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Abstract

The generalized Langevin equation (GLE) is a stochastic integro-differential
equation that has been used to describe the velocity of microparticles in
viscoelastic fluids. In this work, we consider the large-time asymptotic
properties of a Markovian approximation to the GLE in the presence of a
wide class of external potential wells. The qualitative behavior of the GLE is
largely determined by its memory kernel K, which summarizes the delayed
response of the fluid medium on the particles past movement. When K can be
expressed as a finite sum of exponentials, it has been shown that long-term
time-averaged properties of the position and velocity do not depend on K at
all. In certain applications, however, it is important to consider the GLE with
a power law memory kernel. Using the fact that infinite sums of exponentials
can have power law tails, we study the infinite-dimensional version of the
Markovian GLE in a potential well. In the case where the memory kernel
K is integrable (i.e. in the asymptotically diffusive regime), we are able to
extend previous results and show that there is a unique stationary distribution
for the GLE system and that the long-term statistics of the position and
velocity do not depend on K. However, when K is not integrable (i.e. in the
asymptotically subdiffusive regime), we are able to show the existence of an
invariant probability measure but uniqueness remains an open question. In
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particular, the method of asymptotic coupling used in the integrable case to
show uniqueness does not apply when K fails to be integrable.

Keywords: anomalous diffusion, asymptotic coupling, invariant measure
Mathematics Subject Classification numbers: 60H10

1. Introduction

The movement of microparticles in biological fluids is often distinct from classical Brownian
motion [30]. While some particles exhibit non-Gaussian [47, 67] and/or switching behav-
ior [56, 59], an important category of anomalous diffusion includes paths with stationary
Gaussian increments that are negatively correlated with each other [10, 29, 41, 69]. In par-
ticular, anticorrelation can accumulate in such a way that the particle process {x(¢)},>o has
a mean squared displacement (MSD, E [|x|2(t)]) that is sublinear over a significant period of
time [46, 53, 57]. Such a process is commonly called subdiffusive, and there have been nume-
rous perspectives on how to model [16, 32, 34, 42, 46, 50, 54] and statistically analyze [6, 11,
33, 41, 49, 55] individual, unconstrained, subdiffusive microparticle paths.

It is also natural to investigate the behavior of subdiffusive particles when they are sub-
jected to external forces. Commonly the magnitude and direction of these forces are expressed
as the negative gradient of a space-dependent potential energy function ® : RY — R. In early
works, it was common to study quadratic potentials (®(x) = r|x|?) because the equations that
govern such particle motion are linear and admit exact solutions [2, 42, 46]. More recently
there has been success in modeling and simulating the behavior of subdiffusive particles in
nonlinear potentials as well. As we discuss below, it is possible to develop a model that exhib-
its ‘transient subdiffusive behavior’ (sublinear MSD over several log-decades of time [53, 54])
in the absence of a confining potential, and permits an exact expression for the stationary joint
distribution of position and velocity when subjected to one of an appropriate class of nonlinear
potentials [16, 60, 61]. There are a host of classical questions that can be rigorously studied
for Brownian motion in such potentials, which provides a foundation to ask similar questions
for subdiffusive particles. Several such questions were introduced and surveyed by Goychuk
in 2009 [14] and 2012 [16]: for example, addressing escape times between minima in dou-
ble-welled potentials (or more recently, escape times in stationary Gaussian potentials [20]),
effective diffusivity in static periodic potentials, effective velocity induced by time-dependent
potentials known as flashing or rocking rachets (see also [15, 21, 22, 39, 40]). Since organelles
and other microparticles (or macromolecules) have been observed to exhibit significant sub-
diffusive behavior in cytoplasm [65, 68, 72] and other biological fluids like mucus [29], appli-
cations of these theoretical models have emerged in recent years: for example in the study of
magnetic nanoparticles [18, 19] and the modeling of intracellular transport by microtubule-
associated molecular motors [17, 23, 24]. Moreover, it is commonplace for experimentalists
to probe fluid-mechanical properties of live cells by manipulation through ‘optical tweezers’
[58, 70, 73]. However, such studies rarely take into account the subdiffusive character of the
microparticle probes, or the possibly nonlinear forces exerted by the trap.

In this work, we take a step advancing the theory for a set of models that are ‘fully subdif-
fusive’ in a sense described below. Such models are necessarily infinite-dimensional, which
makes it non-trivial to establish existence and uniqueness of stationary measures, and points
towards fundamental questions about if and on what time scale a system might ‘forget’ its
initial conditions.
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1.1. Model development and the main question

To describe microparticle motion in viscous fluids, it is common to use a Langevin framework.
Let {(x(#),v(r))}s>0 denote the position and velocity of a particle, and let ®(x) denote the
particle’s potential energy at the position x. (Because it does not have a substantive impact on
our results, we will study the dynamics in one dimension). Newton’s Second Law yields [61]

mdo(f) = —o(r) — @' (x(1))dt + /2vdW(2), (1.1)
where x'(t) = v(t). Here m is the particle’s mass, - is the viscous drag coefficient, and W(z)
is a standard Brownian motion. To be physically correct, the coefficient of the noise should
be +/2kgT~, where kp is Boltzman’s constant and 7 is the temperature, but for the sake of
notational simplicity we will set kg7 = 1 throughout. Under appropriate conditions on the
potential well, this system has a unique stationary distribution with density

7(x,v) o exp (— (®(x) + gvz)) (1.2)

and is geometrically ergodic, in the sense that the law of the process converges to the station-
ary distribution exponentially quickly (see, for example, [5, 28, 52, 61] as well as [4, 25] for
related results). Birkoff’s ergodic theorem in turn implies

1
lim —
t—oo

t
/ Fle(s)o(s)ds = | f(x,0)m(x,0)dxdo, -as. and in L' ()
2
’ . (1.3)
for any f € L!(r). Ultimately, we are interested in whether or not such a property holds for
viscoelastic diffusion in a nonlinear potential well.

In order to model the memory effects arising in viscoelastic diffusion, physicists have
long employed the generalized Langevin equation (GLE), which adds a memory kernel
K : R — Ry and a stationary Gaussian process {F(f) },cg to the Langevin dynamics (1.1). In
particular, the GLE in a potential well ® can be written formally as

t
mo(t) = —&'(x(t)) — yo(t) — / K(1 — s)o(s) ds + /2y W(1) + F(1).

- (14)
for t>0, where we assume that E[F(¢)F(s)] = K(t—s) in order to satisfy the
fluctuation-dissipation relation [31, 33, 43]. In general, there can be a pair of coefficients in front
of the memory terms, but they do not affect our analysis. We refer the reader to [32] for a physi-
cal interpretation of those parameters. In comparison with the classical GLE version in [43], the
noise term in (1.4) can be regarded as a sum of two independent noises & () = F(t) 4 /2yW(z),
such that E[F (/)W (¢)] =0, and E[\/2ZyW(t)\/2yW(t')] = 27do(|t — '|). In this case, the
memory term +y(z) is a sum of the Dirac delta function and K (¢), i.e. y(#) = v4(¢) + K(¢) and
thus

t t
/ ~(t — s)v(s)ds = yo(r) + / K(t — s)v(s) ds.
Separation of F(¢) and W (r) will help with the analysis later. We also note a distinction in the
support of the memory kernel. Namely, in the physics literature, the memory kernel in the
GLE is often defined on the interval [0, 7] rather than (—o0, f] as we have here. In order for a
stationary integro-differential equation to be properly defined we must specify initial data on
an infinite horizon. The classical definition effectively defines the velocity to be zero on the
interval (—oo, 0]. This assumption (along with a quadratic potential well), allow for use of the
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Laplace transform, which can yield a host of statistical properties including an exact solution
[8, 66]. Unfortunately, such an approach is not available here.

