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ABSTRACT
Unsupervised translation has become a popular task in natural
language processing (NLP) due to difficulties in collecting large
scale parallel datasets. In the urban computing field, place em-
beddings generated using human mobility patterns via recurrent
neural networks are used to understand the functionality of ur-
ban areas. Translating place embeddings across cities allow us to
transfer knowledge across cities, which may be used for various
downstream tasks such as planning new store locations. Despite
such advances, current methods fail to translate place embeddings
across domains with different scales (e.g. Tokyo to Niigata), due to
the straightforward adoption of neural machine translation (NMT)
methods from NLP, where vocabulary sizes are similar across lan-
guages. We refer to this issue as the domain imbalance problem in
unsupervised translation tasks. We address this problem by propos-
ing an unsupervised translation method that translates embeddings
by exploiting common hierarchical structures that exist across im-
balanced domains. The effectiveness of our method is tested using
place embeddings generated from mobile phone data in 6 Japanese
cities of heterogeneous sizes. Validation using landuse data clarify
that using hierarchical anchors improves the translation accuracy
across imbalanced domains. Our method is agnostic to input data
type, thus could be applied to unsupervised translation tasks in
various fields in addition to linguistics and urban computing.
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• Computing methodologies→ Spatial and physical reason-
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1 INTRODUCTION
Unsupervised machine translation has become a popular task in the
natural language processing field due to the high cost of collecting
large scale parallel data (e.g. [3, 11, 23]). In the urban computing
field, large mobility datasets collected from mobile devices such
as GPS trajectory data have allowed us to observe the dynamics
of cities at an unprecedented spatio-temporal resolution and scale
[7, 21]. Combined with recurrent neural network (RNN) models,
recent studies have made significant progress in quantifying the
functions of places in an analogical manner to word embeddings in
the natural language processing field (e.g. [12, 16, 24, 27, 32]). Such
high dimensional embeddings (or representations) of places have
been shown to effectively capture the complex functions of places
within cities [31], and have been applied in various downstream
tasks in urban planning, such as identifying spatial clusters with
respect to functionality [28], choosing sites for opening new stores
[25], and predicting where users will go to in future timesteps [10].

A recent study adopted unsupervised language translation meth-
ods into the urban computing field to share knowledge and insights
among different cities [26]. Several unsupervised neural machine
translation methods developed in the natural language processing
field were tested to perform translation of places across cities. How-
ever, due to the rather straightforward adoption of the translation
methods, further validation showed that the translation method
perform poorly across cities with different scales (e.g. Tokyo with
30M residents and Niigata with 0.8M). One possible reason of this
failure was the significant imbalance in the scales of the source and
target domains, since the scales of cities have much larger variance
than that of vocabulary sizes across languages [19]. This domain
imbalance problem is a key issue that needs to be solved to translate
place embeddings across cities (Figure 1). Solving this issue could
also potentially benefit unsupervised translation tasks in various
fields of research in addition to languages and cities, where the
source and target domains could have significantly different scales.
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Analysis of mobility patterns within cities around the globe
using novel mobility datasets have revealed various interesting
properties of urban structures [17], including fractal properties [6],
scaling laws [9], and hierarchical organization [13]. In particular, a
recent study revealed positive connections between the hierarchical
properties of cities and key urban indicators including higher use
of public transport, higher levels of walkability, lower pollutant
emissions per capita and better health indicators [5].

In this study, we attempt to overcome the aforementioned domain
imbalance problem that exist in unsupervised translation tasks with
an innovative method that utilizes the hierarchical structures that
are common across domains of different sizes. We demonstrate our
approach and its effectiveness through the example of unsupervised
translation of place embeddings across cities with varying scales.
We propose a translation model that aligns the vector spaces of the
source and target domains using the hierarchical structure common
across both domains. The model performances are tested using
real world mobility data collected from mobile phones in 6 cities
of varying scales in Japan, and are validated using landuse data.
Results show that our methods are able to accurately translate place
embeddings across cities, especially under the domain imbalance
problem setting, where the urban scales are significantly different.

The key contributions of this paper are as follows:

• To the best of our knowledge, this study is the first to address
the domain imbalance problem in unsupervised embedding
translation tasks, and to present a method to overcome the
problem.

• We propose a novel unsupervised translation method that
leverages the common hierarchical structures across do-
mains to generate effective anchor points.

• We verify that our method can successfully improve the un-
supervised translation accuracy of place embeddings across
cities with varying sizes, using real world mobility data from
6 heterogeneous cities.

2 PRELIMINARIES
Definition 1 (Human Mobility Data). Sequences of users’ stay-
point locations with timestamps are extracted from mobility data
using methods explained in Section 3.1. The usual human mobility
patterns of a city c is the set of all staypoint sequences of individuals
whose home location belongs to city c .

Definition 2 (Place Embeddings). A city c is divided into disjoint
cells by grid sizes of r = 500meters. We will call each cell as a place
i , and denote its representation as x ic , which is a d-dimensional
vector. Place embeddings x ic are learned from the human mobility
patterns observed in city c , using methods explained in Section 3.1.
Embeddings of all places are stacked as a (d ×nc )matrix Xc , where
nc is the number of places in city c .

Definition 3 (Domain Imbalance Problem). The problem where
there is significant imbalance in the sizes of the source and target
domains in unsupervised translation tasks. Although this issue is
rare in language translation tasks due to similar vocabulary sizes
across languages, it is a critical problem when translating place
embeddings across cities, due to the scale-free nature of city sizes.

