of
samples (number of respondents were 645 in Wong et al. (2018a)) and the coarse spatio-temporal granularity in which we are able to
track the movements of people. The recent spread in mobile devices allow us to observe and analyze the individual mobility patterns
of people at an unprecedented granularity and scale (Blondel et al., 2015). During the last decade, location data collected from mobile
phones have become one of the primary data sources for analyzing human mobility patterns on the urban scale (Calabrese et al.,
2011). Analysis of such large scale datasets have deepened our understandings of basic laws in human mobility patterns (Gonzalez
et al., 2008), enabled dynamic and spatially detailed estimations of population distributions (Deville et al., 2014; Jiang et al., 2016)
and macroscopic migration patterns (Blumenstock, 2012; Lai, 2019). Moreover, these datasets have been applied to solve various
urban problems such as preventing disease spread (Finger et al., 2016; Wesolowski et al., 2012), estimating traffic flow (Iqbal et al.,
2014; Alexander et al., 2015; Bachir et al., 2019), and estimating economic shocks (Toole et al., 2015).

In the context of disasters, studies have used mobile phone location data to analyze population displacement patterns (Wilson,
et al., 2016; Lu et al., 2016). Lu et al. (2012) revealed the predictability of displacement destinations from pre-disaster behavioral
patterns in Haiti. Other studies have used a more online machine learning approach to predict the population flow after disasters
using real time location data in an online manner (Song et al., 2014; Sudo et al., 2016). More recently, a study revealed universal
patterns in reentry dynamics after evacuation across disasters in various regions including Florida, Puerto Rico, and the Tohoku
region in Japan (Yabe et al., 2019). Despite the increasing number of studies using large scale mobility data sources for evacuation
and reentry behavior, none of the studies have focused on quantitatively understanding the effects of income inequality on eva-
cuation and reentry patterns after disasters.

Social equity is an important concept in disaster management that addresses the fair treatment of all individuals in the face of
disaster situations (Emrich et al., 2019). It is now understood that social equity plays an important role in the social resilience of
communities after disasters (Doorn et al., 2019). Dash and Gladwin (2007) found that higher income households were able to
evacuate with a higher rate after disasters, and Kettl (2006) found that households with higher income were able to evacuate further
distances after Hurricane Katrina. Moreover, income segregation and fractionalization are known to have negative impacts on the
economic performance of cities and communities (Alesina et al., 2003). As a result, many efforts have been allocated to promote
integration and diversity within communities. Recent studies have quantified income segregation in cities and communities on usual
days, by combining large scale mobility data (e.g. mobile phone data) with income information obtained from economic census
(Moro et al., 2019). In the disaster context, studies have assessed the effect of natural hazards on the dynamics of income distributions
(Shaughnessy et al., 2010), and a cross-comparative study on disasters across 73 countries for a period of 22 years showed that higher
income inequality leads to more deaths due to disasters on the national scale (Kahn, 2005). To overcome the issues regarding social
equity during evacuation after disasters, studies have focused on the evacuation of disadvantaged population groups such as older
people (Gibson and Hayunga, 2006). Studies have been conducted in the transportation engineering domain to assess the effec-
tiveness of carsharing (Renne et al., 2011; Renne and Mayorga, 2018) and bus-based evacuation (Bish, 2011) as potential solutions to
issues in social equity after disasters (Litman, 2006). To assess the impact of such solutions for disaster social equity, a quantitative
understanding of the effects of income inequality on evacuation and reentry behavior is needed.

3. Data

3.1. Mobile phone location data

Mobile phone location data used in this study were provided by Safegraph, a data company that aggregates anonymized location
data from numerous applications in order to provide insights about physical places. To enhance privacy, SafeGraph excludes census
block group information if fewer than five devices visited an establishment in a month from a given census block group. Each
observation in the dataset contains the user ID, timestamp, longitude, latitude of mobile phones measured via the Global Positioning
Satellite (GPS) system, with the agreement of individuals to provide their location data for research purposes. All user IDs were
anonymized and other demographic information were not collected to protect the privacy of the users. In total, mobile phone data of
1,730,326 unique users who were observed in Florida at least once with in the period between 10 days before the landfall of
Hurricane Irma (August 31st) and landfall (September 10th) were collected. The location data of these users were collected from
2 weeks before the landfall of Hurricane Irma, until 3 months after the landfall date. Each user was observed at high frequency with
97 observations on average per day, which is temporally granular enough to capture the date the users evacuated from their home
locations, where they evacuated to, how long they were evacuated for, and where they stayed the night each day.

