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1. Introduction.

Let X be a random variable with mean EX = µ and variance Var(X) = �2,
where both µ and �2 are unknown; in what follows, P will denote the distribution
of X and P2,� – the class of all distributions possessing 2 finite moments and
having variance �2. We will be interested in robust estimators bµ of µ constructed
from the data X1, . . . , XN generated as follows: the initial non-corrupted sample
X1, . . . , XN 0 of independent, identically distributed copies of X is merged with
a set of O < N 0 outliers that are independent from the initial sample, and the
combined sample of cardinality N := N 0+O is given as an input to an algorithm
responsible for construction of the estimator. This contamination framework
is more general than Huber’s contamination model [Hub64, CGR16] where the
outliers are assumed to be identically distributed, but weaker than the framework
allowing adversarial outliers [KL93, Val85] that may for instance depend on
the initial sample. Robustness will be quantified by two properties: first, in
the situation when O = 0, the estimators should admit tight non-asymptotic
deviation bounds of the form

|bµ� µ|  C�

r
s

N
(1.1)

with probability at least 1 � 2e�s, where C > 0 is an absolute constant. In
particular, we will be interested in the estimators that attain such deviation
guarantees uniformly over 0 < s <  P (N) where  P (N) is an increasing
function that might depend on the law of X 1; guarantees of type (1.1) can be
informally labeled as “robustness to heavy tails.” Second, the estimators of interest
should perform optimally with respect to the degree of outlier contamination
characterized by the quantity " := O

N
.

Another important property that we focus on is asymptotic efficiency. Infor-
mally speaking, efficiency measures how “wasteful” an estimator is: an efficient
estimator will capture all the information available in the sample; alternatively,
in many cases it is possible to conclude that the confidence intervals centered
at an efficient estimator will have (at least asymptotically) smallest possible
diameter. It is difficult to quantify efficiency using only finite-sample guaran-
tees of type (1.1) as the constants in these bounds are rarely sharp, at least,

1
It follows from results in [DLLO16] that the function  P (N) can not be chosen to be

independent of P , no matter how slow its growth is. At the same time, our results show that

for every � > 0 and P 2 P2,� , such a function exists.
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for practical considerations, and therefore a common approach is to take an
asymptotic viewpoint. Specifically, we will be looking for the estimators that are
asymptotically normal and have asymptotic variance that is as small as possible
in the minimax sense, that is,

p
N (bµ� µ)

d
�! N (0, ⌫2) as N ! 1, where d

�!

denotes convergence in distribution and ⌫2 := ⌫2(bµ, P ) is such that

sup
P2P2,�

⌫2(bµ, P ) = inf
eµ

sup
P2P2,�

⌫2(eµ, P ).

Here, the infimum is taken over all asymptotically normal (after rescaling by
p
N)

estimators eµ of µ. It is easy to see that infeµ supP2P2,�
⌫2(eµ, P ) = �2 (for reader’s

convenience, the proof of this simple fact is given in Lemma 6.5), therefore, it
suffices to find a robust estimator that satisfies

p
N (bµ� µ)

d
�! N (0,�2) for all

P 2 P2,�. For instance, the sample mean is an example of the estimator with
required asymptotic properties that is not robust, while the popular median-of-
means estimator [NY83] is robust but not asymptotically efficient [Min19].

In this paper we construct the first, to the best of our knowledge, example of
an estimator of the mean that is provably (a) robust to the heavy tails of the
data-generating distribution P ; (b) admits optimal error bounds with respect to
the outlier contamination proportion " = O

N
; (c) is asymptotically efficient and

(d) is almost tuning-free, meaning that it does not require information about any
parameters of the distribution besides the upper bound for the contamination
proportion ". We also show how to make our procedure fully adaptive. Our
construction is novel and is inspired by the properties of self-normalized sums.

The rest of the paper is organized as follows: section 2 introduces the estimator
and explains the main ideas behind its construction; the key results are presented
in section 3, while comparison of our estimator with existing robust estimation
techniques in the context of properties (a) - (d) is presented in section 3.4.
Finally, a fully adaptive procedure is outlined in section 4 while the supporting
numerical simulations are included in section 5. The proofs of the main results
are contained in section 6. All notation and auxiliary results will be introduced
on demand.

2. Construction of the estimator.

We restrict our attention to the estimators that are obtained via aggregating
the sample means evaluated over disjoint subsets (also referred to as “blocks”)
of the data. Specifically, assume that {1, . . . , N} =

S
k

j=1 Gj where Gi \Gj = ;

for i 6= j and |Gj | = n = N/k is an integer, and let µ̄j :=
1

|Gj |

P
i2Gj

Xi be the
sample mean of the observations indexed by Gj . We consider estimators bµN of
the form

bµN =
kX

j=1

↵j µ̄j (2.1)

for some (possibly random and data-dependent) nonnegative weights ↵1, . . . ,↵k

such that
P

k

j=1 ↵j = 1. For example, the well known median-of-means esti-
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mator [NY83, AMS96, LO11] corresponds to the case ↵bj = 1 for bj such that
µ̄bj = median (µ̄1, . . . , µ̄k) and ↵bj = 0 otherwise. Construction proposed in this
paper starts with an observation that it is natural to choose the weights that
are inversely proportional to some increasing function of the standard deviation
of each block. Indeed, the estimation error of the sample mean µ̄j in each block
of the data is essentially controlled by the corresponding sample standard devia-
tion b�j :=

q
1

|Gj |

P
i2Gj

(Xi � µ̄j)2. To understand why, consider the following
obvious identity:

|µ̄j � µ| =

����
µ̄j � µ

b�j

���� b�j .

The random variable µ̄j�µ

b�j
, which is equal up to normalization to the Student’s

t-statistic, is known to be tightly concentrated around 0: namely, it is bounded
by

���
q

t

n

��� with probability at least 1 � e�ct for t  c0n where c, c0 are positive
constants, even if data are heavy-tailed (a more precise version of this fact is
stated below). Therefore, |µ̄j � µ| is bounded by a multiple of b�j

p
n

with high
probability. And, while the error |µ̄j � µ| is unknown, the quantity b�j is fully
data-dependent. This motivates the choice of the weights of the form

↵j =
1/b�p

jP
k

i=1 1/b�
p

i

(2.2)

for some p � 1; in what follows, the estimator (2.1) with weights (2.2) will be
denoted bµN,p. When we need to emphasize the specific value of k used in the
construction, we will write bµN,p(k). Observe that when p = 1, the estimation
error satisfies

bµN,1 � µ =
1
k

P
k

j=1
µ̄j�µ

b�j

1
k

P
k

j=1
1
b�j

, (2.3)

which is proportional to the average of t-statistics evaluated over k independent
subsamples. It is therefore natural to expect that bµN,1 � µ will satisfy strong
deviation guarantees.

Let us present now an example where the weights corresponding to p = 2 arise
naturally. Observe that one can model outliers by assuming that the variances of
the data differ across k groups, where large variance corresponds to a corrupted
subsample: Xi, i 2 Gj ⇠ N(µ,�2

j
) for some µ 2 R and positive but unknown

�1, . . . ,�k. The maximum likelihood estimator eµ in this model is easily seen to
satisfy eµ = argminz2R

P
k

j=1 |Gj | log
⇣P

i2Gj
(Xi � z)2

⌘
. Equivalently, eµ can be

defined via

eµ = argminz2R

kX

j=1

|Gj | log

 
1 +

✓
µ̄j � z

b�j

◆2
!
.

An approximate solution can be obtained via minimizing the first-order approxi-
mation of the loss function z 7!

P
k

j=1 |Gj |

⇣
µ̄j�z

b�j

⌘2
that attains its minimum at
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the point
kX

j=1

µ̄j

|Gj |/b�2
jP

k

i=1 |Gi|/b�2
i

=
kX

j=1

µ̄j

1/b�2
jP

k

i=1 1/b�2
i

,

which is the estimator (2.1) with weights defined in (2.2) for p = 2. In the
following sections we will present non-asymptotic deviation bounds for the
estimator bµN,p for all values of p � 1 and will establish its asymptotic efficiency
in the absence of outliers.

3. Main results.

The goal of this section is to prove the deviation inequality for the estimation
error bµN,p�µ for any p � 1, where the estimator bµN,p corresponds to the weights
defined by (2.2).

3.1. Preliminaries.

In this section, we consider the simple framework of i.i.d data without outliers. We
will start with a brief review of concentration inequalities for the self-normalized
sums. It is known (for example, see the book [PLS08]) that the properties of the
t-statistics

Tj :=

(
µ̄j�µ

b�j
, b�j > 0,

0, b�j = 0
(3.1)

evaluated over subsamples indexed by G1, . . . , Gk are closely related to the
behavior of the self-normalized sums Qj :=

µ̄j�µ

Vj
where V 2

j
:= 1

|Gj |

P
i2Gj

(Xi �

µ)2. Indeed, it is easy to see that Tj = f(Qj) where f(z) = z
p
1�z2 . The following

inequality is well known (cf. Theorem 2.16 [PLS08]): for any j = 1, . . . , k and
any x > 0, 2

|Qj | 
xp
|Gj |

✓
1 +

4�

Vj

◆
(3.2)

with probability at least 1 � 4e�x
2
/2, as long as E(X � µ)2 < 1. In order to

deduce a non-random upper bound from (3.2), it suffices to control the ratio 1
Vj

.
To this end, define

⇣(X) := inf
�
a > 0 : E

�
|X � µ|21{|X � µ|  � · a}

�
� �2/2

 
.

