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This paper investigates robust versions of the general empirical risk minimization algorithm, one of the
core techniques underlying modern statistical methods. Success of the empirical risk minimization is
based on the fact that for a “well-behaved” stochastic process {f(X), f € .#} indexed by a class of
functions f € %, averages %Z’};l f(X;) evaluated over a sample X,...,Xy of i.i.d. copies of X provide
good approximation to the expectations E f (X ), uniformly over large classes f € .%. However, this might
no longer be true if the marginal distributions of the process are heavy-tailed or if the sample contains
outliers. We propose a version of empirical risk minimization based on the idea of replacing sample
averages by robust proxies of the expectations, and obtain high-confidence bounds for the excess risk
of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to
0 at fast rates with respect to the sample size N, referring to the rates faster than N ~1/2_ We discuss
implications of the main results to the linear and logistic regression problems, and evaluate the numerical
performance of proposed methods on simulated and real data.
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1. Introduction

This work is devoted to robust algorithms in the framework of statistical learning. A recent Forbes
article [53] states that “Machine learning algorithms are very dependent on accurate, clean, and well-
labeled training data to learn from so that they can produce accurate results” and “According to a recent
report from Al research and advisory firm Cognilytica, over 80% of the time spent in Al projects are
spent dealing with and wrangling data.” While some abnormal elements of the sample, or outliers, can
be detected and filtered during the preprocessing steps, others are more difficult to detect: for instance,
a sophisticated adversary might try to “poison” data to force a desired outcome [42]. Other seemingly
abnormal observations could be inherent to the underlying data-generating process. An “ideal” learning
method should not discard informative samples, while limiting the effect of individual observation on
the output of the learning algorithm at the same time. We are interested in robust methods that are model-
free, and require minimal assumptions on the underlying distribution. We study two types of robustness:
robustness to heavy tails expressed in terms of the moment requirements, as well as robustness to (a
variant of) adversarial contamination. Heavy tails can be used to model variation and randomness
naturally occurring in the sample, while adversarial contamination is a convenient way to model outliers
of unknown nature.

(© The author 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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The statistical framework used throughout the paper is defined as follows. Let (S,.7) be a measur-
able space, and let X € S be a random variable with distribution P. Suppose that Xi,...,Xy are i.i.d.
copies of X. Moreover, assume that .% is a class of measurable functions from Sto R and £: R — R,
where R is a set of non-negative integers, is a loss function. Many problems in statistical learning
theory can be formulated as risk minimization of the form

El(f(X)) — fné{g

We will frequently write P¢(f) or simply .Z(f) in place of the expected loss E£(f(X)). Throughout
the paper, we will also assume that the minimum above is attained for some (unique) f, € % (however,
f« does not necessarily coincide with the global minimizer of .Z(f) over all measurable functions that
might not belong to .%). For example, in the context of regression, X = (Z,Y) € R xR, f(Z,Y) =
Y —g(Z) for some g in a class ¢ (such as the class of linear functions), £(x) = x?, and f,(z,y) =y —g«(2),
where g, = argmin,cq E(Y — 2(Z))?. As the true distribution P is usually unknown, a proxy of f, is
obtained via empirical risk minimization (ERM), namely

Jn = argmin Zy (), (1.1)
feF
where Py is the empirical distribution based on the sample X, ..., Xy and
1 N
In(f):=Pvl(f) = N Y ((r(x;p)).
j=1

Performance of any f € .% (in particular, fy) is measured via the excess risk & (f) := PA(f) — PL(f.).
The excess risk of fy is a random variable defined as

E(fv) =PL(fv) —PL(f) =E[¢(F(X))IX1,....Xn] —EL(fi(X)).

General bounds for the excess risk have been extensively studied; a small subsample of the relevant
works includes the papers [57, 58, 31, 4, 7, 55] and references therein. However, until recently sharp
estimates were known only in the situation when the functions in the class ((.%) := {{(f), f € F}
are uniformly bounded, or when the envelope Fy(x) := sup .z [¢(f(x))| of the class £(.7) possesses
finite exponential moments. Our focus is on the situation when marginal distributions of the process
{{(f(X)), f € .Z} indexed by .# are allowed to be heavy-tailed, meaning that they possess finite
moments of low order only (in this paper, “low order” usually means between 2 to 4). In such cases,

the tail probabilities of the random variables {ﬁ ):1]\-’:1 (fX;)-EUf(X)), feZF } decay poly-

nomially, thus rendering many existing techniques ineffective. Moreover, we consider a challenging
framework of adversarial contamination where the initial dataset of cardinality N is merged with a set
of & < N outliers which are generated by an adversary who has an opportunity to inspect the data, and
the combined dataset of cardinality N° = N + & is presented to an algorithm; in this paper, we assume
that the proportion of contamination % (or its upper bound) is known.

The approach that we propose is based on replacing the sample mean at the core of ERM by a more
“robust” estimator of E£(f(X)) that exhibits tight concentration under minimal moment assumptions.
Well known examples of such estimators include the median-of-means estimator [48, 2, 38] and Catoni’s
estimator [14]. Both the median-of-means and Catoni’s estimators gain robustness at the cost of being
biased. The ways that the bias of these estimators is controlled is based on different principles however.
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Informally speaking, Catoni’s estimator relies on delicate “truncation” of the data, while the median-of-
means (MOM) estimator exploits the fact that the median and the mean of a symmetric distribution both
coincide with its center of symmetry. In this paper, we will use “hybrid” estimators that take advantage
of both symmetry and truncation. This family of estimators has been introduced and studied in [46, 47],
and we review the construction below.

1.1 Organization of the paper.

The main ideas behind the proposed estimators are explained in Section 1.3, followed by the high-level
overview of the main theoretical results and comparison to existing literature in Section 1.4. The com-
plete statements of the key results are given in Section 2, and in Section 3 we deduce the corollaries of
these results for specific examples. Finally, the main ideas and key inequalities necessary for the proofs
is explained in Section 4. The remaining technical arguments are contained in the Supplementary mate-
rial [41]. Finally, in Section C of the Supplement we discuss practical implementation and numerical
performance of our methods on synthetic and real data.

1.2 Notation.

For two sequences {aj}j>] C R and {b/}j>1 C R for j € N, the expression a; < b; means that there
exists a constant ¢ > 0 such thata; < cbj forall j € N; a; < b; means thata; S bj and b; S a;. Absolute

~

constants will be denoted ¢,cy,C,C’, etc, and may take different values in different parts of the paper.
For a function /4 : R? — R, we define

argminh(y) = {y € R? : h(y) < h(x) for all x € R?},
yERd

and ||A|. := esssup{|h(y)| : y € RY}. Moreover, L(h) will stand for a Lipschitz constant of 4. For
fe.Z, let (L, f) = Var (¢(f(X))) and for any subset .#' C .%, denote 6*(¢,.F') = SUp re 77 o2 (¢, f).
Additional notation and auxiliary results are introduced on demand.

1.3 Robust mean estimators.

Let k < N be an integer, and assume that Gy,..., Gy are disjoint subsets of the index set {1,...,N} of
cardinality |G;| =n > |N/k] each. Given f € .Z#, let

Zih) = T )

be the empirical mean evaluated over the subsample indexed by G;. Given a convex, even function
p:R— R, and A > 0, set

.,{”Tk)(f) := argmin Zk: P (ﬁiﬂj(f)_)j . (1.2)

yER =1 A

Clearly, if p(x) = x?, 20 (f) is equal to the sample mean. If p(x) = |x|, then k720 (f) is the median-
of-means estimator [48, 2, 19]. We will be interested in the situation when p is smooth and “shaped”
like Huber’s loss, in particular, that p’ is bounded and Lipschitz continuous (exact conditions imposed
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on p are specified in Assumption 1 below). Note that (1.2) defines a whole family of estimators for
different values of k and n. It is instructive to consider two cases: first, when k = N (so that n = 1) and
the scaling factor A =< /Var(¢(f(X)))VN, k70 (f) is akin to Catoni’s estimator [14], and when 7 is
large (e.g. VN < n < N and A < /Var(¢(f(X)))), 2 (f) is the “median-of-means type” estimator.
Let us elaborate on these two cases further. Generally speaking, the estimator ZW (f) is biased, and, as
we already mentioned in the introduction, one way to understand the difference between Catoni’s and
median-of-means type estimators is via the difference in mechanisms used to control the bias. In the case
of Catoni’s estimator, this mechanism is based on truncating each observation at the level of order VN'!
encoded in the choice of A =< /Var(¢(f(X)))V/N, while in the case of the median-of-means estimator
it relies on the approximate symmetry, implied by the Central Limit Theorem, of the distribution of the
empirical averages .2 j(f), and in particular the fact that any reasonable estimator of location for this
distribution will be close to the mean .Z( f) when |G| is large. In Section 2.1, we formally introduce
the key quantities that allow us to control the bias under various moment assumptions on the underlying
classes.