The mobile phone data contains several limitations. The first limitation is that the data does not include the exact demographic
characteristics of the individual users. Such demographic characteristics include information such as age, gender, and occupation.
This is a disadvantage compared to survey based data, however, we use mobile phone data for this study because of the advantages in
the number of samples (over 1.7 million versus several hundreds), and also because such demographic data are not required for our
objective of the study. The second limitation is the potential bias in the user samples. People who do not own mobile phones are more
likely to have a lower income, which could skew the income distribution upwards. The third limitation is that we are not able to
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completely exclude the non-residents (e.g. tourists and transients) from the dataset. However, we overcome this issue through the
preprocessing of mobile phone data in Section 4.1. We find that the estimated number of mobile phone users in each census block
agrees well with actual census population data (shown in Fig. 2).

3.2. Hurricane damage data

Hurricane Irma made landfall on Florida on September 10th as a category 4 hurricane and traversed through the Florida pe-
ninsula, spawning storm surge and causing major inland flooding. Especially in the Florida Keys, 25 percent of the homes were
destroyed and 65 percent were damaged. Many homes and businesses suffered damage or destruction, with more than 65,000
structures damaged to some degree in West Central and Southwest Florida alone. The hurricane caused more than 7.7 million homes
and businesses to be out of power in the entire state of Florida, and at least 134 fatalities were confirmed (Cangialosi et al., 2018). The
total economic losses caused by the hurricane is estimated to be $50 billion (Smith, 2018).

To understand the spatial distribution of hurricane damage, we use the housing damage rates in each zip code. The housing
damage rate of a given zip code area refers to the rate of houses approved for the Individuals and Households Program of FEMA in
each zip code. This dataset is publicly accessible from the FEMA website (FEMA). Fig. 1A shows the housing damage rates in all zip
codes in Florida. Out of all the counties, 6 of them experienced extensive damage, with housing damage rates of more than 10%. In
particular, Miami-Dade County experienced the largest number of affected households (179,069), which was 25% of all of the
affected households (Table 1). In addition to the housing damage rate data, we also used the power outage data provided by the
Florida Division of Emergency Management. This data contains the percentage of power outages in each county every six hours
between September 9th and 28th. The floodzone map of Miami-Dade County (Fig. 1C) was obtained from the Open Data Hub of
Miami-Dade County (Hub). In Miami-Dade County, mandatory evacuation orders were issued to residents in evacuation zones A and

Fig. 1. (A) Trajectory of Hurricane Irma and housing damage rates in each zip code. (B) Median income of all census blocks in Miami-Dade County.
Miami-Dade County has the largest income inequality among all counties in Florida State. (C) Hurricane evacuation zones in Miami-Dade County.
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a portion of B that covers barrier islands between Biscayne Bay and the ocean on September 6th at around 6AM, and were expanded
to zones A, B, and C on September 7th at around 2:15PM.

3.3. Socio-economic data

Out of all the counties in Florida, Miami-Dade County has the largest Gini Index, meaning that the income inequality is highest
among all counties (Table 1). The Gini index, or Gini coefficient, is a metric that quantifies the degree of inequality in a distribution
(Sen and Foster, 1997). Given a set of values xi =i n( 1, ..., ), the Gini index G is calculated as:
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1 . The Gini Index takes a value between 0 and 1, where 0 indicates perfect equality and 1 indicates maximal
inequality where one individual owns all income and all others own nothing. Considering that Miami-Dade County also had the
largest number of affected households due to Hurricane Irma (Table 1), we focus our analysis on the residents of Miami-Dade County
in this study. Population data, median income data, and Gini Index data on the census block, census tract, and county level were all
obtained from the American Community Survey (Bureau, a). Income ranges used commonly by the United States Census Bureau (less
than $40,000, $40,000 to $49,999, $50,000 to $59,999, $60,000 to $74,999, more than $75,000) were used in the analysis (e.g.
Bureau, b). To perform spatial analysis including geographical extraction and labeling, we used the Shapefile data of Florida provided
by the National Census (Bureau, c).

