Yabe et al. EPJ Data Science

https://doi.org/10.1140/epjds/s13688-020-00255-6

.0rg
B,

(2020 336 ® EPJ Data Science

a SpringerOpen Journal

REGULAR ARTICLE Open Access

Quantifying the economic impact of

Check for
updates

disasters on businesses using human mobility
data: a Bayesian causal inference approach

Takahiro Yabe', Yunchang Zhang' and Satish V. Ukkusuri'”

“Correspondence:
sukkusur@purdue.edu

'Lyles School of Civil Engineering,
Purdue University, 550 Stadium Mall
Avenue, 47907 West Lafayette, USA

@ Springer

Abstract

In recent years, extreme shocks, such as natural disasters, are increasing in both
frequency and intensity, causing significant economic loss to many cities around the
world. Quantifying the economic cost of local businesses after extreme shocks is
important for post-disaster assessment and pre-disaster planning. Conventionally,
surveys have been the primary source of data used to quantify damages inflicted on
businesses by disasters. However, surveys often suffer from high cost and long time
for implementation, spatio-temporal sparsity in observations, and limitations in
scalability. Recently, large scale human mobility data (e.g. mobile phone GPS) have
been used to observe and analyze human mobility patterns in an unprecedented
spatio-temporal granularity and scale. In this work, we use location data collected
from mobile phones to estimate and analyze the causal impact of hurricanes on
business performance. To quantify the causal impact of the disaster, we use a
Bayesian structural time series model to predict the counterfactual performances of
affected businesses (what if the disaster did not occur?), which may use performances
of other businesses outside the disaster areas as covariates. The method is tested to
quantify the resilience of 635 businesses across 9 categories in Puerto Rico after
Hurricane Maria. Furthermore, hierarchical Bayesian models are used to reveal the
effect of business characteristics such as location and category on the long-term
resilience of businesses. The study presents a novel and more efficient method to
quantify business resilience, which could assist policy makers in disaster preparation
and relief processes.

Keywords: Disaster resilience; Mobile phones; Human mobility; Causal inference

1 Introduction

Recently, natural hazards are increasing both in frequency and intensity in many parts of
the world. The economic losses caused by such extreme events exceeded a total of $2.5
trillion across the globe since 2000, and are rising each year due to rapid urbanization in
many cities [1]. With the intensifying threat of significant economic damage, improving
the resilience of cities has attracted interest from a wide range of fields including public
policy, urban planning, complex systems, and economics [2]. Among the various dimen-
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sions of disaster resilience, the ability of businesses to bounce back is a critical component
that significantly contributes to the economic recovery of cities after disasters.

Previous studies have analyzed the post-disaster recovery of businesses through the
means of surveys and interviews. Such studies have identified factors such as pre-disaster
size of the business and category of business that partly explain the reopening and demise
of businesses after disasters including Hurricanes Katrina [3, 4], Andrew [5], and more re-
cently, Harvey [6]. Although these studies provide a general understanding of the effect of
various characteristics of businesses that affect the post-disaster recovery performances,
they suffer from two critical drawbacks. First, observations are limited to discrete mea-
surements at a few number of timings, failing to give a quantifiable, continuous and longi-
tudinal understanding of the recovery process of businesses. Second, the applied methods
fail to model the causal effect of the disaster, which require a statistical framework that
predicts the performances of businesses if the disaster did not occur.

With the emergence of novel and often large-scale data collected from mobile sensors
and online social platforms, we are now capable of observing and analyzing the dynamics
of people, goods, and information at an unprecedented spatio-temporal granularity [7].
In particular, location data collected from mobile phones (e.g. call detail records, GPS
trajectories) have enabled us to observe individual mobility patterns at an unprecedented
high spatio-temporal granularity [8, 9]. Such datasets are now utilized for a wide range
of applications to solve urban challenges including population density estimation [10, 11],
traffic estimation [12, 13], predicting poverty [14], and modeling spread of epidemics [15].
In the context of extreme events, several studies have used mobile phone data to analyze
the mobility patterns during and after disasters such as earthquakes [16—18], cyclones [19],
and other anomalous events [20]. Despite such progress, none of the previous studies have
used large scale mobility data to analyze the recovery of businesses after disasters.

Recent advances in statistical models, in particular Bayesian structural time series
(BSTS) models, allow flexible predictions of time series data, which can be used to estimate
the causal impact [21]. BSTS has several advantages over conventional difference in differ-
ences models [22], including its flexibility to model the causal impact over a longitudinal
time horizon rather that across 2 time points. A recent study using website click-through
data applied BSTS models to quantify the causal impact of an online advertisement [23].
We take advantage of this recently proposed methodology to quantify the causal impact
of hurricanes on businesses in Puerto Rico.