Figure 1: Illustration of the domain imbalance problem set-
ting, where our objective is to translate embeddings across
domains with significant imbalance in vocabulary sizes in
an unsupervised manner.

Problem Definition (Unsupervised Translation of Place Em-
beddings). Place embeddings Xc are learned independently for
each city c from the observed mobility patterns. Thus, for different
cities, the vector spaces are not shared. Translating place repre-
sentations from city ϕ to cityψ is equivalent to finding a mapping
function f that aligns the two vector spaces, i.e.,Xψ ≈ X̃ϕ = f (Xϕ )
in an unsupervised manner. Methods used to translate place repre-
sentations are explained in Section 3.2 and 3.3.

3 METHODOLOGY
3.1 Generating Place Embeddings from Human

Mobility Trajectories
We first extract human mobility patterns in each city from the
location data observed from mobile phones. Each observation of
the location data contains the user ID, timestamp, longitude and
latitude. More details of the mobile phone data that we use in this
study are explained in Section 4.1.1. Our goal is to extract users’
sequences of staypoint locations from the observations. We achieve
this by setting two threshold parameters; one spatial threshold and
one temporal threshold. To cope with noisy location observations
(e.g. spatial errors in GPS data), we perform mean shift clustering
to estimate the true location for each observation, as described in
previous studies (e.g. [4]). For each user, we read their location data
in time order, and search for locations where the user has stayed
within the distance defined by the spatial threshold parameter for
a duration longer than the time defined by the temporal threshold
parameter. We use 1000 meters as the spatial threshold, and 30
minutes as the temporal threshold in this study. As a result, we
are able to obtain sequences of staypoint locations for each user,
which will be used to generate place embeddings using methods
explained in the following section.

To obtain the embeddings of places in a city, we solve a self-
supervised task in which an Long Short-Term Memory (LSTM)
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Figure 2: Universal hierarchical structure of cities used in our study.

RNN model is trained to predict the next staypoint of a user using
mobility data, which is analogous to language models which are
trained to predict the next word in a sentence. After training an
LSTM RNN model using staypoint sequences of a city c , we extract
and stack the embedding layer’s parameters of the size nc × d , and
define it as the matrix of place embeddings Xc . We refer to this
place embedding learning model as “IndivLSTM” in the following
sections. Specific model hyperparameter settings are explained in
Section 4.2.1.

3.2 Analysis of Hierarchical Structure
One popular method of determining the hierarchical structures in
cities is to iteratively apply the Loubar method proposed in [17],
which uses the Lorentz curve of the number of visits to each location
[5]. The Lorentz curve, which is a standard notion in the economics
domain, is a cumulative distribution function of a distribution of
datapoints. Given the average daily visit count values for all places
in a city, we first sort the datapoints by ascending order and denote
them as (n1 < · · · < ni < · · · < nNc ), where nk is the daily visit
count in the k-th popular place in city c , and Nc is the total number
of places in city c . The Lorentz curve is constructed by plotting
the proportion of the places F = i

Nc
on the horizontal axis and

the cumulative proportion of the covered visit counts L, which is
calculated by the following equation. An example of the Lorentz
curve is shown in the Supplementary Material (Figure A1)

f (i) =

∑i
j=1 nj∑Nc
j=1 nj

(1)

If the visit counts of all places were equal, the Lorentz curve would
be a linear diagonal function.

The minimum threshold value of the first hierarchical level is
computed by taking the intersection between the tangent of f (F )
at point F = 1 (i.e. the maximum value of the Lorentz curve) and
the horizontal axis (f (F ) = 0). In Louail et al. [17], the computed
minimum threshold value was used to classify places in a city into
“hotspots” and other places. Bassolas et al. [5] extended this method
in an iterative manner to find multiple minimum thresholds for
different hierarchical layers. After extracting the places in hierar-
chical level l , those places are excluded from the data distribution,
and the minimum threshold value is recalculated using the new
distribution to extract the places in hierarchical level l + 1. This
procedure is iterated until all of the places in the city are assigned to
a hierarchical level. For a more detailed explanation on the methods
of urban hierarchical structure analysis, please refer to Bassolas
et al. [5].

Figure 2 shows the estimated urban hierarchical structures in
each city used in this study. The first row shows the colored maps
of each city, where the colors indicate the hierarchical level each
place belongs to (red: hierarchical level 1, blue: hierarchical level
11). The second row shows the histogram of the number of places
belonging to each of the hierarchical levels in each city. The third
row shows the total number of visits observed in the places belong-
ing to each layer, which is calculated as

∑
j :l (j)=L nj for hierarchical

level L where l(j) denotes the hierarchical level of place j. While
the second row highlights the different distributions of the num-
ber of places in each hierarchy (i.e. Tokyo and Fukuoka are more
shifted to the left with more high-level places compared to Niigata),
the distribution of the total number of visits in each hierarchical
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Figure 3: Illustrative explanation of how the embeddings
across the pair of cities are aligned in different methods.

level are strikingly similar across all cities, where the majority of
the visits are concentrated in the first couple of hierarchical levels
in all cities. This common hierarchical characteristic across cities
motivates us to exploit the urban hierarchical structures. In the
next section, we explain how we take advantage of this common
hierarchical structure in our method for translating embeddings
across imbalanced domains.