As long as Var(X) is finite, it is clear that ⇣(X) < 1.

Lemma 3.1. With probability at least 1� e
�

n
40⇣2(X)_6 , Vj �

�

2 .

2
Since |Qj |  1, the inequality is nontrivial only for x <

p
|Gj |.
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Combining this inequality with the bound (3.2), we deduce that for any 1  j  k
and any x > 0,

|Qj | 
9x
p
n
, (3.3)

with probability at least 1� 4e�x
2
/2

� e
�

n
40⇣2(X)_6 . If moreover x 

p
n/18, then

the relation Tj = f(Qj) immediately implies that t-statistics Tj satisfy the bound

|Tj | 
11x
p
n

(3.4)

with probability at least 1 � 4e�x
2
/2

� e
�

n
40⇣2(X)_6 for each 1  j  k. Al-

ternatively, the previous argument also implies that the random variables
Tj1{|Qj |  1/2, Vj � �/2} satisfy the deviation inequality

Pr

✓
|Tj1{|Qj |  1/2, Vj � �/2}| �

11x
p
n

◆
 4e�x

2
/2.

Therefore, we conclude that the random variable Tj , truncated at the right level,
behaves like a sub-Gaussian random variable.3 This fact is formalized in Lemma
6.1 and is one of the key ingredients used to show that proposed estimators have
sub-Gaussian deviations.

3.2. Non-asymptotic deviation inequalities.

In the simplest case p = 1, equation (2.3) suggests that in order to bound the
estimation error bµN,p � µ, it suffices to control the average 1

k

P
k

j=1
µ̄j�µ

b�j
and

the harmonic mean
⇣

1
k

P
k

j=1
1
b�j

⌘�1
separately. Similar intuition holds for other

values of p as well. In what follows, we will always assume that O  Ck for some
C < 1, where O is the number of outliers in the sample. Define the event

Ep :=

8
><

>:

0

@1

k

kX

j=1

1

b�p

j

1

A
�1



✓
4�

1� C

◆p

9
>=

>;
. (3.5)

Ep holds whenever the harmonic mean of the (powers of) sample variances does
not exceed the corresponding power of the true variance �2 by too much. In
particular, in the absence of outliers, we can replace C by 0 in the previous event.
Informally speaking, the harmonic mean of a set of numbers is controlled by its
smallest elements, therefore, it is natural to expect that the event Ep holds with
overwhelming probability; this claim will be formalized in the following lemma
whose proof is deferred to Section 6.3.

3X has sub-Gaussian distribution if 9K > 0 such that 8p � 1 E(|X � µ|p)1/p  K
p
p). See

section 2.5 in [Ver18] for the details.
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Lemma 3.2. Recall the contamination framework defined in Section 1. Suppose
that E|X � µ|1+� < 1 for some 1  �  2 and that O  Ck for some C < 1.
Then

Pr(Ep) � 1� e�ck(1�C)(1+(��1) logn)

for some constant c > 0 that depends on � and E|X � µ|1+�. Moreover, if X has
sub-Gaussian distribution, then

Pr(Ep) � 1� e�c(1�C)N

for some constant c > 0 that depends on the distribution of X.

Note that the condition O < Ck only requires C to be smaller than 1: it
means that for our technique to reliably estimate the true mean, it suffices that
any constant positive fraction of subsamples indexed by G1, . . . , Gk are free from
the outliers, while the popular median-of-means estimator requires at least 50%
of the subsamples to be “clean”. In practical applications, this difference can be
substantial, and our simulation results (see section 5) confirm this observation.

Our first result presents non-asymptotic deviation bounds for the case when
the sample does not contain outliers.

Theorem 3.1. Suppose that E|X � µ|1+� < 1 for some 1  �  2. Then with
probability at least 1� 2e�s

� ke�cn
� Pr(Ec

p
),

|bµN,p � µ|  Cp�

 r
s+ 1

N
+ �(�, n)

!
(3.6)

where c > 0 depends only on ⇣(X), Cp > 0 depends only on p, and

�(�, n) =

(
o(n��/2), � < 2,

O(n�1), � = 2

as n ! 1.

Combination of Theorem 3.1 with Lemma 3.2 readily implies that bµN,p admits
sub-Gaussian deviation guarantees for s = k .

p
N/ logN . Indeed, in that case

we get with probability at least 1� 3e�k that

|bµN,p � µ|  C 0

p
�

r
k + 1

N
.

As we explain in the remark below, if k is chosen appropriately, this statement
can often be strengthened to yield uniform deviation guarantees holding in the
range 0  s  k.

Remark 3.1. Dependence of the constant c on ⇣(X) is inherited from Lemma
3.1. The constant ⇣(X) can be arbitrary large, therefore the inequality of Theorem
3.1 does not hold with overwhelming probability uniformly over the class of
distributions P2,�. To achieve uniformity, we need to assume slightly more about
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the distribution of X – for example, one may impose the “small ball” condition
Q(u) := Pr(|X � EX| � u) � c̃ > 0, or the equivalence of moments of order 2
and 2+ � for some � > 0, namely that E|X�EX|

2+�
 C̃(E|X�EX|

2)1+�/2 for
some fixed C̃ > 0. Then our bounds will depend on the constant c̃ or C̃ instead,
and dependence on ⇣(X) can be suppressed: for instance, when the moments of
order 2 and 2+� are equivalent, we have that E(|X�µ|21{|X�µ| � �(2C)1/�}) 
�2/2 in view of Markov’s inequality, thus ⇣(X)  (2C)1/�. This justifies the
claim that assuming ⇣(X) to be “small” is a relatively mild requirement. In simple
terms, we ask that the distributions in question assign non-trivial mass to a
fixed neighborhood of their means. It is also interesting to take a viewpoint that
assumes the distribution of X to be fixed while the parameters n, k ! 1: in this
case, one can establish stronger claims about mean estimation – for instance,
the deviations in (1.1) can be shown to be uniform over a range of values of
parameter s.

Remark 3.2. A more precise bound for the “bias term” �(�, n) has the form

�(�, n) = n��/2
·

⇣
n�

2��
4 _ g

2��
2+� (n1/4)

⌘
,

where g(u) = E
�
|X � µ|1+�1{|X�µ|�u}

�
. It is therefore easy to see that whenever

k = o
⇣
N

��1
�

⌘
, the term �(�, n) is o(N�1/2) and the sub-Gaussian deviation

guarantees (3.6) hold uniformly over s . k (the latter restriction appears due to
the fact that the probability of event Ep depends on k as e�ck).

In the case when � = 1, �(�, n) = o

✓q
k

N

◆
so that sub-Gaussian deviation

guarantees hold with s = k . n. However, if k is large enough, namely, if

k
⇣
n�

1
4 _ g

1
3 (n1/4)

⌘2
= O(1), we can still achieve the situation when �(�, n) =

O
�
N�1/2

�
. In this case, deviation guarantees hold uniformly over s . k. The

price that we have pay however is the fact that k can grow arbitrarily slowly as a
function of N , but this is unavoidable in general as shown in [DLLO16].

Next, we discuss the more general contamination framework described in the
introduction. For each block Gj , we denote by Wj the number of outliers in
Gj and by µ̄I

j
(respectively µ̄C

j
) the sample mean corresponding to the inliers

(respectively outliers) within Gj . For every set of outliers O we define

↵(O) := 1 + min
j:Wj 6=0

Wj(µ̄I

j
� µ̄C

j
)2

n�2
. (3.7)

Informally speaking, ↵(O) can be viewed as a proxy for the magnitude of the
outliers. The following extension of Theorem 3.1 holds.

Theorem 3.2. Suppose that E|X�µ|1+� < 1 for some 1  �  2, and O  Ck
for some C < 1. Then with probability at least 1� 2e�s

� ke�cn
� Pr(Ec

p
),

|bµN,p � µ| 
Cp�

(1� C)p

 r
s+ 1

N
+ �(�, n) + ↵(O)�(p�1)/2 O

k
p
n

!
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for c > 0 depending only on ⇣(X), Cp > 0 depending only on p, ↵(O) defined
via (3.7), and �(�, n) defined as in Theorem 3.1.

One may notice that ↵(O)�(p�1)/2
 1, and this quantity gets smaller as

p grows, suggesting that the estimator bµN,p is more robust to the outliers of
large magnitude as p increases. Next, let us discuss the term O

k
p
n
= "

p
n that

quantifies dependence of the estimation error on the fraction of outliers " = O

N
.