This study makes several contributions to overcome the aforementioned drawbacks in
the previous studies on business recovery after disasters. First, this is the first work to
utilize large scale mobility data collected from mobile phones to estimate the popularity
of businesses before, during and after a disaster. Second, a Bayesian structural time series
model combined with an inter-city matching scheme is proposed to infer the causal impact
of the disaster on businesses. Third, the proposed methodology is applied on mobile phone
data collected from Puerto Rico to quantify the resilience of businesses after Hurricane
Maria. Figure 1 illustrates the overview of the study. The causal inference procedure is
composed of 3 steps. i) To measure the causal impact of the disaster on business i, we first
identify a similar business j in another region which was not affected by the disaster. ii) We
then predict the counterfactual (“what-if the disaster did not occur?”) visit count of i after

the disaster timing using observed data from j, via a Bayesian structural time series model.
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Figure 1 Overview of study. Our causal inference procedure is composed of 3 steps. i) To measure the causal
impact of the disaster on business i, we first identify a similar business j in another region which was not
affected by the disaster. i) We then predict the counterfactual (“what-if the disaster did not occur?”) visit
count of i after the disaster timing using observed data from j. iii) We can quantify the causal impact of the
disaster by taking the difference between the predicted and observed visit counts in i

iii) As a result, we can quantify the causal impact of the disaster by taking the difference
between the predicted and observed visit counts in i.

2 Related works

2.1 Resilience of businesses after disasters

The economic impact of disasters on businesses have conventionally been studied through
surveys that are performed after the disaster. Studies using surveys have identified various
factors that affect the reopening and demise of businesses after disasters through econo-
metric models (e.g. logistic regression) [3, 4]. Important factors that affected the outcomes
of businesses after Hurricane Katrina include household size of the business owner, pre-
vious disaster experience, number of employees, business age, and legal structure of the
business [3]. The qualitative details in the collected data are a significant advantage of sur-
veys. However, surveys suffer from various drawbacks such as the high cost and long time
for implementation, spatio-temporal sparsity in observations, and limitations in scalabil-
ity. Due to these limitations, it is difficult to obtain a quantifiable, continuous and longitu-
dinal understanding of the recovery process of businesses. Moreover, the applied methods
fail to model the causal effect of the disaster, which require a statistical framework that
predicts the performances of businesses if the disaster did not occur.

2.2 Mobility analysis using mobile phone data

With the emergence of novel and often large-scale data collected from mobile sensors and
online social platforms, we are now capable of observing and analyzing the dynamics of
people, goods, and information at an unprecedented spatio-temporal granularity [7]. In
particular, location data collected from mobile phones (e.g. call detail records, GPS trajec-
tories) have enabled us to observe individual mobility patterns at an unprecedented high
spatio-temporal granularity [8, 9]. These new datasets are becoming new standards for
population level studies, and are used to understand the population distribution in cities
[10]. Such datasets are now utilized for a wide range of applications to solve urban chal-
lenges including population density estimation [11], estimation of dynamic traffic flows
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[12, 13], predicting poverty in developing counties [14], and modeling the impact of hu-
man mobility patterns on the spread of epidemics [15]. In the context of extreme events
and disasters, several studies have used mobile phone data to analyze the mobility patterns
during and after disasters [16—18]. Studies using such large scale data has revealed impor-
tant insights on the evacuation and migration patterns of the affected people [16, 19].
Despite such progress, none of the previous studies have used large scale mobility data
to analyze the recovery of businesses after disasters. A recent study using mobile phone
GPS data (same data used in this study) revealed the impact of the recent policy regarding
the usage of bathrooms in Starbucks on the visit behavior of people to the cafe chain [24].
They validated that the spatio-temporal granularity of the mobile phone GPS data is of
sufficient detail to analyze the store level visit behavior. In this study we apply a similar
approach, and estimate the visit behavior of people to stores and businesses using mobile
phone GPS data.

2.3 Statistical methods for causal inference

2.3.1 Difference in differences

Difference in differences (DiD) method is a statistical method estimating the treatment
effects between the “treatment” group versus the “control” group. For a before-and-after
study, DiD compares the average change over time between treatment and control groups,
which provides us a classical method in estimating causal effects of natural experiments
without strict randomization [22, 25]. However, DiD has several limitations: 1. It follows
the parallel trends assumption that requires the differences between treatment and con-
trol group are invariant overtime in absence of the treatment [26, 27]. In a before-and-after
study, the parallel trends assumption necessitates the means of two groups should be bal-
anced overtime. Consequently, issues such as time-correlated responses will contaminate
the causal inference with DiD [28]. 2. Only two time steps - pre-treatment time and post-
treatment time are considered in the classical DiD that merely captures the static causal
effects for a specific before-and-after study. It can be implausible and useless if the out-
come of interest dynamically changes over time such as recovery patterns after disaster,
radioactive decay etc [23].