Due to the memory kernel K, in this formulation of GLE, the joint process (x(),v(t)) is
non-Markovian. Therefore, it is not immediately clear what we mean by a ‘stationary distribu-
tion.” However, if the memory kernel K () is a sum of N exponential functions, we can use
the so-called Mori—Zwanzig formalism [14, 60, 74] to rewrite the GLE asa 2 + N (or 2 + 2N
[11]) dimensional system of SDEs. (For a contrast on the two representations, see [33].) When
® is quadratic, such a representation is statistically equivalent to (1.4); otherwise, we simply
call this the Markovian approximation of the GLE. This finite-dimensional Markovian version
of the GLE does admit a stationary distribution and one can show that the marginal distribu-
tion of the pair (x, v) in stationarity is exactly (1.2) [16, 60, 61]. The fact that the memory ker-
nel does not affect the stationary statistics of x and v is, in some sense, a natural generalization
of the observation that the drag coefficient v does not appear in 7 (x, v) for viscous diffusion.
It is then reasonable to ask whether this property holds for more general forms of K.

The sum-of-exponential form for K is a very useful construct, but it turns out that restrict-
ing ourselves to finitely many terms neglects an important qualitative regime. Indeed, if
K € L'(R), then the associated unconstrained GLE (® = 0) is always asymptotically diffu-
sive in the sense that E [x?(1)] ~ t as t — 00 [53, 60]. Here we write f(z) ~ g(t)as t — oo if
lim, 0 f(t)/g(t) = C € (0, 00). However, if K ¢ L'(R) but K(t) ~ t~< for some a € (0, 1)
as t — 0o, then under mild restrictions, the unconstrained GLE is asymprotically subdiffusive,
ie. E [x*(r)] ~ 1% [53]. Moreover, a new critical regime is recently found when K(r) ~ 1=},
for which case, E[x*(t)] ~ t/logt [9]. See also [41, 62, 64] for related results. We are primar-
ily interested in memory kernels with power law tails, which can fall in either qualitative
regime. As has been observed elsewhere [1, 14], it is possible for an infinite sum of exponen-
tials to have a power law tail. Therefore, an infinite-dimensional version of the Mori—Zwanzig
formalism is an appropriate way to study the GLE with power law memory.

In this work, we explore the infinite-dimensional Markovian version of the GLE with an
eye toward addressing the fundamental question of whether (x(), v(¢)) is ergodic in the sense
of (1.3). In section 2 we introduce notation, explicitly define our model, and summarize the
main results. In section 3 we establish well-posedness for all values of a > 0 (including both
the asymptotically diffusive and subdiffusive cases). Using an extension of the invariant meas-
ure previously established for the finite-dimensional GLE, in section 4, we demonstrate the
existence of an explicitly defined invariant probability measure in the infinite-dimensional
case, see theorem 7. In section 5, we use asymptotic coupling [26, 51, 71] to establish unique-
ness of this measure in the asymptotically diffusive case (o > 1) under a wide class of non-
linear potentials including those polynomials of even degree, see assumption 8 and theorem
10. We finish with section 6 which contains conclusions and discussions of open and related
problems. In particular, we cannot extend our proof of unique ergodicity to the asymptotically
nondiffusive case (a € (0, 1]). We have yet to determine whether this is a shortcoming of cur-
rent methods, or if the claim is simply not true. We hope that this work will shine some light
on this interesting question.

2. Notation and rigorous summary of results

Suppose that a memory kernel K(¢) has the form
N
K(1) = ce ™, @.1)
k=1
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where ¢;, A >0, k=1,...,N. Then, following Chapter 8 of [61], which summarizes pre-
existing work on the same topic [16, 60], we can use Duhamel’s formula and set

a(t) = e N1, (0) + /& / Ny (s) ds + /2N / e M0 AWy (s).

In order to approximate equation (1.4) as an (N + 2)-dimensional Markov system, we write

dx(1) = o(r) dt,

mdo(r) = (= 7001 Z VaiE(n) )+ V27 dWolr), 22
de(l) = (_)\kzk( ) CkU dt+ \/ZTde 1 <k<N,

where z;(0) are i.i.d. N(0,1) random variables and (Wy, W,...,Wy) is a standard
(N + 1)-dimensional Brownian motion. This is the content of proposition 8.1 of [61]. It is
also known (see proposition 8.2, [61]) that the system (2.2) is uniquely ergodic with an invari-

ant probability density function o(x,v, zy, . .., zy) given by
m 1
2 2
Q(x,v,zl,...,zN)ocexp{—@(x)—av ~3 E zk}. (2.3)

As discussed above, in order to study power law memory kernels we consider infinite
sums of exponential functions. To this end, let i, 5 > 0 be given, and define constants ¢y, A,
k=1,2,..,by

1 1
Ck = W’ Ak = kfﬁ (2.4)
Define the kernel K by
_ — At
K(r) =) ae™. 2.5)
k=1

It follows (see example 3.3 of [1]) with this choice of constants ¢ and \; that
K(t) ~t7% as t— oo, (2.6)

thus giving the desired power law tail for the memory kernel K. This definition of the constants
and exponents is not unique in yielding the power-law memory and subdiffusive behavior. For
an alternate (and more efficient in the sense that few terms can yield a power law over similar
time scales), see [14] and [16] for some discussion.

With this definition for K, we consider the following infinite-dimensional system of sto-
chastic differential equations

dx(¢r) = v(r) dr,

mdo(r) = (—~o(t) — ]; Verz()) de + /2y dWo(r) 7
de(I) = (—)\ka( ) + \/70 dt-f— v/ 2k de k>1,

where the W, are independent, standard Brownian motions. Throughout this work, we will
assume that the potential ® satisfies the following growth and regularity conditions:
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Assumption 1. ® € C>*(R), [, |®’'le"®dx < co and there exists a constant b >0 such
that for all x € R

b(®(x) +1) > 2.
A typical class of potentials ® that satisfies assumption 1 is the class of polynomials of
even degree whose leading coefficient is positive.

Remark 2. The first and third parts of assumption 1 are quite standard, giving nominal
regularity as well as assuring the potential grows at least as fast as a quadratic at infinity. The
second condition is also a nominal growth condition on the derivative of ® and will be used in
section 4 to check that our candidate invariant measure is indeed invariant.

In order to define a phase space for the infinite-dimensional process
X(1) = (x(1),0(t), 21(2), 22(2), . . ),

we will make use of the Hilbert space H_s, s € R, equipped with the inner product (-, ) _,

H_ = {X = (x,0,21,22, - - ) (x40 Zk_zszi < OO}, (2.8)
k>1

and

(X.X)_y =X+ 00+ Yk 2% 2.9

>1 ’
We denote by || - || - the norm in H_, given by
2 2, 2 —25 2
X2, =2 +0 +kz>:k z. 2.10)
>1

The canonical basis D = {ey, ey, €1, €2, ... } in H_; is then given by
er = (1,0,0,0,...),
eZ): (07 150505"')7 (2.11)
er = (0,0,0,...,K,0,...), k> 1.

From now on, for simplicity, we omit the subscript —s in the inner product (-, -). In view of
(2.11), for X = (x,v,21,22, - - . ), X We may write

X = <X7 ex>ex + <X’ ev>ev =+ Z<X7 €k>€k = xey + Ve, + Zkixzkelv (2.12)
k>1 k>1
Next, we collect several formulas involving Fréchet derivatives that will be useful later,
especially in section 4. For ¢ : H_; — R, let Dy : H_y — H_; be the first Fréchet deriva-
tive, if it exists. Then, the derivative of 1) in the direction of e € D is given by
P(X +ee) —p(X) o

(Dp(X), ) = lim : = 5 g X

In view of representation (2.12), substituting e with ey, e,, e, k > 1in the above formula gives

_ _ W

DUX)e) = Go (), (DUX).e) = 5o (X), 13)
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N (X)
0%k
Similarly, if + is twice Fréchet differentiable, let D*¢) : H_; — L(H_;, H_) be the second

Fréchet derivative, where L(H _,, H_,) denotes the space of linear bounded maps from H_
to itself. Then, for e € D, we have

and (DY(X), ex) = k°

2 1 0?1
D*6(30(e)e) = limy ZDUIX + =€) = DUX)€) = s ()
Thus
DX (e ed = TEX), DX ) = 5 (X), @14

o™
023

Throughout, unless otherwise stated, we make the following assumptions about kernel
parameters «, 3 as in (2.4) and (2.5) and the phase space regularity parameter s.

and (D*(X)(er), ex) = k*— (X).

