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Data Assimilation in Large Prandtl Rayleigh—Bénard Convection from Thermal
Measurements*
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Abstract. This work applies a continuous data assimilation scheme—a framework for reconciling sparse and
potentially noisy observations to a mathematical model-—to Rayleigh—Bénard convection at infinite
or large Prandtl numbers using only the temperature field as observables. These Prandtl numbers
are applicable to the earth’s mantle and to gases under high pressure. We rigorously identify condi-
tions that guarantee synchronization between the observed system and the model, then confirm the
applicability of these results via numerical simulations. Our numerical experiments show that the
analytically derived conditions for synchronization are far from sharp; that is, synchronization often
occurs even when sufficient conditions of our theorems are not met. We also develop estimates on
the convergence of an infinite Prandtl model to a large (but finite) Prandtl number generated set of
observations. Numerical simulations in this hybrid setting indicate that the mathematically rigorous
results are accurate, but of practical interest only for extremely large Prandtl numbers.
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1. Introduction. In order to make accurate predictions, numerical models for geophysical
processes require establishing accurate initial conditions. Data assimilation is used to estimate
weather or ocean (or any other geophysical) variables by incorporating the real world data into
the mathematical system to obtain an accurate initialization. One of the classical methods of
data assimilation (see, e.g., [46, 23, 58, 60, 69, 66, 79, 65, 70, 7, 15, 8]) is to insert observational
measurements directly into a model as the latter is being integrated in time (also known as
nudging or Newtonian relaxation). There is a significant amount of recent literature concerning
the mathematically rigorous analysis of nudging algorithms for data assimilation developed for
hydrodynamic equations with a particular focus on weather and climate systems. Recently, a
variational scheme, known as 3DVAR, was studied in [15], in the case where observables are
given as noisy Fourier modes, and in [8], which successfully accommodates a larger class of
observables that, in particular, includes the more physically relevant cases of nodal values and
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volume elements; see also [9], where observational error is accounted for. In these articles,
rigorous proofs are obtained for the synchronization of the approximating signal with the true
signal that corresponds to the observations, using the two-dimensional (2D) incompressible
Navier—Stokes equations (NSEs) as a model.

The data assimilation algorithm analyzed in [15, 8] can be described as follows: suppose
that u(t) represents a solution of some dynamical system governed by an evolution equation
of the type
(L1) & = F(u),
where the initial state of the system, «(0) = wuo, is unknown. We would like to accurately track
this solution u(t) as ¢ increases notwithstanding our uncertainty in ug. Let Ij,(u(t)) represent
an interpolant operator based on the observations of the system at a coarse spatial resolution
of size h, for t € [0,7]. We then construct a solution v(t) from the observations that satisfies
the equations

(1.2a) W = F(0) — ulTu(v) — In(w),
(1.2b) v(0) = o,

where p > 0 is a relaxation (nudging) parameter and vy can be prescribed as an arbitrary
initial condition. We then take v(t) as prediction of u(t) which we anticipate becomes more
accurate as t (and therefore the amount of observed data Ij,(u(t))) increases.

The algorithm designated by (1.2) was designed to work for dissipative dynamical systems
of the form (1.1) that are known to have global-in-time solutions, a finite-dimensional global
attractor, as well as a finite set of determining parameters (see, e.g., [38, 39, 40, 53, 52, 21,
47, 35] and references therein). Typically in these settings, following the ideas in [38], lower
bounds on p > 0 and upper bounds on A > 0 can be derived such that the approximate
solution v(t) converges to the reference solution u(t) as ¢ — oo. This was initially proved for
the 2D NSEs in [15, 8].

Numerous further studies, both analytical and numerical, have been carried out for the
algorithm (1.2), illustrating its broad scope of applicability. For instance, the nudging ap-
proach has been validated for models including the 2D magnetohydrodynamic system [11], the
2D surface quasi-geostrophic equation [51], three-dimensional (3D) Brinkman—Forchheimer—
extended Darcy model [61], and 3D simplified Bardina model [4]. The practically and physi-
cally relevant scenarios of discrete-time and time-averaged observables were studied in [37, 14,
49, 56]; more recently, it was shown in [10] that this nudging algorithm is capable of synchro-
nizing the statistics propagated by the flow as they are observed only on a coarse-mesh scale;
the efficacy of this algorithm for assimilating actual data sampled from a regional domain
encompassing most of Northern Africa and the Middle East was recently tested in [24]. We
refer the reader to [23] for a summary on the use of data assimilation in practical forecasting
and [54] for a comprehensive text on numerical weather prediction where nudging has been
employed.

Regarding related numerical studies, [42] demonstrated in the case of the 2D NSEs that
the number of observables required for synchronization using (1.2) is much lower in practice



512 FARHAT ET AL.

than what has been deemed sufficient by the rigorous analysis. In the setting of the 2D
Rayleigh Bénard (RB) system, numerical studies were carried out in [6], and then in [28] for
nearly turbulent flows using vorticity and local circulation measurements. We emphasize that
the numerical experiments carried out in the present article are for moderately turbulent flows
whose dynamics are significantly more complex than the regime of two-cell convection rolls
that [6] was restricted to. Moreover, our studies are carried out to a similar high degree of
numerical precision as found in [28]. We refer the reader to [5, 34, 25, 19] for various other
studies in the context of turbulent flows such as how one can leverage the nudging scheme to
infer unknown parameters of the flow. In [12, 48, 62], analytical studies on the various modes
of synchronization of the algorithm (1.2) and on certain variants on its numerical discretization
were carried out.

The earth system is heated from within and cooled by the atmosphere or ocean at the
earth’s surface. On geological time scales, the mantle’s motion can be modeled as a fluid.
The big difference between the temperature of the top mantle and the bottom mantle is a
major source of the convective motion (fluid motion driven by temperature difference). The
full compressible, temperature-dependent viscous equations of motion that ostensibly describe
flow in the mantle [68] are currently beyond the reach of a rigorous mathematical analysis, but
a first order approximation to this system is adequately described by taking the infinite Prandtl
limit [71, 72, 73, 74, 75, 76, 41] of the RB system first described in [64] by Lord Rayleigh. We
recall that the Prandtl number represents the ratio of the kinematic viscosity to the thermal
diffusivity. Since the original formulation of the minimal mathematical model in [64], extensive
research has sought to quantify its dynamical evolution [59, 1, 2, 16] and resultant large spatial
and long temporal scale impact of convective flow; see [3, 57] for example. Despite the seeming
simplicity of the RB system, there remain open questions regarding the exact nature of the
convective heat transport and the impact and nature of boundary layers at physically relevant
values (see, e.g., [3]). To further complicate matters, mantle convection is far more nuanced
than RB convection, having several other unanswered questions, in addition to the well-known
open problems in the latter setting. Unlike the low Prandtl number setting, experimental
investigations of mantle convection are not practical, so numerical simulations provide one of
the only avenues to investigate these issues. Of fundamental concern in such simulations is the
dependence of the simulation on the initial condition and/or true physical setting, which would
ideally be accompanied by physical observations. The collection of observational data from the
mantle is an onerous inverse problem that obfuscates much of the desired resolution in time
and space [68], both in the sense of physical accessibility and due to the relevant time scales
involved. Indeed, the evolution of the mantle is on millennial time scales. Despite remarkable
advances in imaging technologies, observations of the mantle are sparse and prone to noise
and are insufficient to determine the mantle’s state. Thus, the development of the advanced
real-time prediction systems that are capable of depicting and predicting the mantle’s state
is necessary to gain insight into the dynamics in the earth’s interior.