2.3.2 Bayesian structural time series models

Compared with the classical DiD model, a structural time series model promisingly relaxes
the parallel trends assumption and captures the variations of time-varying local trends and
seasonality for time-correlated response variables [21, 29]. In addition, structural time se-
ries models encompass a flexible model structure that enables us to analyze the dynamic
effects of the outcome of interest during a time period [30]. Due to a large number of pre-
dictors in structural time series models, a Bayesian approach was introduced to sparse the
estimation of coefficients. Scott and Varian [31, 32] proposed a spike-and-slab prior to
the regression coeflicients in a Google search query study, which significantly reduces the
size of the problem. Nakajima and West [33] elicited a dynamic spike-and-slab prior that
sparsified the estimation of time-varying parameters for a Bayesian macroeconomic time
series model. The most recent Google study for causal inference of a market intervention
[23] slightly revised the dynamic version of pike-and-slab prior [33] with a weakly infor-
mative prior. In addition, the Bayesian structural time series models (BSTS) have been
constructed to strengthen causal inference for time series data. To address the fundamen-
tal problem in causal inference [34], pre-treatment observations are trained and tested via
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BSTS and consequently the fitted BSTS can simulate the counterfactual as the synthetic
post-treatment controls via posterior predictive samples. This method is extensively ap-
plied in causal inference throughout various fields, such as socio-economics [35, 36], po-
litical science [37, 38], environmental studies [39, 40].

The causal inference methodology proposed in the previous section is applied on data
collected from Puerto Rico before and after Hurricane Maria, which made landfall on
September 20th, 2019, and caused a long term devastating humanitarian and economic
crisis. Fatalities as a consequence of Maria are still under investigation, however recent
estimates suggest that between 793 to 8498 excess deaths occurred following the storm
[41]. Heavy rainfall, flooding, storm surge, and high winds caused considerable damage to
various infrastructure systems, causing power outages and water shortages for the entire
island for months. Total economic losses to Puerto Rico and the US Virgin Islands are esti-
mated to be $90 billion, with a 90% confidence range of +$25.0 billion, which makes Maria
the third costliest hurricane in U.S. history, behind Katrina (2005) and Harvey (2017) [42].

3 Data

Three main data sources are used in this study: (1) business visit data collected from
mobile phones, (2) spatial distribution of housing damages due to Hurricane Maria, and
(3) socio-economic factors of census blocks in Puerto Rico. In this section, we describe
how these datasets were collected, processed, and used to infer the causal impact of the

hurricane on businesses.

3.1 Business visit data collected from mobile phones

Establishment-level visit data are provided by Safegraph,® a company that aggregates
anonymized location data collected from smartphone applications to provide insights
about physical places. Safegraph’s location dataset covers around 10% of all smartphones
in the United States, and each observation is consisted of a unique (but anonymized)
user ID, longitude, latitude, and timestamp information. The longitude and latitude in-
formation are accurate to within a few meters, allowing us to analyze the visit counts to
each establishment. To detect a user visiting an establishment, the location data are first
cleaned by removing GPS signal drifts and jumpy observations using a spatial threshold,
then clustered into a staypoint using a spatio-temporal DBSCAN algorithm. Then, the
visited establishment is predicted from establishments nearby the clustered staypoint by
using a machine learning algorithm that takes into account various features such as dis-
tances from establishment to the cluster centroid, time of day, and North American In-
dustry Classification System (NAICS) code. Performing this procedure for all days in the
dataset produces a time series data of daily visit counts for each establishment.

We use daily visit data of establishments located in Puerto Rico and the State of New
York between January 2017 and March 2018 to quantify the causal impact of the hurri-
cane on business resilience. Daily visit data of businesses in New York are used since these
businesses constitute a reasonable control group which were not affected by the disrup-
tions caused by Hurricane Maria. How we use the visit data from the control group in
the causal inference model is explained in the Methods section. We limit the analysis to
business categories that sell products or services directly to the customers, since we will
approximate business performances from the number of visits per day, observed from
mobile phone data. We also limit the analysis to medium or large sized businesses with
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Table 1 Summary statistics of business visit time series data
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Business category Region
Puerto Rico Downstate New York Upstate New York
Building material 62 36 584
Gasoline stations 10 143 1160
Grocery stores 34 97 1227
Hospitals 12 25 76
Hotels 8 81 692
Restaurants 322 585 6352
Supermarkets 61 0 52
Telecommunication 101 9 67
Universities 25 34 199
Total 635 1102 10,409
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Figure 2 Characteristics of businesses in Puerto Rico. (A) Business locations and categories in Puerto Rico.
(B) 3 regions of Puerto Rico used in this study

more than 100 customers per day on average (before the disaster), since we are not able

to observe visit patterns below that level using mobile phone data. As summarized in Ta-

ble 1, daily visit data of a total of 635 businesses in Puerto Rico were analyzed, along with
1102 and 10,409 businesses in Manhattan and Up-State New York, respectively. Figure 2A
plots the locations of the different types of businesses in Puerto Rico, and Fig. 2B shows

the three regions which were used for modeling the spatial differences in disaster impacts.

3.2 Socio-economic data

In this study, population and income data of each county were used for later analysis.

Population data were obtained from the US National Census,” and median income data

were obtained from the American Community Survey.*

3.3 Spatial distribution of housing damages due to hurricane Maria
Physical damage caused by the hurricane are measured by the housing damage rates in

each county, which was provided through the “Housing Assistance Data” provided by the

Federal Emergency Management Agency (FEMA). The raw data can be found through the

link.4 We defined “housing damage rate” for each county as the total number of houses
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that were inspected to have had more than $ 10,000 worth of damage due to the target
hurricane, divided by the number of households in that county. Many of the counties in

Puerto Rico experienced high housing damage rates, between 20% and 60%.