Assumption 3. Ler o, > 0 be as in (2.4) and s as in (2.8). We assume that they satisfy
either the asymptotically diffusive condition

(=18
5

1
(D)a>1, 8> ! and — < s <
a—1 2

or the critical condition

1
(C)azl,,é’>1and§<s<§;

or the asymptotically subdiﬁ‘usive condition

af

1
(SD) 0 < a <1, ,B>—and <s<—

Remark 4. The assumption above really concerns the parameters «, 3 only. Indeed,
the particular choice of s in either part is the natural phase space range for the process for
those particular choices of «, 8. It is also worth remarking that, so long as 5 > 0 is large
enough, the above simply splits the dynamics in the diffusive (o > 1) and the other two
(0 <a<1,and a = 1) regimes.

Remark 5. In our context, to relate the infinite-dimensional system (2.7) to the original
equation (1.4), the initial data z,(0) for (2.7) is necessarily i.i.d. with A(0, 1) distribution. To
ensure consistency, we want (z;(0),z2(0), ... ) to live in H_, almost surely. This means that
we must restrict to the phase space H_; for s > 1/2. It turns out that this constraint on s is also
required to compute the density of the invariant measure, see section 4.

Fixing a stochastic basis S = (2, F, P, {F;};>0, W) satisfying the usual conditions, see
[38], where W is the cylidrical Wiener process defined later in (3.3), we state the following
result giving existence and uniqueness of solutions of (2.7).

Proposition 6. Suppose that ® satisfies assumption 1 and the constants «, 3, satisfy
assumption 3. Then for all initial conditions Xo € H_s, there exists a unique pathwise so-
lution X(-,Xp) : 2 x [0,00) = H_, of (2.7) in the following sense: X(-,Xo) is F;-adapted,
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X(-,Xo) € C([0,00): H_,) almost surely and that if X(-, Xo) is another solution then for every
T>0,

P {Vt e [0, 7], X (1. Xo) = X(1, xo)} — 1.
Moreover, for every Xo € H_sand T > 0, there exists C(T,Xy) > 0 such that

E [ sup X(:)||2_X} < C(T, Xo), (2.15)

0<I<T

and that for any bounded set B C H_;, we have

sup C(T,Xp) < 0.
Xoe%( 0) (2.16)

The proof of proposition 6 will be carried out in section 3.

Our candidate stationary measure for the system (2.7) is an infinite-dimensional analogue
of the one defined in (2.3). To write it down, let y,, yi, and v denote the probability measures
on R defined by

1 o N
ux(dy)=We OV dy, po(dy) = e W 2.17)

I _2
and v(dy) = —e™ 7 dy.

V2r

Note that p, is indeed a probability measure on R by assumption 1. We denote by y the prod-
uct probability measure on R* given by

u=ux><uv><k];[lv. (2.18)

Observe that since s > 1/2 by way of assumption 3

X gp(dX) = [ 2 +0*+ >k ¥z p(dX) < oo. (2.19)
Roo Roo i>1

Thus the restriction of u to H_ is a probability measure as the above calculation shows that
[IX]|—s < oo p-almost surely.

Let X(t) = (x(¢),0(f),z1(¢), z2(2), . . .) be the solution of (2.7) and define the operator
P(I) : By ('Hfs) — B, ('Hfs) by

P(1)p(Xo) = E [p(X(#, X0))] - (2.20)

Here B,(H_;) is the space of bounded Borel measurable ¢ : H_; — R and Cp(H_;) is the
space of bounded continuous ¢ : H_; — R. It will be shown later in proposition 15 that
{P(#)},5 is a Feller Markov semigroup on C,(H ;). We recall that a finite measure § on H
is invariant for {P(1)},., if for every ¢ € Cp(H_,)and 1 >0

P(1)p(X)¢(dX) = / P(X)E(dX).

Hs —s

We have the following result.
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Theorem 7. Suppose that assumptions 1 and 3 are satisfied. Then y defined by (2.18) is an

invariant probability measure for the Markov semigroup {P(t)}, on Cp(H_;) defined by
(2.7).

The idea behind the proof of theorem 7 is simple but the details are non-trivial. This is
because one tries to ‘integrate by parts’ in infinite-dimensions aiming to show that £L*y = 0
where £* is some very formal adjoint of the Markov generator £. The way that we circum-
navigate this is by showing y is ‘approximately invariant’ for a sequence XX(#), R > 1, of
processes which approximate X(¢) as R — oo. This turns out to be enough to show that y is
invariant for the original process. Finally, our last result concerns unique ergodicity in the dif-
fusive regime. To state it, we impose the following additional condition on the potential ®(x).

Assumption 8. There exist a function f(x) : R — RY that is bounded on bounded sets
and a positive number q such that for all x,y € R,

|@7(x) = @' ()] < Jx = y[(f(x = y) + 2(x)7). (221

Remark 9. Assumption 8 is essentially a growth bound on the second derivative of ®. In

particular, if we assume further that there exist ¢, g1, g2 > 0 such that for all x, y € R and
te0,1],

|27 (x)]

and ®((1 —1t)x+1y)

(@(x)" + 1),

(®(x)” 4 O(|]x — y))® + 1), (2.22)

<c
<c

then @ satisfies assumption 8. From this observation, it is a short exercise to see that Condition
2.22 includes not only the class of non-negative polynomials of even degree, but also func-

tions that even grow faster than a polynomial at infinity, e.g. ®(x) = ev.
Theorem 10. Suppose assumptions 1, 8 and Condition (D) of assumption 3 are satisfied.
Then i is the unique invariant measure for the Markov process defined by (2.7).

The proof of theorem 10, which will be given in section 5, uses a asymptotic coupling argu-
ment following the ideas and results in the works of [12, 26, 44]. For a similar rigorous study
of finite-dimesional Langevin Equation, we refer the reader to [52, 60].

3. Well-posedness

For notational convenience, throughout we write (2.7) more compactly as the following semi-
linear stochastic evolution equation

dX(t) = (LX(¢) + F(X(¢)) dt + BdAW(2), X(0) =Xy € H_s, 3.1
where L is a linear map given by
0 1 0 0o ... X v
0 -1 —va Yoo | v —Zo— LS Ve
Ix=10 Vo -\ 0o ... | = —A1z1 +4/c1v , (3.2)
0

N\ - ... 22 —Xz2 + /20

where ¢, A\ are as in (2.4) and the force F is defined as
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F(X) = (0, —®'(x)/m,0,0,...)".

Regarding the stochastic term BdW, we may formally write

0
\ﬁgv 8 8 jxo Y2 4w (1)
BdW() = | " | vaxawi ()
0 V2N 0 - | |aw (

V2 dW, ﬂ

Following the formulation in, for example, [7], fix an auxiliary Hilbert space WV and pick a
complete orthonormal basis {e}¥},>0. The cylindrical Wiener process W(z) on the Hilbert
space W is then defined as

W(t) = Wo(t)el¥ + Wi(r)elY + Wa(r)el¥ + ..., (3.3)

where the sequence { W () }x>o are independent one-dimensional Brownian Motions. We can
then define B : W — H_; by its action

V2
Bl =Yoo and  BelY = 2Nk e k > 1, (3.4)
m

where {ey, ey, €1, €2, . .. } is the canonical basis of H_j, see (2.11). In view of (3.4), we have

2y

BB*e, =0,  BB'e¢,=—e,, and  BB'e =2\k Per, k> 1.
m

(3.5)
In order to prove well-posedness of equation (3.1), we need the following basic fact.

Proposition 11.  Suppose that o, 5 as in (2.4) and s as in (2.8) satisfy 0 < 2s < a5. Then,
L:H_s — H_; defined in (3.2) is a bounded linear operator.