3.3 Translation via Hierarchial Anchoring
In previous studies in the natural language processing field, various
methods have been proposed to obtain the best rotation matrix
R ∈ Rd×d that maps 2 embedding matrices Xψ ,Xϕ ∈ Rd×N in
an unsupervised manner. A previous study on unsupervised trans-
lation of place embeddings showed that a rank-based Procrustes
alignment performed best out of the various methods [26]. Al-
though this method was shown to be successful in cases where the
source and target domains were of similar scales, a straightforward
application to domain imbalanced settings could be problematic
(and we show in the experiments that this is indeed the case). To
overcome the difficulty in translation of embeddings under domain
size imbalance (e.g. cities with different sizes), we propose a hierar-
chical alignment strategy to map the two domains. The main idea
is to generate anchoring points based on hierarchical levels.

To perform translation, we first create anchoring embedding
matrices, which serve as reference points to compute the optimal
alignment operators. Figure 3 illustrates the different methods to
create anchoring embedding matrices across cities. The left panel
shows the rank-based anchoringmethod, which generates a one-
to-one matching based on the sorted rank of places to generate an-
choring pairs to align the embeddings. The center panel shows the
hierarchical stochastic anchoring approach, where anchoring
pairs of embeddings are selected within each hierarchical level in a
stochastic manner with a predefined probability p, and are stacked
together to obtain the anchoring embedding matrices for the two
domains. The right panel shows the hierarchical batch anchor-
ing approach, which instead of randomly selecting the embedding
pairs, the mean vectors of the embeddings in each hierarchical level
are computed and stacked to generate the anchoring embedding
matrices, which are used to find the best alignment operator.

To find the optimal alignment operator using the anchoring
embedding matrices, we test the Orthogonal Procrustes alignment

Table 1: Statistics showing the varying scales of the cities

Scale City # Users # Steps. # Places (Urban)

Large Tokyo 308,140 43,498,760 8020 (589)

Medium

Fukuoka 41,111 7,288,330 1636 (84)
Kyoto 29,920 4,867,294 1363 (30)
Hiroshima 21,868 3,876,699 1741 (25)
Kobe 17,172 2,704,310 676 (63)

Small Niigata 10,619 2,156,353 3312 (8)

and Affine alignment methods. Given the anchoring embedding
matrices X ∗

ϕ and X ∗
ϕ for cities ϕ and ψ , respectively, Orthogonal

Procrustes alignment computes the rotational matrix that optimizes
the following equation:

R∗ = argmin
RT R=I

RX ∗
ϕ − X ∗

ψ


F

(2)

where, R ∈ Rd×d is the optimal rotational matrix, and ∥·∥F is the
Frobenius norm. Affine alignment introduces an extra transforma-
tion vector that increases the model complexity, and solves the
following problem:

A∗,b∗ = argmin
A,b

(AX ∗
ϕ + b) − X ∗

ψ


F

(3)

where, A∗ ∈ Rd×d is the optimal rotational matrix and b∗ ∈ Rd is
the optimal transformation vector. The optimization can be per-
formed using standard solvers using least squares method. In the
experiments, we test the effectiveness of different combinations of
anchor embedding matrix generation methods (rank-based, hierar-
chical stochastic, and hierarchical batch), and alignment methods
(Orthogonal Procrustes and Affine alignment).

4 EXPERIMENTAL VALIDATION
4.1 Data
4.1.1 Mobile Phone Location Data. Yahoo Japan Corporation1 col-
lects location information of mobile phone app users in order to
send relevant notifications and information to the users. The users
in this study have accepted to provide their location information.
The data are anonymized so that individuals cannot be specified,
and personal information such as gender, age and occupation are
unknown. Each GPS record consists of a user’s unique ID (ran-
dom character string), timestamp, longitude, and latitude. The data
acquisition frequency of GPS locations changes according to the
movement speed of the user to minimize the burden on the user’s
smartphone battery. The data has a sample rate of approximately
2% of the population, and past studies suggest that this sample rate
is enough to grasp the macroscopic urban dynamics. Table 1 shows
the statistics of the dataset collected for 6 cities that we focus on in
this study. We observe that the cities are significantly imbalanced
in terms of the number of mobile phone users, total step sizes, and
the number of places classified as urban areas.

1https://about.yahoo.co.jp/info/en/company/

https://about.yahoo.co.jp/info/en/company/
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4.1.2 Land Use Data. To validate whether the translated place
embeddings correctly capture the functionality of the places, we
use the Urban Area Land Use Mesh Data2 in the National Land
Numerical Information Database3 provided by the Ministry of In-
frastructure, Land, and Transport and Tourism of Japan. The dataset
divides all urban areas of the country into 100m × 100m grid cells,
and assigns one category to each grid cell out of 17 options. The 17
options include farmland, residential area, business district, parks,
forests, factories, public facilities, water body, open spaces, roads,
railways, golf courses, etc. Because the categories are very detailed,
we categorize these landuse categories into 7 label types: high-rise
buildings, low-rise dense residential areas, low-rise sparse residen-
tial areas, industrial areas, agricultural areas, public facilities and
parks, and water bodies. We aggregate these data into our spatial
scale (500m × 500m), and label each place with the landuse label
which has the majority number of pixels in that 500m × 500m place.