4 Methods
4.1 Bayesian structural time series model

The basic structural time series model is defined as the following:

Vei = Mei+ T+ B+ € VE,
€L‘,i NN(O,O')?), (1)
oy ~ Cauchy(0,2.5),

where y,; is the observed daily visits to business i on day ¢ in the target region (in our case,
Puerto Rico). y,t is predicted by state components u,;, 7.; and Bx,; that capture critical
features of the time-series data [23]. A weakly informative prior is elicited for each state
component. A graphical representation of the model is shown in Fig. 3.

Local Level Trend: The local level model represents local variations of the time series
data. To simplify the model structure, we assume the mean of the trend is a random walk

with the initialization of w1:

Mesli = Mo + N1 VE> L,
w1 ~ N (o, o),

M ~N(©0,02),

00, o, 0y, ~ Cauchy(0,2.5).

2)

Seasonality: Let S denote the total number of seasons. The sum of seasonal effects over

S time periods is assumed to be zero. In this study, weekly seasonality is taken into account

N (tpr1lte, 02)

Weekly trend o e

Local level @ @
Covariate a @

Observed /
Counterfactual

N (i1t 0F)

N@elue + T + BF e, 07)

Pre-disaster period Post-disaster period

Figure 3 Graphical representation of the Bayesian structural time series model
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(S = 7) with the initialization of 1y, T, T3, T4, T5,, and Te,;:

Tyl = — Zf:_oz Tosi+ Mo VE>L,
This T2, Tais Tais Ts,i» Toi ~ N ey, 07,
M2 ~N(0,02),

Mrgs Ogr 07 ~ Cauchy(0,2.5).

3)

4.1.1 Choice of covariates

Apart from the local level model and seasonality, there are other unobserved effects such
as impacts of holidays and sport events that may contaminate the estimation of the y; ;. To
capture the unobserved heterogeneity, x;; in Eq. (1) is used as the simultaneous daily visits
to a similar business type at time ¢ in a different region that was not affected by the disaster
(in our case, New York). x,; accounts for the shared variance of the time series data from
two different regions. The static coefficient 8 represents the relationship between daily
visits to a specific business type from Puerto Rico and New York. In this study, we test three
methods for the choice of covariates, which we will test in the experiments Section: (i) no
covariate, (ii) use the average daily visit trends of the same brand businesses in the other
city as covariate (e.g. if y; was a Starbucks, we would use the average daily visit counts of all
Starbucks in New York as the covariate), which we denote as Xcazegory, and (iii) use the daily
visit count of a specific business which has the highest correlation with the target business,
which we denote as xg,.c. For (iii), we compute the Pearson’s correlation between the
daily visit count data of the target business with that of all same category businesses in
New York, and use the business with the highest Pearson R.

4.2 Estimating causal impact of disasters on businesses

Let N denote the total number of days observed. We first fit the BSTS model with pre-
disaster data (nz = 150) from New York and Puerto Rico. For each business with index i,
posterior predictive samples can be simulated to develop a counterfactual as the synthetic
control group (t=n+1,...,N) from Eq. (4).

Vei ~ POeilyei), > n. (4)

Let m € [n, N] denote the day when the Hurricane Maria struck Puerto Rico. Point-wise
comparisons estimate the impacts of hurricane on daily visits to a target business type
between treatment and control groups.

d)t,i:@, t=m+1,...,N, (5)

1

where, y; denotes the mean visit count to the visits prior to the disaster (¢ < n). The im-
pact ¢, is a normalized measure of the disaster impact to the business. ¢;; measures the
number of business-as-usual days worth of impact (damage) the disaster inflicted on the
business.

Moreover, we hope to estimate the cumulative causal effects of hurricane on a target
business type over time, which represents the resilience of business after hurricane. The
cumulative sum of causal increments is a practical quantity when the response variable
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y:i is measured over time. We calculate the total impact of the disaster to business i by the
following equation.

N
;= Z ui- (6)
t=m

The cumulative sum of causal increments can be further transformed into the estimated
total economic loss by multiplying average spending in dollar(s) per customer.

4.3 Regression via hierarchical Bayesian model
To further interpret the estimated cumulative disaster impacts, we apply a hierarchical
Bayesian model to regress the cumulative disaster impacts ¢; with regional (spatial), busi-
ness categorical, and disaster damage features. Hierarchical Bayesian models (HBMs) al-
low us to flexibly model the group-level effects on the estimand by introducing hyper prior
distributions on the model parameters. This is a significant difference from regular linear
regression models which can only either i) assign one global parameter for all groups, or
ii) estimate parameters separately for each group. For further details on the advantages of
HBMs, readers should refer to [43].