Proof. Recalling (2.4), (2.10), (3.2) and invoking Cauchy—Schwarz inequality, we estimate

(124

2 Y 1 )2 —2s 2
= - =0 - — g v/ E kK (=Xzie +
v” + ( v - CrZk ) + - (= Mz + Vo)

242 2 2
<P o 7( ) 2I\2k—25 2 22 0
P2 2 (S vam) - S e Yk

k1 k1 k1

27?2 ) ), 2 2 —25 2 27,252
< 1 S ) S Al A
( T2 +22k ) chk Zk Zk+22>‘kk %k
k>1 k=1 k=1 k>1

292 2
- (1 + 4 221&2‘/{“*“5))02 T ) b P
m >1 mo 1

+2) kg

k>1

242 2
< (1 + % +2) g (Feft2) — D kel 2) X2,
k>1 k>1

Since Zk>1 f—(I+ab=2) converges whenever a3 > 2s, the desired result follows. |
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The proof of proposition 6 follows a Lyapunov argument which we now explain. Let
O € C>(R; [0, 1]) satisfy

1 ifjx] <R
Or(x) = {0 if x| >R+ 1

and consider ‘cutoff’ equation corresponding to (3.1)

dX®(r) = [LX®(1) + F (X®(1)) Or (x"(2))] dr + BdW(z),  X*(0) = Xo.

3.7

For each R > 0, it is not hard to prove that the global (in time) solution X® exists and is unique,

giving local (up until the time of explosion) pathwise existence and uniqueness of (3.1). Then,

using a Lyapunov function ¥(X) that dominates the norm of X in H_,, we show a global

bound on these solutions that does not depend on R, thereby obtaining global solutions of

3.1).

To prove proposition 6, we begin with the following proposition.

(3.6)

Proposition 12 (Local Existence). Suppose that o, 3 as in (2.4) and s as in (2.8)
satisfy 1 < 2s < af. Let Xo € H_s be given. For each R >0, there exists a unique
XR(1) € L2 (Q,C ([0, 00); H_y)) satisfying (3.7).

Remark 13. We see that the conditions stated in assumption 3 meet the hypothesis
1 < 2s < ap of proposition 12.

Proof of proposition 12. The linear map L is bounded by lemma 11 and the nonlinear
term in (3.7) is globally Lipschitz in || - || —; by construction. Moreover, the additive noise term
lives in H_ almost surely since

EH /OTBdW(t)‘ i - IE’ /OT\/:?dWo(t)’2 +Zk*23]E’ /OT\/szde(t)

k>1

’ 2

29T
= T par Y kBN < oo

m2
k>1

The corresponding solution hence exists and is unique by a standard Banach fixed point argu-
ment. [

Next, inspired by [52, 61], we introduce a Lyapunov function ¥ : H_; — [0, 00) given by

1 I
V(X) = —0(x) + 507+ 5 > kg 3.8)
k=1

Define £ : C2(H_,) — R to be the operator given by
1
Lo(X) := (Dp(X),LX + F(X)) + ETr(D2<pBB*).

In view of (2.13), (2.14), (3.2) and (3.5), £ can be explicitly written as
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Lp(X) = p 22 + (f Ty i¢>/(x) - %Z ﬁa) 9e(X)

Ox m m v
1
do(X) v 0%(X) (X 9
+ kE>1 (—Mezk + V/erv) 0 tor g T k§>l Ak o2

where ¢ € CZ(H_S). Note that, once we establish proposition 6, £ is in fact the infinitesimal
generator of the Markov semigroup {P(7)},-, associated with (2.7). We assert the following
proposition.

Proposition 14 (Global bound). Suppose that assumptions 1 and 3 are satisfied. Let
U(X) be defined in (3.8) and L be the operator as in (3.9). Then, for every X € H_,

LU(X) < ayV(X) + an, (3.10)

where ay, ay are finite constants that can be explicitly given as

_ 11 2s —2s _ B —2s
al_max{1+%,%2ckk +chk }andaz—ﬁ+2k k-
1 1 k1

Proof. Applying assumption 3, first note that a; and a, are both finite since

1 1
I S D DD N

k=1 k=1 k=1 k=1
We now apply L to U to see that

LU(X) = —%02 =S Nk

>1
1 ~ (3.11)
- Z Ve + Z ek g0 + = + Z k5N
>l 1 >l

The cross terms between z; and v can be bounded using Holder’s inequality as follows:

1 ‘
—7zx/ckzkv+ E \/Ckkfzbzkv
m
k>1 k>1
1 2s —25.2 2 1 —2s —25.2 2
(e or e +0t) 5 (e Lk o)

k>1 k>1 k>1
_ 1 1 2 1 1 . L2s . =28 —2s5.2
—5(1+E>U +§(;chk +chk )Zk o
>1 k>1 k>1
< a1 v (X),

(3.12)

where a; > 0 is as in the statement of the result. We finally combine (3.11) with (3.12) to
obtain (3.10). O

We are now ready to prove the main existence and uniqueness result for equation (3.1). The
argument is classical and can be found in literature, e.g. [3, 13, 35].

Proof of proposition 6. For every R > 0, let XX(¢) be the unique solution of the cutoff
system (3.7) given to us by proposition 12. Define the stopping time
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g =1inf{t > 0: || X(#)||-s > R}.

Note that, for all times ¢ < g, XX solves (3.1). Consequently, the solution (3.1) exists and is
unique up until the time of explosion Too = limg_, o Tg, Which is possibly finite on a set of
positive probability. We show using the Lyapunov function ¥ above, see (3.8) that 7., = c©
a.s.

By Ito’s Formula we have that

d¥(X(t ATR)) = LU(X(¢ A Tg))dr + @v(t A Tg)dWy (1)

) V2N (8 A ) AW (),

k>1

(3.13)

where L is the operator defined in (3.9). We then infer the following bound

IE[ sup \I/(X(t/\TR))] U(Xp) +E sup /E\Il (rATg))
(USN) 0T

+E sup ‘/—vr/\TRdWO +Z\/2)\k (1 A TR)AWy(r)dr|.
0<I<T o1
(3.14)

Applying proposition 14 on LU (X(r A 7x)) and the Burkholder-Davis—Gundy inequality on
the martingale term on the above RHS yields

E[ sup \I/(X(l‘/\TR))i| < \I/(Xo)+azT+alE/0 sup W(X(r A 7g))dt

0<I<T (UANS

T
27y 1/2
+c[IE/O th/\TR +22)\k [/\T)dl} ,
k>1
(3.15)

where ay, a are as in (3.10) and ¢ > 0 is the constant from Burkholder—Davis—Gundy’s in-
equality and is independent of R, T, Xy. We observe now that the last integrand in (3.15) is
dominated by W(X (¢ A 7g)). We thus infer that

T
E[ sup W(X(t A7) < U(K) + e +cz/ E[ sup W(x(r )] ar
0<i<T 0 0<r<t (3.16)

where ¢, ¢; > 0 are constants independent of R and Xy. Gronwall’s inequality then implies
that

E[ sup W(X(rA7e))| < ((Xo) + 1) e, 3.17)
0<I<T

Also note that there exists a constant ¢ > 0 such that for all X € H_g, ¢(¥(X) + 1) > || X||%,
We thus infer the existence of a constant C(7,Xy) > 0 such that

E[ sup [X(rAe)I2,] < C(T.X0). (3.18)
0<I<T
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Sending R to infinity in the above, we obtain by Fatou’s lemma

E[ sup [X(tAm)lIZ,] < C(T,X0). (3.19)
0<i<T

Hence, this implies P {7 < 7o, } = | for any 7 > 0. By sending T to infinity, we see that
P {75 = oo} = I, which implies the well-posedness of the global solution for any fixed
Xo € H_,.

We finally note that C(T,X,) is actually dominated by ¥ (X,)e®” following from estimates
(3.17) and (3.18). It is also clear that ¥(X) is bounded on bounded sets in H _;. We therefore
obtain the bound in (2.16), which concludes the proof. O

In addition to pathwise existence and uniqueness of the solution of equation (3.1), we will
need the following basic properties of the Markov semigroup P(¢) : By(H_s) — Bp(H_y).
We recall that P(¢) defined as in (2.20) possesses the Markov property; namely, for every
XeH o€ Co(Hoy)t,r =0,

P(t+r)e(X) = P(1) (P(r)e) (X).
Proposition 15. Under the Hypothesis of proposition 6, let X(t) be the unique strong solu-
tion of (2.7) and P(t) be the corresponding Markov semigroup. We have the following:
(a) Whenever Xy — Xoin H_;

kli)HOlOEHX(t,Xk) —X(I,Xo)H,s =0. (3.20)

(b) P(t) has the Feller property: P(t)p € Cp(H_s) whenever ¢ € Cp(H_y).