4.2 Experiment Settings
4.2.1 Model Hyperparameters. To learn the place embeddings de-
scribed in Section 3.1, we setup the model and input data with the
following procedure. The model consists of the embedding layer,
LSTM RNN block, readout layer, and the output layer. While the
main input of the model is a sequence of staypoints representing a
user’s movement, we added two supplementary values, which are
the timestamp of when the user had entered that place and the du-
ration time of the stay, to incorporate time-dependency of the users’
behavior. The embeddings of staypoints were set to 64-dimensional
vectors. The timestamp and stay duration were converted to 8-
dimensional and 4-dimensional vectors respectively, and the three
vectors at each step were concatenated into a 86-dimensional vec-
tor. The LSTM RNN block scanning over the embedding sequence
consists of two layers of the size 128, and the hidden vectors of
both layers were fed into the readout layer of the size 64, which
were then read by the output layer producing the probability distri-
bution over staypoints for the next place prediction. The parameter
matrix of the staypoint embedding was reused as the output layer’s
matrix to reduce the total number of parameters and make the
training data usage more efficient. We applied dropout with the
keep probability 0.8 to three points of the model: the embedding
layer, readout layer, and output layer. We continued the training for
20 epochs, evaluated performance on the validation data at the end
of each epoch, and used the embedding matrix of the best model
for subsequent processing.

4.2.2 Comparative Methods. We compare the translation perfor-
mances of the methods described in Section 3.3, as well as a state-
of-the-art method used in language translation tasks. The combina-
tions of the anchor embeddings matrix generation and alignment
methods are as follows: rank based + Procrustes (RP), rank based
+ Affine (RA), hierarchical stochastic anchoring + Procrustes (HSP),
hierarchical stochastic anchoring + Affine (HSA), hierarchical batch
anchoring + Procrustes (HBP), and hierarchical batch anchoring +
Affine (HBA). For the stochastic anchoring methods, results using
p = 0.5 are reported since this probability had the best performance
out of all 0.1 incremental values ofp. In addition, we test JointLSTM,
2http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html
3http://nlftp.mlit.go.jp/ksj/

Table 2: Quality of generated place embeddingsmeasured by
land use classification accuracy.

Method Cities

Tokyo F’oka Kyoto Hiro. Kobe Niig.

IndivLSTM 0.691 0.809 0.794 0.827 0.675 0.748
JointLSTM 0.679 0.780 0.724 0.710 0.639 0.735
Random 0.341 0.383 0.353 0.437 0.315 0.507

which applies the IndivLSTM model to all of the 6 cities together
on the self-supervised next staypoint prediction task. We merge
the mobility datasets of the cities into one and train the model
over the merged data to obtain the place embeddings of all cities.
To allow the model to treat places of the two cities as equally as
possible, we mask the candidates ofψ at the output when the next
staypoint belongs to ϕ and vice versa, releasing the model from the
burden of distinguishing between two cities. The rationale behind
this approach is that, places with similar functions will be visited in
a similar manner (e.g. time of day, day of week, after and before cer-
tain places) regardless of the city, and that the mobility patterns of
people are common across different cities. A previous study shows
that this approach is effective in translating word embeddings of
one language to another in an unsupervised manner [23].

4.2.3 Evaluation Metrics. To evaluate the performance of the trans-
lation methods, we test the prediction accuracy of landuse classi-
fication using the translated place embeddings. Embeddings and
landuse labels from the source city are used as training data, and the
embeddings and landuse data from the target city are used as test
data. We denote the place embeddings of the source (ϕ) and target
(ψ ) cities as Xϕ and Xψ . Similarly, we denote the landuse labels of
each place in the source and target cities as yϕ and yψ . We also
denote the translated place embeddings of city ϕ as f (Xϕ ) := X̃ϕ
using the translation function f (·). We first train the landuse label
classifier using the labels (yϕ ) and translated place embeddings
from the source city (X̃ϕ ). Then, we test the predictive accuracy of
landuse labels (yψ ) using the trained classifier and the place em-
beddings from the target city (Xψ ). If the embeddings are perfectly
translated and mapped into the target city, the classifier would be
able to classify the landuse labels using the test data similarly as the
training data. We use logistic regression as the classifier, and since
the problem is a multi-class classification task, we use accuracy and
F1-score as the evaluation metrics. The default hyper-parameter of
the logistic regression model was set to C = 1, but we clarify that
the ranking of the performances of the various translation methods
do not depend on the choice of the classifier or the hyper-parameter.

4.3 Results
4.3.1 Quality of Generated Place Embeddings. Before performing
any translation task, we check that the place embeddings produced
by the two LSTM models described in Section 3.1 are of high qual-
ity. Table 2 shows the land use classification accuracy using the
produced place embeddings in each city. As previously explained,
logistic regression was used to classify the land use labels using
only the place embeddings as features. Training and test data were

http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html
http://nlftp.mlit.go.jp/ksj/
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Figure 4: Translation performance ofmethods, measured by
mean accuracy (A-C) andmean F1-score (D-F) of landuse pre-
diction. (A) and (D) show results across all city pairs. (B) and
(E) show results of translation when source or target city
is either Tokyo or Niigata. (C) and (F) show performances
when source and target cities are both medium sized.

randomly shuffled and split into 80% and 20% of the data, and the
reported accuracy results are the mean values of 10 trials. Details of
the experiment settings are noted in Section 2.6 of the Supplemen-
tary Material. We observe that for all cities, despite some differences
across cities, both the place embeddings generated by IndivLSTM
and JointLSTM are able to encode landuse information well, as
previously shown by various studies (e.g. Zhang et al. [31]). The
results also show that the quality of place embeddings drop using
the JointLSTMmodel compared to the IndivLSTMmodel, since the
JointLSTM model shares model parameters across all cities. We
note that the unsupervised translation methods are agnostic of the
place embedding generation methods. In the unsupervised transla-
tion experiments, we use the place embeddings produced by these
LSTM-based models.