Access to observations from earth’s mantle is limited. Geophysicists have decent observa-
tions at the surface (top layer) of plate velocities and heat flow distribution and have probes
of mantle temperature where volcanism occurs. Since the motion of the tectonic plates is very
slow (the relative movement of the plates typically ranges from zero to 100 mm annually; see
[68], for example), we can assume that the top plate is stationary and with fixed temperature.
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Thus, a realistic forecast model for the dynamics of earth’s mantle will employ sparse ther-
mal observations only. In the context of atmospheric and oceanic physics, data assimilation
algorithms where some state variable observations are not available as an input have been
studied in [20, 27, 44, 43] for simplified numerical forecast models. Particularly related to the
study carried out in this article, it was shown in the case of the 2D NSEs [30] and the 2D
RB system in [33] that measurements on just a single component of velocity is sufficient to
obtain synchronization. Charney’s question in [20, 43, 44] asks whether temperature observa-
tions are enough to determine the entire dynamical state of the system. In [44], an analytical
argument suggested that Charney’s conjecture is correct, in particular, for a shallow water
model. Further numerical testing in [43] affirmed that it is not certain whether assimilation
with temperature data alone will yield initial states of arbitrary accuracy. The authors in
[6] concluded that assimilation using coarse temperature measurements only will not always
recover the true state of the full system. It was observed that the convergence to the true
state using temperature measurements only is actually sensitive to the amount of noise in
the measured data as well as to the spacing (the sparsity of the collected data) and the time
frequency of such measured temperature data. Rigorous justification for Charney’s conjecture
was provided in [32] in the case of the 3D planetary geostrophic model. Earlier, for the specific
setting of 3D convection in a porous medium, where inertial effects can be ignored in the fluid
velocity, it was shown in [31] that temperature measurements alone suffice to determine the
velocity field. By comparison, the thrust of the analysis performed here is to establish the
conclusions analogous to [31] while accounting for these inertial effects within the regime of a
finite but large Prandtl number.

We consider the nudging approach both analytically and through numerical experiments
to explore the range of applicability of the technique in this geophysically interesting context
of large Prandtl convective systems. Ultimately, we accomplish the following:

1. We develop a nudging data assimilation scheme for both large and infinite Prandtl
number RB convection in the traditional simplified 3D box geometry (see (2.4),(2.5),
and (2.6) below) with observations in the temperature field only. In section 2, we
formally introduce the governing equations for the 3D RB system. In section 3, we
provide the mathematical framework within which our analysis is performed, as well as
the relevant well-posedness results for the 3D RB system. We then establish rigorous
estimates on the convergence rates for the simpler case of Prandtl number (Pr) = oo
in section 4. The case of large, but finite Pr is addressed in section 5.

2. We perform high-resolution direct numerical simulations on the 2D version of this
problem for moderately turbulent flows, in an effort to shed some light on the prac-
tical applicability of the rigorous estimates. In particular, we probe the values of
the relaxation parameter and the number of required modes for the nudging scheme
to converge. This is done in sections 4.2 and 5.2, immediately after their respective
mathematical analysis.

3. We consider a practical scenario of “model error,” in which the assimilated variables are
nudged “incorrectly.” Specifically, we assume that the modeling system corresponds
to the infinite Prandtl system nudged by data corresponding to a finite Prandlt system
(2.4), (2.5). This situation is studied both analytically and numerically in section 6.
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We note that the choice of finitely many Fourier modes as the manifestation of our observables
is made for ease of both exposition and numerical implementation. We reserve establishing
estimates on the convergence rates for more general observables to a subsequent study.

2. The RB system and nudging equation. This initial section recalls the RB system and
its nondimensional formulation. We then present the precise form of the nudging algorithm
which we will study in sections 4 and 5.

The RB system for convection originates from the Boussinesq equations for an incompress-
ible fluid with appropriate boundary conditions. The Boussinesq system over a d-dimensional
domain, where d = 2,3, Q = [0, L]%! x [0, 4], is given by

(2.1) Ou+ (u-V)u=vAu—-Vp+age,I, V-u=0, T+ (u-V)I'—rAT =0,

where u = (ug, ..., uq) is the velocity vector field, p is the scalar pressure field, and T" denotes
the temperature of a buoyancy driven fluid. The parameter v > 0 denotes the kinematic
viscosity of the fluid, £ > 0 its thermal diffusivity, o > 0 the thermal expansion coefficient,
g > 0 denotes the constant gravitational force, and ey4 is a constant vector antiparallel to
the gravitational force. To model convection, (2.1) is then supplemented by the boundary
conditions

(2.2) ulp,—0 =u|g=p =0, Tl|p,—0 =0T, T|y,=n =0, u,T are L-periodic in z1,x4_1,

where 0T is a fixed constant determined by the (relative) strength of the bottom heating.
The relations (2.1), (2.2) together constitute the RB system for convection in two and three
dimensions. We note that variations on these boundary conditions are applicable to the earth’s
mantle, but as our focus is on the convergence of the data assimilation scheme, we assume
that such variations have secondary effects.

Nondimensionalized variables. As is customary, we work with nondimensionalized vari-
ables. The system (2.1) is rescaled using h as a length scale, 7" as the temperature scale, and
the diffusive scale ;5 as the time scale. The relevant nondimensional physical parameters for
the system are the Prandtl number, Pr, and Rayleigh number, Ra, which are defined as

§T)h3
(2.3) Pr:= 2, Ra = 29ODRT
K VK
This leads to nondimensionalized variables over the rescaled domain €' = [0, L]4~! x [0,1],
d = 2,3, which satisfy

1
Pr [Opu' + (0 - V)] = A'd' = —V'p + RaesI", V' -u' =0, u'(x,0)=uj(x),
T +u' - V'T - AT =0, T'(xX,0)=THx)

(2.4)

with the boundary conditions
(2.5) u’]mézo = u/’%:l =0, T'\%ZO =1, T’]Z:izl =0, u',T" are L-periodic in x},z}_;.

For notational simplicity, we will drop the ’ in all that follows.
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As previously alluded to, the physical setting of interest in this article is the earth’s mantle
where the Prandtl number Pr is large, namely, on the order of 10%°, while the Rayleigh number
Ra that are of interest for mantle convection are typically between 107 and 10® [68]. Upon
formally setting Pr = oo in the system (2.4)-(2.5), one arrives at

—Au=-Vp+Raes/T, V-u=0,
(26) T +u-VT — AT =0, T(X7 0) = T()(X),

Ulp,=0 =U|y,=1 =0, Tl|z,=0=1, T|z,=1 =0, u,T are L-periodic in z1, 4.

The initial velocity u(x,0) is determined by T and the corresponding momentum equations.
Although there are several additional physical effects relevant to mantle convection that are
omitted from the RB model considered here, we consider (2.6) to be an appropriate “zeroth-
order” representation of mantle convection; it provides the starting point and test model for
mantle convection simulations (see [13]). Although we anticipate eventually extending the
results of the current investigation to more realistic models of mantle convection, we believe
a more in-depth understanding of the problem at hand is a necessary first step.

Nudging setup. The idea, following [15, 8] and sketched in the introduction, is to nudge
the assimilated system (1.2) with a projection of the “truth” that represents the exactly
realizable observations of the original system. More precisely, the nudging is accomplished
by introducing an affine feedback control term to the original “forecast” model (1.1), whose
purpose is to enforce the asymptotic convergence of the solution of the assimilated system (1.2)
towards that of the original system (1.1), but only on the scales at which the observations are
made; it is this “relaxed” imposition that ensures the practicality of the nudging scheme. For
this article, our “truth” is assumed to be represented by (2.4), (2.5), or (2.6).