4. Methods

4.1. Preprocessing of mobile phone data

The dataset includes location data of all users who were observed at least once in Florida between the 2 weeks before the
hurricane. In this study we focus on the evacuation behavior of the residents in the state. Thus, we exclude observed location data of
all non-resident users (e.g. tourists and visitors) by first selecting the users whose home locations were estimated to be inside Florida,
and then selecting those who were observed to be staying more than 6 nights out of the 7 nights in his/her estimated home location
between August 31st and September 6th. We selected September 6th as the threshold date since only a small fraction of people (4.4%)
had evacuated before this date (Wong et al., 2018a). The dataset may still include visitors if they stayed in Florida during more than
6 days between August 31st and September 6th, however we assume that this is a small portion of the population.

4.2. Home location and income estimation

Home locations of all users were estimated using the collected mobile phone location dataset. It is well known that human
trajectories show a high degree of temporal and spatial regularity, each individual having a significant probability to return to a few
highly frequented locations, including his/her home location (Gonzalez et al., 2008). Due to this characteristic, past works have
shown that home locations of individuals can be detected with high accuracy by clustering the individual's stay point locations during
the night (Calabrese et al., 2011). We assume that each individual has one main home location in this study. The home location of
each individual user was detected by applying the mean-shift clustering algorithm (Cheng, 1995) to the nighttime stay points (ob-
served between 8PM and 6AM), weighted by the duration of stays in each location. Mean-shift clustering is a clustering procedure for
locating the mode of a density function given discrete data sampled from the target function. In our problem setting, the discrete data
are the observed night-time location data points of a given user, and our goal is to estimate the true mode (which is the home
location) of that user. The algorithm is an iterative method, where we start with an initial estimate and iteratively shift our point
estimate based on the density of surrounding points. During each iteration, the point estimate gradually shifts towards regions with
higher density of observations, and finally converges when the estimate point reaches the mode of the underlying density function.
Each mobile phone user’s income is estimated by spatially matching his/her estimated home location with the census-block based
median income data obtained from the American Community Survey (Fig. 1B).

Table 1
Miami-Dade county had largest hurricane damage and income inequality in Florida.

Rank in State Households affected by Hurricane Irma Income inequality

County Number of Households Percentage County Gini Index

1 Miami-Dade 179,069 25.0% Miami-Dade 0.5256
2 Broward 86,811 12.1% Lafayette 0.5248
3 Pinellas 44,603 6.2% Collier 0.5237
4 Orange 43,685 6.1% Martin 0.5219
5 Lee 39,423 5.5% Palm Beach 0.5197

(State Total) 715,679 100.0% (State Average) 0.4858
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For our study, it is important to evaluate the spatial bias in the number of observed mobile phone users before conducting the
analysis. To evaluate spatial bias of the data, the correlation between the number of mobile phone users and census populations in
each county, census tract, and census block were calculated. Home locations of all mobile phone users were estimated using the
aforementioned home location estimation methods. As shown in Fig. 2, the number of mobile phone samples were highly correlated
with census population for each county, with Pearson's correlation coefficient of 0.994 ( <p 0.001). Furthermore, even for small
spatial scales, the correlations are very high ( =R 0.847 for census tracts and =R 0.853 for census blocks, both statistically sig-
nificant), indicating that the differences in sample rates across census blocks are minimal in our dataset. Moreover, the correlation
stays high for all days within the observation period even after the disaster when mobile phone towers are damaged. This is because
the mobile phone apps store the location information within the device until the mobile phone towers recover, and uploads the
information afterwards. Due to the consistent sample rates of mobile phone users across all census blocks, census tracts and counties,
we use the mobile phone data users as accurate approximations of the entire population.

For each day, each mobile phone user's nighttime staying location is estimated by applying the mean shift clustering algorithm on
the location data points observed during nighttime (8 PM to 6 AM). A user is determined to be evacuated if the nighttime staying
location was outside his/her home county. The evacuation rate of each income group for each day are defined as the rate of evacuated
users on that day out of the total number of observed users in the target population group.

Fig. 2. Comparison between census population and mobile phone users in (A) county scale, (B) census tract scale, and (C) census block scale.