4.3.2 Translation Accuracy. In this study, we quantitatively evalu-
ate the translation accuracy of each method using the predictive
performance of the landuse labels, which is a multi-class classifi-
cation task. Figure 4 shows the translation performances of the
proposed method (red) and the comparative methods (Table 1).
In all panels, the horizontal dashed gray line shows the accuracy
when we use randomized labels. The left column presents the per-
formances using accuracy, and the right column uses the weighted
F1-score. The top row shows the mean performance metrics of
place embedding translation across all city pairs, whereas the pan-
els in the center row and the bottom row show the performances
when Tokyo or Niigata (large or small cities) are either or both
the source or the target city, and when both the source and target
cities are medium sized cities (Fukuoka, Kyoto, Hiroshima, or Kobe),
respectively. Most importantly, we observe that our proposed trans-
lation method that performs Affine alignment using hierarchical
batch anchoring (“HBA”) performs best in all of the cases. Using the

hierarchical structures for anchoring performs better than using
rank based anchoring (“RP” and “RA”) in all of its variants (“HBP”,
“HSP” and “HSA”). The joint learning approach (“Joint”) performs
better than the random baseline in most cases, however its per-
formances are limited compared to the hierarchical approaches.
The rank-based Procrustes approach (“RP”), which was shown to
perform well in a previous study across cities with similar sizes
[26], performs well across medium source and target city pairs
in this study as well (panels C and F), however is inferior to the
hierarchical anchoring approaches under domain imbalance.

To obtain a more detailed understanding of the translation ac-
curacy across the cities with different scales, we plot the pairwise
translation performances of the three main methods (JointLSTM,
rank-based anchoring + Procrustes alignment, and hierarhical-
batch anchoring + Affine) in Figure 5. The matrices show the predic-
tive F1-scores from the source city (vertical axis) to the target city
(horizontal axis), where warmer colors (red, orange) show higher
predictive performances. The diagonal elements are colored white
because there are no translation operations involved in predicting
landuse labels of the same city. The matrices are divided into sec-
tionswith black border lines, showing the boundaries between large,
medium, and small cities. We can immediately observe a significant
difference in predicting the target landuse labels in Tokyo (large
city), where the RP (Rank-based Orthogonal Procrustes) method
performs particularly poorly. Translation from medium cities to
Niigata (small city) works better using our proposed method com-
pared to the two other methods. One exception was the predictive
accuracy from Tokyo to Niigata, where the RP method performed
better compared to the hierarchical batch anchored Affine mapping.
This phenomenon can be explained by looking at the sensitivity
analysis conducted in the next subsection, where we point out the
effects of selecting which hierarchical layers to use for translation
on the performances.

4.3.3 Which Hierarchical Levels should we use? So far, we have
clarified the effectiveness of our unsupervised translation approach
that uses hierarchical anchoring. Here, we further conduct sensi-
tivity analysis on the number of hierarchical layers used in our
translation method. Figure 6A shows the relationship between the
number of hierarchy levels used and the prediction accuracy in lan-
duse classification task using HBA method for each source-target
city pair. The red, blue, black, and green plots show the translation
tasks with Tokyo as the source (“From Tokyo”), Tokyo as the target
(“To Tokyo”), from Tokyo to Niigata, and tasks with other cities
as source and target, respectively. We observe intuitive trends in
translation across the source-target groups. The increasing trend in
the red plots (Tokyo as source city) indicate that increasing the num-
ber of hierarchical levels and including more rural areas increases
the translation accuracy to cities smaller than itself, whereas the
decreasing trend in the blue plots (Tokyo as target city) indicate
that increasing the number of hierarchical levels and including
information from more rural areas in the more rural source city
decreases the translation accuracy. In contrast to these dependen-
cies of translation accuracy from and to Tokyo on the number of
hierarchical levels, the translation accuracy stays consistent with
respect to the number of hierarchical levels across source and target
cities of similar scales.
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Figure 5: Mean pairwise translation accuracy across all source and target cities with different scales. Left: Accuracy using
the JointLSTMmethod. Center: Accuracy using rank-based anchoring and Procrustes alignment method [26]. Right: Accuracy
using hierarchical batch anchoring Affine alignment method (Proposed method).

Figure 6: Sensitivity of translation accuracy with respect to
the hierarchical levels used for translation using HBA. (A)
Using hierarchical levels from the highest level L = 1 to
Llower . (B) Using hierarchical levels starting from Lupper to
the lowest level L = 11. Llower = 11 in panel A and Lupper = 1
in panel B correspond to the same case, where all hierarchi-
cal levels from L = 1 to L = 11 are used.