We also construct a permutation-invariant version of the estimator ZW) (f) that does not depend on the
specific choice of the subgroups Gi,...,G;. We conjecture that this estimator is more efficient than
2 (f); see remark 1.1 below for more details. Next, let

A" = {7 JC{1,...,N}, |J|=n}.

Let /& be a measurable, permutation-invariant function of n variables. Recall that a U-statistic of order n
with kernel / based on an i.i.d. sample X, ..., Xy is defined as [25]
1
Uvn=7~ Y, h({Xj}jes). (1.3)

N
( n ) JE,WA(IH)

Given J € ", let Z(f:J) = L1y ic1 £(X;). Consider U-statistics of the form

Uvn(ef)= Y p(ﬁf(f;l)—z)

(n) A
Jedy
Then the permutation-invariant version of k20 (f) is defined as

Dé’?[(]k) (f) := argminUy ,(z; f).

zeR

Finally, assuming that ZW (f) provides good approximation of the expected loss .Z(f) of each indi-
vidual f € .%, it is natural to consider

fy := argmin.Z® (£), (1.4)

fez

as well as its permutation-invariant analogue

ﬁv] = argmin,@k)(f) (1.5)
feF

IReference to truncation can be made explicit by setting p(x) = min (x?/2,|x| — 1/2) to be Huber’s loss and considering the
gradient descent iteration for the optimization problem (1.2).



ROBUST EMPIRICAL RISK MINIMIZATION 5 of 62

as an alternative to standard empirical risk minimization (1.1). The main goal of this paper is to obtain
general bounds for the excess risk of the estimators fN and fN under minimal assumptions on the
stochastic process {£(f(X)), f € .-#}. More specifically, we are interested in scenarios when the excess
risk converges to 0 at fast, or “optimistic” rates, referring to the rates faster than N ~1/2 Rate of order
N~1/2 (“slow rates”) are easier to establish: in particular, results of this type follow from bounds on the
uniform deviations supsc & 2 H—-=2(f )’ that have been investigated in [47]. Proving fast rates is
a more technically challenging task: to achieve the goal, we develop Bahadur-type representations [6]
of the estimators .Z¥ (f) and .,2/”}]() (f) that provide linear, in £(f), approximations of these nonlinear
statistics that are easier to study, and carefully analyze the remainder terms. Introduction of such repre-
sentations in the framework of median-of-means estimation is one of the main technical novelties of the
paper; the tools we develop could prove useful in other related problems, such as study of the asymptotic
distributions of the robust estimators fN and fN

REMARK 1.1 The main reason we introduce the permutation-invariant estimator ]}]J is our conjecture
that it has superior, compared to fN, performance. We were able to confirm this fact numerically in
our experiments; however, complete theoretical confirmation is not yet available, and requires new
technical tools beyond those developed in the present work. Specifically, we conjecture that fy is more
eﬁiczent than fN when . is finite dimensional, this means, informally, that the asymptotic distribution
of v/N( fN f.) has smaller variance than the asymptotic distribution of v/N(fy — f.). In other words,
the conjectured difference in performance is about the constant factors rather than the rates. Such
improvements are too subtle to be captured by the non-asymptotic bounds for the excess risk that are
being pursued in this work, nevertheless they are clearly noticeable in the simulations.

It should also be acknowledged that exact evaluation of the U-statistics-based estimators .,Z(,k) N
and f,{{ is not feasible due to the number of summands (IZ) being very large even for small values
of n. However, exact computation is typically not required, and throughout our detailed simulation
studies, gradient descent methods proved to be very efficient for the problem (1.5) in scenarios like
least-squares and logistic regression. These points, as well as comparison of the numerical performance
of the estimators fy and fy, are further discussed in Section C of the Supplementary material [41].

1.4 Overview of the main results and comparison to existing bounds.

Our mam contribution is the proof of high-confidence bounds for the excess risk of the estimators fN
and fN First, we show (see Theorem 2.1 and (2.4)) that the excess risk is bounded from above by the

quantity of order N~ 1/2 (referred to as “slow rates™) with exponentially high probability if

2 2
6° (¢, %) = sup 6°(¢, f) < oo and E sup
fez fez \FZ

The latter is true if the class {¢(f), f € .} is P-Donsker [24], in other words, if the empirical process
f— ﬁ ):?/:1 ((f(X;)) —EL(f(X))) converges weakly to a Gaussian limit. This result is analogous to

—EU(f(X))) < e

its counterpart in the standard empirical risk minimization framework. Moreover, it is known [43, 36]
that in general, the N ~1/2 rate for the excess risk of the empirical risk minimizers can not be improved.
Our main contribution is the proof of the fact that that under additional assumption requlrmg that any
f € % with small excess risk is itself close to f (that minimizes the expected loss), fN and fN attain
fast rates. This fact is well-known in the usual empirical risk minimization framework [10, 31] but is
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new for the type of robust estimators considered here. We state the bounds below only for fN while the
results for the U-statistics based f}vj are similar, up to the change in absolute constants. In order to avoid
excessive technical details at this stage, we will first illustrate our general results by stating corollaries
for the popular frameworks of logistic regression and regression with quadratic loss, while the most
general versions of the theorems and additional examples will be stated afterwards.

Binary classification and logistic regression. Assume that (Z,Y) € S x {£1} is a random couple
where Z is an instance and Y is a binary label, and let g,(z) := E[Y|Z = 7] be the regression function. It
is well-known that the binary classifier b, (z) := sign(g.(z)) achieves smallest possible misclassification
error defined as P (Y # g(Z)). Let % be a given convex class of functions mapping Sto R, £: R — R
a convex, nondecreasing, Lipschitz loss function, and let

he= argmin E((Yf(Z)).
all measurable f
The loss ¢ is classification-calibrated if sign(h.(z)) = b.(z) P-almost surely; we refer the reader to [9]
for a detailed exposition. In the case of logistic regression considered below, § = R?,

00y, f(2)) = L(yf(z)) :=log ( 1 +e—yf<z>)

is the classification-calibrated loss and .% = {fg(-) = (-,v), ve R, |v|2 <R} . Note that results
stated below hold without assuming that h, € .%.

Regression with quadratic loss. Let (Z,Y) € S x R be a random couple satisfying Y = f,.(Z) + 1
where the noise variable 7 is independent of Z and f,(z) = E[Y|Z = 7] is the regression function. Linear
regression with quadratic loss corresponds to S = RY,

Uy, f(2) =Ly — f(2)) = (v — f(2))?

and F = {f5(-) = (-,v), vER?,|v|» <R}. In this case, we will assume that f, € .7} it is possible to
avoid this assumption at the cost of additional technicalities and taking advantage of the deep results of
S. Mendelson [45] on the multiplier inequalities.

In the statements below, we will assume that we are given an i.i.d. sample (Z;,Y1),...,(Zn,Yn)
having the same distribution as (Z,Y) where the marginal distribution of Z is supported on a compact
set. Moreover, suppose that E|1|® < oo in the case of regression with quadratic loss; Section 3 contains
other examples covering a wider class of distributions and classes .% .

THEOREM 1.1 (Informal) Assume the framework of either logistic regression or linear regression with
quadratic loss. Then, for appropriately chosen k and A,

~ d Vi 3/4
£(F) < C(R.P.p) <N+N§/4+ (N> )

with probability at least 1 — e~ for all s < k.

Moreover, we construct a two-step estimator fl’\ﬁ based on ]?N that is capable of achieving further
improved rates.

THEOREM 1.2 (Informal) Assume the framework of either logistic regression or linear regression with
quadratic loss. There exists an estimator fy;, defined later in the paper, such that

d 2
& (V) <Cr.Pp) (N+§,+N>
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with probability at least 1 —e™* for all 1 < s < Smax Where smax := Smax (V) —> o0 as N — oo,

The estimator fy, mentioned in Theorem 1.2 is based on a two-step procedure, where fy serves as
an initial approximation that is refined on the second step via risk minimization restricted to a “small

neighborhood” of fy. All of the bounds in this paper have the form & (fy) < 8 +C(.%, P) (ﬁ + (%) Y) ,

where 1 < vY<1and 8 is the quantity (formally defined in (2.5)) that often coincides, up to log-factors,
2

with the optimal rate for the excess risk [3, 40] — for instance, 8= % in the examples above. In the stan-
dard empirical risk minimization, the excess risk bounds in the linear and logistic regression admit the
bounds of order % + ]‘Vi, albeit under more restrictive assumptions and in the corruption-free framework.
Therefore, the bound of Theorem 1.1 is suboptimal in these cases due to the “remainder terms” being of
order N3/4, and the improvement achieved by the two-step estimator f” , as described in Theorem 1.2,
becomes important.