Let (u, T) satisfy (2.4), (2.5) over Q = [0, L] x [0, 1], from which we have obtained partial
observations in the form of finitely many Fourier coefficients corresponding to wave-numbers
|k| < N for some integer N > 0. Let (@1,7) denote the assimilated or modeled system
variables, which satisfy

1 ~
510 + (0 V)] — Al = —Vj +Rae,T, V- =0, a(x,0)=1o(x),
r
(2.7) T +a-VT — AT = —uPy(T —T), T(x,0) = Tp(x),
Uy —0 = 0]z,=1 = 0, T‘mdzo =1, T\xd:l =0, u,T are L-periodic in 21,241,

where Py denotes the projection onto Fourier wave-numbers |k| < N (see (3.8) below). Its
infinite Prandtl counterpart is given by
—At=-Vp+Rae I, V- -u=0,
(2.8) WT+u-VT — AT = —uPy(T —T), T(x,0) = Ty(x),
Uy =0 = U|y,=1 =0, T\xdzg =1, T\xdzl =0, u,7T are L-periodic in z1, z4_1,
where (u,T") comes from either (2.4), (2.5), or (2.6).

One of the basic goals of this paper is to show that T-T, p—p—0,and 1 —u— 0 as
t — oo in the appropriate space for specific conditions on x4 and the number of projected modes
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N relative to Ra and Pr. This indicates that for specified Rayleigh and Prandtl numbers, one
can determine a sufficiently large number of modes and a sufficiently large nudging parameter
1 to ensure that the assimilated system (@, T") will asymptotically match the true system.

3. Mathematical background. For the sake of completeness, this section presents some
preliminary material and notation commonly used in the mathematical study of hydrodynamic
systems, in particular in the study of the NSEs and the Euler equations for incompressible
fluids. For more detailed discussion on these topics, we refer the reader to, e.g., [22, 67].

Let Q = [0, L]~ x[0, 1], where d = 2,3 and we denote the spatial variable x = (21, ..., zq).
We consider the function spaces

(3.1)
F ={v e C™(Q):vis L-periodic in z;,j = 1,d — 1, and compactly supported in x4},

Fe .= {veFl.V.-v=0}

(3.2)
H=7", 4=z
) . o )
(3.3)
v=7" v.=gi"
M b M o )
(3.4)
W .= §H2, W= ﬁHQ,

(e

where H'(Q) and H?(f2) denote the classical Sobolev class of first-order and second-order
weakly differentiable functions over €2, respectively. We use the notation X *¢ to denote the
d-fold product of a set X, and (-,-) to denote the usual L? inner product over (2,

d

=3 / wui(x) dx,  (f.0) = /Q F(x)g(x) dx

Q
for u = (u1,...,uq),v = (v1,...,vq9) € H, and f,g € L*(Q). The inner product on H*(Q),
k=1,2,...,1s given by

k
(f,9)e =D _(DVf,Dg),

[v]=0

where v = (71, . ..,74) is a multi-index and D7 = (971, ...,92%). The spaces H,V, W are then
endowed with a Hilbert space structure, whose respective inner products are given by

(35) (f7 g)H = <f7g>7 (f'}g)v = <vf7 v9>7 <f7g)W = (f? b)V + Z <D’Yf’ D’Yg>

[v|=2

The spaces H, )V, W have analogous Hilbert space structures. We denote by H', V', W’ and
H', V', W' the dual spaces of H,V,W, and H,V, W, respectively. We then have the following
continuous injections:
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We—VasHosHSV W,

(3.6) ' / /
W VasHaH =V =W,

In what follows we will denote the L?(2) norm by || - ||. For all other Banach spaces X, e.g.,
LP(Q) for p # 2, H*(Q), etc., we denote the associated norms explicitly as || - || x.
Let

(3.7) {(An, &n(x))}nls

denote the orthonormal eigenpairs corresponding to the Laplace operator —A on the domain
Q, ordered so that A, is a nondecreasing function of n, supplemented with the mixed hori-
zontally periodic-vertically Dirichlet boundary condition as in (3.1). Then each f € W can
be expressed in terms of the eigenfunctions as

Foot) =3 Fal6n(x), Falt) = (F(8), dm) = / £, 8)n(x) dx,
n=1 Q

and the eigenfunctions satisfy the orthogonality relation

1 ifi=y,
0 ifi#j.
For each N > 0, define the projections Py, Qnx by

(Pir @) = 0ij = {

N 00
(38) PN(f) = fadn:  Qn(F)=[=PNI())= D fubn,
n=1 n=N+1

where [ is the identity operator. In other words, Py is a truncation of the eigenfunction
expansion, and Q) is its orthogonal complement. The orthogonality of the eigenbasis yields
the identities

(3.9) (Pn(f),Qn(f)) =0,
(3.10) 1PN (HIZ + QN (I = [IF1I?

for any f € H%(Q).
We next recall the following well-known a priori estimates for Stokes’ equations:

(3.11) —Au+Vp=f{,
(3.12) Vou=0,
(3.13) U|zs—0 = U|zy=1 =0, wuis L-periodic in z; and xa;

see [22] and the drift-diffusion equation (3.15), where the advecting velocity field is divergence
free as in, e.g., [67, 73]. We adapt these results here to our notation and setting as follows.

Lemma 3.1. Letd = 2,3 and f € H*?. There exists a unique u € W and (up to constants)
p € V such that (3.11) is satisfied. Moreover, there exists a constant C = C(2) > 0 such that

[allgz + llpllar < CJIE]-
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Remark 3.2. We will use C below to stand for an absolute constant that may change line
to line.

The next lemma follows from the theory of linear transport equations in [26] and a variant
of the maximum principle proved in [36]. We will refer to the following notation for the
“positive parts” and “negative parts” of a function:

(3.14) YT = max{¢,0}, ¢~ = max{—1,0}.
Lemma 3.3. Let d = 2,3 and 7 > 0. Let u € LY(0,7;V) and Ty € L*>°(Q) be a.e. L-

periodic in x1,24-1 and Tolz,—0 = 0,Tp|g,=1 = 1 (in the sense of trace). Suppose that T €
L>®(0,7; L%°(Q)) N L2(0, 7; HY(Q)) satisfies

0T +u-VT — AT =0, T(x,0)=TH(x),
(3.15) T|gy=0 =1, T|gy=1 =0, T is a.e. L-periodic in x1,xq_1,

where the boundary values on {xq = 0} U{zq = 1} are interpreted in the sense of trace. Then
there exists a constant Coy = Co(2, || To||) > 0 and functions T',n such that T =T +n and

0<T@) <1, n=(T-1)"=T7, |n@)] <Coe™*

for allt > 0.

For the system (2.6), when Pr = oo, the velocity field u is determined by the evolution
of T'. The well-posedness of this system then follows in a standard way for either dimension
d = 2,3, and its solution satisfies the estimates stated in Lemmas 3.1 and 3.3. We formally
state this result as the following theorem.

Theorem 3.4. Let d = 2,3. Suppose that Ty € L>(S2). Suppose that Ty € L>®(Q) is a.e.
L-periodic in x1,x4—1, and To|zy,=0 = 0,To|z,=1 = 1 (in the sense of trace). Then there exists
a unique (u,T') satisfying (2.6) such that

ueL>®0,7W), TelL>®(0,mL*Q)NL* (0,7 H (Q)NCy ([0,7]; L*())

for all T > 0. Moreover, there exist positive constants vo = vo(2, ||Tol|) and Cy = Co(£2, || To]|)
such that

Ra™ [u(t)llg2 <70, IIT®)] <

for all t >0, where v} = |QY/2 + Coe™?.