Figure 6B shows the inverse setting of Figure 6A, where we select
only a subset of the lower hierarchical layers for translation. We
observe that once again, the translation accuracy stays consistent
with respect to the number of hierarchical levels across medium
source and target cities. However, we observe that when using
Tokyo as the source, the accuracy increases when we limit the
hierarchical layers to lower layers (e.g. L = 8, 9, 10). In fact, although
we observed a low translation accuracy for Tokyo → Niigata in
Figure 5, we clarify that this was because we used the upper-level
hierarchical information from Tokyo which was less relevant to
Niigata. When we use Tokyo as the target, the translation accuracy
drops as we throw away upper-level hierarchical information from
the medium and smaller sized cities.

4.4 Case Study: Translating Tsukiji Fish Market
Finally, we qualitatively assess the translation performance through
a case study of translating a point-of-interest (POI). Figure 7 shows

the translation results of “Tsukiji Fish Market” from Tokyo to Hi-
roshima, Kyoto, and Niigata. Tsukiji Fish Market4, one of the largest
fish markets in Tokyo, is a very popular tourist spot for visitors
and also for local residents. Each of the panels in Figure 7 show
the similarity of each place to the translated Tsukiji Fish Market
embedding x̃T suki ji . Given the norm distance of place i , denoted as
d(xi ) =

xi − x̃T suki ji

2, the similarity is computed by normalizing

the norm distances with respect to all the places in the city. Nor-
malized similarity is computed as S(i) = maxd (xi )−d (xi )

maxd (xi )−mind (xi ) . Places
colored in bold red color indicate high proximity close to S(i) = 1
with minimum norm distance, and the POIs inside those places are
annotated in the maps. We can observe that for all the cities, we
are able to detect large scale shopping malls (e.g. Aeon Malls in
all cities) and even the Nishiki market5 in Kyoto and Niigata Fish
Market, which are popular markets for purchasing local products,
via translation of places.

5 DISCUSSIONS
In this study, we proposed a novel unsupervised translation method
that exploits the hierarchical structure that exist across different
domains to enable translation of embeddings across domains of im-
balanced sizes. The effectiveness of our method was shown through
experiments using real data collected from 6 Japanese cities with
varying sizes. It was interesting to observe that hierarchical batch
anchoring worked better than hierarchical stochastic anchoring in
all experiment settings. This implies that the hierarchical anchoring
works best with fewer but less noisy anchor points. Although the
joint learning method is considered to be one of the state-of-the-art
methods in unsupervised translation tasks in the language domain,
our analysis showed that the method using hierarchical structures
worked better under domain imbalance settings. The key assump-
tion of the joint learning method is that the mobility patterns (or
sentences in the language domain) have similar structures across
different cities. However, as we can see from Table 1, the average
length of staypoints per user differed significantly across cities of
different sizes (e.g. Tokyo: 141 steps/user, Niigata: 203 steps/user),
indicating that such assumptions do not hold in cities.

4https://en.wikipedia.org/wiki/Tsukiji_fish_market
5https://en.wikipedia.org/wiki/Nishiki_Market

https://en.wikipedia.org/wiki/Tsukiji_fish_market
https://en.wikipedia.org/wiki/Nishiki_Market
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Figure 7: Case study showing the results of translating Tsukiji Fish Market (Tokyo) to Hiroshima, Kyoto, and Niigata via hier-
archical batch anchoring and Affine alignment. We were able to translate the fish market in Tokyo into large scale shopping
malls and local markets across cities of different scales.

In addition to the improvement in landuse label prediction tasks
using the translated place embeddings, further analysis on using dif-
ferent combinations of hierarchical levels for translation in Section
4.3.3 provided interesting insights and possible reasoning on the
translation performances of the proposed method. Figure 6 shows
the strong dependence of translation accuracy on the hierarchical
layers we use for translation. In general, it was found that when
translating from a large city (e.g. Tokyo) to smaller cities, using
the full set of hierarchical levels is optimal. In the extreme domain
imbalance case (from Tokyo to Niigata), it was found that limit-
ing information to only the bottom 2 hierarchical levels produced
best translation accuracy. On the other hand, when we translate
from smaller cities to larger cities, using information from only the
higher hierarchical levels was often sufficient and better than using
information from all of the layers in the smaller cities. Although
these findings match our intuition, further investigation needs to be
done in finding rules and methods in choosing the optimal ranges
of hierarchical levels that we should use for translation, given the
sizes of the source and target domains.

We believe this study leads to many research questions worthy of
investigation. Representation (or embedding) learning has become
a large branch of machine learning in recent years [8], and its tech-
niques have been applied to various data types, including graphs
[15] and images [18]. A natural extension of this study would be
to apply our method to unsupervised translation tasks using em-
beddings generated from other types of data, such as language
translation where vocabulary sizes significant vary across the lan-
guages. Since hierarchical structure analysis is agnostic to data, it
can be easily extended to other problem settings. For example in the
language setting, vocabulary can be grouped into hierarchical lev-
els based on their appearance frequencies. Applying the translated
place embeddings to solve various downstream urban problems
would be another broad research direction. For example, selection
of appropriate locations to open new stores has been a popular
problem in urban computing [25]. Applying the translation results
of place embeddings, such as the example shown in Figure 7 on the
Tsukiji Fish Market, may assist planning of new store locations.