Fig. 3. Out-of-county and out-of-state evacuation rates of Miami-Dade residents. Higher income residents were more likely to evacuate than low
income residents, and were also able to stay away from the affected areas for a longer duration. Gray shades indicate days where differences in
evacuation rates were statistically significant between income groups.
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5. Results

5.1. Effects of income inequality on evacuation and reentry

5.1.1. All residents of Miami-Dade County
We first quantify the evacuation and reentry rates of Miami-Dade County residents on each day during the observation period.

Fig. 3 shows the net evacuation rates of the Miami-Dade County residents on each day before, during and after Hurricane Irma. The
upper panel (A) shows the rate of evacuees who evacuated outside Miami-Dade County, and the lower panel (B) shows the rate of
evacuees who went outside the State of Florida. The net evacuation rates of different income groups are shown in color in each panel.
The Thanksgiving Holidays (around November 23rd to 26th) are highlighted as unusual periods. Table 2 shows the numerical values
of net evacuation rates of all income groups between September 6th and 15th, where the dynamics are most significant. The table also
shows the differences in net evacuation rates from the day before to better capture the daily dynamics of evacuation and reentry
activities. Several observations can be made from the analysis results. First, we observe a sharp increase in the net evacuation rates in
both panels until September 10th, which is the date of hurricane landfall. The daily differences of the net evacuation rates in Table 2
show that most evacuation occurred on September 8th (+12.3% for all income groups aggregated together), which was a day after the
evacuation orders were issued. We also observe a large portion of evacuation on September 10th, which was the day of the landfall
(+9.0% for all income groups aggregated together). After September 10th, the evacuation rates gradually decrease and by around
September 18th, the rates stabilize. Most evacuees returned and reentered Miami-Dade County on September 11th and 12th, shortly
after the hurricane struck the peninsula. Second, we observe a significant difference in evacuation rates across income groups, where
higher income population groups had higher evacuation rates, both in terms of out-of-county evacuation and out-of-state evacuation
rates. This difference was verified to be statistically significant ( <p 0.01) in most days (shaded in gray) using a Chi-Squared test.
Table 2 shows that 38.6% of high income ($75,000 or more) residents were able to evacuate from Miami-Dade County, compared to
21.7% of low income residents ($40,000 or less). The differences between income groups are larger in out-of-state evacuation rates,
indicating that higher income groups were more likely to travel further away from Miami-Dade when evacuating. Third, the eva-
cuation rates stayed significantly larger than pre-disaster (August 31st to September 5th) levels for a long duration after the hurricane
(around 10% for high income groups on November 15th). Similar to short term evacuation rates, the high income population groups
had higher long term evacuation rates, indicating that these people were able to find places to stay for long durations outside Miami-
Dade County. Fourth, we see weekly fluctuations in evacuation rates after the hurricane in both panels, where evacuation rates are
higher on Fridays and Saturdays compared to weekdays. This pattern indicates that a fraction of the people traveled outside the
county or state on weekends. This weekly increase in evacuation rates may be due to actual evacuation, or it may contain non-
evacuation trips going outside of the county or state since we are not capable of identifying trip purposes from mobile phone
trajectories, which is one limitation of our analysis.

5.1.2. Mandatory and shadow evacuation
The analysis presented in the previous section shows the rates of evacuation from all residential areas. In the following results

(Fig. 4 and Table 3), we group the mobile phone users into residents of areas inside the mandatory evacuation zones (zones A, B, C in
Fig. 1C), and residents outside the mandatory evacuation zones. Distinguishing between these two population groups is important
from the viewpoint of disaster management officials, since they need to develop policies for future disasters based on how the

Table 2
Daily evacuation rates (and differences) of evacuation from Miami-Dade County from September 6th to September 15th across different income
groups.