We consider a change of variable, denoted by 6(x, ), that represents the fluctuation of the
temperature around the steady state background temperature profile 1 — z4:

(3.16) 0(x,t) =T(x,t) — (1 — zq).

The functional setting determined by (3.2)-(3.4) accommodates a rigorous mathematical
analysis for the perturbed variable . The results derived for § are then transferred natu-
rally to the desired results for the original variable T. We appeal to [73, 74] for the global
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existence and eventual regularity of suitable weak solutions for (2.4)-(2.5), as well as the ex-
istence of the “global attractor” for the dynamics, although we will not make explicit use of
this fact in this article. We will also say that a solution (u,T") of (2.4)-(2.5) is regular on [0, 7]
if (u,0) € L*(0,7;V) x L*(0,7; V). If 7 = 0o, we say that the solution is a global regular
solution.

Theorem 3.5 (see [73, 74]). Let d = 2,3. Recalling the notation (3.2)—(3.4), let (ug, 6p) €

H x H and Ty ::90+(1—xd).
(i) (Global existence of weak solutions.) For any T > 0, there exists (u,T') such that

d
ue L®0,7;H)N L2(0,T;V) N Cyw ([0, 7]; H), dfltl = L4/3(0,7';V'),
9 € L=(0,7;H) N L*(0,7;V) N CyW([0,7]; H), %f e LY3(0, 7, V),

where 0 is related to T by the relation (3.16). This (u,T') satisfies (2.4)~(2.5) in the
usual weak sense and maintains the initial condition (ug,Tp). Moreover, the following
energy inequality and mazimum principle are satisfied for all t < 7:

prlla®1? +2 [ 19u(s) s < ol +2Ra [ (0(5) us(s) ds.
(317) I =D O +2 [ 19 = 1)* () ds < (T = 1)7
IO +2 [ 19T ds < ()P
0

where (T — 1)", T~ are defined as in (3.14).

(ii) (Eventual regularity of weak solutions.) There exists a constant Ko > 0 such that if
PrRa~! > Ky, then there exists a time 7" > 0 for which all suitable weak solutions
corresponding to (ug,0) € H x H become regular solutions on [7*,00). In particular,
when d = 3, there exist constants k1, kg, k3 > 0 and K, kY, k4 > 0, depending on €,
such that

@l < mRa, [[ul)]ye < x2Ra¥2, [dpult)] < ryRa™?,
1)1l < x4 10l < K Ra™2, [6(8)] 12 < K5 Ra®

forallt > 7*.

For the remainder of the article, we will therefore assume that (u,T), (i, 7) have evolved
for a sufficiently long time so that (u,T") is a regular solution to either (2.4)-(2.5) or (2.6).
Physically speaking, the setup of our study assumes that reality is represented exactly by a
solution to (2.4)-(2.5) or (2.6) and that we have been observing the system after the point in
time at which it has become globally regular. Thus, for the purposes of our analysis, we will
henceforth make the following standing hypotheses for the remainder of the paper.

Standing hypotheses. Let d = 2,3 and Ra > 1. Let 7 > 0 be the constants from
Theorem 3.4. When Pr = oo, we assume the following:
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(I1) Tp is a.e. periodic in x1,z4—1 and Tp|y,—0 = 0, Tp|z,=1 = 1 (in the sense of trace);

(I2) Tp € L™(Q);

(I3) (u,T) is the unique global solution to (2.6) corresponding to Ty and guaranteed by
Theorem 3.4. In particular, (u,T) satisfies

Ra™lu(t)llmz <70, T <

for all t > 0.
On the other hand, let Ky > 0, K1, k2, k3 > 0, and (), k7, x5 > 0 be the constants in Theo-
rem 3.5(ii).
When Pr < oo, we assume the following;:
(F1) PrRa™! > Ko;
(F2) (u,T) is the unique regular solution to (2.4), (2.5);
(F'3) when d = 3, u(t) satisfies

@l < miRa, [u(®)llge < reRa™2,  [dput)]| < rgRa'/2

for all £ > 0;
(F'4) when d = 3, T satisfies

IT@OI < wh, ITOllar < KR, T2 < w5 Ra®

for all t > 0, where 1y = & +2|Q["/2 +1, j = 0,1,2.

Remark 3.6. Since we have nondimensionalized our variables, we point out that although
the bounds in (F'3), (F'4) are derived for the case d = 3, they are also valid for the case d = 2,
up to constants, provided that Ra > 1, which have have assumed as one of our standing
hypotheses.

4. Infinite Prandtl assimilation. We will first treat the data assimilation problem for the
infinite Prandtl number system (2.6), (2.8). Hence, throughout this section we assume that
Pr = oo, i.e., (I1)—(I3) holds.

A rigorous mathematical analysis is performed in dimensions d = 2, 3, while the numerical
component of our studies are carried out for d = 2. Due to the structure of the nudged
system (2.8), we do not have a maximum principle. Instead, we require only that (2.8) have a
well-defined solution in the weak sense, which one can do by establishing that the differences
w=1u—u, S =T — T satisfy their respective evolution equations in the weak sense. Since
one of the relevant a priori estimates to this end is performed below for the proof of Theorem
4.2, we simply state this result as the following theorem.

~ Theorem 4.1. Let > 0 and {\n};2 be as in (3.7). Let To € L*(Q) a.e. in Q such that
Ty is a.e. L-periodic in x1,x4—1 with Ty|z,—0 = 0, 10|z, =1 =1 (in the sense of trace). Suppose
N > 0 satisfies %)\N > w. Then there exists a unique (0, T) satisfying (2.8) in the weak sense
such that

aeL>®0,7W), TeL>®(0,7L%Q)NL* (0,7 H Q) NCy ([0,7], L2())

for all T > 0.
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4.1. Synchronization. We are now ready to state and prove the main theorem of this
section. We show that (2.6) and (2.8) synchronize under certain conditions detailed below.

Theorem 4.2. Let i1 > 0 and {\,}3°; be as in (3.7). Let N > 0 satisfy 1Ay > p and Tj) be

given as in Theorem 4.1. Let (0, T) be the corresponding unique solution to (2.8) guaranteed
by Theorem 4.1. There exists a constant Cy = Co(, ||To||) > 0 such that if

(4.1) p > CoRa?,
then for allt > 0,
(4.2) (T = T)(®)|* + Ra~2 [[ (@ — w)(t) 72 < Cre™

for Cy = || To — To.
Proof. Let S =T —T, w =1 —u, and ¢ = p — p. Subtracting (2.6) from (2.8) yields the
system
—Aw = —-Vqg+ Rae3S, V- -w=0,
(4.3) oS+u-VS+w-VT —AS = —uPnS,
Wlpg=0 = Wlgs=1 =0, S|gs=0 = Sl|zs=1 =0, w,S are periodic in z; and z»

with the initial condition S(x,0) = Tp(x) — To(x). The momentum equation in (4.3) satisfies
Lemma 3.1, so there exists a constant C' > 0 such that

(4.4) [wl[r2 + llgllm < CRalS]|.

Therefore, to establish (4.2), it is sufficient to show that S — 0 with an exponential rate in
L?(Q).

Upon multiplying the S equation in (4.3) by S and integrating over 2, we obtain
1d

(4.5) 5 7t

S| + VS| + pl Pn ()12 = — /Q(W -VT)S dx.