Proof. (a) For notational simplicity, throughout this proof, we shall omit the subscript —s in
the norm || - || _,. Denote by X(#) the solution of (2.7) with initial data X4)(0) = X;. Fixing
R > 0 to be chosen later, define the stopping time

h = i { X () + X0 (0] > R},

and observe that by Chebychev’s inequality,
P {7k <1} =P{ sup [IX0 ()]l + X (O] > R}
0<<t
< E [supoc s, [ X (O] + 1X(0) (0)]
= R

_ VX + /@ Xo)
~ R 9

where we used (2.15) in the last inequality. It follows from (2.16) that

C(t
supIP{Tg < t} < %, 3.21)
k

for a finite constant C(¢) > 0 independent of R. Next, let ka) and Xfo) be the local solutions

of (3.7) from proposition 12. Since the drift term of (3.7) is Lipschitz, there exists a constant
¢(R, 1) > 0 such that (see theorem 9.1, [7]).
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E|| X5, (1) = X{o,) (0] < C(R 1) [[Xa — Xo] - (3.22)

Now we have a chain of implications
B[ X (1) — X0y ()|

<E[(IXa 0l + Xo) ) Lirgen ] +E [1X0 (®) = Xio) @)L

= E [ (X Ol + X0 1) g ] + B [ I (1) = Xfo) () 11755

1/2 1/2

< (E[(IXe O+ X0 )] )~ (B{rk <1}) " +EIXE () - X80l
<(z )
C

o))

21N\ 1/2 1/2
(X0 @I+ 1X00I)'] ) (P{rk <}) T+ CRar) I1Xe — Xol
(1

1?1/2

+ C(R, 1) [| Xk — Xol| »

where note carefully that C(7) is independent of k and R and C(R, ) is independent of k. The
above RHS now tends to zero by taking R sufficiently large first and then letting X, sufficiently
close to Xj. This establishes (a).

To prove (b), let Xy — Xo and ¢ € C, (H_), we have to show P(1)o(Xy) — P(1)p(Xo). It
suffices to show that for every subsequence {k;}, there exists a further subsequence {k; } such
that P(1)o(Xy, ) — P(1)¢(Xo). In view of part (a), the sequence X4, (#) converges to X(o)(#) in
LY Qs H_y). We thus can extract a subsequence Xy, )(f) converging to X)(7) a.s. Since ¢ is
bounded, applying the dominated convergence theorem yields

E[p(Xu,) ()] = E [0(X)(1)] asj— oo,

which implies (b) and thus completes the proof. O

4. Invariance of u

In this section, we show that p defined in (2.18) is invariant for the Markov semigroup

{P(#)}/5¢- We first sketch briefly the structure of the proof before diving into details.
The goal is to show that for every ¢ € Cy(H_;) and ¢t > 0 we have

[ Poeou) = [ cuax) @
Let C2(H_y) denote the space of real-valued functions on H_, that have bounded first and
second Fréchet derivatives. Approximating ¢ by functions in C2(H_,) if necessary, it thus
suffices to show that (4.1) holds for any ¢ € C2(H_y)

POy X)u(dX) = [ (X)u(dX). (4.2)

H_s H_s
In order to show (4.2), it is helpful to make use of the cutoff system (3.7) and the semigroup
PR(t) where for R > 0, PR(¢) is defined analogously to (2.20) by replacing X(¢) with XX(z)
solving (3.7). The advantage of using the cutoff systems is that, because they have glob-
ally Lipschitz coefficients, they immediately satisfy the Kolmogorov backward equation, see
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theorem 9.23 of [7]. This fact we will need later in the proof of proposition 17. Specifically,
we will prove that 4 is almost invariant for the cutoff semigroup P%(¢); namely,

/H PROUEONY) = [ D0u(@x) +H(wn) “3)

where ef (1), ) is aremainder term that (possibly) depends on ¢ and ¢, and satisfies €% (¢, ) — 0
as R — oo. We will see that this then implies the desired equality (4.2).

Before proving theorem 7, we collect several properties about Gaussian measures on R
which follow simply by using integration by parts. Let p,, v be as in (2.17). Then, for every
01 € C3(R), it holds that

1
/ —y01(y) + =0/ (v) tro(dy) = 0, (4.4)
R m

and

/R —ye,(3) + ¢/ (3) v(dy) = 0. @.5)

Also, for every g, € C}(IR?), we have

1
/R (=29,0200:2) =0.0200.2)) (1o x v) (dyd2) = 0. (46)

With these observations, we have the following result:

Lemma 16. Given R >0, let LR be the infinitesimal generator of the Markov semi-
group {PR(t)} >0 associated with XX solving (3.7) and let u be as in (2.18). Then, for every
Y € C2(H_y), we have the following equality

| £veoutn = [ 0w (1 - ) w(0n(@0). 47

—s —s

Proof. Similar to (3.9), LR is given by

£ho0 =075 ¢ (- o L0 L vem) adé*(x)

ox
k=1

2 2
+ Z (—Mezk + /cxv) &éx) 2 (9 1/1 Z/\ 0 1/’

k>l k>1

(4.8)

We integrate both sides against p in H_g and rearrange the above RHS appropriately to obtain
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R _ IWX) 1, ok, OV(X)
[ croone) = [ o258 - Lot 250 | wax)
(X Py (X
e | éﬁfﬂ}wm
o 0Y(X) 0Y(X)
Y | [——zk Va8
X) O*Y(X)
+kz>;/ [ + M pE: }u(dX)
=1Ip1 + 1oy + Zlk,l + Zlk,z-
k>1 k>1

(4.9)

At this point (4.9) is still formal. We need to show that £R € L!'(H_, ;1) and that the above
rearrangement is possible. To this end, we claim that the RHS after the first equality of (4.9)
is absolutely convergent. Since ) € C3(H_,), (2.13) and Parseval’s identity imply a bound on
first partial derivatives

av(x)|? ‘w 2|2
‘ Ox * +k>zl 0zk
= (DY(X), ) + (DY(X), €0)* + > _(DP(X), &)
k>1
= [DY(X)|*,
< DY, (4.10)

where for Dy : H_; = H_y, ||DY||oc = Supyey_.
bounds on second partial derivatives,

DY(Y)|| . Similarly, (2.14) implies

%P (X) %P (X)
o = DX e < [DWlle. T <Dl (1D
and
2
L §X> < D% oo (4.12)
0z

where for D*(X) : H_s — L(H_s, H_y),

[D*¢]| e = sup ID* (V)| 23424

—s

In the RHS after the first equality of (4.9), the first four terms are bounded by, using (4.10),
(4.11),
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0UX)| 1 |y 24)
/H,_v e ’+m @(x)@R(x)av’
(X (X
g 23
<106l [ (14 2) [ oliotao) + - [ 1901000 + TP @1

which is finite, by the definition of 1, from (2.17) and the fact that 6, as in (3.6) has compact
support. For the first sum on the third line of (4.9), we estimate as follows.

>

\Ile\oo( kzs) / (Zk 2 )/zu(dx)

k=1 Hos k=1

RLIE ) /|

k=1

2o | e

(4.14)

since by assumption 3, 3 7| cxk® is finite and so is Jo_, IIX[|—sp(dX). by the definition of 4,
see (2.19). Similarly, for the second sum on the third line of (4.9), using (4.10) again, we infer

>/ ] a0 20

k=1

< <zkh>‘”<zfﬂ

6‘3; )\2)”2|v|u<dx>

—s

< IIDdJIIoo kzv / |v|u (4.15)
k>1

For the first sum on the fourth line of (4.9), similar to (4.15), we invoke (4.10) again to see that

>

k>1

u(dX) < [IDY]1ne /H X[ u(dX) < 0. 416

Lastly, we employ (4.12) to estimate the latter sum on the fourth line of (4.9),

S, e = [ [ e

k>1 - k=1

\D21/1||00/ D Nk p(dX) < co. (4.17)

ﬂk>1

We can now apply Fubini theorem on the Hilbert space H_;, see e.g. [45]. For X € H_;, we
write

X = PyuX + P X = xe, + ve, + Z,
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where P, ,X = xe, + ve, is the projection on the subspace ({e,, e, }) and PXL’Z,X = Z is the pro-
jection on ({ex, e, })*. Then, ;1 can be decomposed as jt = fyp X fi,, Where fixy = [y X [1
is a measure on P,,H_; and ,uiv = H@l v 1S a measure on ijv";‘-l_s. It follows that

| taoute
H

- [ % o) 1<1><>9R<>8“’(X>u<dx> (4.18)

-/ / 20 Ly 0yt 2000 v, a0ty 02),
PLH_, JR2

where we use Fubini’s theorem in the last implication. This is possible since we already es-
tablished the absolute convergence in (4.13). Integrating by parts the first integral against i,
yields

[ aeon@o = [ 00 (1= 070) 0 0mso(as o) (0X)

—s

= [ 000 (1~ %) wm(ax).