Income range Evacuation rate on each day (difference from day before) (%)

Sep 6th 7th 8th 9th 10th

All income groups 2.5 8.7 (+6.2) 21.0 (+12.3) 24.6 (+3.6) 33.6 (+9.0)
Less than $40,000 1.6 5.3 (+3.7) 13.1 (+7.8) 15.8 (+2.7) 21.7 (+5.9)
$40,000 to $49,999 1.8 5.9 (+4.1) 15.9 (+10.0) 19.0 (+3.0) 25.1 (+6.1)
$50,000 to $59,999 2.1 6.8 (+4.7) 15.4 (+8.6) 18.2 (+2.8) 26.4 (+8.1)
$60,000 to $74,999 2.8 8.6 (+5.8) 20.6 (+12.0) 24.9 (+4.3) 31.9 (+7.0)
$75,000 or more 3.1 11.3 (+8.2) 25.4 (+14.1) 29.8 (+4.4) 38.6 (+8.8)

Income range Evacuation rate on each day (difference from day before) (%)

Sep 10th 11th 12th 13th 14th 15th

All income groups 33.6 23.6 (−10.0) 13.0 (−10.6) 10.9 (−2.1) 8.8 (−2.1) 8.4 (−0.4)
Less than $40,000 21.7 15.0 (−6.7) 9.2 (−5.8) 7.0 (−1.2) 6.3 (−0.7) 6.3 (±0.0)
$40,000 to $49,999 25.1 18.0 (−7.1) 9.9 (−8.1) 8.7 (−1.2) 7.0 (−1.7) 7.0 (±0.0)
$50,000 to $59,999 26.4 17.5 (−8.9) 10.3 (−7.2) 9.0 (−1.3) 7.2 (−1.8) 7.3 (+0.1)
$60,000 to $74,999 31.9 22.4 (−9.5) 12.4 (−10.0) 10.8 (−1.6) 8.9 (−1.9) 8.5 (−0.4)
$75,000 or more 38.6 28.3 (−10.3) 15.7 (−12.6) 13.1 (−2.6) 10.5 (−2.6) 9.9 (−0.6)
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residents in the designated flood zones complied with the evacuation orders, and also by how much of the residents outside those
regions evacuated (‘‘shadow evacuation'') despite receiving no evacuation orders.

Fig. 4 shows the (A) out-of-county net evacuation rates of residents in the mandatory evacuation zones (zones A, B, C) and (B)
shadow net evacuation rates for residents outside the mandatory zones. Table 3 shows the detailed statistics of daily evacuation rates
and differences for each income group in each zone type. We observe that the peak evacuation rate from the mandatory zones
(47.5%) was around double of the shadow evacuation rates (21.3%). The effects of income inequality in evacuation rates for both
zone types were strikingly similar, where we observe significant differences in both short term and long term evacuation rates across
income groups. This difference was also verified to be statistically significant ( <p 0.01) in most of the days (shaded in gray) using a
Chi-Squared test. During the reentry phase, effects of income inequality were larger inside mandatory evacuation zones, where for
example on September 15th, the evacuation rates of high income residents were around double (13.3%) compared to low income
residents (7.5%). On the other hand, reentry patterns were similar across income groups outside of the mandatory evacuation zones,
with less days with statistical significant differences across income groups.

Further correlation analysis revealed that higher income residents slightly tended to live more in the coastal areas of Florida
( = −R 0.06, <p 0.05). To verify whether the inequity in evacuation and reentry patterns exist because of income inequality and not
the distance from the coastal areas, we performed a similar analysis for the population group living in the coastal areas (<3 km from
closest coast) and the other population group. The results are shown in Fig. 5. Plots similar to Figs. 3 and 4 show that the differences
in evacuation and reentry rates are indeed statistically significant across income groups in most of the days before and after the
hurricane, conditioned on the distance from the coastline.

5.2. Temporal variation of spatial income segregation

As a result of the effects of income inequality on evacuation and reentry mobility patterns, we observe high spatial income
segregation between people who stayed inside Miami-Dade County and people who moved to outside Miami-Dade County after the
disaster. Fig. 6 shows the histograms of mobile phone users' income values for the two population groups: users who stayed inside
Miami-Dade (gray color) and users who evacuated out of the county (green color), for each day between September 4th and 15th.
Since previous studies have empirically shown that the income values of the majority (97–99%) of the population are distributed log-
normally (Clementi and Gallegati, 2005), we fit the income values of the two groups with log normal distributions. The probability
density function of the (2-parameter) log-normal distribution is

=
⎧

⎨
⎩

−
⎫

⎬
⎭

( )
f x

xs π s
( ) 1

2
exp

ln( )