Assume that p is chosen sufficiently large so that (4.1) holds, where Cy > 0 is, as of yet,
unspecified. After integrating by parts, an application of the Sobolev embedding H?(Q) —
L>(Q), (4.4), and then (I3) of the standing hypotheses implies

< Wl ITIVS]l < CRal[S|| TV S]]

/Q(w . VT)S dx

(4.6)

IN

1 1
SIVSI? + CRa* [ TIPIS|* < S[IVSII* + CRa® 1S

On the other hand, due to (3.10) and the inverse Poincaré inequality, and since N > 0 satisfies
%)\N > u, it follows that

1 1
SIVSIZ+ ul PuSI* = SIVSI® = pl@nSIF + pllS|*

1
(4.7) > (== L) VS + ullS)? > wlS|>
2 AN
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Joining (4.5) with (4.6) and (4.7) and combining like terms, we arrive at

DI +2 (1~ CRa2a}) ] <0
Finally, by Gronwall’s inequality and the second condition in (4.1), we deduce that
(4.8) IS@)1* < [1S(0)][* exp (—2ut + CRa® yjt) < |S(0)[|* exp (—ut),

which completes the proof upon choosing Cy = Cj,. |

Theorem 4.2 shows that given Ra and reasonable boundary conditions Ty and Ty, we
can always choose p and N large enough so that (u,7) and (1, 7) eventually match in the
infinite-time limit. In the next subsection, we use numerical simulations to verify that this is
indeed the case.

4.2. Numerical results at infinite Prandtl number. Rather than focusing on a handful of
highly turbulent 3D simulations, for the same computational cost we consider more detailed
and extensive simulations in the 2D setting where Q = [0, L] x [0, 1] with coordinates x =
(1, x3) in order to search through the relevant parameters. We simulate (2.6) and (2.8) using
a stream function formulation with Dedalus [17], a Python package that uses pseudospectral
methods to solve partial differential equations on spectrally representable domains. All of the
simulations in this section and all that follow are completed with a 4-stage 3rd order Runge—
Kutta implicit-explicit time stepping scheme that treats the linear terms implicitly and the
nonlinear terms explicitly (see [17] for details on the selected time-stepping mechanism). The
selected time-stepping algorithm employs an adaptive time step that is based on a default
Courant—Friedrichs—Lewy condition taken within the stability region of the 4-stage, 3rd order
Runge-Kutta scheme, and using the horizontal and vertical velocities as the “winds.” We
note that as pointed out in [63], Runge-Kutta methods are not completely valid for this
type of data assimilation as there is no information available between time steps. Thus,
the simulations presented here are only a proof of concept to demonstrate the usability of
the nudging algorithm. Each simulation is run with L = 4 and 256 Fourier grid points in
the horizontal and 128 Chebyshev points in the vertical with a standard 3/2 dealiasing. All
of the reported simulations were also performed at 384 x 192 resolution with little to no
effect on the results. All simulations were run until the time-averaged Nusselt number and
other pertinent statistics were temporally well-converged (meaning that the average over the
last half of the total integration period was within 5% of the same average over the last
1/4 of the integration period) for all cases considered here. For the sake of reproducibility,
the Python code that produces the data and figures reported here is publicly available at
https://github.com/shanemcql8/DAiLPRBCfTM-Paper.

Choosing the initial conditions Ty and Ty in our numerical experiments is nontrivial. For
Ty, we have two options.

o Set Ty(x1,23) = 1 — w3 + (21, x3) for some small perturbation function € : ¥ — R.
This begins the simulation close to the conductive state 1 — x3, which—though not
physically relevant—is a suitable starting point for initial experiments.

e Load Ty from the final state of a previous simulation with similar parameters. If this
previous simulation has run long enough, 7" will thus begin in a reasonable state for
the new set of parameters.
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Finding a suitable choice for Tg is less obvious. Setting To(ml,:cg) = 1 — x3 assumes no
prior knowledge of T" and results in an overly stiff initialization due to the strength of the
initial temperature difference, and is therefore numerically impractical. In addition, initiating
T at this conductive state ignores observations taken at the initial time ¢ = 0, which would
not be advantageous in practice. On the other hand, setting Ty = Py (Tp) for large N results
in a very weak temperature difference so that (2.6) and (2.8) are nearly synchronized at t = 0.
As a compromise, we set Tp as a low-mode projection of Tj such as Ty = Py(Tp). This permits
some initial knowledge of the true state without driving it directly to the “truth” immediately.
Preliminary investigation indicates that our results are independent of the choice N = 4, as
N = 6,8, etc. yield similar results with smaller initial error for N > 4 but qualitatively the
same convergence rate.

Values of the Rayleigh number Ra that are of interest for mantle convection are typically
between 107 and 10® [68, 13]. However, the greater the value of Ra, the more computation-
ally expensive the simulation, and it is numerically unstable to start 7" in a state such as
To(z1,23) ~ 1 — x3 at large Ra. We therefore select logarithmically spaced Ra values from
10* to 10° and run a simulation for each Ra, one after another. For the very first simulation
(Ra = 10%), we set Ty(x1,73) = 1 — w3 + e(21, 23) where e(x1,23) = 10™*sin(kzy) sin(27z3)
and k = 3.117 (near the first unstable mode that bifurcates away from conduction at onset),
and evolve the systems forward until reaching a statistical equilibrium state as described above
(defined by the convergence of temporal averages of the Nusselt number). Thereafter, we set
Ty as the final 7" from the previous simulation (at a lower value of Ra) and incrementally
increase Ra. This yields realistic initial conditions for any given Ra in the range considered.
These “initial conditions” are saved and used for the finite Prandtl setting considered in the
following sections as well. Figure 1 shows an example of T} and Tp, together with subsequent

end states of T and T for Ra ~ 5.22 x 107.
Figure 1. Typical “before” and “after” snapshots of a successfully assimilated setup. On the top, the initial
condition Ty compared with T at the end of a simulation. On the bottom, the initial projected temperature

To = Py(To) and the eventual T at the end of the simulation. Note that the postsimulation T and T appear
identical to the naked eye. This particular simulation uses Ra ~ 5.22 x 107, p = 12,700, and N = 32.
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To measure the synchronization of (2.6) and (2.8), we keep track of the L2(Q2), H(f2),
and H?(Q) norms of T — T and @ — u throughout the simulation. Each error is normalized
by dividing by the norms of the truth system’s variables. For example, to measure the tem-
perature difference in L2(Q), we compute W at each simulation time ¢. For simplicity,
we write these errors without the denominators in all that follows.

Figure 2 shows how the tracked error norms decrease in the simulation from Figure 1.
Though the analysis indicates that these norms should converge to emachine =~ 10716, with
the current setup, we are not able to see such a convergence. It appears that the cause
of this discrepancy at these moderately large Rayleigh numbers is due to the Runge-Kutta
(RK) time-stepping: as described earlier, a RK time-stepping algorithm steps forward by first
evaluating the evolution equation at times in between the final steps wherein the “true” system
is not available. For Ra < 109, this effect isn’t noticeable, but for Ra > 10°, the convergence
using an RK method is less than desirable, while we found that near epachine cOnvergence
occurs when using an Adams—Bashforth (AB) time-stepper. For the sake of computational
time (high order AB methods have much smaller stability regions than RK), we have continued
to use the RK method here despite this drawback but plan to address this issue in a later
study. Changing the time-stepping algorithm clearly has an effect on the synchronization (for
Ra ~ 5 x 10% a 3rd order AB method yields synchronization within 107!%, whereas the RK
method gives at best 107!%), but it does not appear to affect the rate of synchronization,
which is more of the focus here.