6 RELATEDWORKS
6.1 Place Embedding Generation
Learning the place embeddings have been a popular research topic
in the field of urban computing [33], often as a subproblem for
larger tasks such as POI recommendation [10] and site selection
problems [25]. Recent developments in the natural language pro-
cessing field (e.g. Mikolov et al. [20]) has inspired many studies
on place representation learning. Models such as SkipGram and
POI2vec have applied ideas similar to word2vec on social media
check-in data, where sequences of POIs are treated as sentences
in the word2vec model [12, 16]. CAPE used both location and text
data for POI embedding [10]. Geo-Teaser used the users’ check-in
and the geographical proximity of POIs for embedding generation
[32]. Place2vec uses the physical proximity between POIs and the
number of visit counts to perform POI embedding [27].

Recent studies such as DeepMove have extended such methods
to large scale mobility data [24, 34]. ZE-Mob proposes a origin-
destination coupled embedding model, where the assumptions are
that origin and destinations of the same trip should have similar rep-
resentations [28]. Zhang et al. [30] developed an unsupervised col-
lective graph-regularized dual adversarial learning framework for
multi-view graph representation learning. More recently, an LSTM
based method that utilizes spatial hierarchy to produce fine grained
place embeddings was proposed [22]. Our translation method is
agnostic of the place embedding generation methods, thus we use a
standard but effective LSTM model to generate place embeddings.

6.2 Unsupervised Neural Machine Translation
Unsupervised machine translation has become a popular topic in
the representation learning literature, due to the difficulty of collect-
ing large scale cross-lingual training data [2, 3]. This unsupervised
setting applies to our problem setting, since we are not given any
dictionary training data across cities. Studies take different ap-
proaches to unsupervised word translation tasks; Zhang et al. [29]
uses an adversarial training approach, Conneau et al. [11] learns
a linear transformation matrix to map words in one language to
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another, Artetxe et al. [1] applies better initial estimates using prob-
ability density functions of distances to other word embeddings,
and Wada and Iwata [23] apply a shared LSTM model to jointly
embed two languages. Cross-comparative studies of these methods
have shown that the LSTM models works best under low resources.
Hamilton et al. [14] apply a similar idea with Conneau et al. [11]
to align word embeddings computed from corpus from different
years, to understand the transition of the semantics of words over
the years. A recent paper applied the methods developed in the
language domain to translate place embeddings across different
cities and tested their performances using real world data [26].

7 CONCLUSION
Despite the rising interest in unsupervised translation tasks, how
to overcome the domain imbalance problem has been understudied.
Using place embeddings and cities as an example problem setting,
we propose and test a novel unsupervised translation method that
exploits the hierarchical structures that are common across dif-
ferent domains despite scale differences. Experiments using data
collected from 6 Japanese cities of different sizes clarified that our
hierarchical anchoring approach improves the translation perfor-
mance compared to previously proposed methods. Our method is
agnostic to the type of input data, thus could be applied to unsu-
pervised translation tasks in various fields in addition to linguistics
and urban computing.
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Supplementary Material

1 DATASET
1.1 Mobile Phone Location Data
In this study, we utilized location information collected by Yahoo
Japan Corporation1. The users in this study have accepted to pro-
vide their location information. The data are anonymized so that
individuals cannot be specified, and personal information such as
gender, age and occupation are unknown. Each GPS record consists
of a user’s unique ID (random character string), timestamp, lon-
gitude, and latitude. The data has a sample rate of approximately
2% of the population, and past studies suggest that this sample
rate is enough to grasp the macroscopic urban dynamics. For data
requests, please contact Dr. Kota Tsubouchi of Yahoo Japan Corpo-
ration (ktsubouc@yahoo-corp.jp).

1.2 Landuse Label Data
We use the Urban Area Land Use Mesh Data2 in the National Land
Numerical Information Database3 provided by the Ministry of In-
frastructure, Land, and Transport and Tourism of Japan for vali-
dation. The dataset divides all urban areas of the entire country
into 100𝑚 × 100𝑚 grid cells, and assigns one category to each grid
cell out of 17 options. We categorize these landuse categories into
7 label types: high-rise buildings, low-rise dense residential areas,
low-rise sparse residential areas, industrial areas, agricultural areas,
public facilities and parks, and water bodies. We aggregate these
data into our spatial scale (500𝑚 × 500𝑚), and label each place with
the landuse label which has the majority number of pixels in that
500𝑚×500𝑚 place. The total counts and percentages of the landuse
labels in each city are shown in Table A1.

2 METHODS
2.1 Determining City Boundaries
To extract the mobile phone users we collect location data from, we
need to determine the city boundaries of each city. Table A2 shows
the minimum and maximum coordinates used in this study.

2.2 Home Location Estimation
Home locations of all users were estimated using the collected
mobile phone location dataset. Previous studies have shown that
home locations of individuals can be detected with high accuracy by
clustering the individual’s stay point locations during the night [1].
We assume that each individual has one main home location in this
study. The home location of each individual user was detected by
applying the mean-shift clustering algorithm [2] to the nighttime
stay points (observed between 8PM and 6AM), weighted by the
duration of stays in each location.
1https://about.yahoo.co.jp/info/en/
2http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html
3http://nlftp.mlit.go.jp/ksj/
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Figure A1: Example of how thresholds of hierarchical levels
are determined. This shows the result for Tokyo. For each
iteration, a Lorentz curve of the data distribution is drawn,
and the threshold is computed by taking the intersection of
the tangent line at 𝐹 = 1 and the x-axis. Colors correspond
to the hierarchy levels in Figure 2.

Figure A2: The overview of the LSTM RNN model used in
representation learning of places.