Next, we provide a brief overview of the literature on the topic and compare our results to the state
of the art. Robustness of statistical learning algorithms has been studied extensively in recent years.
Existing research has mainly focused on addressing robustness to heavy tails as well as adversarial
contamination. One line of work investigated robust versions of the gradient descent method for the
optimization problem (1.1) based on variants of the multivariate median-of-means technique [51, 16,
59, 1], as well as Catoni’s estimator [28]. The line works initiated in the theoretical computer science
community [33, 20, 22, also see the survey paper [23]] tackled the problem of optimal mean estimation
in the adversarial contamination framework by establishing deep connections between the mean and
covariance estimation problems that culminated in the family of powerful filtering algorithms; these
algorithms can also be used as subroutines in robust gradient descent-type methods [21, 17]. While these
algorithms admit strong theoretical guarantees, they require robustly estimating the gradient vector at
every step (with the exception of [21] that offers a more efficient approach) hence are computationally
demanding; moreover, results are weaker for losses that are not strongly convex (for instance, the hinge
loss). The line of research that is closest in spirit to the approach of this paper includes the works that
employ robust risk estimators based on Catoni’s idea [5, 13, 27] and the median-of-means technique,
such as “tournaments” and the “min-max median-of-means” [40, 39, 34, 35, 18], also see [17, 29] for the
computationally efficient algorithms related to the tournament-type procedures. As it was mentioned in
the introduction, the core of our methods can be viewed as a “hybrid” between Catoni’s and the median-
of-means estimators. We provide a more detailed comparison to the results of the aforementioned
papers:

1. We show that risk minimization based on a version of Catoni’s estimator is capable of achieving
fast rates, thus improving the results and weakening the assumptions stated in [13] that only
allowed the slow rates to be established;

2. We develop new tools and techniques to analyze proposed estimators. In particular, we do not
rely on the “small ball” method [32, 44] and the standard “majority vote-based” analysis [34, 40]
of the median-of-means estimators. Instead, we provide accurate bounds for the bias and investi-
gate the remainder terms for the Bahadur-type linear approximations of the estimators defined in
(1.2). In particular, we demonstrate that the order of typical deviations of the estimator ZW ()
around .Z(f) are significantly smaller than the deviations of the subsample averages .Z;(f),
which is not easy to do using the majority vote-based proof techniques; consequently, this fact
allows us to “decouple” the confidence parameter s that controls the deviation probabilities from
parameters k and & responsible for the number of subsamples and the degree of contamination
respectively. Unlike the tournaments-based estimators, in some regimes our algorithms admit a
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“universal” choice of k that is independent of the parameter & controlling the optimal rate. In
the previous works, parameter k was often overloaded as it controlled the deviation probabilities
while depending on & (or a closely related quantity) at the same time. Finally, our techniques
allow us to establish bounds that are uniform over a certain range of confidence parameter s while
the previously existing deviation results were only available for s =< k.

3. We are able to simultaneously treat the case of Lipschitz as well as non-Lipschitz (e.g., quadratic)
loss functions ¢. At the same time, in some situations (e.g. linear regression with quadratic
loss), the required assumptions are stronger compared to the best results in the literature tailored
specifically to the task, e.g. [34, 40] that treat the case of regression with quadratic loss.

4. Existing approaches based on the median-of-means estimators are either computationally intractable
[40], or outputs of practically efficient algorithms do not admit strong theoretical guarantees
[34, 35, 18]. We design numerical algorithms specifically for the estimators fy and fy defined
via (1.4) and (1.5), and show that they enjoy good performance in numerical experiments as well
as strong theoretical guarantees.

2. Theoretical guarantees for the excess risk.

In this section, we give complete statements of the main results and explain the high-level ideas behind
their proofs.

2.1 Preliminaries.

We start by introducing the main quantities that appear in our results, and state the key assumptions.
Recall that 6 (¢,.%") stands for sup e o%(¢, f), where #' C .Z. The loss functions p that will be of
interest to us satisfy the following assumption.

Assumption 1 Suppose that the function p : R — R is convex, even, 5 times continuously differentiable
and such that

(i) p'(z) =z for |z] < 1and p’(z) = const for 7 > 2,

(if) z— p’(z) is nondecreasing.

An example of a function p satisfying required assumptions is given by “smoothed” Huber’s loss
defined as follows. Let

2
HO) =S <3723+ 5 (bl ) 1l > 3/2)

1—4x2
where C is chosen so that [ ¢(x)dx = 1. Then p given by the convolution p(x) = (h ¢)(x) satisfies
Assumption 1.

be the usual Huber’s loss. Moreover, let ¢ be the “bump function” ¢ (x) = Cexp (—L) I{]x| < %}

REMARK 2.1 (a) The requirements that p is 5 times continuously differentiable is of the technical
nature and is likely not necessary. It appears due to the fact that we need to control higher order
terms in the Bahadur-Kiefer type representations of the estimator RZ20) (f), as well as rely on the
Lindeberg replacement-type arguments in our proofs.

(b) The derivative p’ has a natural interpretation of being a smooth version of the truncation function.
Moreover, observe that p’(2) —2 < p’(1) — 1 = 0 by (ii), hence ||p/|| < 2. It is also easy to see
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that for any x >y, p'(x) — p'(y) =y —p'(y) — (x — p’(x)) + x —y < x—, hence p’ is Lipschitz
continuous with Lipschitz constant L(p') = 1.

In Section 1.3, we have briefly discussed the bias of robust mean estimators and various ways that
it can be controlled. Now we will introduce the key quantities necessary to make the bounds precise.
Everywhere below, ®(-) stands for the cumulative distribution function of the standard normal random
variable and W (f) denotes a random variable with distribution N (0,6%(f)). For f € .% such that
o(f)>0,neNandr > 0, define

=1 (X)) —Pf)
o(f)vn

where Pf := Ef(X). In other words, .#(t,n) controls the rate of convergence in the central limit
theorem. It follows from the results of L. Chen and Q.-M. Shao (Theorem 2.2 in [15]) that

)

My(t,n) = ’Pr( < t) — (1)

E(£(X)—Ef(x))21 3§ LOEQO] o g4 |«
«///f(t,n)égf(r,n):C( (%) ~EfX)) { a(f)vn ‘c(f)‘}

(1) (1+]st5])’
1 B0 - Breop {1 < 1+\o<‘f>\})
Vi (1) (1+]555])’

given that the absolute constant C is large enough. Note that, crucially, the control of the rate in terms
of g¢(z,n) is non-uniform, since g/(,n) is a decreasing function of . Moreover, let

G(n,A) = /Owgf (A (; +z) n) dr.

The quantity plays the key role in controlling the bias of the estimator Z )( f): it decreases both
as A get large and as the subsample size n increases, referring to different bias-controlling mechanisms
of Catoni’s and the median-of-means type estimators, see discussion after (1.2). The following statement
provides simple upper bounds for g¢(¢,n) and G7(n,A) that depend on the tail properties of f(X); its
proof can be found in [47, Section 4.4].

Gr(nA)
f

LEMMA 2.1 Let Xi,...,X, be ii.d. copies of X, and assume that Var(f(X)) < co. Then g¢(z,n) — 0
as [t| — oo and gs(t,n) — 0 as n — co, with the convergence being monotone. Moreover, if E|f(X) —
Ef(X)[>*% < oo for some & € [0, 1], then for all 7 > 0

246 246
e < B BA 00 B (X)) o
’ nd/2 (o (f) + [t))>+P nd/2|¢|2+8 ’
2468
E|f(X) —Ef(X)|
/!
Gr(n,A) <C A2+8,5/2 ’
where C’',C" > 0 are absolute constants.
: sup ez E(f(X)~Ef(X)|/a(6.7)*"°
We can rewrite the bound for sup s 7 G(n,A) as supc 7 Gy(n,A) < C" —LZ (A/G(Z y>)2+5 372 ,

))2+6

where the numerator sup s« 7 E (| f(X) —Ef(X)|/o (¢, # is the quantity akin the kurtosis while the
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ratio My 1= W appearing in the denominator can be interpreted as a truncation level expressed in the
“units” of ¢ (¢,.%#). This “truncation level,” along with the subgroup size n, are the two main quantities
controlling the bias of the estimators k20 (N, fesz

2.2 Slow rates for the excess risk.

Let

~ —~

Sy ==& (fv) =L (fv) = Z(f),

. U U

=E(fy)=2Z(fy)—<Z(1)
be the excess risk of fN and its permutation-invariant analogue f]f,/ which are the main objects of our
interest. The following bound for the excess risk is well known in the empirical risk minimization

literature [31], and it easily leads to control of the excess risk in terms of the uniform deviations of
robust mean estimators.

E(fv) =L (fn) —Z(f.)

L(fn) + LW (fy) = L)+ 20 (1) - LW (f) - Z(f)

= (L ()~ Z2Y0) - (200 - ZY(1) + 200 - 29 (1)
<0

<2sup | ZW(f)—2(f)]. @2

feF

The first result, Theorem 2.1 below, together with the inequality (2.2) immediately implies the “slow
rate bound” (meaning rate not faster than N~'/2) for the excess risk. This result has been previously
established in [47]. Define

A :=max(A,6((,.F)).