It is easy to see that the “best” choice of k for which the terms �(�, n) and O

k
p
n

are of the same order is k / N"
2

1+� yielding the error rate of "
�

1+� that is known
to be optimal with respect to � (e.g. see section 1.2 in [SCV17] or Lemma 5.4 in
[Min18]). However, as the upper bound depends explicitly on the magnitude of
outliers through ↵(O), in some scenarios it can be much smaller than the worst
case given by O

k
p
n
.

3.3. Asymptotic efficiency.

The following result establishes asymptotic efficiency (in a sense defined in section
1) of the estimator bµN,p for any p � 1 in the absence of outliers, implying that
the estimator can not be uniformly improved in general.

Theorem 3.3. Suppose that E|X � µ|1+� < 1 for some 1  �  2. Let
{kj}j�1 ⇢ N, {nj}j�1 ⇢ N be two non-decreasing, unbounded sequences satisfyingp
Nj�(�, nj) = o(1) as j ! 1, where Nj := kjnj and �(�, n) was defined in

remark 3.2. Then for any p � 1,
p
Nj

�
bµNj ,p � µ

� d
�! N

�
0,�2

�
as j ! 1.

Condition
p

Nj�(�, nj) = o(1) is essentially a requirement that the bias
of estimator bµNj ,p is asymptotically of order o

⇣
N�1/2

j

⌘
. It is not difficult to

check that the sequences {kj}j�1, {nj}j�1 with required properties exist for
any distribution P 2 P2,�, see remark 3.2 for the details. For example, if
E|X � µ|3 < 1, it suffices to require that kj = o(nj).

Together, results of section 3 imply that the estimator bµN,p can be viewed as a
true robust alternative to the sample mean – it preserves its desirable properties
such as asymptotic efficiency while being robust at the same time.

3.4. Comparison with existing techniques.

One of the most well-known consistent, robust estimators of the mean in the
class P2,� is the median-of-means estimator [NY83, AMS96, LO11]. While it
is robust to heavy tails, adversarial contamination, and is tuning-free, it is
not asymptotically efficient: indeed, according to Theorem 4 in [Min19], the
asymptotic variance of the median-of-means estimator is ⇡

2�
2. This fact is

illustrated in our numerical experiments in section 5. Another family of estimators
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belonging to the broad class defined via equation (2.1) is discussed in section 2.4
in [Min19] and is defined via

eµN = argminz2R

kX

j=1

⇢

✓p
n

�
(µ̄j � z)

◆

where ⇢ is Huber’s loss ⇢(z) = min
⇣

z
2

2 , |z|� 1
2

⌘
and � > 0. The asymptotic

variance of this estimator can be made arbitrarily close to �2, however, achieving
this requires �2 to be known.

Construction of Catoni’s estimator [Cat12] again requires knowledge of �2 (or
its tight upper bound), moreover, it is not robust to adversarial contamination.
Finally, deviation bounds for the trimmed mean estimator obtained in [LM19b]
are not uniform with respect to the confidence parameter s (meaning that differ-
ent choices of s require the estimator to be re-computed), and its asymptotic
efficiency, while plausible, has not been formally established. Moreover, construc-
tion employed in [LM19b] requires sample splitting. Recently, Lee and Valiant
[LV20] showed that it is possible to construct a mean estimator that achieves
sub-Gaussian guarantees with essentially optimal constants, however, their es-
timator explicitly depends on the desired confidence level, and its asymptotic
behavior is not discussed.

The only other robust, tuning free estimator that is asymptotically efficient,
albeit only for a subclass of P2,�, is a permutation-invariant version of the median-
of-means estimator (which is also the higher order Hodges-Lehmann estimator).
It is defined as follows: let A

(n)
N

:= {J : J ✓ {1, . . . , N},Card(J) = n} be a
collection of all distinct subsets of {1, . . . , N} of cardinality n, ✓̄J := 1

n

P
j2J

Xj ,

and eµU := median
⇣
✓̄J , J 2 A

(n)
N

⌘
. We note that Card

⇣
A

(n)
N

⌘
=
�
N

n

�
, so that

for large N and n exact evaluation of eµU is not computationally feasible. The
following result was established recently in [DR20]: assume that Nj = njkj is the
sample size where nj , kj ! 1 as j ! 1 such that nj = o

�p
Nj

�
. Moreover,

suppose that X is normally distributed with mean µ and variance �2. Then
p
N (eµU � µ)

d
�! N

�
0,�2

�
. While is likely that the result still holds for other

symmetric distributions, the condition nj = o
�p

Nj

�
is restrictive: for example,

for non-symmetric distribution possessing 3 finite moments, the bias of the
estimator eµU is of order n�1

j
, and the requirement nj = o

�p
Nj

�
implies that

this bias is asymptotically larger than N�1/2
j

.
Finally, there is a growing body of literature related to sub-Gaussian mean

estimators in Rd, for example see the papers [DM20, LM19a, Hop20], and
references therein. These works are mainly concerned with rate optimality, and
questions related to asymptotic efficiency have not been investigated in detail.

4. Adaptation to the contamination proportion ".

The number of outliers O is usually unknown in practice, therefore, it is desirable
to have a procedure that can adapt to this unknown quantity. Fortunately, the
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proposed method admits a natural adaptive version. This extension is based
on the following observation: assume that p = 1, and consider the estimation

error bµN,1 � µ =
1
k

Pk
j=1

µ̄j�µ

b�j
1
k

Pk
j=1

1
b�j

. Then the numerator of this expression admits an

upper bound
��� 1
k

P
k

j=1
µ̄j�µ

b�j

���  Cp�
⇣p

s

N
+
q

O

N

⌘
that holds for all choices of

k with probability at least 1� 2e�s
� ke�cn, as shown in the proof of Theorem

3.2. Therefore, it suffices to choose k such that the harmonic mean kPk
j=1

1
b�j

is

a good, in a relative sense, estimator of �. Fortunately, the harmonic mean of
standard deviations is a fully data-dependent quantity that can be evaluated for
any k; similar intuition holds for other values of p as well.

Based on the previous observation, we propose an adaptive estimator eµp

defined as follows. We will choose k as the smallest integer, on a logarithmic
scale, which guarantees that kPk

j=1
1
b�pj

is not too large compared to �p, in a

sense defined by (3.5). To this end, we only need to obtain a good preliminary
estimator of � that we can compare the harmonic means to. Assume that we are
already given an estimator e� such that

1/20 
e�
�

 4 (4.1)

with large probability. The above assumption is not restrictive since, as we will
show in section 6.8, one can construct e� such that (4.1) holds with probability
at least 1� e�cN for some absolute c > 0, under mild conditions. Next, for each
positive integer k, set

eEp(k) :=

8
><

>:

0

@1

k

kX

j=1

1

b�p

j

1

A
�1



✓
80e�
1� C

◆p

9
>=

>;
.

Finally, define k̃ via log2 k̃ := inf
n
i 2 {1, . . . , blog2 Nc} : eEp(2i) holds

o
_ 1, 4

and the corresponding estimator eµp(s) := bµN,p(k̃_bsc+1). The following bound
is the main result of this section; essentially, it states that eµp(s) is a robust
estimator that is fully adaptive and provides sub-Gaussian deviation guarantees.

Theorem 4.1. Suppose that E|X � µ|2 < 1. Assume that 2  O  N/4 and
that e� satisfies (4.1). Then with probability at least 1 � 2 log2 (3O)e�s

� (O _

s)e�cN/(O_s),

|eµp(s)� µ|  Cp�

 r
s

N
+

r
O

N

!
,

where c > 0 depends only on the distribution of X and Cp > 0 depends only on
p.

4
We assume that the infimum over the empty set is equal to �1.
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5. Numerical simulation results.

The goal of this section is to compare performance of the estimators bµN,p for
different values of p � 1, as well as evaluate their performance against the
benchmarks given by other popular techniques such as the median-of-means
estimator and the “oracle” trimmed mean (labeled “trim” in the figures) estimator
that takes the contamination proportion " as its input.

Our simulation setup was defined as follows: N = 2500 observations from half-
t distribution5 with 4 degrees of freedom (d.f.). This distribution is asymmetric,
therefore, results allow us to evaluate the degree to which the bias affects
performance of different robust estimators; linear transformation has been applied
so that the mean and variance of generated data are 0 and 1 respectively. Next,
O 2 {0, 50, 100, 150} randomly selected observations have been replaced by the
outliers given by the point mass at x0 = 103; this type of outliers appears to be
most challenging for the trimmed mean estimator as it creates bias due to “inliers”
being removed only from one of the tails of the distribution. We compared 4
estimators: the median-of-means (MOM) estimator defined after equation (2.1),
estimators bµN,1 and bµN,2 corresponding to the choice of weights (2.2) with p = 1
and p = 2, as well as the “oracle” trimmed mean estimator [LM19b] that knows
the number of outliers. Specifically, trimmed mean was computed by removing
the smallest b"Nc+ 5 and well as largest b"Nc+ 5 observations, where 5 was
added to account for the outliers due to the heavy tails, and averaging over the
rest. Estimators bµN,1, bµN,2 as well as MOM were evaluated for various values
of parameter k 2 {25, 50, 75, 100, 125, 150, 175, 200} that controls the number of
subgroups.