2

x
m

2

2

(2)

where s is the shape parameter (and also is the standard deviation of the log of the distribution) and m is the scale parameter (which
is also the median of the distribution). We may also have location parameter θ in the formulation, however this parameter does not
appear in our formulation because we restrict this to =θ 0. We assume that an income value of a resident who is INside (or OUTside)

Fig. 4. Out-of-county evacuation rates of residents (A) living inside mandatory evacuation zones (zones A, B, C), and (B) living outside mandatory
zones (shadow evacuation rates), across different income groups.
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Miami-Dade County on day t , which is denoted as xt
IN (or xt

OUT) comes from a lognormal distribution with parameters s m( , )t
IN

t
IN (or

s m( , )t
OUT

t
OUT ). All parameters for both IN and OUT, for all days t , are estimated using maximum likelihood estimation:

̂=m μexp{ }t
IN

t
IN (3)

̂ ̂
=

∑ −=s
x μ

N
(ln( ) )

t
IN i

N
t
IN

i t
IN

1
2

(4)

Fig. 5. Effects of income inequality on evacuation and reentry rates with respect to distance from coast. Chi-squared tests confirmed statistically
significant differences in evacuation and reentry rates.

Fig. 6. Income distributions and fitted lognormal density functions of residents staying inside Miami-Dade County (in gray) and residents who
evacuated outside Miami-Dade (in green) for all days between September 4th and 15th. Vertical dotted lines show the mean income values of the
two population groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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̂ =
∑ =μ

x
N

where,
ln( )

t
IN i

N
t
IN

i1
(5)

The above equations are applied to estimate parameters for all days of observation t and for both user groups inside (IN) and
outside (OUT) Miami-Dade County. Fig. 6 shows the income distributions and fitted lognormal density functions of residents staying
inside Miami-Dade County (in gray) and residents who evacuated outside Miami-Dade (in green) for all days between September 4th
and 15th. Vertical dotted lines show the mean income values of the two population groups. We visually observe that the income
distributions are very similar before the hurricane on September 4th and 5th. However, the the distributions of evacuated users
diverge to the right, indicating that a larger fraction of the high income populations evacuated to outside the county, causing spatial
income segregation.

The estimated parameter values of the lognormal distributions are shown in Fig. 7A (shape parameter st) and 7B. In Fig. 7A, the
estimated ̂st

IN and ̂st
OUT are plotted in gray and green colors, respectively. The gray square scatter plots show the shape parameter

values that are anomalous compared to usual values. Anomalies were detected using the 3-standard deviations rule. More specifically,
the horizontal dashed gray line is the mean value of ̂st

IN before the evacuation starts ( ≤t 6), which is calculated by ̂= ∑ =μ ss
IN

t t
IN1

6 1
6 .

The standard deviation of ̂st
IN before the evacuation starts ( ≤t 6), can be calculated by ̂= ∑ −=σ s μ( )s

IN
t t

IN
s
IN1

6 1
6 2 . The dotted lines

above and below the mean horizontal line are +μ σ3s
IN

s
IN and −μ σ3s

IN
s
IN , respectively. Similarly, in Fig. 7B, anomalous scale

parameters were plotted with gray squares. We observe that in both panels A and B, the estimated parameters of the users inside
Miami-Dade significantly (anomalously) decrease between September 7th and September 14th. Decrease in both of the parameters
indicate that the income distribution shifts to the left (towards lower income), and that the distribution has less variance. On the
other hand, both the shape and scale parameters of users who have evacuated outside of Miami-Dade County increase, indicating that
the distribution shifts to the right and that the variance also increases. The shifts of the two distributions in sum indicate that the
distributions are shifting away from each other, implying an increase in spatial income segregation.