THEOREM 2.1 There exist absolute constants ¢, C > 0 such that for all s > 0, n and k satisfying

1 o
(\[Esupfz P@(f))JrO'(K,ﬁ)\/i)+squf(n,A)+]S€+kéc, (2.3)

feF feF

the following inequality holds with probability at least 1 —2¢™*

A 1 ¥ P s
4 (E;g;]v ¥ (05 - Pets) +o<w>ﬁ>

(o spesGind) o
v (Vg S

sup | 2V (1) - 2(f)| <

feF

Moreover, the same bounds hold for the permutation-invariant estimators ,,2(]]() (f), up to the change in
absolute constants.
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An immediate corollary is the bound for the excess risk

é‘)(fNKClﬁ (Eﬁgg Z, Pﬁ(f))+0(€f)\/§>

~ s supez Gr(n,A) O
A — —_—Jy = - —
+ \/E(N+ +ty

n

(2.4)

that holds under the assumptions of Theorem 2.1 with probability at least 1 —2¢™°. When the class
{U(f), f € F} is P-Donsker [24], hlrvnsup E sup \FZ L(U(f(X)))—PL(f)) ‘ is bounded, hence con-
—o0
dition (2.3) holds for N large enough Whenever s is not too big and A and k are not too small, namely,
s < c'kand Avk > ¢" o(.F). The bound of Theorem 2.1 also suggests that the natural “unit” to measure
the magnitude of the parameter A is o (¢,.%).
To put these results in perspective, let us consider two examples. First, assume thatn = 1, k = N and

setA =A(s) = G(ﬁ)\/g for s < ¢/N. Using Lemma 2.1 with § = 0 to estimate G (n,A ), we deduce

that
N

S < | s 1 ¥ (000 - Per) +(e.7) (3 )

feF

with probability at least 1 —2e~*. This inequality improves upon excess risk bounds obtained for Catoni-
type estimators in [13], as it does not require functions in .% to be uniformly bounded.
The second case we consider is when N >> n > 2. For the choice of A < 6(¢,.%), the estimator

2 (f) most closely resembles the median-of-means estimator, as we have explained in Section 1.3.
In this case, Theorem 2.1 yields the excess risk bound of the form

N
f‘eﬁ‘ﬁz(g(f( )= PUS) + <\/7 \/7;23anc ))+§ 1’;)]

that holds with probability > 1 —2e¢~* for all s < c’k. As sup ez Gf (n,A) is small for large n and

% \/g < \/% whenever ¢ < k, this bound improves upon Theorem 2 in [35] that provides bounds for
the excess risk for robust classifiers based on the the median-of-means estimators.

2.3 Towards fast rates for the excess risk.

It is well known that in regression and binary classification problems, the excess risk often converges
to 0 at a rate faster than N~/ 2 and could be as fast as N~!. Such rates are often referred to as “fast”
or “optimistic” rates. In particular, this is the case when there exists a “link” between the excess risk
and the variance of the loss class, namely, if for some convex nondecreasing and nonnegative function
¢ such that ¢(0) =

E(f) = PUS) = PUL) > ¢ (VVar (T (X)) — (£ (X)) -

It is thus natural to ask if fast rates can be attained by estimators produced by the robust algorithms
proposed above. Results presented in this section give an affirmative answer to this question. Let us
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introduce the main quantities that commonly appear in the excess risk bounds [31, 40]. For 6 > 0, let
F(6) :={l(f): feF, &(f) <8},
V()= sup /Var(£(f(X)) —€(f:(X))),

Uf)e7(9)
©(8)=E sup 1i((f(f)—af>><X~>—P<£<f>—£<f>>)‘
upez©) | VN = P ’
Moreover, define
sup . o E!/ — 4
w(e.5) o e B US00) ~BUSO0)*

o, F)

The following condition, known as Bernstein’s condition following [10], plays the crucial role in the
analysis of excess risk bounds.

Assumption 2 There exist constants D > 0, 8 > 0 such that

Var (£(£(X)) — £(f.(X))) < D*&(f)
whenever &(f) < 6.

Informally speaking, Assumption 2 postulates that any f € % (more precisely, the loss £(f) induced by
it) with small excess risk is itself close to f,. If this is true, it turns out that one can avoid global bounds
on the expected supremum of the empirical process used to obtain “slow” rates, and instead rely on the
modulus of continuity @(8) of the empirical process locally in the neighborhood of ¢(f.) in order to
get better upper bounds on the excess risk. The basics of this approach in the classical empirical risk
minimization frameworks are clearly explained in [31, Chapter 1.2], and we rely on similar ideas below.

Assumption 2 is known to hold in many concrete cases of prediction and classification tasks, and
we provide examples and references in Section 3 below. More general versions of the Bernstein’s con-
dition are often considered in the literature: for instance, it can be replaced by assumption requiring that
Var (¢(f(X)) — €(f(X))) < D? (&(f))" for some 7 € (0, 1], as was done in [10]; clearly, our assumption
corresponds to T = 1. Results of this paper admit straightforward extensions to the slightly less restric-
tive scenario when T < 1; we omit the details to reduce the level of technical burden on the statements
of our results.

Following [31, Chapter 4], we will say that the function ¥ : R} — R is of concave type if it is
nondecreasing and x +— @ is decreasing. Moreover, if for some y € (0,1) x — % is decreasing, we
will say that y is of strictly concave type with exponent y. We will assume that @(8) admits an upper
bound ®(8) of strictly concave type (with some exponent ¥), and that v(8) admits an upper bound
V(&) of concave type. For instance, when Assumption 2 holds, v(8) < Dv/§ for 8 < 8p, implying that

V(8) = DV/§ is an upper bound for v(8) of strictly concave type with y = %.2 Moreover, the function

®(8) often admits an upper bound of the form @(8) = R| + v/8R, where R; and R, do not depend on
d; such an upper bound is also of concave type. Next, set

6:min{5>0: Ci(p) %&)(5) < 1}, 2.5)

2This is only true in some neighborhood of 0, but is sufficient for our purposes.
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where C;(p) is a sufficiently large positive constant that depends only on p. The quantity 8 often coin-
cides with the optimal rates for the excess risk in the classical empirical risk minimization framework:
for example, it is of order % up to logarithmic factors in linear regression with quadratic loss and in
logistic regression when Bernstein’s condition is satisfied; in general, the order of & ranges between
the pessimistic N~'/2 in “hard” problems and “optimistic” N~ where the rates between correspond
to weaker versions of Assumptions 2, for instance, see [9]. The theorems below provide estimates
for the excess risk of robust risk minimizers under various conditions on the tails of the random vari-
ables {f(X), f € Z}. All these bounds have the same structure that includes the term & as well as the
“remainder terms” that account for the bias of the robust risk estimators .Z%) (f) as well as the outlier
contamination proportion %; naturally, stricter moment conditions result in better remainder terms.

THEOREM 2.2 Assume that conditions of Theorem 2.1 hold. Additionally, suppose that M, := o ZA 7) >

1. Then | p | .
* = 2 s+ o s+
o< 6+C(p) (D <M§n+N >+0'(€,</)\/EMA (MinJrN >>

/A

with probability at least 1 — 10e™*, where the constant C(p) depends on p only and D is a constant
appearing in Assumption 2.

Under stronger moment assumptions, the excess risk bound can be strengthened and take the following
form.

THEOREM 2.3 Assume that conditions of Theorem 2.1 hold. Additionally, suppose that

sup E'/* (£(f(X)) ~EL(f(X)))* <o

fez
and that M, = 0(25@ > 1. Then
s = BO,.F) s+0O
2 )
& <8+C(p) (D*+0(L,F)\/nMy) ( Min? N )

with probability at least 1 — 10e™*, where the constant C(p) depends on p only and D is a constant
appearing in Assumption 2.

The main ideas behind the proofs of Theorems 2.2 and 2.3 are explained in the beginning of Section 4.

REMARK 2.2 R

1. The bounds of Theorems 2.2 and 2.3 hold for the excess risk 8/ of the permutation-invariant estimator
f,f,’, up to a change in absolute constants.

2. It is evident that whenever &' = 0, the best possible rates implied by Theorem 2.2 are of order N~
(indeed, this is the case whenever My +/n < N 13 and 6 <N ~2/3) while the best possible rates attained
by Theorem 2.3 are of order N—3/4 (when M, +/n < N'/* and § < N=3/4); in particular, in this case
the choice of M, and n is independent of 8. In general, if & = €N for € > 0, the best rates implied by
Theorems 2.2 and 2.3 are § + C(.%,p,P)e?/? and § + C(.Z,p,P)e>/* respectively.

3. Assumption requiring that M, > 1 is introduced for convenience: without it, extra powers of the
max(A,0((,.F))
A

2/3

ratio appear in the bounds.