For each combination of values of O and k, simulation was repeated 1000 times;
we present 3 summary statistics in the plots below: the average error (Figure
1), the standard deviation (Figure 2) and the maximal (over 1000 repetitions)
absolute error (Figure 3).

Overall, numerical experiments confirm our theoretical findings. Here is the
summary of our simulation results:

1. In the setup with no contamination (O = 0), all estimators showed good
performance, with bµN,1 slightly but consistently beating bµN,2 on average,
but bµN,2 had the smallest maximal error among all estimators; empirical
standard deviations of bµN,1 and bµN,2 were consistent with theory-predicted
values;

2. as O increased, bµN,2 was performing better that bµN,1, while both estimators
were significantly better than MOM;

3. both bµN,1 and bµN,2 showed consistent performance as the number of blocks
k increased; moreover, unlike MOM, the estimators performed well even in
the challenging setup where O ' k.

5X has half-t distribution with ⌫ d.f. if X = |Y | where Y has Student’s t-distribution with

⌫ d.f.
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Fig 1: Average estimation error over 1000 runs of the experiment; large values
were truncated to show results on appropriate scale.

6. Proofs.

This section contains detailed proofs of the main results of the paper.

6.1. Results related to the deviations of self-normalized sums.

6.1.1. Proof of Lemma 3.1.

Let Zi :=
Xi�µ

�
, and observe that

Pr

 
nX

i=1

Z2
i


n

4

!
 Pr

 
nX

i=1

Z2
i
1{|Zi|  ⇣(X)} 

n

4

!

= Pr

 
nX

i=1

�
Z2
i
1{|Zi|  ⇣(X)}� EZ2

i
1{|Zi|  ⇣(X)}

�


n

4
� nH

!

 Pr

 
nX

i=1

�
Z2
i
I{|Zi|  ⇣(X)}� EZ2

i
1{|Zi|  ⇣(X)}

�
 �

n

4

!
,

where H = EZ21{|Z|  ⇣(X)}. The last inequality follows from the inequality
H = EZ21{|Z|  ⇣(X)} � 1/2 implied by the definition of ⇣(X). The right
side of the previous display can be upper bounded via Bernstein’s inequality by
e
�

n
32(⇣2(X)+⇣(X)/12) once we notice that

E
�
Z41(|Z|  ⇣(X)

�
 ⇣2(X).

The claim follows from an algebraic inequality 12⇣2(X) + ⇣(X)  15⇣2(X) _ 2

entailing that e
�

n
32(⇣2(X)+⇣(X)/12)  e

�
n

40⇣2(X)_6 .
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Fig 2: Standard deviation (rescaled by
p
N) over 1000 runs of the experiment;

large values were truncated to show results on appropriate scale.

6.1.2. Bounds for the moment generating function of the t-statistic.

Recall that Tj := µ̄j�µ

b�j
and Qj := µ̄j�µ

Vj
where V 2

j
= 1

|Gj |

P
i2Gj

(Xi � µ)2,
j = 1, . . . , k. For all p � 1 define

wj =
�p�1Tj

b�p�1
j

1{Ej}� E
 
�p�1Tj

b�p�1
j

1{Ej}

!

where Ej = {|Qj |  1/2} \ {Vj � �/2}.

Lemma 6.1. There exists cp > 0 such that, for all � 2 R. we have

E(e�w1)  ecp�
2
/(2n).

Proof. We start by observing that on event E1, b�1 = V1

p
1�Q2

1 �

p
3�
4 . Hence

for all t > 0, the discussion following (3.4) and the inequality |T11{E1}| 
p
3
3

imply that

Pr

 �����
�p�1T1

b�p�1
1

1{E1}

����� � t

!
 Pr

0

@|T11{E1}| � t

 p
3

4

!p�1
1

A  4e�c
0
pnt

2

where c0
p
= 1

2·112

⇣p
3
4

⌘2p�2
. Next, let ew1 be an independent copy of w1, and

note that
Pr (|w1 � ew1| � t)  8e�c

0
pnt

2
/4. (6.1)

It follows from Jensen’s inequality that

Ee�w1  Ee�(w1� ew1).
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Fig 3: Maximal absolute error over 1000 runs of the experiment; large values
were truncated to show results on appropriate scale.

Finally, is well-known that, in view of (6.1), the latter is bounded by e�
2
cp/(2n)

for some cp > 0 only depending on p (for instance, this follows from Proposition
2.5.2 in [Ver18]).

6.2. Auxiliary technical results.

Lemma 6.2. Let p � 1 and � � 1. Assume that E(|X � µ|1+�) < 1. Then for
any 1  j  k

�p�1E
 
µ̄j � µ

V p

j

1{V 2
j
� �2/4}

!
= o

✓
1

n�/2

◆
,

for � < 2. At the same time, for � � 2, we have

�p�1E
 
µ̄j � µ

V p

j

1{V 2
j
� �2/4}

!
= O

✓
1

n

◆
.

Proof. Due to homogeneity, we can assume that � = 1 without loss of generality.
We will also assume that µ = 0, otherwise Xj should be replaced by Xj � µ for
all j. Observe that

�p�1E
 
µ̄j � µ

V p

j

1{V 2
j
� �2/4}

!
= np/2E

✓
X1

(X2
1 + Z2)p/2

1{X2
1 + Z2

� n/4}

◆
,

(6.2)
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where Z =
pP

n

i=2 X
2
i
. Consider the event O1 = {Z2

� n/4}, and recall that in
view of Lemma 3.1

Pr(Oc

1)  e�cn

for some c = c(P ) > 0 that depends on the distribution P of X. Consider the
event

O2 = {|X1|  ↵n

p
n/2},

where the sequence {↵n}n�1 is defined as follows: consider a non-increasing
function g(u) = E(|X|

1+�1{|X|�u}), and observe that lim
u!1

g(u) = 0. Therefore,

taking ↵n := g(n1/4)1/(2+�) _ n�1/4, we get that ↵n ! 0, and moreover

lim
n!1

g(↵n

p
n)

↵1+�
n

 lim
n!1

g(n1/4)

↵1+�
n

 lim
n!1

g
1

2+� (n1/4) = 0.

It is easy to see that

Pr(Oc

2) = o

✓
1

n(1+�)/2

◆
,

and that
E(|X1|1{Oc

2}
) = o

✓
1

n�/2

◆
.

Indeed, Markov’s inequality implies that

Pr(Oc

2) 
21+�E(|X|

1+�1{Oc
2}
)

↵1+�
n n(1+�)/2

=
21+�g(↵n

p
n/2)

↵1+�
n n(1+�)/2

,

and

E(|X1|1{Oc
2}
) 

2�E(|X|
1+�1{Oc

2}
)

↵�
n
n�/2

=
2�g(↵n

p
n/2)

↵�
n
n�/2

 2�
⇣
g(n1/4)

⌘2/(2+�)
n��/2,

where we used Hölder’s inequality. Next, we will reduce the problem to the
case where X and Z are bounded. Define the event eO := O1 \ O2. Then
1 = 1 eO + 1O1\O2

+ 1O2\O1
, and

����E
✓

X1

(X2
1 + Z2)p/2

1{X2
1 + Z2

� n/4}

◆����



����E
✓

X1

(X2
1 + Z2)p/2

1
{ eO}

◆����+ (n/4)�p/2

✓
E(|X1|1{O

c

2}+
↵n

p
n

2
Pr(Oc

1)

◆



����E
✓

X1

(X2
1 + Z2)p/2

1
{ eO}

◆����+ o

✓
1

n(p+�)/2

◆
. (6.3)
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Letting F be the distribution function of X, we deduce that conditionally on Z

����E
✓

X1

(X2
1 + Z2)p/2

1
{ eO}

◆���� =

�����

Z
↵n

p
n/2

�↵n
p
n/2

x

(x2 + Z2)p/2
1{O1}

dF (x)

�����



�����

Z
↵n

p
n/2

�↵n
p
n/2

✓
x

(x2 + Z2)p/2
�

x

Zp

◆
1{O1}

dF (x)

�����+
✓

2
p
n

◆p

E
�
|X1|1{Oc

2}

�



�����

Z
↵n

p
n/2

�↵n
p
n/2

xZp(1� (1 + x2/Z2)p/2)

(x2 + Z2)p/2Zp
1{O1}

dF (x)

�����+ o

✓
1

n(p+�)/2

◆



Z
↵n

p
n/2

�↵n
p
n/2

p|x|3

2Zp+2
1{O1}

dF (x) + o

✓
1

n(p+�)/2

◆

 C(p)E|X|
1+� ↵2��

n

n(p+�)/2
+ o

✓
1

n(p+�)/2

◆
. (6.4)

In the derivation above, we used the elementary inequality

(1 + t)p/2 � 1

(1 + t)p/2
=

R 1+t

1
p

2y
p/2�1dy

(1 + t)p/2


pt

2

(1 + t)p/2�1

(1 + t)p/2
 pt/2 (6.5)

for 0 < t := x
2

Z2 and the fact that E|X|
1+� < 1. Combining (6.4) with (6.2),(6.3),

we see that

�p�1E
 
µ̄j � µ

V p

j

1{V 2
j
� �2/4}

!
= o

✓
1

n�/2

◆

whenever � < 2 and that

�p�1E
 
µ̄j � µ

V p

j

1{V 2
j
� �2/4}

!
= O

✓
1

n

◆
,

for � = 2 (in fact, in this case all the terms are of order o
�
n�1

�
besides

C(p)np/2E|X|
1+� ↵

2��
n

n(p+�)/2 which is O
�
n�1

�
).