(T = T)(®)] 120 [[(@ —u)(t)]]L2() Overlay

10~ . -
o] ™ ~ DOl

[[(@ = w)(0)l] 2@
1077 1071 VT =IOl
10-10 — [[(Va—Vu) )|l
— @ = D))l 20

2 ~
10 ll(8 — )02

(VT = VT) ()] 2@ (Vi — Vu)(®)|] 1)
10" 4
1073 E

10774 ] 1044

ICF = T)(0) e @ =0 @llee )
10° 1 LM

10° 4 10-10 4
101 J

T T T T T T T T T T T T T T T T
0.0000 0.0025 0.0050 0.0075 0.0100 0.0000 0.0025 0.0050 0.0075 0.0100 0.000 0.002 0.004 0.006 0.008 0.010

Simulation Time ¢

Figure 2. Synchronization in various norms for Ra ~ 5.22 x 107, p = 12,700, and N = 32 (the same
conditions used in Figure 1). The temperature and velocity differences decrease exponentially until flattening
out at sufficiently small values. The temperature difference is the smallest, which seems to be a consequence of
using temperature-only observations for the assimilation.
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10! 5
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10734 —— Ra=4.64e+05 —— Ra = 1.13e + 06
—— Ra = 6.24e + 05 e Kt
—— Ra = 8.38¢ + 05
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Figure 3. Convergence (or lack thereof) of ||(t — u)(t)|| g2 + ||(T — T)(t)|| > with u =1 and N = 32 for
various values of Ra. Note that even though a transient period of near-synchronization appears for lower values
of Ra, actual synchronization doesn’t occur in any case for = 1. To demonstrate the lack of synchronization,
a comparison of e "t is included which would provide an estimate for the convergence were it to occur. The
results presented below for much larger values of p will have a far shorter expected convergence time (as dictated
by e " again), so the time interval displayed is significantly shorter.

4.2.1. Dependencies of nudging parameter. Previous studies, [6, 28], of data assimila-
tion for RB convection fixed the value of the nudging parameter at ;1 = 1 in their experiments
and instead focused on the effects of other parameters, such as the number of projected modes.
However, a sufficient condition in Theorem 4.2 is that i be proportional to Ra?, while it is not
a necessary condition; synchronization with g = 1 is not expected as Ra increases. Indeed,
Figure 3 shows that for Ra in the range of 4 x 107 to 2 x 108, using p = 1 results in either
extremely slow convergence or in no convergence at all.

To explore the relationship between Ra, u, and N needed for synchronization to occur,
we fix two of the parameters at a time and run several simulations with various values for
the remaining parameter. First, we fix Ra, set N = 32, and vary p until synchronization
can be observed within 0.005 units of simulation time (a simulation of this length usually
requires several thousand iterations). An a posteriori choice of this cutoff time is motivated
by the inherent time scale dictated by the choice of u, i.e., assuming a unitary prefactor on
the decay estimate (e~#), and hence setting e 7" & €,,qchine = 10716 for the minimal value
1 = 8000 shown in Figure 4 will yield T ~ 0.0046. Table 1 records the smallest value of p
where synchronization was observed in this time frame; Figure 4 shows the convergence rates
for a few different y values when Ra =~ 3.89 x 107 and Ra ~ 7.02 x 107.

Given the requirement (4.1) from Theorem 4.2, it is surprising to discover that—based on
Table 1—the relationship between p and Ra is more linear than quadratic. Indeed, a least
squares fit of the data to a general quadratic of the form f(x) = a+bx 4 cx? yields coefficients
of a ~ 4.03 x 103, b~ 1.77 x 1074, and ¢ ~ —1.37 x 10713 (essentially ¢ = 0). See Figure 5.

4.2.2. Relation between relaxation and number of observables. The relaxation param-
eter u is a system parameter without a clear physical interpretation. The number of projected
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Ra =~ 3.89 x 107 Ra ~7.02 x 107
10° = ~— 10° 4
.
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A
AN
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1072 10-9 4
10712 4 n=1 1= 10700 107129 — =1 —— = 15300
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10712 T T T T 1 107 T T T T 1
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Figure 4. [|( — w)(#)||g2 + (T — T)(t)||g2 with N = 32 and various p for two different values of
Ra. We begin to see satisfactory convergence around p = 10,700 and p = 15,300 for Ra ~ 3.89 x 107 and

Ra = 7.02 x 107, respectively.

Minimal values of p that result in

Table 1
synchronization within about 0.005 units of simulation time for the given

Ra with N = 32. These values represent the edge of what works when N = 32: a lower u may not stimulate
convergence, but a larger p will. See Figure 5 for a quadratic least-squares fit of this data.

1
3x10

2)(104

4
10 7

3
6x10

Ra o
1.1937766 x 107 6,300
1.6037187 x 107 6,500
2.1544346 x 107 7,900
2.8942661 x 107 9,400
3.8881551 x 107 || 10,700
5.2233450 x 107 || 12,700
7.0170382 x 107 || 15,300
9.4266845 x 107 || 19,400

1.26638017 x 10% || 24,900
1.70125427 x 10® || 29,900

10
Ra

Figure 5. Quadratic (but nearly linear) least-squares fit for the data in Table 1.
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Ra ~ 3.89 x 107 Ra ~ 7.02 x 107
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Figure 6. |(& — u)(t)|| g2 + ||(T — T)(t)|| 2 for two different values of Ra, with u as listed in Tables 1
and 2 and for various values of N. For both Ra ~ 3.89 x 107 and Ra ~ 7.02 x 107, N = 10 appears to be the
fewest number of modes that results in synchronization.

Table 2
Minimal values of N that result in synchronization within about 0.01 wnits of simulation time for the
given Ra and p. The constant value At is the average time step (averaged over the last half of the integration
interval) for each simulation. Note that puAt is nearly constant between the different simulations presented
here, indicating that the same relative nudging is applied at each time step despite the differences between each
simulation. In general, as long as an appropriate u is chosen, N = 16 is sufficient for physically relevant values
of Ra.

Ra m JI7AN

1.1937766 x 107 | 6,300 | 6.05 x 1073
1.6037187 x 107 | 6,500 | 5.35 x 1073
2.1544346 x 10" | 7,900 | 5.32 x 1073
2.8942661 x 107 | 9,400 | 5.31 x 1073
3.8881551 x 107 | 10,700 | 3.35 x 1073
5.2233450 x 107 | 12,700 | 4.96 x 1072 || 10
7.0170382 x 107 | 15,300 | 3.33 x 1072 || 10
9.4266845 x 107 | 19,400 | 5.22 x 1072 || 10
1.26638017 x 10% | 24,900 | 5.54 x 1072 || 12
1.70125427 x 108 | 29,900 | 5.49 x 1072 || 14

5 00w o|Z

Fourier modes N, on the other hand, indicates the amount of data that is “visible” to the
assimilating system. Therefore, a lower bound on N represents how much data is required in
order to maintain an accurate model. Fixing u as given by Table 1, we decrease N to see how it
affects synchronization. See Figure 6. As expected, the fewer modes retained in the projection,
the slower synchronization is achieved, and if a sufficiently low number of modes (N < 6) is
observed, then synchronization never occurs. In Table 2 we summarize our findings concerning
the number of modes N needed as a function of Ra (given a suitably large choice for p).

4.2.3. Summary. The numerical simulations verify that over physically relevant values of
Ra, we can pick p large enough to nudge (2.6) toward (2.8); in particular, the experiments
confirm Theorem 4.2 and show that the conditions stated therein are stronger than necessary.
Furthermore, synchronization can be obtained with a relatively low number of modes even for
large Ra, as long as u is chosen large enough. We took the approach of varying p first and
then N, but it is just as feasible to vary u for a fixed Ra and N.
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5. Finite Prandtl assimilation. We now turn to the case when Pr is finite but large. Thus,
throughout this section, we will assume that Pr < oo and that (£'1)—(F4) hold.