Our next goal is to describe an estimator that is capable of achieving excess risk rates up to N~
The approach that we follow is similar in spirit to the “minmax” estimators studied in [5, 38, 34], among
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others, as well as the “median-of-means tournaments” introduced in [40]; all these methods focus on
estimating the differences Z(f1) — Z(f2) for all fi, f» € #. Recall that f. = argmin ;. 5 P{(f), and
observe that for any fixed f’ € .%, f. can be equivalently defined via

f. =argmin P (¢(f) —£(f")) .

fes

A version of the robust empirical risk minimizer (1.4) corresponding to this problem can be defined as

k
gk)(f—f/) = argmin% Zp <\/71(
j=1

yeR

Zi(H=Zi(f) -y
A
for appropriately chosen A > 0, and

F = argmin Z® (£ — ).

fez

Moreover, if f' € .% is a priori known to be “close” to f, then it suffices to search for the minimizer in
a neighborhood .%’ of f’ that contains f, instead of all f € .%:

F = argmin 2™ (£ — ).

fez’

The advantage gained by this procedure is expressed by the fact that sup ;. z+ Var (€(f(X)) — £(f'(X)))
can be much smaller than o (¢,.%).

We will now formalize this argument and provide performance guarantees; we use the framework of
Theorem 2.3 which leads to the bounds that are easier to state and interpret. However, similar reasoning
applies to the setting of Theorem 2.2 as well. The presented algorithms also admit straightforward
permutation-invariant modifications that we omit. Let

~

En(f)=2LW () -2V ()

be the “empirical excess risk” of f. Indeed, this is a meaningful notion as fN is the minimizer of
k70 (f) over f € . Assume that the initial sample of size N is split into two disjoint parts S; and S,
of cardinalities that differ by at most 1: (X;,Y;),...,(Xy,Yn) = S1 US,. The algorithm proceeds in the
following way:

1. Let J?ISM be the estimator (1.4) evaluated over subsample S of cardinality |S;| > |N/2], with the
scale parameter A; and the partition parameter k| corresponding the group size n; = [|S1|/k1];

— 6
2. Let 8’ = 8§ +C(p) (D*+ (€, F)\/nMy,) <%M§[§) + sJ{f) be a known upper bound on the
AM
excess risk in Theorem 2.3 (while this condition is restrictive, it is similar to the requirements of
existing approaches [13, 40]; discussion of adaptation issues is beyond the scope of this paper and

will be addressed elsewhere). Set

F(8) = {fey: éf’}v(f)ga’}.
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3. Define f1 := argmin,._ = s, ZW (f— ﬁgl‘) where

z & Z; S -Z; ]/C\l -
Zh) (f*f\s”):argnﬂéian \/ﬁ( i(f) i \S\)) y
ye =

j=1

is based on the subsample S, of cardinality |S>| > |N/2], a scale parameter A, and the partition
parameter k; corresponding the group size ny = | |S2|/k2].
It will be demonstrated in the course of the proofs that on an event of high probability, 3‘\(5’ ) C F(cb')

for an absolute constant ¢ < 7. Hence, on this event SUP - 75) Var (0(f(X)) = £(£.(X))) < V2(c8') <
cD?§' by the definition of v(§) and Assumption 2, thus Ay = DMy, v/ cd" with My, > 1 often leads to
an estimator with improved performance.

THEOREM 2.4 Suppose that

sup BV (¢(£(X)) —EL(f(X)))* < o0

feF
and that Ay, A satisfy My, := % = 1 and My, := D\A/% > 1. Moreover, assume that for a suf-

ficiently small absolute constant ¢’ > 0, sup ;. 7 max (Gs(n1,A1),Gr(n2,42)) < ¢’ and W}ﬁkﬂ <.
Finally, we require that

4 1 IS1]
kiMy, > E Uf(X;)—PL d 2.6
Vi, > S5 sup e 3, () = PE) an 26)
Vi, > ¢ YN

Then

¢ (ﬁV) <8+C(p) (D2+Dﬁ\/ﬁMA2) (W(W“) s+ ﬁ)

4 .2
MAzn N

with probability at least 1 —20e™*, where C(p) depends on p only and D is the constant appearing in
Assumption 2.

The statement of Theorem 2.4 is technical, so let us try to distill the main ideas. The key difference
between Theorem 2.3 and Theorem 2.4 is that the “remainder term”

%G(K,Q) s+0
Mgn2 N

o (0, F)\/iM (

BO(0,F)
Mg n?

is replaced by a potentially much smaller quantity /&’\/nM ( + “f\,ﬁ). In particular, if §’ <

(nMi) 71, this term often becomes negligible. To be more specific, assume that § = L\/’;) -h(N) where

h(N) — 0 as N — oo (meaning that fast rates are achievable) and that & = e N for € > % Moreover,

suppose that B(¢,.#) is bounded above by a constant. If A; is chosen such that A; < ¢(¢,.%), then
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o' :C(g-l-O'(E,ﬁ) ((%)3/24-@)). Hence, if max (h(N)V/N,Ne*?) < k;j < CNy/€ for j=1,2
and Ay < \/g, then
§'-nMj3, = O(1),

and the excess risk of ﬁ(} admits the bound
& (ﬁ\}) < 8§+C(p,D) (£+ %)

that holds with probability at least 1 —Ce™. A possible choice satisfying all the required conditions
is kj < Ny/€, j=1,2 (indeed, it this case it is straightforward to check that conditions (2.6) hold for
sufficiently large N as k; 2 VN, j=1,2). Analysis of the case when ¢ = 0 follows similar steps, with
several simplifications.

3. Examples.

In this section, we consider two common prediction problems, regression and binary classification, and
discuss the implications of our main results for these problems in detail.

3.1 Binary classification with convex surrogate loss.

The key elements of the binary classification framework were outlined in Section 1.4. Here, we recall
few popular examples of classification-calibrated losses and present conditions that are sufficient for the
Assumption 2 to hold.

Logistic loss £(yf(z)) = log (1 +ef (z)). Consider two scenarios:

1. Uniformly bounded classes, meaning that for all f € .%, sup_.g|f(z)| < B. In this case,
Assumption 2 holds with D = 2¢B for all f € .#. See [8] and Proposition 6.1 in [3].

2. Linear separators and Gaussian design: in this case, we assume that S =R, Z ~ N (0,1) is
Gaussian, and % = {(-,v) : ||v||2 < R} is aclass of linear functions. In this case, according
to the Proposition 6.2 in [3], Bernstein’s assumption is satisfied with D = ¢R3/? for some
absolute constant ¢ > 0.

Hinge loss £(yf(z)) = max (0,1 —yf(z)). In this case, sufficient condition for Assumption 2 to hold is
the following: there exists T > 0 such that |g,(Z)| > t almost surely, where g.(z) = E[Y|Z = Z].
It follows from Theorem 7 in [8] (see also [55]) that Assumption 2 holds with D = \/% in this
case.

Bound for §. Let IT stand for the marginal distribution of Z and recall that

0(d):=E sup
Uf)eF(9)

1 N
—= ¥ ((e1(2)) = £00,£.(2))) —E(UY £(2) — (Y £.(2))) ) |.
W E
Since ¢ is Lipschitz continuous by assumption (with Lipschitz constant denoted L(¢)), consequent appli-
cation of symmetrization and Talagrand’s contraction inequalities [37, 56] yields that
1 N

0(8) <AL(OE sup T
=

If=FillLy (mmy<DV8

lej(f*f*)(zj)
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where €1,..., &y are i.i.d. random signs independent from Y;’s and Z;’s. The latter quantity is the mod-
ulus of continuity of a Rademacher process, and various upper bounds for it are well known. For
instance, if .% is a subset of a linear space of dimension d, then, according to Proposition 3.2 in [31],

Esup, follymy<DVE \FZJ L &i(f— £)(Z)| < DV8Vd, whence @(8) := 4DL(£)\/8d is an upper
bound for @(8) and is of concave type, implying that

d

5§ <C(p,0)D* —
Clp.O)D" -
More generally, assume that the class .7 has a measurable envelope F'(z) := sup ¢ z | f(z)| that satisfies
|F(Z)|ly, < oo, where |||y, :=inf{C >0: Eexp(|§/C|*) <2} is the y, (Orlicz) norm. Moreover,
suppose that the covering numbers N (.%, Q, €) of the class .# with respect to the norm L, (Q) * satisfy

the bound v
A|F||L2(Q)>

. 3.1)

N(Z,0,€) < <
for some constants A > 1, V > 1, all 0 < & < 2[|F ||, () and all probability measures Q. For instance,

VC-subgraph classes are known to satisfy this bound w1th V being the VC dimension of .% [58, 31].
In this case, it is not difficult to show (see for example the proof of Lemma 3.1 in the Supplementary

material [41]) that
< @(8):=Cy/Vlog(e2A2N) (f + \[ log(AzN)HFWz)

E su fZe]f f(Z)| <

If- f*lle(m<D\F
hence it is easy to check that in this case

)V10g3/2(62A2N)”FHW2

S§<C(p v

It immediately follows from the discussion following Theorem 2.4 that the excess risk of the estimator

1y satisfies
¢ () <cp.0) (ﬁ 4 V1o @A N)IF v, “)

N N

with probability at least 1 —20e~*. Note that we did not need to assume that i, := argmin E/(Y f(Z))
all measurable f

belongs to .%. Similar results hold for regression problems with Lipschitz losses, such as Huber’s loss

or quantile loss [3].