Remark 6.1. It follows from the previous argument that the term o
�

1
n�/2

�
takes

the form
n��/2

·

⇣
n�

2��
4 _ g

2��
2+� (n1/4)

⌘
.

Remark 6.2. The key quantity of interest in the previous proof is given by the
expression ����E

✓
X1

(X2
1 + Z2)p/2

1{X2
1 + Z2

� n/4}

◆����

that was then estimated from above. Let us present a counterexample showing
that one cannot improve the result of Lemma 6.2 when � � 2 for p = 1. To
this end, let X be a random variable such that Pr(X = a) = 1/(1 + a2) and
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Pr(X = �1/a) = a2/(a2 + 1) for some 1 < a2  2 and assume that n � 8.
Observe that X is a.s. bounded by a, centered, and has variance 1.

Given x, y > 0, we say that x ⇣ y when c  x/y  C for some absolute
constants c, C > 0. Let EZ denote the conditional expectation with respect to Z.
It is easy to check that on the event A := {Z2

� n/4} we have

EZ

 
X1p

X2
1 + Z2

1{X2
1 + Z2

� n/4}1{A}

!
= EZ

 
X1p

X2
1 + Z2

!
1{A}

=
a

p
a2 + Z2

1

1 + a2
1{A}�

1

a
p

1/a2 + Z2

a2

1 + a2
1{A}

=
a

1 + a2

p
1/a2 + Z2 �

p
a2 + Z2

p
a2 + Z2

p
1/a2 + Z2

1{A}

=
a

1 + a2
1/a2 � a2

p
a2 + Z2

p
1/a2 + Z2(

p
1/a2 + Z2 +

p
a2 + Z2)

1{A}

⇣
a

1 + a2
a2 � 1/a2

Z3
1{A} ⇣

1

n3/2
1{A},

where we have used that on A both a2 and 1/a2 are smaller than Z2 and that
Z2

⇣ n. Since a does not depend on n, X is a.s. bounded by an absolute constant,
and Pr(A) � 1� e�cn for some absolute constant c > 0. Hence

E
 

X1p
X2

1 + Z2
1{X2

1 + Z2
� n/4}

!
⇣

1

n3/2
Pr(A) + Pr(Ac) ⇣

1

n3/2
.

It follows that, for p = 1, we have

E
✓
µ̄j � µ

Vj

1{V 2
j
� �2/4}

◆

= n1/2E
✓

X1

(X2
1 + Z2)1/2

1{X2
1 + Z2

� n/4}

◆
⇣ n�1.

Although X admits infinitely many moments, the previous bound cannot be
improved beyond three moments due to the asymmetry of the distribution of X.

Lemma 6.3. Let p � 1. If Var(X) < 1, then

lim
n!1

�2p�2nE
✓
µ̄1 � µ

V p

1

◆2

1{V 2
1 � �2/4} = 1.

Proof. Again, we can assume without loss of generality that �2 = 1 and that
EX = 0. Observe that

nE
✓
µ̄1 � µ

V p

1

◆2

1{V 2
1 � �2/4} = npE

✓
X2

1

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

◆

+ npE
✓

X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

◆
,
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where Y =
P

n

i=2 Xi and Z =
pP

n

i=2 X
2
i
. It is clear that

np
X2

1

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4} ! X2
1 in probability.

Indeed, 1{X2
1 + Z2

� n/4} ! 1 in probability in view of Lemma 3.1, while⇣
X

2
1+Z

2

n

⌘p

! 1 in probability by the Law of Large Numbers.

Moreover, np X
2
1

(X2
1+Z2)p

1{X2
1 + Z2

� n/4}  4pX2
1 . Therefore

npE
✓

X2
1

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

◆
n!1
����! 1.

It remains to prove that

npE
✓

X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

◆
n!1
����! 0.

Consider the event O1 = {Z2
� n/4}, and recall that Pr(Oc

1)  e�cn for some
c > 0 that depends on the distribution of X as given in Lemma 3.1. We will also
need to consider the event

O2 = {|X1|  ↵n

p
n/2}

where (↵n)n is defined as in Lemma 6.2 with � = 1. Namely, consider the non-
increasing function g(u) = E(|X|

21{|X|�u}), and define ↵n = g(n1/4)1/3 _ n�1/4,
so that ↵n ! 0 and

lim
n!1

g(↵n

p
n)

↵2
n

 lim
n!1

g(n1/4)

↵2
n

= 0.

As in the proof of Lemma 6.2, we deduce that Pr(Oc
2) = o

�
1
n

�
and that

E(|X1|1{Oc
2}
) = o

✓
1
p
n

◆
. (6.6)

Next, we will reduce the problem to the case where X and Z are bounded. Let
eO := O1 \O2. Then

np

����E
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

����

 np

����E
✓

X1Y

(X2
1 + Z2)p

1
{ eO}

◆����+ c1(p)
p
nE(|X1|1Oc

2
)

+ c2(p)n (Pr(Oc

1))
1/2 . (6.7)
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Indeed, 1 = 1 eO + 1O1\O2
+ 1O2\O1

, and

����E
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}1{O1\O2}

����



✓
4

n

◆p�1/2

E
����X11{Oc

2}

2Y
p
n

����

=

✓
4

n

◆p�1/2

E
��X11{Oc

2}

��E
����
2Y
p
n

����

 2

✓
4

n

◆p�1/2

E
��X11{Oc

2}

�� := c1(p)

np�1/2
E
��X11{Oc

2}

��

as E
��� Y
p
n

���  E1/2
Y

2
p
n

 1. Moreover,

����E
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}1{O2\O1}

���� 
✓
4

n

◆p�1/2 ↵n

p
n

2
E
����
2Y
p
n
1Oc

1

����

 2

✓
4

n

◆p�1/2 ↵n

p
n

2
(Pr(Oc

1))
1/2 :=

c2(p)

np�1
(Pr(Oc

1))
1/2 ,

thus (6.7) follows. Next, letting F be the distribution function of X, we deduce
that conditionally on (Y, Z),

����E


X1Y

(X2
1 + Z2)p

1
{ eO}

��Y, Z
����� =

�����

Z
↵n

p
n/2

�↵n
p
n/2

xY

(x2 + Z2)p
1{O1}

dF (x)

�����

=

�����

Z
↵n

p
n/2

�↵n
p
n/2

✓
xY

(x2 + Z2)p
�

xY

Z2p

◆
1{O1}

dF (x)

�����

+

✓
4

n

◆p�1/2
|Y |1O1

Z
E(|X1|1{Oc

2}
)



�����

Z
↵n

p
n/2

�↵n
p
n/2

xY Z2p(1� (1 + x2/Z2)p)

(x2 + Z2)pZ2p
1{O1}

dF (x)

�����

+

✓
4

n

◆p�1/2
|Y |1O1

Z
E(|X1|1{Oc

2}
)



Z
↵n

p
n/2

�↵n
p
n/2

p|x|3|Y |

Z2p+2
1{O1}

dF (x)

+

✓
4

n

◆p�1/2
|Y |1O1

Z
E(|X1|1{Oc

2}
).
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In the derivation above, we used the bound
�����

Z
↵n

p
n/2

�↵n
p
n/2

xY

Z2p
1{O1}

dF (x)

�����



✓
4

n

◆p�1/2
|Y |1O1

Z

�����

Z

R
xdF (x)�

Z
↵n

p
n/2

�↵n
p
n/2

xdF (x)

�����

=

✓
4

n

◆p�1/2
|Y |1O1

Z

��EX11Oc
2

��

and relation
����
xY Z2p(1� (1 + x2/Z2)p)

(x2 + Z2)pZ2p

���� =
����
xY (1� (1 + x2/Z2)p)

(x2/Z2 + 1)pZ2p

���� 
p|x|3|Y |

Z2p+2
,

where the last inequality follows from an elementary bound (6.5). Moreover,

E
 Z

↵n
p
n/2

�↵n
p
n/2

p|x|3|Y |

Z2p+2
1{O1}

dF (x)

!