To estimate the cumulative disaster impact of all businesses, we construct the HBM as
the following:

&i ~ N(BX; + 8,4y + Vet %),

8@ ~N(0,72), Vre{0,1,2} #region,

Yeiy ~N(0,72), Vece{0,1,2,3,4,5,6,7,8) #category,
B,0,7s, 1, ~ Cauchy(0,2.5),

7)

where, r(i) € {0,1,2} and ¢(i) € {0,1,2,3,4,5,6,7, 8} denote the region index and category
index for business i. We assume that the cumulative disaster impact on business i, de-
noted by ¢;, can be modeled as a linear sum of the effects of exogenous features X; (which
include pre-disaster business mean visits, housing damages caused by the disaster), re-
gional effects §,, and business categorical effects y.. The model is Bayesian in the sense
that the model parameters (8, 8, ) all have priors, and the model is also hierarchical since
the hyper-parameters in the prior distributions (75, 7,) come from another higher level
distribution. We assume that the hyper-parameters are drawn from weakly informative
priors (Cauchy distribution). The hierarchical prior distributions allow us to model the
dependencies across different groups (regional groups and categorical groups).

5 Model validation

5.1 Experiment setup

Daily visits to businesses in Puerto Rico and New York from January 2017 to March 2018

(400 days) are analyzed. As explained in the Methods Section, we will test three methods

of selecting the covariate: no covariate, Xcasegory, and Xspecific. To verify the which type of

covariate improves the prediction accuracy the most, two different model settings shown

in Fig. 4 will be explored:

« Setting 1 (Inter-State prediction): Pre-disaster data will be used from Puerto Rico and

New York. The model will be fitted using data until day 150, and tested using data
between days 151 and 200.
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Figure 4 Experiment settings for model validation

« Setting 2 (Intra-State prediction): To test the accuracy of long-term predictions, data
from businesses in Manhattan will be used to predict the visit counts of businesses in
Up-State New York, using the whole observation period (train: 0-150, test: 151-400).

5.2 Evaluation metrics

The prediction tasks will be evaluated using 2 different metrics: i) Pearson’s R, which cap-
tures the correlation between the predicted and true time series values, and ii) mean abso-
lute percentage error (MAPE), which captures the relative magnitude of the absolute error
between the predicted and true time series values. MAPE is calculated by the following

equation:

1 n
MAPE, = - Z

t=1

Yt,i — Vi

Vt,i

8)

An alternative approach for validation is to use the likelihood function, however, we
choose to use the MAPE metric that uses point estimates, since the objective of the
Bayesian structural time series model was to yield point estimates of the business per-
formance in the counterfactual case. We measure the performance of the methods using
these two distinct metrics, where Pearson’s R measures the relative correlation between
the two sequences, while MAPE measures the absolute magnitude of discrepancy between

the two vectors.

5.3 Validation results

The performances of the BSTS models with three types of covariates, were tested on the
aforementioned two experimental settings, using Pearson’s correlation and MAPE as eval-
uation metrics. Table 2 shows the performances of the three BSTS models on both settings.
Surprisingly, although the model with business-category covariates perform the best on
average in both experimental settings, the predictive performances of the three methods
are quite similar. Using extra covariates do not always improve the prediction model, and
we see that over 34% of the businesses in experiment setting 1 had best performances when
not using extra covariates (similarly, over 40% of businesses in experimental setting 2). Ex-
tra covariates, which are aimed to capture the long term trends and anomalies (e.g. New
Years, Christmas), are not effective when making predictions of businesses that have less
long-term variation and a relatively stable periodicity in visit counts. From experiment 1,
we determine the best performing model out of the three for each business, and we use
that business to predict the counterfactual daily visit counts after the disaster period.
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Table 2 Model validation results of two experimental settings

Evaluation metric

Use of covariates

No covariates Xcategory Xspecific
Setting 1 Train MAPE 12.35 (£16.67) 10.50 (£14.03) 10.66 (£14.46)
Pearson R 0.539 (£0.222) 0.696 (£0.169) 0.626 (£0.136)
Test MAPE 8.568 (£14.37) 8518 (£15.85) 8.888 (£15.30)
Pearson R 0.351 (£0.238) 0.354 (£0.239) 0.295 (£0.257)
Selected (%) 349 404 24.7
Setting 2 Train MAPE 0.229 (£0.257) 0.249 (£0.251) 0.257 (£0.252)
Pearson R 0.855 (£0.144) 0.742 (£0.145) 0.744 (£0.115)
Test MAPE 0.704 (£0.811) 0475 (£0.612) 0477 (£0.538)
Pearson R 0.420 (£0.189) 0512 (£0.181) 0466 (£0.183)
Selected (%) 40.3 25.1 346
A Predicted and Empirical

—— Predicted

c Cumulative Impact ¢;

|
-
&

0 50 100 150 200 250 300 350 400

Figure 5 Example of how the disaster impact is quantified. (A) Predicted and actual observed daily visit
patterns for a randomly selected business. (B) Point-wise impact ¢, and (C) cumulative impact ¢; of the
disaster