—s

(4.19)
Similarly for >, we have
/ Io2(X) p(dX)
= 7, 0X) | 7 (X)
] / ) {7 o ]M(dX) (4.20)
7 5¢ X) v Y(X)
/PLH_v / m + ﬁ 902 }Mv(dv)uj‘(d(xgx +Z))

where we have employed (4.4) in the last implication. For the last two terms I j, I, after
integration by parts, we invoke (4.6), (4.5) respectively to obtain

/ Tt (X)(dX) = 0, / Lo ()p(dX) = 0, k > 1. @21

—s —s

Formula (4.7) now follows immediately from (4.9), (4.19), (4.20) and (4.21), thus completing
the proof. O

We now show that y is almost invariant under the cutoff system (3.7).

Proposition 17.  Let R > 0. For every 1) € Ci(H_y), there exists €R (1, 1) > 0 such that

/ PR(1)(X) u(dX) = / BOU(X) + R (. 1) @22
H_s H_s

Furthermore, eR(1),t) — 0 as R — oc.
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Proof. Since equation (3.7) has a globally Lipschitz drift term, in view of theorem 9.23
from [7], for every v € C3(H_,), PR(t)y € Ci(H_;) satisfies the Kolmogorov backward
equation, namely

t
PR(1)Y(X) = ¥(X) + / LEPR(r)y(X)dr. (4.23)
0
Integrating both sides on H _ with respect to . gives

/ PROUOR@) = [ w00 + / / LEPR (P (X) u(dX)dr.
- - - (4.24)

We note that Fubini’s theorem was applied to switch the order of integration in the double-
integral term above. Indeed, from (4.13)-(4.16), we see that for all r € [0, #]

| EPR )| u(@x) < (IDPR ) loe + [IDPE()0)

where ¢ > 0 is a constant independent of R > 0. Furthermore, in view of theorem 9.8 and 9.9
from [7], supgc,<, [[DPR(r)i||oo and supye,.«, [|D*PR(r)i)|| oo are both finite. We thus infer
that fol Ja_. |LRPR(r)i(X)| p(dX)dr < oo, which guarantees that the Fubini’s theorem is ap-
plicable. Now, since P(#)1) € C2(H_,) for all £ > 0, lemma 16 implies that

PROY(X)u(dX) = [ (X)pu(dX)
H_s H
(4.25)

t ") (1 = 0% (x)) PR(r r.
[ () (1 0°0) PR 0(n)a
Let eR(1, 1) be given by

R, 1) = /0 / 0®' (x) (1 — 6%(x)) P (r)y(X) u(dX)dr. (4.26)

It is clear that the integrand on the above RHS is dominated by ||%|| s |0®’(x)| and that

llloe / t /H 109 (dX)dr = ] / o]0 (do) / 1 ()] () < o,

since i, is Gaussian and by assumption 1, ®(x)e~®() is integrable. We additionally note
that by the construction of local solutions, X®(r) — X(r) as R — oo a.s. It follows that
PR(r)y(X) — P(r)yp(X), implying v®’(x) (1 — 60%(x)) PR(r)p(X) — 0, since 6%(x) — 1.
We therefore apply the dominated convergence theorem to infer that e® (1, 1) — 0, which com-
pletes the proof. l

With proposition 17 in hand, we are ready to give the proof of theorem 7.

Proof of theorem 7. . By taking R — co on both sides of (4.22), we obtain for all
b€ Cy(H-)
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P(e)(X) u(dX) = /H B u(dX).

H_s

For ¢ € C,(H_,), approximating by a sequence {t;} C C2(H_,), we apply the dominated
convergence theorem to arrive at

P(0)p(X)u(dX) = / (X)u(dX).

H, _

The proof is complete. O

5. Uniqueness of the invariant measure in the diffusive regime

In order to prove uniqueness of 1, we will construct an asymptotic coupling using an appropri-
ate Girsanov shift argument, following and applying the methods and ideas developed in [26,
51, 71]. Intuitively, this means that solutions started from different initial data have a posi-
tive probability of converging to one another as t — oo. theorem 1.1 of [26] will then allow
us to conclude there is only one ergodic invariant measure, thus uniqueness of y follows by
ergodic decomposition. The idea of using Girsanov shift to construct asymptotic coupling first
appeared in the work of [71] and was later developed in [26]. For some more recent applica-
tions of this theory to SPDEs, we refer the reader to [12, 44].

For the reader’s convenience, we briefly explain the framework of the asymptotic coupling
method adapted to our setting, following [12, 26]. To begin, we denote by 7N _ the pathspace
over H_;,

HY ={U:N—=H_ }={U=(Up U, Us,...): Ui € H_,},

and let P(HY | x HY ) be the set of probability measures on #N x HY . For any two mea-

sures My, M, on HN ,» we denote by C (M1, M,) the collection of asymptotically equivalent
coupling for My, M5,

C(Mi,My) = {T e P(HY, x HY,) : T << M;,i = 1,2}, (5.1)

where II;(u,v) =u and I (u,v) =v. For any initial condition Xo € H_,, let
X = (Xp,X(1),X(2),...)be the corresponding solution path on #N _where X(z) solves (3.1).
Then the law of X, denoted by 6X0’PN, defines a probability measure on Hlﬁs. Next, we intro-
duce the set Z given by

2 ={(U, V) e HY x H" : nli)rgo U, = V|| —s = 0}. (5.2)

Having introduced the above, we will seek to apply the following result (see corollary 2.2 of
[26] and corollary 2.1 [12]).

Theorem 18. [ffor every pair Xo, Xo € H_y, there exists an element T € 6(6XUPN, (5;(0’PN)
such that T'(2) > 0, then there exists at most one ergodic invariant measure for (3.1).

The problem thus reduces to constructing such a coupling I'. To this end, we introduce
another process X(r) on H_; satisfying the following shifted version of equation (3.1)

dX(r) = LX(¢) dr + F(X(1)) dt + BAW (1) + BU(X (1), X(1))1{r < 7} dr.
(5.3)
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In the above, X(0) =X, € H_,, T is a stopping time and U(X(z),X()) € L* (Q, W) is an
adapted control depending on both X and the process X satisfying (3.1) with X(0) = Xy € H_,.
Here we recall that W is the auxiliary Hilbert space on which W(¢) evolves, [7]. Now notice
that if we set

W(t) = W(r) + /0 l UX(r),X(r)1{r < 7}dr (5.4)

and the control U and stopping time 7 are such that, for some deterministic constant C > 0,

P [ oo X< )y ar<cf =1 55)

then Wand W are equivalent on C([0, c0); W). As a consequence, the processes X and X with
X(0) = X(0) = Xy € H_, are mutually absolutely continuous on the infinitie time horizon
[0, 00). As shown later in the proof of theorem 10, our coupling T is essentially the law of
the pair (X(-,Xo), X (-, Xo)). However, in order for I' to meet the requirement I'(%) > 0 from
theorem 18, by introducing the difference

X(1) = X(1) = X(t) = (x(1),0(1), z1(2), - ..), (5.6)
we have to pick U and 7 such that (5.5) is satisfied, P {7 = co} > 0 and
IX(£)]| s — 0 as t — oo on the event {7 = oo}.

Thus, reemphasizing what was discussed above, we are constructing the control U and the
stopping time 7 such that we can drive two solutions of (3.1) with different initial data to one
another as t — oo on a set of positive probability.