 2p

✓
4

n

◆p+1/2

E
✓
|Y |
p
n

◆Z
↵n

p
n/2

�↵n
p
n/2

|x|3dF (x)

 4p↵n

✓
4

n

◆p Z

R
x2dF (x) = o

✓
1

np

◆

and

E
 ✓

4

n

◆p�1/2
|Y |1O1

Z

!
E
�
|X1|1{Oc

2}

�



✓
4

n

◆p

E
✓
|Y |
p
n

◆
p
nE(|X1|1{Oc

2}
) = o

✓
1

np

◆

in view of (6.6). Therefore, we see that

lim
n!1

np

����E
X1Y

(X2
1 + Z2)p

1{X2
1 + Z2

� n/4}

���� = 0,

concluding the proof.

Lemma 6.4. Let p � 1, assume that E|X�µ|1+� < 1 for some � � 1. Consider
the event eO = {|Q1|  1/2} \ {V1 � �/2}. Then

�p�1

����E
✓
µ̄1 � µ

b�p

1

1{ eO}

◆����  �(�, n) + 2p�1

r
ke�cn

N
,

where c > 0 depends only on ⇣(X), �(�, n) = o(n��/2) for � < 2 and �(�, n) =
O(n�1) otherwise. Moreover, if Var(X) < 1, then

Var
✓p

n�p�1(µ̄1 � µ)

b�p

1

1{ eO}

◆
n!1
����! 1.
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Proof. We will prove the two claims separately. Recall the algebraic identity
b�1 = V1

p
1�Q2

1. To deduce the first inequality, observe that
����
µ̄1 � µ

b�p

1

�
µ̄1 � µ

V p

1

����1{ eO}

=
|µ̄1 � µ|

V p

1

���(1�Q2
1)

�p/2
� 1

���1{ eO}  p4p�1�p
|Q1|

31{V 2
1 � �2/4},

where we have used the elementary inequality

(1�t2)�p/2
�1 =

✓
1 +

t2

1� t2

◆p/2

�1 

Z 4
3 t

2

0

p

2
(1+u)p/2�1du 

2pp

3p/2
t2 (6.8)

that holds for all 0  t  1/2. Taking (3.2) into account, we get that

E(|Q1|
31{V 2

1 � �2/4}) 
C

n3/2

for an absolute constant C > 0. Indeed, it directly follows from the inequality

Pr

✓
|Q1|1{V

2
1 � �2/4} �

9x
p
n

◆
 4e�x

2

(6.9)

that is valid for all x � 0. As a consequence,
����E

✓
µ̄1 � µ

b�p

1

1{ eO}

◆���� 
����E

✓
µ̄1 � µ

V p

1

1{ eO}

◆����+ C
p4p�1�p

n3/2
. (6.10)

Moreover, we have that
����E

✓
µ̄1 � µ

V p

1

1{ eO}

◆���� 
����E

✓
µ̄1 � µ

V p

1

1{V 2
1 � �2/4}

◆����

+ 2p�1�1�pE(|Q1|1{|Q1| � 1/2} \ {V 2
1 � �2/4})



����E
✓
µ̄1 � µ

V p

1

1{V 2
1 � �2/4}

◆����

+ 2p�1�1�p

q
E(Q2

11{V
2
1 � �2/4}) Pr({|Q1| � 1/2} \ {V 2

1 � �2/4})



����E
✓
µ̄1 � µ

V p

1

1{V 2
1 � �2/4}

◆����+ 2p�1�1�p

r
ke�cn

N
, (6.11)

where we have used (6.9) in the last inequality. We conclude using Lemma 6.2
as long as (6.10) and (6.11) that

����E
✓
µ̄1 � µ

b�p

1

1{ eO}

◆����  �1�p

 
�(�, n) + 2p�1

r
ke�cn

N

!
. (6.12)

The first claim is a consequence of both (6.10) and (6.12) since n�3/2 is always
less than �(�, n).
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Next, we establish the second claim of the lemma. Since, due to the first
inequality of the lemma,

p
n
���E�

p�1(µ̄1�µ)
b�p
1

1{ eO}

��� vanishes as n goes to infinity, it
is enough to prove that the second moment converges to 1. We follow the same
steps as in the first part to deduce that

n�2p�2E
�����

✓
µ̄1 � µ

b�p

1

◆2

�

✓
µ̄1 � µ

V p

1

◆2
�����1{

eO}

= n�2p�2 |µ̄1 � µ|2

V 2p
1

��(1�Q2
1)

�p
� 1

��1{ eO}

 2p8pnE
�
|Q1|

41{V 2
1 � �2/4}

�


pC8p

n
, (6.13)

where we have used (6.8) in the first inequality and (6.9) in the second one.
Moreover, we also have that

n�2p�2E

������

 
µ̄j � µ

V p

j

!2

1{ eO}�

 
µ̄j � µ

V p

j

!2

1{V 2
j
� �2/4}

������

 n4p�1E(Q2
11{|Q1| � 1/2} \ {V 2

1 � �2/4})

 n4p�1
q
E(Q4

11{V
2
1 � �2/4}) Pr({|Q1| � 1/2} \ {V 2

1 � �2/4})

 4p�1e�c
0
n, (6.14)

where we again used (6.9). Combining (6.13) and (6.14), we get that

lim
n!1

Var
✓p

n�p�1(µ̄1 � µ)

b�p

1

1{ eO}

◆

= lim
n!1

n�2p�2E

0

@
 
µ̄j � µ

V p

j

!2

1{V 2
j
� �2/4}

1

A .

The conclusion follows immediately from Lemma 6.3.

Lemma 6.5. In the framework of section 1,

inf
eµ

sup
P2P2,�

⌫2(eµ, P ) = �2.

Proof. Let eP be the family of normal distributions
�
N(µ,�2), µ 2 R

 
. Then

we deduce from the almost-everywhere convolution theorem (Theorem 8.9 in
[VdV00]) that for any eµ, supP2P2,�

⌫2(eµ, P ) � �2. On the other hand, let-
ting eµ be the sample mean eµ = 1

N

P
N

j=1 Xj , we obtain the reverse inequality
infeµ supP2P2,�

⌫2(eµ, P )  �2.



S. Minsker and M. Ndaoud/Robust mean estimation 24

6.3. Proof of Lemma 3.2.

We will first consider the outlier-free case, meaning that O = 0. It is easy to see
that 0

@1

k

kX

j=1

1

b�p

j

1

A
�1

 2median (b�p

1 , . . . , b�
p

k
) .

Hence, Bennett’s inequality yields that

Pr

0

@1

k

kX

j=1

1

b�p

j


1

(4�)p

1

A  Pr (median (b�1, . . . , b�k) � 2�)

 Pr

0

@
kX

j=1

(1{b�2
j
� 4�2

}� ⇡) � k/4

1

A  e�ck(log 1
⇡+1), (6.15)

for some absolute constant c > 0, where ⇡ := Pr
�
b�2
1 � 4�2

�
 Pr

�
V 2
1 � 4�2

�


1
4 .

Alternatively, if X possesses more than 2 moments, we can apply von Bahr-Esseen
inequality [vBE+65] to deduce that

⇡ 
E|X � µ|1+�/�1+�

n
��1
2

,

for any � � 1. It yields that

Pr

0

@1

k

kX

j=1

1

b�p

j


1

(4�)p

1

A  e�c
0
k(1+(��1) logn), (6.16)

for c0 > 0 depending only on the ratio E|X � µ|1+�/�1+�. When X has sub-
Gaussian distribution, we instead use the Hanson-Wright inequality [HW71] and
deduce that

⇡  e
�cn

�4

kXk4
 2

where c > 0 is an absolute constant and kXk 2 is the  2 norm of X 6. In this
case, (6.15) yields that

Pr

0

@1

k

kX

j=1

1

b�p

j


1

(4�)p

1

A  e�c(P )kn
 e�ec(P )N (6.17)

c(P ) := c1
�
4

kXk4
 2

for an absolute constant c1 > 0.
Next, we consider the case O > 0. Let b�(1), . . . , b�(k) be the increasing order

statistics corresponding to b�1, . . . , b�k. If O  Ck for C < 1, then at least a
6
The  2 norm of X is defined via kXk 2 := inf

�
C > 0 : E exp

�
|X/C|2

�
 2

 
.
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fraction of data buckets is outlier-free. Let us call the index set of these buckets
J so that Card(J) � b(1� C)kc, whence

1

k

kX

i=1

1

b�p

i

�
b
(1�C)k

2 c

k

1

b�p

(b(1�C)k/2)c)

.

Hence, we get that

Pr

 
1

k

kX

i=1

1

b�p

i



✓
1� C

4�

◆p
!

 Pr
⇣
b�p

(b(1�C)k/2)c) � 2�
⌘
.

The final result follows from (6.16) and (6.17) replacing k by b(1� C)kc.