Figure 5 shows an example of how the disaster impact is quantified. As shown in panel
(A), we first predict the counterfactual daily visit counts after the disaster (blue plot) using
the best performing model identified in the model validation experiment. Then, as shown
in (B), we calculate the point-wise disaster impact ¢, ;, by subtracting the observed daily
visit count sequence from the predicted sequence and normalizing it by the pre-disaster
mean daily visits. The cumulative disaster impact ¢; can be calculated by aggregating the
point-wise disaster impacts over time. Panel (C) shows the cumulative disaster impact
over time from the time of the landfall of the hurricane. In this particular business, we
observe a significant negative impact until around day 300 with around ¢; = —25, meaning
that by day 300, this business lost a 25 business-as-usual days worth of customers due to
the hurricane. We actually see positive impacts of the hurricane before the 2 hurricanes,

however the positive impacts are significantly negated by the negative impacts. Gradu-

Page 11 of 20
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ally after 1 month from the hurricane landfall, we see an increase in visits compared to
pre-disaster levels, which decrease the negative disaster impact. As a result of the BSTS
modeling, we are able to obtain the quantified disaster impact for each of the businesses in
Puerto Rico over time. In the next section, we analyze the obtained results to further un-
derstand which business categories in which locations suffered disaster impact in Puerto
Rico after Hurricane Maria.

5.4 Normality and homoskedasticity assumptions

In our Bayesian structural time series model, several assumptions are made, such as con-
ditional normality and homoskedasticity. Statistical tests were performed on the estima-
tions to verify that these assumptions were indeed valid for modeling the empirical data.
First, to test the normality assumption, quantile-quantile (Q-Q) plots and Kolmogorov—
Smirnov normality tests were performed on the estimated residuals. An example of a Q-Q
plot is shown in Fig. 6A, where we see perfect aligning of the empirical quantiles with the
theoretical quantiles. The KS normality test showed that for the residuals of all of the 27
time series data (combination of 9 business types and 3 regions), the null hypothesis “the
data follows a Normal distribution” could not be rejected. Moreover, the homoskedasticity
assumption was tested by examining the autocorrelation of the variance of the residuals.
Figure 6B shows an example plot of the autocorrelation of the squared residual. The in-
significance of the autocorrelation in variance shows that the variance is homogeneous
throughout the time series data, supporting our assumption of homoskedasticity. A pos-
sible extension of the model includes relaxing the assumption of conditional normality
and homoskedasticity for datasets that do not satisfy the above model assumptions.

5.5 Sensitivity to hyperparameters
The Bayesian structural time series model contains several hyperparameters, including
the model parameters of the hyperprior distribution and the time length of data used to
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Figure 6 Normality assumption and sensitivity of results to hyperparameters. (A) Q-Q plot supporting the
normality assumption of the residuals. (B) Autocorrelation of the squared residual, (C) Sensitivity to
hyperparameters of prior distributions, and (D) Sensitivity of model performance to amount of training data
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train the model. Figure 6C shows the sensitivity of model performance with respect to the
model parameter of the hyperprior. The result shows that both the model performance
on both train and test data are not sensitive to the hyperparameter selection. Figure 6D
shows the sensitivity of model performance to the amount of training data used. The x-
axis shows the beginning of the training data period. We observe that the fit to training
data increases as we shorten the time period especially at 120 days, however that the test
fit decreases with less training data, indicating over-fitting of the model. Although we used
all 150 days to train the model, this result shows that in fact, 50 days (starting from day
100 until 150) was sufficient to reach the accuracy we achieved using data from the full
period.

6 Analysis of estimated business resilience
Now, using the BSTS method for predicting the counterfactual business performances, we
quantitatively analyze the resilience of businesses after Hurricane Maria and answer the
following questions:
1 How does the disaster impact evolve over time, and do the temporal patterns vary
across business categories and locations?
2 Can we explain why we observe such heterogeneity in disaster impacts across
businesses in Puerto Rico?
Since it was revealed that the optimal prediction models varied across different businesses
in the Model Validation Section, we use the best performing model out of the three (ei-
ther no covariate, average NY trend as covariate, or specific NY business trend as covari-
ate) to predict the counterfactual visit time series for each of the businesses in Puerto
Rico.

6.1 Quantifying disaster impact patterns to businesses

To answer the first research question, we aggregate the disaster impacts over the time hori-
zon by business category and business location (San Juan Municipio, Metropolitan Area,
Rural Area, shown in Fig. 2B). Figure 7 shows the longitudinal point-wise disaster impact,
which is the difference between the actual and the predicted business performances across
time (¢, = y; — y;) for all nine business categories. Negative values of ¢; would mean that
the disaster had a negative impact on businesses, resulting in loss of customers, while a
positive ¢, would mean that the number of customers increased due to the impact of the
disaster. In each panel, the disaster impacts to businesses in the three regions are sep-
arately shown in blue (San Juan Municipio), green (Metropolitan Area), and red (rural
area). The vertical lines show the timings of the two hurricanes (dotted: Hurricane Irma,
solid: Hurricane Maria).