Further, we quantify the magnitude of segregation by calculating the Kullback-Leibler Divergence (KL divergence) between the
two income distribution functions. The KL divergence between 2 functions P x( ) and Q x( ) is formulated by the following equation:

∫= ⎧
⎨⎩

⎫
⎬⎭−∞

∞
D P Q P x Q x

P x
dx( ) ( )log ( )

( )KL
(6)

Fig. 7C plots the daily KL divergence between the income distributions of the two population groups (inside and outside Miami-
Dade County). Similar to the previous analyses, the dashed and 2 dotted horizontal lines mark the mean, mean plus 3 standard
deviations, mean minus 3 standard deviations, respectively, of the KL divergence values before the evacuation started on September
7th. The black square plots show the anomalous values of KL divergence, indicating that spatial segregation is occurring with
statistical significance ( <p 0.01). We observe significant spatial segregation in most of the days in September, and over a long period
of time after the landfall even during November (2 months after landfall). To summarize, the analysis presented in this section using

Fig. 7. Quantifying spatial segregation after disasters. (A) Shape parameter and (B) scale parameter estimates of income distributions of the 2
population groups over time. (C) Kullback-Leibler Divergence between the income distributions of the two population groups over time.
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mobility data and income information shows that spatial income segregation does occur after disasters due to the effects of income
inequality in post-disaster mobility patterns, and that it persists for a long period of time after the hurricane landfall.

5.3. Inequity in evacuation destination characteristics

In this section, in addition to quantifying the effects of income inequality on evacuation and reentry rates (Section 5.1) and spatial
segregation (Section 5.2) after the hurricane, we further analyze the characteristics of evacuation destinations across different income
groups. The box plots in the two panels (each consisting of 4 sub-panels) in Fig. 8 show the various characteristics of evacuation
destinations of evacuees belonging to each of the 5 income groups (shown in blue to red colors). In each sub-panel, the horizontal line
in each whisker plot shows the median value, and the white marker shows the mean value of each population group.

The left panel (Fig. 8(a)) shows the results for September 10th, which is the day of the landfall. The top left sub-panel shows the
the distributions of evacuation distances of the five population groups. In addition to Figs. 3 and 4 where it was shown that people
with higher income evacuate at a higher rate, it is shown here that people with higher income tend to evacuation longer distances.
Since the mean distance is significantly greater than the median distance in low income groups, we can infer that the majority of the
low-income evacuees traveled short distances (less than 10 km). Similar to how we estimated the income of evacuees based on their
residential census block, we estimated the income level of the destination area of each individual using census block level income
data. The top right sub-panel shows that people with higher income were more likely to evacuate to locations of high income.
Moreover, using the power outage data, the distributions of the power outage rate of the destination locations were estimated for
each income group. The bottom left sub-panel shows that the high-income evacuees were able to reach areas with less power outage
rates compared to low income evacuees. Similarly, the bottom right sub-panel shows that high income evacuees were able to reach
locations with lower housing damage rates compared to low income evacuees. These latter two results which indicate that higher
income residents were able to reach safer locations than lower income residents, highlight the inequity in evacuation destinations
across income groups. To test the statistical significance of these differences, Kolmogorov-Smirnov tests (KS-tests) were performed on
the neighboring pairs of data in each of the panels in Fig. 8. The p-values of the KS-tests for the pair of data distributions of
neighboring income groups are shown in the figures. For most neighboring pairs of income groups, the differences in the data
distributions were significant with <p 0.1, often even with <p 0.01. The instances with no significant differences are observed
mainly between the second group ($40 K~$50 K) and third group ($50 K~$60 K). However, in many of the income group pairs,
significant differences in evacuation destination characteristics were observed. In summary, the more high income population groups
were able to reach safer locations with less power outages and housing damages, whereas the lower income population groups had to
stay in areas with more damage. These analyses were performed for all days after the hurricane, and these findings were found to be
consistent over days after the hurricane until the end of September. Results for September 12th are shown in the right panel Fig. 8(b).

6. Discussion

In this study, we presented a data-driven method to (i) quantify the effects of income inequality on evacuation and reentry
patterns after disasters, (ii) quantify the spatial income segregation in the affected regions, and to (iii) understand the inequity in
evacuation destination characteristics across different income groups. The methods were empirically tested using mobility data
collected from mobile phone users living in Miami-Dade County who were affected by Hurricane Irma, which were further integrated
with household income data. The results highlight the significant effects of income inequality on evacuation and reentry behavior,

Fig. 8. Evacuees with higher income levels were able to evacuate further, to locations of higher income, lower power outages, and less housing
damages due to the hurricane compared to lower income evacuees.
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where the high income population had higher likelihood of evacuating from the affected areas. This characteristic was common
across evacuation from both mandatory evacuation zones and non-mandatory zones (i.e. shadow evacuation). Moreover, they were
able to reach richer and safer areas with less power outages and housing damages compared to the lower income population groups.
To the best of our knowledge, this is the first work to quantify the inequity in post-disaster mobility patterns across income groups
and to also quantify the increase in spatial income segregation after disasters in the urban scale using large scale data.