3.2 Regression with quadratic loss.

Let X = (Z,Y) € S x R be a random couple with distribution P satisfying ¥ = f.(Z) + 11 where the
noise variable 7 is independent of Z and f,(z) = E[Y|Z = 7] is the regression function. Let ||n||2,1 :=
Pr(|n| > t)dt, and observe that ||n[[21 < o as sup,czE(Y — f(Z))* < o by assumption. As

3Definition: the covering number N (.%,Q, €) is the smallest integer k > 1 such that there exist fi,..., fy € L,(Q) satisfying
U_];:, B(fj.€) 2 %, where B(fj,€) is the L,(Q) ball of radius & centered at f;.
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before, IT will stand for the marginal distribution of Z. Let .% be a given convex class of functions
mapping S to R and such that the regression function f, belongs to .%, so that

f» = argminE (Y — £(2))*.
feF

In this case, the natural choice for the loss function is the quadratic loss £(x) = x> which is not Lips-
chitz continuous on unbounded domains. Assume that the class .%# has a measurable envelope F(z) :=
sup ez | f(2)] that satisfies ||F(Z)||y, < . Moreover, suppose that the covering numbers N (.7, Q, €)
of the class .% with respect to the norm L, (Q) satisfy the bound

AlFlzy0\ "
€

N(ﬂ,Q7e)<<

for some constants A > 1, V > 1, all 0 < € < 2||F|| L,(0)> and all probability measures Q (see remark
about VC-subgraph classes following display (3.1)).
Verification of Bernstein’s assumption. It follows from Lemma 5.1 in [31] that

F(8) C{v—f(2)*: feF,E(f(2)— £(2)* <25},

hence v(8) < v/28 so D can be taken to be v/2 in Assumption 2.
Bound for 6. Required estimates follow from the following lemma:

LEMMA 3.1 Under the assumptions made in this section and for A > o (¢, %),

< Viog?(A2N)(IF |2, + In 13
0 <C(p) g )(HN”% ||77H21)

Moreover, if the functions if .% are uniformly bounded, the logz(AzN ) can be removed.

The proof is given in Section A.9 of the Supplementary material [41]. An immediate corollary of
the lemma, according to the discussion following Theorem 2.4, is that the excess risk of the estimator
fy satisfies the inequality

& (I) <cp)

o, Vieg*(A2N)(|F (13, +Inl3,) +5
N N

with probability at least 1 —20e™*, for 0 < s < cN 174,

4. Proofs of the main results.

In the proofs of the main results, we will rely on the following convenient change of variables. Denote

~ k Df) — _
Guz)= L L (ﬁ LN ZT) Z) ,
£

Gk(Z;f) =\/%Ep' <\/ﬁ($1(f)_$(f))_z>

A
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In particular, when & = 0, Gi(z; f) = EGy(z: f). Let e (f) and e (f) be defined by the equations
Ge (eW():1) =0,
Gy (e(k) (f); f) —0.

Comparing this to the definition of ZW (f) (1.2), it is easy to see that %) (f) = W (f)=Z(f).

Let us explain the main high-level ideas behind the proof. In the classical empirical risk minimiza-
tion framework, .Z%) (f) is replaced by the empirical mean Py¢(f) = %Z]}':l ¢(f(X;)); in particular, it
is linear in ¢(f), meaning that Py (¢(f1) —£(f2)) = Pvl(f1) — PvL(f2), while k20 (f) lacks this prop-
erty. Imagine that R0 (f) was linear in £(f). Then, setting =2 (fv) —Z(f.), we would be able
to write that

& =L(fv) — L (f.) = (L () - LP () — (L) - LO (1) + LW (fy) - 2V ()
<0

< s |FO(-f) =L )] @D
f:E(f)<dn

It would then suffice to find a good upper bound for the supremum on the right side of (4.1) and solve

the resulting inequality to get an upper bound for gN. However, this argument does not work directly
due to the lack of linearity. Instead, we use Bahadur-type representation of the otk (f) to introduce

linearity into the problem. Specifically, we will show that &{X) (f) = — aG(};,E(()of}) +rn(f) where ry(f) is
a small remainder term and d,Gy (0; f) is the partial derivative of Gy (z; f) with respect to z evaluated in
z=0. The process Gy (0; f) is “almost” linear in ¢(f), the only obstacle being the nonlinearity due to

p’. Mimicking (4.1), we can write that

&y = e® () =W (£) + ZW (fy) — 2B (f.) <e® (fv) — P ()

<0

Ge(0:f)  Gr(0:1.)
azG(();f) azG (0§f*)

Ge(0:0v) G0z A (
- e vin =S rv(fv f) < sup
0.G (0; fN) %.G(0:f.)| NN f:6(f)<dy

+mMﬂO

for appropriately defined ) (-,-). The difference % — aG_ ’ég;;% can be tackled with the techniques

commonly used to estimate suprema of the empirical processes; in particular, symmetrization and con-
traction inequalities for Rademacher sums [37] are used to remove the additional nonlinearity in the
definition of Gy(z, f) introduced by p’. At that point, one only needs to carefully estimate the remainder
term .

4.1 Technical tools.
We summarize the key results that our proofs rely on.

LEMMA 4.1 Let p satisfy Assumption 1. Then for any random variable ¥ with EY? < oo,

Var (p'(Y)) < Var(Y).
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Proof. See Lemma 5.3 in [47]. O

LEMMA 4.2 For any function & of with bounded third derivative and a sequence of i.i.d. random vari-
ables &1,...,&, such that E&; = 0 and E|&; * < oo,

“(Ee) = (52)

where C > 0 is an absolute constant and Zy, ..., Z, are i.i.d. centered normal random variables such that
Var(Z;) = Var(&).

< Cnllh" |- El&1f,

Proof. This bound follows from a standard application of Lindeberg’s replacement method; see chapter
11 in [49]. 0

LEMMA 4.3 Assume that E|f(X) —Ef(X)|?> < e forall f € .# and that p satisfies Assumption 1. Then
forall f € % and z € R satisfying |z| < %%,

’Ep’ (ﬁW) —Ep’ (W)

Proof. See Lemma 4.2 in [47]. O
Given N i.i.d. random variables Xi,..., Xy € .7, let || f —gl| 1 (my) = maxi<j<n | f (X)) — g(X;)|. More-
over, define

<2Gs(n,A).

L F) = BB (73 La(II)),
where ¥ (.7, Lo(Ily)) is Talagrand’s generic chaining complexity [54].

LEMMA 4.4 Let 62 := sup ey B f2(X). Then there exists a universal constant C > 0 such that

<C<GINAyNﬁNﬁ?v'

1N2 2
Esup | v 1 /06) - B X) =

fez j

Proof. See Theorem 3.16 in [31]. O
The following form of Talagrand’s concentration inequality is due to Klein and Rio (see Section 12.5 in

[12]).

LEMMA 4.5 Let {Z;(f), f€ #}, j=1,...,N be independent (not necessarily identically distributed)
separable stochastic processes indexed by class .# and such that |Z;(f) — EZ;(f)| < M a.s. for all
1 < j< Nand f €.%. Then the following inequality holds with probability at least 1 —e™*:

sup (Z(Zj(f) —EZj(f))> < 2E sup (Z(Zj(f) —Ezj(f))> +V(F)V2s+ W@

re7 \j=1 fe7 \ j=1 37
where V2(F) = supye 5 X', Var (Z;(f)).
It is easy to see, applying (4.2) to processes {—Z;(f), f € #}, that

N N 4Ms
inf (Z(Zj(f)—EZj(f))> > —2E sup <Z(1Ezj(f)—zj(f))> —V(F)W2s— —

fe7\j= ez 3

J=1

with probability at least 1 —e™".
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4.2 Proof of Theorems 2.2 and 2.3.

We will provide detailed proofs for the estimator fN that is based on disjoint subsamples indexed by
G1,...,Gy. The bounds for its permutation-invariant version fjf,f follow exactly the same steps where all
applications of the Talagrand’s concentration inequality (Lemma 4.5) should be replaced by its version
(B.3) for nondegenerate U-statistics stated in Section B of the Supplementary material [41].