As in section 4, we first state the relevant well-posedness result for the nudged equation.
We then rigorously establish synchronization of the nudged signal with the true signal, then
proceed with a numerical study for the 2D setting.

It is not immediately clear how to properly adapt the argument for (2.6)-(2.8) in [67, 73]
to establish a maximum principle (see Lemma 3.3) for the assimilating variable T due to the
presence of the additional term —puPy (T —T) in (2.8) (see [50] for a case where it is necessary
to develop a maximum principle in spite of this term); the maximum principle would then, in
turn, be used to establish global well-posedness of (2.6)-(2.8). However, since we are assuming
(u,T) is a regular solution to (2.4)-(2.5), it is straightforward to verify global existence and
uniqueness in the case d = 2 for the associated nudged system by instead considering the
corresponding system for the difference (w,S), where w = @ —u and S = T — T. In this
setting, we need only appeal to a maximum principle for T, rather than for 7. The well-
posedness of the nudged system then follows in a standard fashion, so that we refer the reader
to [29] for the appropriate details. For d = 3, on the other hand, global existence of strong
solutions or uniqueness of weak solutions is an outstanding open problem, whether the Prandtl
number is large or not. Nevertheless, for our purposes, it suffices to have only global existence
of weak solutions for the nudged equation, as we will show that any solution of the nudged
equation will eventually converge to the true solution corresponding to the observed data. For
this reason, we state the global existence of weak solutions and local existence and uniqueness
of regular solutions for d = 2,3 together, although, as we have just discussed, global well-
posedness holds in d = 2; we refer the reader to [73] for relevant details. Note that for the
same reason as the d = 2 case, it is important to consider the corresponding systems for the
differences w and S. Note also that we refer below to a Leray—Hopf weak solution as a weak
solution that satisfies the energy inequality in (3.17) for the corresponding velocity field.

Theorem 5.1. Let 1 > 0 and {\,}°%, be as in (3.7). Let (i, To — (1 — z4)) € H x H.
Suppose N > 0 satisfies i)‘N > . Then there exists a Leray—Hopf weak solution (u,T)
satisfying (2.7) such that

du

ueL>®0,7H)N L2(O,T;V) NCyu([0,7]; H), o € L4/3(0,7'; 1%
- T
(5.1) T — (1 —xzq) € L®0,7;H) N L*0,7;V) N CyW([0,7]; H), ‘Z—t e LY3(0,7; V")

for all T > 0. .
Moreover, if (G, 1o — (1 —zq4)) € V x V, then there exists 1o > 0 and a unique solution
(0,T) satisfying (2.7), such that

(0, T — (1 —xzq)) € L0, 7;V x L=(0,7),V)

for all T < 719.

5.1. Synchronization. We will establish the finite Prandtl analog to Theorem 4.2. For
this, it will be convenient to establish the following stability estimate first.
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Lemma 5.2. Assuming the conditions of Theorem 5.1, with (ﬁo,To —(1—=mq) €V XV,
there exists a constant Cy = Cy(2) > 0 such that if

(5.2) > (; + Ra2> Pr,
then
(5.3)

(@ = w)®)1 + (T = T)(t)|I?

tr 1 1 . -
< exp (—tPr+co /0 <Pr3||Vu(s)H4 + Pr||:r’<s>u4m) ds) ([0 — wo > + 1o — To||*)

holds for t > 0.

Proof. Similar to the analysis performed for Theorem 4.2, we consider the solution (w,.S)
to the difference system

1
br [Ow + (0- V)W + (w-V)ul — Aw = —V¢+ RaesS, V- -w =0,
(5-4) 0S +1- VS +w- VT — AS = —pPyS,
Wle3=0 = Wg3=1 = 0, Sl|y3=0 = S|z3=1 =0, w,S are L-periodic in 21 and z.

Multiplying the second equation by S integrating and arguing as in (4.7), we obtain

(5.5) LIS+ 2 VS| + 20l < 2 ' / w . VTSds| =: 1.

On the other hand, an analogous energy calculation for w together with the Poincaré inequality
yield

d d
@HWII2 + Pr|[Vwl|® + Pr [ w|* < @IWH2 +2Pr||Vw|?
+ 2RaPr

(5.6) S?‘/w'Vu-wdx = IT+1II.

/egS -wdx

We estimate the right hand side of (5.5) using Hélder’s inequality, the Gagliardo—Nirenberg
interpolation inequality, and Young’s inequality to obtain

I <2/|w| VSTl s < CllwlY2([Vw |2V ST o
C Pr
< O|T|ZsIw VW] + [|VS]]* < ﬁllTH‘iaHWW + 7”VWH2 +IVSI2.

Next, for I7 in (5.6), we have from Holder’s inequality, the Sobolev embedding L%(Q) «— H',
Gagliardo—Nirenberg interpolation inequality, and Young’s inequality that

11 < 2| wl| s | Vull[wllzs < ClIVw|*?|[w] /2| V|

Pr 2 C 4 2
< S IVw? + o IVl w2
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For 111, we use the Cauchy—Schwarz inequality to obtain

P
(5.7) 1T < 2Ra®Pr||S|? + §||w\|2.

Combining the bounds for I-I11, we have
d 2 2 2 2 2 c 1, C 4 2
g W IZ+SIE) + Prwl +2(u — Ra"Pr)[|S]” < | g5 lIVall® + 51Tz ) Il
Thus, by the second condition in (5.2), it follows that
d 2 2 c s C 4 2 2
S Ul +1S17) + (Pr—PrgHVUII = pp T lEs ) (1wl + 11S]%) < ©.

Therefore, by Gronwall’s inequality, the desired bound (5.3) now follows. [ |

Theorem 5.3. Assume the conditions of Lemma 5.2. There exists a constant C; = C1(€2) >
0 such that if

(5-8) Pr>C; Ra57
then
(59) (@ = w(O] + (T = T)(E)] < Coe™ /0"

holds for all t > 0, where Cy = |09 — ug|| + || T — To].
Proof. By (F3) of the standing hypotheses, it follows that

c [t 4 Cki_ 4
By (F4) and the Sobolev embedding, H!(2) < L5(Q), it follows that
C t C(/i/ )6
(5.11) Pr/o | T(s)||76ds < T;Ram t.

Now upon combining (5.10), (5.11), it follows that there exists C' = C(€2) > 0 such that

¢ [ (s IFalt + g ) as) < exp (€% (a4 L) o
exp ) Pr3 uls Pr S)lle S| = exXp Pr a Pr2 .

Then, having chosen Pr according to (5.8), upon taking square roots, we deduce (5.9) from

and Lemma 5.2, as desired. [ ]

Remark 5.4. Observe that (5.8) requires the Prandtl number to be very large to ensure
that synchronization occurs. Indeed, for Ra ~ 107 this condition indicates that Pr > 103°
which would place the Prandtl number in a regime beyond the one that occurs for the earth’s
mantle. In addition, the lower bound on p stated here would imply that p > PrRaZ, which
would yield a very stiff problem numerically, particularly if Pr ~ Ra® as indicated. Gratefully,
as seen in the next subsection, these rigorous estimates are pessimistic, and synchronization
is achieved for much lower values of Pr and p than are indicated here.
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5.2. Numerical results. The numerical results are similar to those presented in section 4.2,
i.e., the same spatial discretization and time-stepping algorithm are employed here, but now
we also consider variations in Pr. In addition, for finite Pr the velocity field is no longer slaved
directly to the temperature field, requiring us to specify an initial condition for the velocity as
well as the temperature. This is done as in the infinite Pr case by setting the initial state of
the assimilated system to a low-order projection of the “true” system. Simulations at higher
Rayleigh numbers are initiated with flow fields from previous simulations at incrementally
lower Ra. To ensure that the algorithm is working, we first check that synchronization still
occurs for reasonable choices of Ra, p, and N given a finite Pr, say, Pr = 100. See Figure 7.