Several interesting observations can be made from these visualizations. First, we ob-
serve common trend across several business categories, where all three regions experience
negative impact right after Hurricane Maria, and then the businesses in the urban areas
recover quicker compared to those in rural areas. This intuitive trend can be observed
in various business categories including building materials, supermarkets, restaurants,
telecommunications, and grocery stores. Second, we see a significant increase in gaso-
line stations in metropolitan areas (green) after Hurricane Maria. This reflects the high
travel demand from the rural areas towards the metropolitan areas in the island due to
evacuation mobility [44]. Third, in some business categories such as hospitals and hotels,
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Figure 7 Point-wise disaster impacts across different business categories and business locations

we see an increase in visits after the hurricanes compared to before, especially in the San
Juan region (blue). An increase in hospital visits reflect the large number of injuries and
casualties caused by the flooding and severe winds caused by the hurricane. Significant
increase in visits to hotels in San Juan reflect the large number of residents who evacuated
from the rural areas in Puerto Rico to the capital city, which agrees with previous stud-
ies that observe the influx of population movements in San Juan from the suburban and
rural areas of the island [44]. Minor details are captured in the figures as well, for exam-
ple, how weekly fluctuations are estimated more vividly in universities (students do not
attend classes on weekends) compared to other business types, and also how the impacts
of Hurricane Irma, although minimal compared to Hurricane Maria, are captured in the
time series data.

To further understand the impact of Hurricane Maria on the businesses, we computed
the cumulative disaster impact (¢ = >, ¢;) for each business in each region. The cumula-
tive disaster impacts are shown in Fig. 8 for three different aggregation time thresholds,
including (A) landfall to 1 month from landfall, (B) until 2 months from landfall, and (C)
until 4 months from landfall. For each business category, the cumulative disaster impacts
are aggregated by regions, with the same color coding as Fig. 7. The numbers of ¢; should
be interpreted as “the number of business-as-usual days worth of impact” For example,
building material businesses in San Juan experienced a median disaster impact of ¢ = —10
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Figure 8 Cumulative disaster impacts across different business categories and regions. Results are shown for
different aggregation time thresholds, including (A) landfall to T month from landfall, (B) until 2 months from
landfall, and (C) until 4 months from landfall

during the first month. This indicates that the building material businesses in San Juan lost
10 days worth of customers who were supposed to visit if the disaster did not occur. Most
of the regions and business categories experience a negative impact in the first month,
except for hotels in San Juan. We also clearly observe the urban-rural disparity in disas-
ter impacts across many of the business categories across all three temporal thresholds.
However, the urban-rural gap gradually closes down as time passes, and in many of the
industries we observe little differences by 4 months from landfall (e.g. building material,
grocery stores, restaurants, and telecommunications).

Although the general patterns show consistent insights such as the urban-rural disparity,
larger impact right after the landfall, and differences in disaster impacts across business
categories, we are not able to delineate the effects of each characteristic on disaster im-
pacts. In the next section, we attempt to reveal the impacts of business characteristics on
the observed disaster impacts, by applying a hierarchical Bayesian modeling technique
[43].
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6.2 Delineating the effects on disaster impact
Although the results shown in the previous section revealed various patterns and corre-
lations, the quantified disaster impacts were all conditioned on various features including
the business characteristics (e.g. business category and location) and disaster characteris-
tics. To delineate such effects and to understand the resilience of different business types,
we apply a hierarchical Bayesian model (HBM) approach. Note that the HBM is applied
in an independent step from the previous section, thus the uncertainty in the first step is
not being carried over. The model was implemented using stan, which performs sam-
pling using Hamiltonian Monte Carlo method, and was coded on the Pystan package.
Sampling was performed for 20,000 iterations with the first 1000 used as warm-up. Thus,
in total 19,000 samples were drawn for each parameter. The sampling was ran on a reg-
ular laptop computer with an Intel i7 processor with 3.30 GHz, and 8 GB of RAM. The
sampling took less than 5 minutes in total, which was much faster than the BSTS model
due to the small number of parameters. The mixing of the sampling was effective, where R
values were extremely close to 1.0000 (+0.0001) for all parameters. Effective sample sizes
were all significantly large, where the least was 5143.

Figure 9 shows the posterior estimates of the model parameters in the hierarchical
Bayesian model (8,6, y). The housing damage observed in the county of the business lo-
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Figure 9 Posterior estimates of model parameters of the hierarchical Bayesian model. Using the model, we
are able to understand the business impacts that each business category experiences conditioned on other
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cation had a significantly negative effect on the cumulative disaster impact, which was
very intuitive. On the other hand, the intercept as well as the pre-disaster business size,
which was measured by the mean visits to each business in the first 150 days of the ob-
servation (Hurricanes Irma and Maria struck on days 248 and 262), had no effect on the
disaster impact. This contradicted previous studies which claim that business sizes have
significant impact on the recovery of businesses [4]. However, the study did not have de-
tailed information on the category of the business (only whether or not the business was
in the service sector). The effect of the business category may have negated the effect of
pre-disaster business size. The estimated location effect agreed with our previous analyses
(Figs. 7 and 8), showing that urban businesses had less negative disaster impact than rural
ones. By delineating all of these effects, we are able to estimate the business impacts that
each business category experiences, conditioned on other factors such as housing damage
rates, pre-disaster business sizes, and locations. The estimated effects (y parameter esti-
mates) are shown in the right column of Fig. 9. This shows that gasoline stations, hotels,
building material, and telecommunications had positive disaster impacts, meaning that
people visited these locations after the disaster more than before. This agrees with vari-
ous news articles and studies that raise evidence of people rushing to purchase gas [45] and
evacuating and staying in hotels [46]. This also reflects the household recovery process,
where people purchase building materials for rebuilding homes and visits telecommuni-
cation companies to fix their mobile devices for internet connectivity. On the other hand,
universities and supermarkets had a significant negative disaster effect. Again, this agrees
with closures of universities in Puerto Rico after Hurricane Maria [47] and news articles

pointing out under-supply in supermarkets after the disaster [48].