Let J C {1,...,k} of cardinality |J| > k — & be the set containing all j such that the subsample
{Xi, i € G;} does not include outliers. Clearly, {X;: i € G;, j € J} are still conditionally i.i.d. as
the partitioning scheme is independent of the data. Moreover, set Ny := Y. ;c;|G;l, and note that, since
0 <k/2,

Ny =n|J| > N
J=n = ) .
Consider stochastic process Ry (f) defined as
Ry (f) = Gi(0:f) +9:Ge (0: 1) -2 (1), (43)

where 9,Gy (0; f) := .G (z: f)|_,- Whenever d;Gy (0; f) # 0 (this assumption will be justified by
Lemma 4.6 below), we can solve (4.3) for e®) (f) to obtain

G (0: 1) n Ry(f)

(k) _
N ="56.0:0 T ac 0

(4.4)

which can be viewed as a Bahadur-type representation of &) (f). Setting f := fN and recalling that
e (f) = ZW (f) —Z(f), we deduce that

ak(O;fN) " Ry (fv)

.Gy (o;ﬁv) .Gy (o;fN) '

LV (fy) = 2L (fw) -

By the definition (1.4) of fy, ZW (fN) <.ZW (f+), hence

G (0h)  Ry(i) Gi(0:1)  Rulf)
L(fv) — =+ L < ZL(fs) — LA W
) .Gy (o; fN> 2.Gy (0; fN) V)= 5601 T 3G (0:10)
Rearranging the terms, it is easy to see that
I G (1) G0 Ry(/)
=2 (fn)—Z(f) < L — 142 sup ’ 4.5)
v =L (fx) = Z(f) Y G(O; fN) 2GO:7)| 7, .;@N) 9-Gr (0: f)

REMARK 4.1 Similar argument also implies, in view of the inequality .Z(f.) < & (fN) that

Ge(0:£,)  Rw(f)
asz (O;f*) asz (0§f*)

O () + G (O;fN> Ry (fn)

_ .
Z0(f)+ 2.6, (0:7) .G (0:v)

N

3
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hence R .
G (0h)  Guor)
2.6(0:7w) %G (O:1)

It follows from (4.5) that in order to estimate the excess risk of fN, it suffices to obtain the upper

bounds for R -
Gi (O;fN) _ G (0: £.)
0,Gy, (O;f;\/) 9.Gy (O;f*)

LW () - LW (fv) <

+2 sup
F€Z(on)

Ry (f) )
asz(O;f) .

A] =

and A ;== sup
FEF (3)

Ry (f) ‘
asz(O;f) .

Observe that
Ge(0:Fv)  Gu(ous)
9,Gy (OQJ?N) ;G (0; f)
- Gy (0;fzv) —Gr(0;f2) . G (0 1.) (
o 0G(0f)  2:Gi(0:£) 2.Ge (05 )

2.6 (0:1.) = 3G (0:fx ) )

Since p” is Lipschitz continuous by assumption,

Gi (0:£) o B
.Gy (0; f) 0.Gy <0;fN) (asz (0; f+) — .G (O,fN))|

G (0: 1) Vink <p,, (WM) o (\/ﬁfl(ﬁv)—f(ﬁv)))
9.Gy (0; £.) 9.Gy (0; fN) A A

,G\k (Oaf*) m
0.6 (0:£.) 2:G (0: i) 47

< L(p")

var'/2 (7 (X)) = (£.())) ‘

é\k (O,f*)

Vink
\4
9.1 (0:£.) G (0: )

=C(p) T V(y). (46)

The following two lemmas are required to proceed.

LEMMA 4.6 There exist C(p) > 0 such that for any f € .7,

. Vin (A s Cp) [ UF(X)) — PUS)
0,61 (03)| > 5 ¢m< <Var(z<f<x))>’2@> ﬁE‘ X

Proof. See Section A.1. O
In particular, the bound of Lemma 4.6 implies that for n large enough,
1 k 1 k
inf |0,G (0;f)| = Vkn —~ = \/71 “@.7
feF 4/2xmax (A, 6(¢,.7)) 421 A
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Itis also easy to deduce from the proof of Lemma 4.6 that for small nand A > o (¢,.%), infrc 7 |9.G (0; )| >
e(p) 4"

LEMMA 4.7 For any f € .7

ék(o;f)<2(\/];Gf(n,A)+G(€af)\/§+2S+ ﬁ’)

for some positive c(p).

A Vi Vk
with probability at least 1 —2e¢~*, where C > 0 is an absolute constant.
Proof.
See Section A.2. O

Lemma 4.7 and (4.7) imply, together with (4.6), that

Gi (0:£.) L P
9.Gy (O;fi) 2.Gy (O;fN> (8sz (0; fx) — 9.Gi <O,fN>)

. s
<clp)gs (TG [+ S0 L it i) vian

on event @) of probability at least 1 —2¢7°. As A> 6 (¢,.7) by assumption, we deduce that

Gi (0:£.) o .A
0,Gy. (O;fi) .Gy (O;fN> (8sz (0; f) — 9.Gi (szv))

<clpvin (/5 + L8 s s s vi ).
Define

S :_min{5>0:C1(p)< ;+Gf*\(/r%A)+fs+ﬁ) ?gi}, 4.8)

where Cj(p) is sufficiently large. It is easy to see that on event @; N {SN >81},

(4.9)

N

G (0: ) o
2,Gy (0; fi)aZGk (O;fN) (asz(O,f*) 9.Gy (0, fN)> <

for appropriately chosen C;(p).

Gy (Oifzv)*ak(olf*)
2:Gi(0:fv)

the local oscillations of the process 6k (0 f). Specifically, we are interested in the bounds on the random

Our next goal is to obtain an upper bound for . To this end, we will need to control

variable sup ;¢ 7 s Gi(0; f) — Gy (0; f*)‘ . The following technical lemma is important for the analysis.

LEMMA 4.8 Let (&1,M1),---, (&, M) be a sequence of independent identically distributed random cou-
ples such that E€; = 0, Eny = 0, and E|&;|> + E|n;|> < . Let F be an odd, smooth function with
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bounded derivatives up to fourth order. Then

or(£e) = (20)

Moreover, if E|& |* +-E|n;|[* < o, then
n n
EF Zé] —EF Z T]j
=1 =1

where Ry = (max (E|& |*,E|m|*)) ' and C(F) > 01is a constant that depends only on F.

Proof. See Section A.3. R O
Now we are ready to state the bound for the local oscillations of the process G (0; f). Let

U(8,s):= % (8f2w(6) +v(5)\/§> 432

1/2

Vavar (& —m) (E

F' (S,’] +a (s;';‘ —sg)) D

< max
acl0,1

]

< C(F) ~n<Var1/2(§1 —M) (RZJr\/lﬁRi)

T (EE —m ) Ri>,

3k
Moreover, if ®(8) and V(8) are upper bounds for @(8) and v(8) and are of concave type, then
~ 2 ~ ~ s 32s
U(d,s):= 1 (c(y)w(5)+v(5)\/;) +ﬁ’ (4.10)

where c¢(y) > 0 depends only on ¥, is also an upper bound for U (8, s) of strictly concave type. Moreover,
define

R(6,7) = sup BV (0(1(x)) ~BA(f(X) )

feF

B() := 3@.7) [ v V(8
W(yﬁ;fwym L R(0F) <o

where V4(8) upper bounds v4(8) and is of concave type. Below, we will use a crude bound v4(8) <
2R4(¢,.7 ), but additional improvements are possible if better estimates of v4(8) are available.

LEMMA 4.9 With probability at least 1 — e ™2,

sup  [Gu(0:) — Gul0:£)| < U(8.5) +C(p)VEB(8) + 4.
fe#(8) vk

where C(p) > 0 is constant that depends only on p.
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Proof. See Section A 4. O
Next, we state the “uniform version” of Lemma 4.9.

LEMMA 4.10 With probability at least 1 —e~*, for all § > O, simultaneously,

éC(p)S <ﬁ(5minas)+\/];§(5min)>+4\f];’

sup |Gi(0;£) — Gi(0; f2) S i

fe7(8)

where C(p) > 0 is constant that depends only on p.

Proof. See Section A.5. O
It follows from Lemma 4.10 and inequality (4.7) that on event &, of probability at least 1 —e™*, for
all 0 > Oy, simultaneously,

G (05 f) — G (0 f)
asz (O§f)

sup
feZ(8)

f 5mm n 5m

<C( )5( A U(6m1n7 )+AB(5mm)> +4A~\/ﬁ§.

Define

52 :=min{5>0: Cz(p)\?NU(67s) < },

=7]
2| -

83 ::min{S >0: C3(p)\/ﬁ5) < 7}

where C>(p), C3(p) are sufficiently large constants. Then, on event @, N {SN > max(8,,83) },

Gy (03 f) — Gy (03 £2) 26N

4A\/n— 4.11
8sz (OQf) * f ( )

sup
FEF(8N)

for appropriately chosen C>(p),Cs(p).
Finally, we provide an upper bound for the process Ry(f) defined via

Ry(f) = G (05 ) + .G (0: f) - &M (f).