Lemma 6.6. Let b�n be such that b�n = Vn

p
1�Q2

n
, and let eO = {|Qn| 

1/2} \ {V 2
n
� �2/4} using previous notations. Then

lim
n!1

E
����
�p

b�p
n

1{ eO}� 1

���� = 0.

Proof. We have that Qn  1/2 and b�2
n
� 3/4V 2

n
� 3/16�2 on eO. Therefore,

E
����
�p

b�p
n

1{ eO}� 1

����  E
����
b�p
n
� �p

b�p
n

����1{ eO}+ Pr( eOc)  cpE
����
b�n � �

b�n

����1{ eO}+ Pr( eOc)

where we have used that for x � 3y/16 > 0,

|xp
� yp|

xp
=

|x� y|

x

p�1X

i=0

⇣y
x

⌘p�i



✓
16

3

◆p
|x� y|

x
.

Moreover,

E
����
�p

b�p
n

1{ eO}� 1

����  CpE
����
V 2
n
� �2

V 2
n
+ �2

����1{ eO}+ c0
p
E
✓

Q2
n
V 2
n

V 2
n
+ �2

1{ eO}

◆
+ Pr( eOc)

 CpE
����
V 2
n
� �2

V 2
n
+ �2

����1{ eO}+
c0
p

n
+ e�cn,

where we employed inequality (6.9) and Lemma 3.1. Observing that the random
variable

���V
2
n��

2

V 2
n+�2

���1{ eO} converges to 0 in probability (in view of the Law of Large
Numbers) and is bounded, hence the convergence holds also in L1. This completes
the proof.

6.4. Proof of Theorem 3.1.

Let p � 1. Denote bµ := bµN,p and consider the events

Oj := {|Qj |  1/2} \ {Vj � �/2}.
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Set

E :=
k\

j=1

Oj . (6.18)

Using Lemma 3.1 and inequality (3.3), we get that

Pr(Ec)  ke�cn

for some constant c > 0 depending on the distribution of X. Therefore, for all
t > 0

Pr(|bµN,p � µ| � t)  Pr({|bµN,p � µ| � t} \ E \ Ep) + ke�cn + Pr(Ec

p
).

Recall the definition (3.1) of the t-statistics T1, . . . , Tk. The following chain of
inequalities holds:

Pr({|bµN,p � µ| � t} \ E \ Ep)  Pr

0

@

8
<

:

������

kX

j=1

Tj

b�p�1
j

������
� t

k

4p�p

9
=

; \ E

1

A

 Pr

0

@

������

kX

j=1

Tj

b�p�1
j

1{Oj}

������
� t

k

4p�p

1

A

 Pr

0

@

������

kX

j=1

wj

������
� t

k

4p�
� k

�����E
 
�p�1Tj

b�p�1
j

1{Oj}

!�����

1

A

where wj := �
p�1

Tj

b�p�1
j

1{Oj} � E
✓
�
p�1

Tj

b�p�1
j

1{Oj}

◆
. It is easy to check that

p
nwj

is a centered sub-Gaussian random variable, since in view of Lemma 6.1 we have
that for all � 2 R,

E
⇣
e
p
n�wj

⌘
 ecp�

2
/2

for some cp > 0 depending only on p. Choosing t as

t = 4p�

�����E
 
�p�1Tj

b�p�1
j

1{Oj}

!�����+ 4p�

r
2cps

N
,

we get that

Pr({|bµ� µ| � t} \ E \ Ep)  Pr

0
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������
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j=1

wj
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r
2cps

N

1

A

 Pr

0

@
kX

j=1

s
2sN

cp
wj � 2sk

1

A+ Pr

0

@�

kX

j=1

s
2sN

cp
wj � 2sk

1

A

 2

✓
E

e

q
2s
cpk

p
nwj

�◆k

e�2s
 2e�s,
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where we used Chernoff bound on the last step. Combining the display above
with Lemma 6.4, we conclude that for all s > 0

Pr

 
|bµ� µ| � Cp�

 
�(�, n) +

r
s+ ke�cn

N

!!
 2e�s + ke�cn + Pr(Ec

p
),

for some Cp > 0 depending only on p. When ke�cn
� 1, the previous bound is

trivial. It follows that

Pr

 
|bµ� µ| � Cp�

 
�(�, n) +

r
s+ 1

N

!!
 2e�s + ke�cn + Pr(Ec

p
)

for all s > 0.

6.5. Proof of Theorem 3.2.

The proof follows similar steps as the argument used to establish Theorem
3.1. We will first show that with high probability the proportion of outliers
in each bucket of observations is less than 1/2. Indeed, letting Wj denote the
number of ouliers in the subsample indexed by Gj , it is straightfoward to see thatP

k

j=1 Wj = O, and that the random variables {Wj , j = 1, . . . , k} are negatively
correlated. Consider the event

E2 =
k\

j=1

{Wj  n/2}.

Recall that Wj =
P

i2Gj
1i2Oj . Since

P
k

j=1 Wj = O, the random variables
(1i2Oj )i2Gj are 1-negatively correlated for each j = 1, . . . , k, as a sub-sequence
of a 1-negatively correlated sequence of random variables. Applying the Chernoff
bound for negatively correlated random variables (see [Doe20, section 1.10.2.2
and Theorem 1.10.23] for the definitions and the required version of the Chernoff
bound), we get that as long as O  N/4,

Pr(Ec

2)  ke�cn.

Hence in what follows, we can restrict our attention on the event E2. We use the
superscript I to denote “clean” sample and C (“corrupted”) – otherwise. Notice
that

µ̄j � µ =
Wj

n
(µ̄C

j
� µ) +

✓
1�

Wj

n

◆
(µ̄I

j
� µ) =

Wj

n
(µ̄C

j
� µ̄I

j
) + µ̄I

j
� µ

where µ̄C

j
, µ̄I

j
are, respectively, empirical means of the corrupted and clean part

of the sub-sample indexed by Gj . We also have that

b�2
j
=

Wj

n
(b�C

j
)2 +

✓
1�

Wj

n

◆
(b�I

j
)2 +

Wj(n�Wj)

n2
(µ̄C

j
� µ̄I

j
)2, (6.19)
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where (b�C

j
)2, (b�I

j
)2 are, respectively, empirical variances of the corrupted and

clean sub-samples of Gj . Observe that b�2
j
� (b�I

j
)2/2, and, therefore, as in

the previous proof we deduce that the weights ↵j given by (2.2) can not be
too large even when outliers are present in the sample. Consider the events
Oj := {|QI

j
|  1/2} \ {V I

j
� �/2} \ {Wj  n/2}, and

E :=
k\

j=1

Oj .

Using Lemma 3.1 and inequality (3.3), we get that

Pr(Ec)  ke�cn

for some constant c > 0 that depends only on the distribution of X. In the rest
of the proof we assume that the event E \ Ep holds, with Ep defined in (3.5). On
this event, we have that

|bµ� µ|1{E} 

✓
4�

1� C

◆p

������
1

k

kX

j=1

Wj(µ̄C

j
� µ̄I

j
)

nb�p

j

1{Oj}

������
| {z }

(A)

+

✓
4�

1� C

◆p

������
1

k

kX

j=1

µ̄I

j
� µ

b�p

j

1{Oj}� E
 
µ̄I

j
� µ

b�p

j

1{Oj}

!������
| {z }

(B)

+

✓
4�

1� C

◆p 1

k

kX

j=1

�����E
 
µ̄I

j
� µ

b�p

j

1{Oj}

!�����
| {z }

(C)

.

We will proceed by estimating each of the terms separately.

Control of (A): Using (6.19), observe that on Oj we have

b�2
j
�

(b�I

j
)2

2
+

Wj

2n
(µ̄C

j
� µ̄I

j
)2 � C 0

✓
�2 +

Wj

n
(µ̄C

j
� µ̄I

j
)2
◆
,

for some absolute constant C 0 > 0. It comes out that
������
1

k

kX

j=1

Wj(µ̄C

j
� µ̄I

j
)

nb�p

j

1{Oj}
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

1

k

kX

j=1

CpWj |µ̄C

j
� µ̄I

j
|

n
q
�2 + Wj

n
(µ̄C

j
� µ̄I

j
)2

p


Cp

k�p�1

kX

j=1

Wj |µ̄C

j
� µ̄I

j
|

n
q
�2 + Wj

n
(µ̄C

j
� µ̄I

j
)2


Cp↵(O)(1�p)/2

k�p�1

kX

j=1

q
Wj/n,
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where ↵(O) := 1 + min
j/Wj 6=0

Wj(µ̄
C
j �µ̄

I
j )

2

n�2 . Hence it follows from Cauchy-

Schwarz inequality that
������
1

k

kX

j=1

Wj(µ̄C

j
� µ̄I

j
)

nb�p

j

1{Oj}

������


2p↵(O)(1�p)/2

�p�1

qP
k

j=1 Wj(
p
O ^

p
k)

k
p
n

.