To introduce our choice of U and 7, first observe that X satisfies X(0) = Xo — Xo and

dX (1) = LX(¢) dt + [F(X(t)) - F()?(t))] dr—B U(X(t),)N((t))l{t < 7}dr
5.7
Writing X(t) = (x(2),0(t),z1 (), . . .), )~((t) = (X(2),0(t),z1 (), . . .) and recalling the notation
(5.6), we define for given A > 0

b m T\ = 2
wo(X(0), X(0) = 5= [ (3/\ - %) B(t) + 22%%(r) »
(@) - W) - S vaED)],
k>1
and
UX(0),X(1)) = (0, u0(X(1), X(1)),0,0,- ). (5.9)

Note that BU only possibly enacts control over the velocity difference o(r) = v(¢r) — o(t), and
this is essentially done to gain control over nonlinear difference ®'(x) — ®'(X).
For a given k > 0, we define the stopping time 7 = 7(k) by

>0

r= it { [ o). X6 as > (5.10

With these choices, note that on the event {r < 7}, X(r) = (x(1), (), 71 (), . . .) satisfies the
following system of equations
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EO _ 50 %(0) = %o,

dz—(;) — _3XB(1) — 203K, 3(0) =,

dzsi[(t) = =Nz (1) + /co(2), Zt(0) = (Zk)o-
5.11)

Intuitively, the coefficient A > 0 will be picked so that that || X()||3_, — 0 as t — oo on the
event {7 = oco}. Hence the control induces the requisite dissipation, but we still need to see
that we can pick k£ > 0 so that (5.5) is satisfied and P{7 = oo} > 0. Before turning to this
issue, we make the following remark.

Remark 19. (a) There is a significantly flexibility in the choice of uy in (5.8). One can
of course choose other formulas for the coefficients of %(z) and 9(¢) in (5.8) as long as
IX(#)||—s — Oas t — ccon {7 = oo}.

(b). The appearance of u, requires the drag constant «y be strictly positive. We note that for
well-posedness (see proposition 6) and the existence of invariant measures (see theorem 7),
~ can be zero.

With these observations, we state the following proposition which outlines the needed
details to deduce unique ergodicity.

Proposition 20. Under the Hypothesis of theorem 10 and recalling m,vy > 0 from
(2.7) and «, B as in (2.4), leL/\ > 0 be as in (5.8) and k > 0 as in (5.10). Then there exist
A= Ao, B) >0, k = k(Xo, X0, 7, m, @, B) > 0 such that T = 7(k) and U are such that

(a) Condition (5.5) is satisfied.
(b) |X(t)||—s — Oast — coon {1 = cc}.
(c) P{r =0} >0.

Before presenting the proof of proposition 20, we now show how one can deduce unique
ergodicity of (3.1) by combining proposition 20 and theorem 18, (see [12, 26] for further
details).

Proof of theorem 10. 1In view of proposition 20 (a), the Novikov’s condition is verified
E[exp/ UK (1), X ()1t < 72y di] < €.
0

The process W(r) defined in (5.4) is thus equivalent to the Wiener process W (#) on C([0, c0); W)
by Girsanov’s theorem, (theorem 10.4 from [7]). It follows that the process X (-,)?0) solving

(5.3) is absolutely continuous to the process X (-, Xo) on C([0, 00); H_,), (see e.g. [63]). It fol-
lows that the law I" induced by

{(X(nt,Xo),)Nf(nt,)N(O)) n=0,1,2,... }
belongs to C(éx, PN ,(5;(073N). In addition, proposition 20 (b) and (c) imply that I'(2) > 0

where D is given by (5.2). We therefore conclude unique ergodicity by virtue of theorem 18,
thus completing the proof. O
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We now turn to the proof of proposition 20. Parts (a) and (b) essentially follow by con-
struction. Establishing part (c), however, requires a bit more work. To complete the proof, we
need a crucial estimate on the potential ® which relies on Lyapunov methods. To this end, for
N € Nand s € R, we introduce © : H_; — R defined by

1
O(X;s,N) = —® — =z
(X;5,N) = —@(x) + v +3 sz ZZk (5.12)
k>N
In the diffusive regime, it turns out that ©(X;s, N) can be chosen such that it satisfies a
Lyapunov bound that is stronger than the bound on ¥ from proposition 14. That is:

Proposition 21. Let ©(X;s,N) be defined as in (5.12). Then, under assumptions 1 and
Condition (D) of assumption 3, there exists N = N(m,~, «, §,s) € N sufficiently large such
that, for some a > 0, O(X) := O(X; s, N) satisfies

sup LOX) < a
XeH

Proposition 21 will be established at the end of the section, but the proof follows a similar
line of reasoning to that employed in the proof of proposition 14.

Remark 22.

(a) In assumption 3, the diffusive regime (D) requires o > 1 as opposed to « € (0,1) and
o = 1 in, respectively, the subdiffusive (SD) and critical (C) regimes. Recalling ¢y, Mg
from (2.4), the condition o > 1 is needed so that the infinite sum

Ck . —1—(a—1)B+s
Kk k
Z 2)\kk—25 Z
1 1

converges, as shown later in (5.18) and (5.21). This convergence is critically employed in
the proofs of propositions 20 (c) and 21.

(b) The asymptotic behavior of A\; as k — oo presents a barrier to obtaining a stronger
Lyapunov bound of the form

LOX) < —cOX) +a

in the proof of proposition 21, where ¢ > 0 is a constant. The above inequality, however,
can be readily achieved in the finite-dimensional system (2.2), see [60]. With the appro-
priate support properties of the diffusion, such a bound implies geometric ergodicity.
However, because we cannot see immediately why (2.2) holds in our infinite-dimensional
system, suggests that perhaps the system relaxes to equilibrium slower than an exponen-
tial rate.

By combining the previous Proposition with the exponential martingale inequality, we
obtain the following corollary.

Corollary 23. Under assumptions 1 and Condition (D) of assumption 3, let
X(t) = (x(2),0(¢), . ..) be the solution of (2.7) with initial condition Xo € H_;. Let © be the
Lyapunov function defined in (5.12). Then there exists € = (m,~, a, 3) > 0 such that for
everyn,r > 0,
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P{ sup S P) gy % > r} <e ™, (5.13)

>0 m

where a is as in the statement of proposition 21.

The proof of corollary 23 will also be given at the end of this section.
We now conclude proposition 20 assuming the previous two results.

Proof of proposition 20. We begin by showing part (a) of the result. In view of formulas
(3.3) and (3.4), the norm of the control U(¢) in W satisfies

IU@)[y = uo(1)*.
It thus follows by definition of 7 that

/ |UX (1), X(0)1{t < 7}|3) dt = / luo(£)*1{r < 7} dr = K P — almost surely.
0 0

Applying theorem 10.4 from [7] finishes the proof of part (a).

To conclude part (b), for t < 7 one can readily verify that the exact solution of (5.11) is
given by

x(t) = (2%0 + ?)e_’\’ - (xo + %)e—”f
B(t) = — (20% + Do) e N + 2 (A% + Do) e M
(1) = e M { (Z)o + Vax /O t e*kra(r)dr].
From this, it follows that
%(r)] < Cre ™™, [6(1)] < Cre™, (5.14)
where
3%

C = 3|f0| + T, Cy = 4)\|f0| +4|5()|.

Combining these bounds, we thus obtain the following bound on Z(7)
t
)] < e [[(@)| + Covr [ ],
0

Choosing A = A; + 1 note that A — A\, > 1for all k > 1since A, | 0. With this choice of J, it
follows from the inequality above that for all k > 1,

()] < e (|(Z)o] + Cav/ex) » (5.15)

and hence by Young’s inequality,

%(1)? < 2e" [ ()8 + Clr.
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Thus putting it all together we find that

IX(0)]12, =x(t 0+ kP

k>1

<(CH+C) e M42) k> @)ge M +265 Yk He ey
k>1 k=1

Thus on the event {7 = oo}, it is now evident that || X||>, — 0 as ¢ — oo by applying the
Monotone convergence theorem.
Turning to part (c) of the result, for any R > 0 consider the event Ey given by

—A/24 (x(1)) 2qa
Ep = {Sfig R e - A < R} (5.16)

where ¢ is the constant from Assumption 8. In view of corollary 23 with n = \/2q, Eg has
positive probability provided R = R(vy,m, o, 8) > 0 is sufficiently large. We first claim that

on Ep,

/ |U(t) |3y dt is bounded almost surely.
0

To see this, recall by definition of the control U that

/ U0 s = / " oo

Thus estimating uy()?, from (5.8) we have
uo(1)? < 2’;’ (32~ —)Zﬁ(t)z +ANF(r)?
L (S vakl) + o 19 (0) — G0
>1
=1(t) + L(t) + L(t) + L(1).