The presented empirical results should be considered in the light of some limitations. First, due to the passive observational nature
of the location data collected from mobile phones, unlike household surveys, we were not able to fully understand the trip purposes of
each mobility trajectory. Thus, although home locations were estimated using a well established methodology, our sample may still
include people who were just visiting Miami-Dade County just before the hurricane. The reliability of the analysis could improve if
data from a longer period before the hurricane were available, however we were limited to 2 weeks of data before the hurricane
landfall. Second, as noted in Section 3.1, mobile phone data does not include the demographic characteristics of the individual users
due to privacy issues. We overcome this issue by overlaying census-block level household income data with the estimated home
locations. However, in the analysis, we assigned median household income values of census blocks to each mobile phone user, based
on the user's estimated home location. Thus, the estimated income values of the mobile phone users may contain estimation errors,
which could not be addressed in our analysis since we do not know the true income values of the mobile phone users. In future
studies, we may combine the results with survey based data to estimate socio-economic characteristics of mobile phone users more
accurately, even though scalability would be an issue. Third, the analysis presented in this study was limited to Miami-Dade County
due to its high degree of income inequality and hurricane damage. Moreover, although we were able to capture the macroscopic
evacuation patterns outside the county, within-county evacuation was not analyzed in this paper. Therefore, we were not able to
verify whether the findings in this study are common across different regions in Florida, as well as within the county. However, one of
the advantages of using large scale mobility data is its scalability. The methodology can be easily extended to data collected from
other counties. Increasing the number of disaster events and testing the generalizability of our conclusions would be an interesting
path for future research. In particular, investigating the spatial segregation dynamics in other geographical settings such as islands
(e.g. Hurricane Maria in Puerto Rico) would be an interesting comparative case study.

We finally discuss how the methods, analysis, and findings presented in this study may be applied in policy making to provide
favorable and equitable outcomes after disasters. First, the analysis results may be used to monitor evacuation and reentry behavior
for traffic congestion prediction. By aggregating the analysis results and multiplying them with actual regional populations, policy
makers could grasp the evacuation traffic volume from each of the evacuation zones, including the non-mandatory zones to un-
derstand the magnitude of shadow evacuation activities. These estimates could be fed into evacuation traffic simulation frameworks
(e.g. Ukkusuri et al., 2017) to predict the severity and spatial distributions of traffic congestion in the affected areas, which is an issue
often seen in emergency situations (Maghelal et al., 2017). Moreover, our analysis on the effects of income inequality on evacuation
rates across different income groups could allow policy makers to quantify the number of low income residents who are not able to
evacuate from vulnerable (e.g. coastal) areas. Recently, various solutions are suggested to solve social inequity in disaster evacuation
and reentry Feng et al., (2015). For example, studies have proposed bus and transit based evacuation (Bish, 2011; Bian and Wilmot,
2018; Zhang, 2014; Kim et al., 2013), evacuation via car sharing (Li et al., 2018; Borowski and Stathopoulos, 2020; Wong et al.,
2018b; Wong and Shaheen, 2019), and use of autonomous vehicles for evacuation (Chang and Edara, 2018; Ivanov and Knyazkov,
2014; Yin et al., 2018). The estimations made in this study could be used as input data to assess the benefits and costs of these
transportation solutions for equity in disaster evacuation.

7. Conclusion

The increase in frequency and intensity of large scale disasters pose significant urgency to cities to develop disaster management
plans that can efficiently manage mass evacuation activities. Social equity among various population groups during the evacuation
and reentry phases is an important concept that needs to be addressed for effective community recovery. In this study, we quantified
the effects of income inequality on evacuation and reentry dynamics, and further quantified the magnitude of spatial segregation
after disasters using mobile phone location data and income information collected from Hurricane Irma. Such findings can be used as
empirical evidence to quantitatively assess the impacts of socio-economic inequality, or can be combined with evacuation simulation
frameworks to simulate evacuation dynamics of different income groups, which could ultimately contribute to policies that better
address social equity in disaster preparation and relief.
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