LEMMA 4.11 Assume that conditions of Theorem 2.1 hold, and let &, > 0 be fixed. Then for all s > 0,
0 = Omin, positive integers n and k such that

U (8min, 5) s+O
— T 4+ sup Gr(n,A)+ —— < ¢(p), 4.12)
6min \/]; fEE‘ f( ) k (p)

the following inequality holds with probability at least 1 — 7e¢~*, uniformly over all d satisfying (4.12):

)

A2 2
/262 [(UGnin.s) \ 7y ) (6 f) n' 2
f:;%)lRN(f)KC(p)mAz( ° <5mmf> V=%

\/n‘/2<sup )> VS \/ 3/2ﬁ)

fez

Moreover, the bound of Theorem 2.1 holds on the same event.
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Proof. See Section A.6. O

Recall that o
52:min{5>0: Cz(p)\/ANU(gas) < ;}7

where C,(p) is a large enough constant. Let @z be the event of probability at least 1 —7¢~* on which
Lemma 4.11 holds with O, = 32, and consider the event @3 N {8y > 32}. We will now show that on
this event, Lemma 4.11 applies with § = Jy. Indeeg, the bound of Theorem 2.1 is valid on &3, hence

the inequality (2.4) implies that on @3, y < C(p) %, and it is straightforward to check that condition

~

(4.12) of Lemma 4.11 holds with 8pin = 8> and § = Sy. It follows from inequality (4.7) that on event
3N {dy = 62},

sup

Ry (f) ’<c<p)gz(”;~/2§§ (ANﬁ(52,s)>2\/50-2(&f*>n1/2s

e (3 9:Gr (0:1) A2 VN & A2 N
2
\/nl/ﬁ up Gy(n,A) vn3/2A~52+m
feF vn N? .

Consider the expression

Bl <A~[7(52,S)>2:C( s ( i ﬁ(az,s)>23 W25,

A2 43 "W N

C(p) 3

A2

VN &

and observe that whenever Theorem 2.1 holds, "I/Ai‘sN < ¢(p), hence the latter is bounded from above by

2406\ &
A2\VN &,

Sy -C(p)

ST
whenever A > 6(¢,.%) (so that A = A) and C;(p) in the definition of &, is large enough. Moreover,

A3 G2(0, f,) n'/%s
(P)FiA N

<C(p)-o(t,f)Vny <C(p)Aviy

ifA>0(l,f). As 2 < c under the conditions of Theorem 2.1, n3/2A~52;—f2 < CA £ Combining

the inequalities obtained above, we deduce on event @3 N { Sy > 32},

Rv(f) | _ 28y —( s+, 55 (Gr(n,A))?
asz(o;f>‘<7+C(p)A <ﬁ vV Vi

2 sup
FEF (v)

whenever A > o(¢,.7). Finally, define

2
54:=Cy(p)A (ﬁs";]ﬁvsuljfeﬂ (\(/Z("’A)) )
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where C4(p) is sufficiently large. Then on event @3N {SN > max (32, 734) }

~ ~

o _ 30 (4.13)
77

R’V(f)‘+43\/ﬁf; < @4‘

2 S 56 (0:)

FEF(8N)

Note that the expression above takes care of the term 4A N % that appeared in (4.11). Combining (4.9),
(4.11), (4.13), we deduce that on event @, N, N O3 N {SN > max (31 ,32,33,734) },

~

6~
5N < $6N1
leading to a contradiction, hence on event ®; N @, N s of probability at least 1 — 10e™7,

/5\1\/ < max <§1 ,32733,734) . “4.14)

Recall the definition (4.8) of &,. If condition 2 (“Bernstein condition”) holds, then v(8) < DV/§ for
small enough &, in which case

_ o G (n,A)
< 2 St f
61 <C(p)D < v T, ;

where we used the fact that ; < ¢ by assumption. Together with the bound (2.1) for Gy, (n,A), we
deduce that, under the assumption that R4 (¢, . %) < oo,

2
sro (BLX)-ELXL)
N + Abn?

81 <C(p)D?

3.
b ([g‘y), where
MA

Fo(X)—Ef.(X) \3 - supse 7 E| /(%) Ef(X) ]g

) E
Since A = 0(¢,.F )My, yE < (I

N

sup e V4 (¢( (X)) — EA(F(X)))*

Bl,F) =

o(l,7) ’
hence 6( )
= +0 B, F
5, <c(p)p*( 2 ’ . 415
e (720 @15)
At the same time, if only 6(¢,.%) < oo, we similarly obtain that
= +0 1
5, <c(p)p* (2 — ). 4.16
<ot (0 ) @16

Next we will estimate §3. Recall that, when Ry (¢,.7) < oo,

<o BF)[(V(E) 1 w(8) 1
B(6) = T (A M—§+ A M3\/ﬁ>'
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For sufficiently small § (namely, for which condition 2 holds) and A > o (¢, %),

3 g5 < BLF) (7(5) +R4(e,y)> _B) (DJS o053 9‘))

N M: ' Miyn n M2 M3
and . A
= B (E F) B (L, F)
At the same time, if only the second moments are finite, E(S) = @ i, and it is easy to deduce that in
this case,
_ D?
03 <C(p)—— 4.18

Next, we obtain a simpler bound for 8,: as A > o(¢,.%) by assumption, A = A = 6(¢,.F) M, and the
estimate (2.1) for Gy, (n,A) implies (if R4 (¢, ) < oo) that

_ s 6
04<C(p)o(, )(fMA +o ?wgi)). (4.19)

If only 0(¢,.%) < oo, we similarly deduce from (2.1) that

— s+ 0 1
04<C M, — . 4.20
L ) @20
Finally, recall that U (8,s) = 2 (c(y) @(8) + v(8)/5) —&—3—\/22 and &, :min{é >0: Cg(p)%ﬁ(g’s) < %},
hence
<8\/c(p)p* 3\ Clp)o(t, 7) sVnMy, (4.21)

N

where & was defined in (2.5). Combining inequalities (4.15), (4.21), (4.17), (4.19) and (4.14), we obtain
the final form of the bound under the stronger assumption R4(¢,.% ) < co. Similarly, the combination of
(4.16), (4.21), (4.18), (4.20) and (4.14) yields the bound under the weaker assumption ¢ (¢, %) < co.

4.3 Proof of Theorem 2.4.
Recall that C;(;N(f*) =2 (fe) — k20 (fl(,) is the “empirical excess risk” of f, and let Sy = é”(ﬁ\,) It
follows from Remark 4.1 that (using the notation used in the proof of Theorems 2.2 and 2.3)

~ Ny ~
G (O,fN) ~ Gi(0:£) 12 sup
aZG (O,f}(]) aZG (O,f*) fey(gN)

Ry (f) ’
asz(();f) '

On the event of Theorem 2.3 of probability at least 1 — 10e™*,

£(R) <8 = 5+Clp) (DPott.7 i) (T 420,

M4 n? N
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hence on this event

Ge(0:f)  Gi(0:£.)

én(fi) < sup 3.G(0.f)  3.G(0:f.)

fe#(d8")

+2 sup
feF(8)

RN(f) 6 ’
ack<0f>’< 7%

where the last inequality again follows from main steps in the proof of Theorem 2.3; note that similar
result holds if &’ is replaced by its analogue from Theorem 2.3. Consider the set % (&) = { fez: zg"\N( <6 }

First, observe that on the event & of Theorem 2.3, f, € 55(5’ ) as implied by the previous display. We
will next show that % (8") C .%(78') on the event &) of Theorem 2.3, meaning that for any f € % (8'),
&E(f) <78'. Indeed, let f € .Z(6') be such that &(f) = 0. Then (4.4) implies that

Ge(0sf)  Gi(0:f.)
.G (0;f)  9:Gi (0 f)

G (0; 1) G (0; £
)| 9:Gk (0; f)  9.Gy (0 f.)

Again, it follows from the arguments used in proof of Theorem 2.3 that on event c§’1 of probability at
least 1 — 10e™%,

RN(f) + RN(f*)
G (0;f)  9:Gi(0; f+)

Ry(f) ’
)19:Gi (0; f)

L)~ 2L(£) <L) - LW (f) +

+2 sup
feZ (o

< (?N(f)'F sup
feZ (o

Gy (0; 1) G (0; 1)
1| 0:Gi (0:)  9.Gi (03 £2)

< 9max (5', G) .

sup 7

feF(o

+2 sup
fe#(o

Ry(f) ‘
)1 9:G (05 £)

Consequently, 6 < 8’ + $ max (§',0) on this event, implying that ¢ < 78’. Next, Assumption 2 yields
that

sup Var (((f(X)) ~€(f}))

JEF (&)

<2| sup Var(€(f(X)) = £(.()) + Var (€((X)) — £(£.(X))) | <2D(VT+1)8

1EF(8)
on &). It remains to apply Theorem 2.3, conditionally on &7, to the class
FE) - Fy={f =R re 7}
To this end, we need to verify the assumption of Theorem 2.1 that translates into the requirement

1 15

1
N Efg;lgﬁ/) N ,:21 (C(F (X)) = (£ (X)) = PLE(S) = £(£2))) -

As & > § and |S;| > | N/2], we have the inequality

1 S2]

Z (L(F(X))) = £(fo(X}) = P(E(f) = £(£2)) S CE'VN,

cAy >

E sup
17180 V/ 12| j=

hence it suffices to check that Ay = DMy,V78' > C . % The latter is equivalent to 6’ < CDzMi2 kﬁz

that holds by assumption. Result now follows easily as we assumed that the subsamples S; and S used
to construct f5 and fy; are disjoint.
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