For I (t) + (1), apply (5.14) to find

2m? 42| e—2M —2)¢
B+ B(0) < = [(3A m) C2+4)\C] = Cye™ 2V, (5.17)

where C; := M [(3X = 1) 2C3 + 4X*C}]. For Ix(1), employ (5.15) to see that

(Z\Fe (@l + C2va) )

(S vae ) + 1 F (e

4XO Z CkCiZ)\kt 4C§
—2K(1)?,

2
k>1 k== v

2845



Nonlinearity 33 (2020) 2820 N E Glatt-Holtz et a/

where the last inequality follows by Cauchy—Schwarz inequality since K(7) =3, cre M
by definition. Lastly, to estimate /4(f), assumptions 8 and (5.14) together imply that

4C3 e~ M (

(1) (f (X(1)” + @ (x(1)*) < S

I4(1) <

up £ ()7 + B(x(0))).

[yI<C

Now on the event Eg, we note that

2 2q
supe Md(x(1))* < (m@(Xo) e U mR) =: Cy.
120 A

Hence

4C26_>\t )\ 2 /\ 2
1) < T (7 sup £ ()7 + supe N (x(1))
v < >0

4C?
< sup £ ()7 + e
Y IyI<C

= C5e_)".

Combining these bounds for I, I, I3, I, shows that on Ep,

/ (e < / TL) 4 h(0) + B (1) + 14(7) e
0 0

4%, 2w 402
< / eV 4 220 Z Ckz - IR (1) + Cse M dt
0 k=1 v
4)(0 x| 4ck _
c T 22K (1) + CseMdr.
DZIZAkaS—F/O 3e +’y (1)” + Cse
(5.18)

We invoke assumption 3 again to see that Zk>l on xi== < oo. Furthermore, in view of (2.6),
K(t)> ~ t72% as t — oo, implying K(t)* is mtegrable We thus infer from (5.18) a constant
Co = C6(X0,X0,'y,m, a, 8) > 0 such that on Eg,

/ uo(t)*dr < Ce. (5.19)
0

Finally, we choose x > Cg in the definition of 7 = 7(k) forcing Eg C {7 = co}. We there-
fore, conclude that P {7, = co} > 0. The proof is thus complete. O

We now finish this section by giving the proofs of proposition 21 and corollary 23.

Proof of proposition 21. We have

LO = Z )\kzk Z k™ 2sZ2 S — Z VCrzikv

k>N iy

—2s l l —2s

+Z@k zkv+m2+mz)\k+z>\kk .
k>N =1 >N
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Young’s inequality combined with Cauchy—Schwarz inequality then gives

1
;Z\/azkv < — 4 Z = 2S>\k Zk ez

k>N k>N

and

Zk =\ Jazo < —v + — Z Cka S \ezs.

k>N k>N k>N

Combining the previous two inequalities with the first we obtain

Lo < ——v - —ZAkzk—a, D KNG +a, (5.20)
k>N
where
1
29 — o
-+ = Z/\k+]§v/\kk a =1 mzk Svim A ) (5.21)

We invoke Condition (D) of assumption 3 again to see that

—2s 1 !
SNk =>" s <o > kfczﬁ/\ =2 a2 < %%

1 >l k=1 ke
k_zsck 1
and Z M Z AR RS TE
>l >l

which implies that a < oo and that N can be chosen large enough such that 0 < a; < co. We
therefore conclude £O < a, which is the desired inequality. O

Proof of corollary 23. . Fix 7 > 0 and apply Ito’s Formula to e ""©(X(¢)) to find
d(e™"O(X(1))) = —ne”"O(X (1)) dr + e~ " LO(X (1)) dt + dM,)(t)  (5.22)

where the martingale M,, satisfies

v, (1) = Yo awo() + S I awi0)
k=1
e V2N B g (1) AW (7).

k>N
Note also that the quadratic variation process (M) has

2ye 2 2e—
T o(r)? di +

N
> Nez()Pde+ 272 Y TNk (1) dr. (5.23)

k=1 k>N

d(M,) (1) =

m
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We recall from (5.20) that
LOX(1) < —5-0(t)* — — Z Nze()? —ar Y kTN +a, (5.24)
k>N

where a, a; are defined in (5.21). Combining (5.22)—(5.24), for every € > 0 we obtain the
estimate

d (e*m@(X(t))) < ae”"dt + dM. ( ) - *d< >(t)

— eizm[ U(l Z )\ka(t + ap Z k— Zs/\ Z t)2

k>N

) (lz 2+ — Z ez (1) + Z )\kk_“zk(t)z)] dr

k>N

By choosing ¢ = e(v,m, a, ) > 0 smaller if necessary, the bracket term on the above RHS
is nonpositive. Hence

d(e~"O(X(1))) < ae~"dr + dM, (1) — §d<M,,>(z).
Integrating with respect to t we find
e MOX() - O0) < [ ae”dr 4 My (1) 5 (M) (1) = o Mal0) = S04 1)
0

Since ©(X (1)) = ®(X(¢))/m by the definition of ©(X), we infer that

e "D (x(r))

a

—OX0) = < My (1) = 5 (My) 1)

Invoking the exponential martingale inequality we obtain

]P{ stgg) M}iﬂ - 0(Xo) — % > r} < ]P’{ stg([)) [Mn(t) - E<M,]>(t)} > r}

—Er
<e 7,

thus completing the proof. O

6. Discussion

We have rigorously studied the GLE in a potential well & with a power-law decay memory
K(t),ie. K(t) ~ 7%, a > 0 as t — oo. Using a Mori—Zwanzig approach, when the memory
K can be written as an infinite sum of exponentials, we represent the non-linear GLE as an
infinite-dimensional Markovian system. With nominal conditions on the potential ®, we show
that for every av > 0, this Markovian system is well-posed in suitable spaces and admits an
invariant measure. Moreover, using an asymptotic coupling argument, the system is shown
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to be uniquely ergodic when o > 1. The problem of unique ergodicity remains open when
a € (0,1].

A related research topic that is of direct interest is to establish the convergence rate to sta-
tionarity. Due to the memory’s power-law decay, one might conjecture that this system does
not approach the invariant measure with an exponential rate (commonly called geometric
ergodicity). That is, it is conceivable that there is a unique invariant measure, but the approach
is algebraic instead. Current methods for proving an algebraic rate of convergence to station-
arity rely on finding a type of Lyapunov function that is currently unknown for this system.

Lastly, we would like to touch on the term ‘ergodicity breaking,” which has appeared in
the physics literature in connection with models of anomalous subdiffusion [27, 48]. In par-
ticular, there are claims that solutions to the generalized Langevin equation in a quadratic
potential can break ergodicity in the sense that a popular expression for a particle time-average
does not match a stationary population’s ensemble average [36, 37]. It is important to point
out though that the time average used in these papers, sometimes called the pathwise mean-
squared displacement,

1
T —

T—A
- /0 (x(s + A) — x(s))% ds ©.1)

is a ‘sliding window’ average of squared-displacements and not equivalent to the time-average
formula (1.3) used in the mathematical literature on ergodic theory. Notably, the authors of
[36] and [37] are able to show that the inequivalence of (6.1) with ensemble averages occurs
even for the Ornstein—Uhlenbeck SDE (Brownian motion in a quadratic potential), which is
well-known to be a (geometrically) ergodic process in the sense of Birkoff. Therefore, the
results and conjectures discussed under the heading of ‘ergodicity breaking’ in the physics
literature do not necessarily align with the results and conjectures we present here. Having
said that, the MSD formula (6.1) is an essential tool in the particle tracking literature and we
believe it is an interesting and unsolved question as to why this time-average fails to match
ensemble averages as one might expect for an ergodic process.
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