7 Discussion

In this study, we used business visit data collected from mobile phone trajectories in
Puerto Rico and New York to quantify the causal impact of Hurricane Maria on businesses
in Puerto Rico. Using the Bayesian Structural Time Series (BSTS) model, we predicted the
counterfactual (what if the disaster did not happen) daily visit counts to businesses in
Puerto Rico, and computed the point-wise disaster impact as well as the cumulative dis-
aster impact of Hurricane Maria. Performances of the BSTS models were evaluated, and
was found that whether the covariates (information of daily visit counts of businesses not
affected by the disaster) positively contributes to the prediction accuracy varied across
businesses. Furthermore, the estimated disaster impacts were analyzed using hierarchical
Bayesian models to understand the effects of various business characteristics on disaster
impacts.

The findings in this study should be considered in the light of some limitations. First,
the assumptions we make on the data to estimate business performance has several lim-
itations. We used daily visit data as a proxy to estimate the performances of businesses
in this study. However, we note that this approximation only holds when the business is a
business-to-customer (B2C) type. If the main flow of transactions of the business is with
other companies, mobile phone data would not be an appropriate data source for analysis.
This is why we limited the study to 9 business categories that all usually have customers
visit their stores to make profit. Moreover, although a previous study showed that the
number of visits estimated from mobile phone data correlates well with actual business
performances through the case study of a coffee chain [24], we could not fully validate
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this for other businesses in this study due to lack of corporate finance data. Further in-
vestigation on the relationships between business performances and customer visits after
disasters would be worthy of investigation in future research. Second, although our study
was able to produce more spatio-temporally granular and scalable analysis and estimations
of disaster impacts on businesses compared to past studies using surveys, our study did
miss some of the advantages of survey studies. Previous studies have revealed that more
detailed characteristics of the businesses such as years of operation, number of employees,
and age of the owner all affect the recovery performance after disasters [4]. Due to the lim-
itations in data collection, we were not able to include such covariates in the hierarchical
Bayesian model in the latter section of the analysis. Further efforts in combining different
data sources (e.g. mobile phone data and survey data) to complement each other would
be a very interesting research direction. Third, from a methodological point of view, one
could apply a more complex method to select and generate covariates for predicting future
daily visit counts. In this study, we applied a heuristic approach in choosing the covariates
for prediction, where the business that was most highly correlated with the target busi-
ness daily counts was selected. Empirical validation showed that in some cases, using the
covariate decreased the prediction accuracy. Efficient algorithms to detect and select ap-
propriate covariates for future time series prediction would be of future research interest.
Finally, the analysis was limited to a 160 day period after the hurricane, thus we were not
able to test whether the method could perform well for longer time periods. Expanding
the time horizon using additional data could yield more robust insights and implications
on the model.

We finally discuss how the methods, analysis, and findings presented in this study may
be applied in disaster management and policy making. As mentioned in the introduction,
surveys have been the primary data source to estimate economic losses after disasters for
policy makers. On the other hand, large scale mobility datasets have been more common
in the decision making processes in various domains including epidemic control, traffic
management and disaster relief. This study lays out an example of how such large scale
mobility data can be used for i) post-disaster assessment and monitoring, ii) economic
cost estimation, and iii) developing relief supply allocation strategies. As shown in Figs. 5,
7, and 8, we are able to quantitatively monitor the negative impact and recovery of each
business using the models in this paper. It is not technically difficult to detect businesses
that are struggling to recovery after the disaster, and carry out assistance programs for
those businesses. Moreover, the estimated point-wise or cumulative disaster impacts can
be multiplied with the average money spent per customer, to easily calculate the daily or
total economic loss for each business. We can also identify the business categories that
have not recovered in each region to develop strategies for allocating relief supplies, for

example, for distributing gasoline across the island.

8 Conclusion

Quantifying the economic impact of disasters to businesses is crucial for disaster relief and
preparation. The availability of large scale human mobility data enables us to observe daily
visit counts to businesses in an unprecedented spatio-temporal granularity. In this work,
we presented a methodology to estimate the causal impact of disasters to businesses from
mobile phone location data, using a Bayesian modeling framework. The methodology was
used to quantify the causal impact of Hurricane Maria on businesses in Puerto Rico. The
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estimation results provide insights on what types of businesses, located where, are able
to recovery quickly after the hurricane. Such insights could assist policy makers during
disaster preparation and relief processes.
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