As a consequence,
������
1

k

kX

j=1

Wj(µ̄C

j
� µ̄I

j
)

nb�p

j

1{Oj}
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

2p↵(O)(1�p)/2

�p�1

 
O

k
p
n
^

r
O

N

!
.

Observe that the previous statement holds pointwise, and is not probabilis-
tic in nature. It also suggests that the worst scenario occurs whenever all
buckets are corrupted.

Control of (B): Since b�2
j
�
�
b�I

j

�2
/2 under Oj , we have that

Pr

✓
�p�1

����
µ̄I

i
� µ

b�p

i

����1{Oj} � x

◆
 Pr

 
�p�1

�����
µ̄I

i
� µ�
b�I

j

�p

�����1{Oj} � 2p/2x

!
.

Hence we can show, as in Lemma 6.1, that the random variable

�p�1 µ̄
I

i
� µ

b�p

i

1{Oj}

is sub-Gaussian. Following the same arguments as in Theorem 3.1, this
leads to the bound

�p�1

������
1

k

kX

j=1

µ̄I

i
� µ

b�p

i

1{Oj}� E
✓
µ̄I

i
� µ

b�p

i

1{Oj}

◆������
 Cp

r
s

N

that holds with probability at least 1� 2e�s for some Cp > 0.
Control of (C): As for the “bias term,” it is enough to observe that for uncor-

rupted buckets, b�j = b�I

j
, and the bias can be upper bounded exactly as in

Theorem 3.1. Hence

�p�1

k

X

j2I

�����E
 
µ̄I

j
� µ

b�p

j

1{Oj}

!�����  �(�, n) + Cp

r
ke�cn

N
.

At the same time, for the corrupted part of the bias term, we have on Oj

that

b�p

j
� C 0

p
b�j
✓
�2 +

Wj

n
(µ̄C

j
� µ̄I

j
)2
◆(p�1)/2

,
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for some C 0
p
> 0 depending only on p. Hence

�p�1

k

������

X

j2C

E
 
µ̄I

j
� µ

b�p

j

1{Oj}

!������


Cp�p�1

k

X

j2C

E
�����

µ̄I

j
� µ

b�I

j
(�2 +Wj/n(µ̄C

j
� µ̄I

j
)2)(p�1)/2

1{Oj}

�����


Cp↵(O)(1�p)/2(O ^ k)

k
E|T I

1 |1{O1} 
Cp↵(O)(1�p)/2(O ^ k)

k
p
n

 Cp↵(O)(1�p)/2

 
O

k
p
n
^

r
O

N

!
,

for some Cp > 0, where we have used inequality (6.9) and the fact that
O ^ k  O ^

p
Ok.

This concludes the proof of the fact that with probability at least 1� 2e�s
�

ke�cn
� Pr(Ec

p
),

|bµN,p � µ| 
Cp�

(1� C)p

 r
s+ 1

N
+ �(�, n) + ↵(O)(1�p)/2

 
O

k
p
n
^

r
O

N

!!
.

(6.20)

6.6. Proof of Theorem 3.3.

Using the definition of �, it is easy to see that
p

Nj�(�, nj) = o(1), implying
that kj = o(nj) which in turn implies that kj = o (ecnj ) for any constant c > 0.
We recall that

bµNj ,p � µ =

1
kj

Pkj

i=1
Ti

b�p�1
i

1
kj

Pkj

i=1
1
b�p
i

.

Next, we will use the following decomposition that holds on the event E (6.18)
defined in the proof of Theorem 3.1.
p
Nj(bµ� µ)1{E}

= H

r
njVar

⇣
T1

b�p�1
1

1{O1}

⌘Pkj
i=1

✓
Ti

b�p�1
i

1{Oi}�E Ti

b�p�1
i

1{Oi}

◆

s
Pkj

i=1 Var
✓

Ti

b�p�1
i

1{Oi}

◆ +
p

NjE T1

b�p�1
1

1{O1}

1
kj

Pkj

i=1

⇣
1
b�p
i
1{Oi}� E 1

b�p
i
1{Oi}

⌘
+ E

⇣
1
b�p
1
1{O1}

⌘

where H = 1{E}.Using Lemma 6.6, we have that

E 1

b�p

1

1{O1}
j!1
���! ��p.
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Moreover using Lemma 6.4 we have

p
Nj

�����E
T1

b�p�1
1

1{O1}

����� 
p
Nj�(�, nj) +

q
kje�cnj

j!1
���! 0,

and vuutnjVar

 
T1

b�p�1
1

1{O1}

!
j!1
���! �1�p.

Since the independent variables Ti

b�p�1
i

1{Oi} and 1
b�p
i
1{Oi} are uniformly bounded,

they satisfy Lindeberg’s condition. Therefore,

Pkj

i=1

⇣
Ti

b�p�1
i

1{Oi}� E Ti

b�p�1
i

1{Oi}

⌘

rPkj

i=1 Var
⇣

Ti

b�p�1
i

1{Oi}

⌘
j!1
���! N (0, 1)

in distribution, and

1

kj

kjX

i=1

✓
1

b�p

i

1{Oi}� E
✓

1

b�p

i

1{Oi}

◆◆
j!1
���! 0

in probability. In addition, we have that

Pr(Ec)  kje
�nj

j!1
���! 0,

established as in the proof of Theorem 3.1. Putting everything together, we
finally conclude that

p
Nj

�
bµNj ,p � µ

� d
�! N (0,�2)

in distribution as j ! 1.

6.7. Proof of Theorem 4.1.

For any integer m, we denote by Ep(m) the event Ep defined via (3.5) with m
blocks. For every event A, Ac will denote its complementary. Observe that, as
long as 1/20 

e�
�
 4, we have the following inclusions

{(ek_s) � 3(O_s)} ⇢ {ek � 3(O_s)} ⇢ { eEp(b3(O_s)/2c)c} ⇢ {Ep(b3(O_s)/2c)c}

where b3(O_ s)/2c denotes the integer part of 3(O_O)/2. Therefore, we deduce,
using Lemma 3.2, that

Pr
⇣
(ek _ s) � 3(O _ s)

⌘
 e�c2(O_s).
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Finally, we recall that when Ep holds and k  3(O _ s), then with probability at
least 1� 2e�s

� ke�cN/(O_s)

|bµN,p � µ|  Cp�

 r
s

N
+

r
O

N

!
,

as shown in (6.20). Combining the previous results, we conclude that

Pr

 
|eµp(s)� µ| � Cp�

 r
s

N
+

r
O

N

!!

 Pr

 (
|eµp(s)� µ| � Cp�

 r
s

N
+

r
O

N

!)
\ {ek  3(O _ s)}

!
+ e�c2(O_s)



log2 (3(O_s))X

i=1

(2e�s + 2ie�cN/(O_s)) + e�c2(O_s)

 2 log2 (3O)e�s + e�c(O_s) + (O _ s)e�cN/(O_s),

where we used in the last inequality the fact that {(ek _ s)  3(O _ s)} ⇢⇢⇣
1
k

P
k

j=1
1
b�p
j

⌘�1


⇣
160�
1�C

⌘p
�

, so that event Ep holds.

6.8. Construction of a robust estimator of �.

Let N � 400. Without loss of generality, we can assume that N = 100k where
k is an integer and that {1, . . . , N} = eG1 [ · · · [ eGk where eGj = {100(j � 1) +
1, . . . , 100j} for all j = 1, . . . , k. Let e� be defined as follows:

e� := median

0

@ 1

50

X

2i2 eG1

|X2i �X2i�1|, . . . ,
1

50

X

2i2 eGk

|X2i �X2i�1|

1

A

Under two moments assumption, the following result holds.

Lemma 6.7. Assume that E|X�µ|2 < 1, E|X�µ| � �/2 and that O  N/400.
Then, with probability at least 1� e�cN , we have that

1/20 
e�
�

 4,

where c > 0 is an absolute constant.

Note that Lemma 6.7 requires the new condition E|X � µ| � �/2. The latter
condition is mild and can be viewed as the equivalence between absolute first and
second moments which is less restrictive than the equivalence between centered
moments of order 2 and 2 + �. This condition may also be seen as the price to
pay for adaptation under only two moments.
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Proof. Using Jensen’s inequality, we get that E|X1 �X2| � E|X �µ| � �/2 and
E|X1 �X2|  2�. Therefore,

Pr

✓
1/20 

e�
�

 4

◆
� Pr

✓����
e�

E|X1 �X2|
� 1

����  9/10

◆
.

Since

Pr
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������
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|X2i �X2i�1|� 1

������
� 9/10

1
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
200�2

4050(E|X1 �X2|)2
 1/5

and that O  k/4, we conclude that
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 Pr
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k�OX
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Zj � k/4

1
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 Pr

0
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k�OX
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(Zj � EZj) � k/20

1

A  e�cN ,

where Zj := 1
n��� 1

50E|X1�X2|

P
2i2 eG1

|X2i �X2i�1|� 1
��� � 9/10

o
and c > 0.
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