2.3 Example of Estimating Hierarchical Levels
The places within a city is classified into each hierarchical level by
using the Loubar method [3]. The methods are explained in Section
3.2 of the manuscript; we show an example plot (Tokyo) of how the
thresholds are determined in Figure A1.

2.4 LSTM Model Architectures
2.4.1 LSTM for Individual Learning. To conduct the representation
learning of places, we setup the model and input data as follows.

http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html
http://nlftp.mlit.go.jp/ksj/
https://doi.org/10.1145/3292500.3330697
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Table A1: Statistics showing the different landuse types in each city

City Total High-rise bldgs Low-dense bldgs Low-sparse bldgs Industrial Public/Parks Agriculture Water

Tokyo 8020 589 (7.3%) 1003 (12.5%) 4326 (53.9%) 73 (0.9%) 270 (3.3%) 1367 (17.0%) 392 (4.8%)

Fukuoka 1636 84 (5.1%) 40 (2.4%) 830 (50.7%) 29 (1.7%) 52 (3.1%) 574 (35.0%) 27 (1.6%)
Kyoto 1363 30 (2.2%) 147 (10.7%) 464 (34.0%) 14 (1.0%) 16 (1.1%) 639 (46.8%) 53 (3.8%)
Hiroshima 1741 25 (1.4%) 54 (3.1%) 578 (33.1%) 32 (1.8%) 17 (0.9%) 988 (56.7%) 47 (2.6%)
Kobe 676 63 (9.3%) 74 (10.9%) 134 (19.8%) 19 (2.8%) 41 (6.0%) 328 (48.5%) 17 (2.5%)

Niigata 3312 8 (0.2%) 51 (1.5%) 660 (19.9%) 32 (0.9%) 54 (1.6%) 2250 (67.9%) 257 (7.7%)

Table A2: Boundary Coordinates of the cities

City Minimum (Lon, Lat) Maximum (Lon, Lat)

Tokyo (139.28, 35.59) (139.92, 35.93)

Fukuoka (130.30, 33.48) (130.55, 33.74)
Kyoto (135.65, 34.89) (135.85, 35.11)
Hiroshima (132.26, 34.27) (132.60, 34.49)
Kobe (135.13, 34.62) (135.31, 34.77)

Niigata (138.73, 37.72) (139.27, 38.02)

The model consists of the embedding layer, LSTM RNN block, read-
out layer, and the output layer as shown in Fig A2. While the
main input of the model is a sequence of staypoints representing
a user’s movement, we added two supplementary values, which
are the timestamp of when the user had entered that place and
the duration time of the stay, to incorporate time-dependency of
the users’ behavior. In the actual implementation, we treated the
timestamp further decomposing it into two values: day of the week
and time of the day. The embeddings of staypoints were set to
64-dimensional vectors. Day of the week, time of the day, and stay
duration were discretized and converted to 4-dimensional vectors
respectively, and the four vectors at each step were concatenated
into a 86-dimensional vector. The LSTM RNN block scanning over
the embedding sequence consists of two layers of the size 128, and
the hidden vectors of both layers were fed into the readout layer
of the size 64, which were then read by the output layer produc-
ing the probability distribution over staypoints for the next place
prediction. The parameter matrix of the staypoint embedding was
reused as the output layer’s matrix to reduce the total number of
parameters and make the training data usage more efficient. We
applied dropout with the keep probability 0.8 to three points of the
model: the embedding layer, readout layer, and output layer. All
models were implemented on Tensorflow4.

2.4.2 LSTM for Joint Learning. We merge the mobility datasets
of all the 6 cities into one, train the model over the merged data,
and use the embedding layer matrix of the size

( ∑
𝑐 𝑛𝑐

)
× 𝑑 as the

representation matrix. The rationale behind this approach is that,
representations of places with similar functions will be visited in
a similar manner (e.g. time of day, day of week, after and before
certain places) regardless of the city the places belong to. To let

4www.tensorflow.org

the model treat places of different cities as equally as possible, we
mask the output logits of places in cities other than 𝑐 which the next
staypoint belongs to, releasing place embeddings at the output layer
from the burden of distinguishing between cities. A previous study
shows that this approach is effective in translating embeddings of
one language to another in an unsupervised manner [4].

2.5 Training Procedure of LSTM Models
We trained the model of each configuration for 20 epochs, evaluated
performance on the validation data at the end of each epoch, and
used the embedding matrix of the best model for subsequent pro-
cessing. To shorten the lead time, we parallelize the training process
in the synchronous mode, using 4 workers in a 4-GPU environ-
ment. The mini-batch size was 16, and each time after processing
15 mini-batches, the parameter deltas are gathered to the parameter
server and applied to the master model, and then the system moves
forward to the next cycle, deploying the updated model and the
next 15 mini-batches from the parameter server to each worker.
Adam was used for the optimizer. We set the learning rate to 0.03 at
the beginning and annealed it to 0.003 over the course of training.

2.6 Prediction of Land Use Labels
To evaluate the performance of the translation methods, we test the
prediction accuracy of landuse classification using the translated
place embeddings, as described in Section 4.2.3 in the manuscript.
We use logistic regression as the classifier, and since the problem is
a multi-class classification task, we use accuracy and F1-score as
the evaluation metrics. The default hyper-parameter of the logistic
regression model was set to𝐶 = 1. The algorithm was implemented
using the scikit-learn package5.
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