To simplify our exploration, for each value of Ra listed in Tables 1 and 2, we pick u so
that the systems synchronize quickly. Then, with N = 32, we run simulations for logarith-
mically spaced values of Pr from 1 to 100. Even with these larger-than-necessary choices of
u, convergence is lost for small enough Pr. See Figure 8 for a few additional examples and
Table 3 for the chosen p and the lowest Pr where synchronization still occurs.

There are three main points to take away from these results.

e Finite-but-large Prandtl data assimilation through only temperature measurements is
possible, though the convergence is slower than in the infinite Prandtl setting explored
in section 4.

e The relationship between Ra, p, IV, and Pr remains unclear and would require further
measurements to precisely quantify. However, the fact that the assimilation works at
all with reasonably small Pr indicates that the inequality constraints in Theorem 5.3
are strongly overstated or that the constants in (5.8) are extremely small.
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Figure 7. Synchronization in various norms for Ra ~ 5.22 x 107, u = 18,000, N = 32, and Pr = 100. The
temperature and velocity differences still decrease exponentially to zero, despite the fact that Pr < oco. Howewver,
the convergence is slow compared to the Pr = 0o case (see Figure 8).



532 FARHAT ET AL.

Ra =~ 3.89 x 107 Ra ~ 7.02 x 107

107° 1

10—8 4

10—11 d 10711 4

— Pr=c —— Pr=4.20e+01 — Pr=o0 —— Pr=420e+01
—— Pr=1.00e + 02 —— Pr =17.00e + 00 —— Pr =1.00e+02 —— Pr =7.00e + 00
14 —14
10 T T T T T T T 10 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Simulation Time ¢ Simulation Time ¢

Figure 8. ||( — u)(t)|| g2 + (T — T)(t)|| > with N = 32 and various Pr for two different values of Ra,
with p as giwen in Table 3. The convergence is generally slower as Pr decreases, until eventually there is no
synchronization if Pr is too small.

Table 3

Minimal values of Pr that result in synchronization within about 0.01 units of simulation time for the given
Ra and p with N = 32. The constant value At is the average time step (averaged over the last half of the
integration interval) for each simulation. Note that pAt is nearly constant between the different simulations
presented here, indicating that the same relative nudging is applied at each time step despite the differences
between each simulation. The relationship here is much less precise than those described in Tables 1 and 2 (for
exzample, Ra =~ 2.89 x 107 is a bit of an outlier), but it is interesting to note that lower Ra seem to require
larger Pr. Whether or not this is an effect of Ra increasing or p increasing, however, is unclear, particularly
because the strength of the nudging per time step remains relatively constant.

Ra I3 JT7AN Pr
1.1937766 x 107 | 10,000 | 9.65 x 1072 || 75
1.6037187 x 107 | 11,000 | 5.93 x 1072 || 56
2.1544346 x 107 | 12,000 | 8.10 x 1072 || 56
2.8942661 x 107 | 13,000 | 7.42 x 1073 || 100
3.8881551 x 107 | 14,000 | 6.60 x 1072 || 42
5.2233450 x 107 | 18,000 | 7.14 x 1072 || 42
7.0170382 x 107 | 20,000 | 6.72 x 1072 || 42
9.4266845 x 107 | 25,000 | 7.08 x 1072 || 31

1.26638017 x 10% | 32,000 | 7.57 x 1072 || 31
1.70125427 x 10% | 40,000 | 7.99 x 1072 || 31

e While the estimates obtained in Theorem 5.3 are clearly pessimistic (or perhaps the
particular numerical setup—choice of initial conditions, etc.—explored here is uniquely
advantageous for synchronization), it is interesting to note that the qualitative behav-
ior is as expected. That is, the finite Prandtl system will synchronize so long as Pr
is sufficiently large. This is not unexpected as the limit of Pr — 0 will be dominated
by inertial effects in which the temperature and velocity field are nearly decoupled,

so we would anticipate that temperature observations alone will not suffice to recover
the full flow field.

6. A scenario of model error. Finally, we address a realistic scenario of assimilating
observables that correspond to solutions of the finite-but-large Prandtl number system (2.4),
(2.5) into the “incorrect,” albeit more computationally tractable, infinite Prandtl data
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assimilation system (2.8). Thus, we suppose (u,T') satisfy (F'1)—(F4) and simply choose
a suitable T'(x,0) = Tp(x) for (2.8) since the corresponding initial velocity is enslaved by
the temperature evolution for the later nudging equation. Before we perform the analysis for
the error estimates, we state the well-posedness result corresponding to the nudged equation,
whose proof follows along similar lines to that of Theorem 4.1.

Theorem 6.1. Let >0, and let {\,}72; be as in (3.7). Let (u,T) of (2.4)~(2.5) satisfying
(F1)—(F4). Let Ty € L%*(Q) a.e. in Q such that Ty is a.e. L-periodic in x1,7q_1 with Tp|z,—o

=0,Tp|z,=1 =1 (in the sense of trace). Suppose N > 0 satisfies %)\N > u. Then there exists
a unique (0, T) satisfying (2.8) in the weak sense such that

ae L®0,7W), TeL®0,7;L*(Q)NL0,7; H(Q)) N Cyw([0, 7], L(2))

for all 7 > 0.

6.1. Error estimates. Since our data assimilation equation (2.8) does not correspond
to the true evolution of the observables (2.4), (2.5), we do not expect to obtain an exact
synchronization. Instead, we derive estimates that quantify the maximal error possible and
which will vanish as the Prandtl number is taken increasingly large.

Theorem 6.2. Let N, u > 0 satisfy %/\N > i oand Ty be given as in Theorem 6.1. Let (u,T)
of (2.4)~(2.5) satisfy (F1)—(F4), and let (0, T) be the corresponding unique solution to (2.8)
guaranteed by Theorem 6.1. There exists a constant Cy = Cy(€2) > 0 such that if

(6.1) > 4y <Ra21/2 +Ra2) ,

then there exist positive constants Cy = || Ty — Tol|, Co = Ca(2), Cs = C5(Q) such that

(6.2)
7/2
) o, (Ra7?+Ra)

TN B < —(u/2)t | 2 =3 5/2 7/4
Ra [[3()—u(t) [+ T(0) = T(O)] < Crem #3222+ o8 (Ra™/2 + Ra™/")
for allt > 0.

Proof. Let S=T —T,w=1u—u, ¢=p—p. Then

1

(6.3) —Aw + Vg = RaesS + ﬁ[ﬁtu + (u- V)ul,
(6.4) hS+w-VS+uVS=—-AS—puPyS—wVT.

Upon taking the L?-inner product of w,S with (6.3), (6.4), respectively, then adding the
consequent relations, we obtain
1d

S SIS+ IVSIZ + ulSIP + Vw2

S

= ullQuS|P* = (w: VT, S) + RafesS, w) + -

=I+1I+1IT+1V.

(Opa+ (u-V)u,w)
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Next, applying Holder’s inequality, the Poincaré inequality, the Sobolev embedding theorem,
Gagliardo—Nirenberg interpolation inequality, Young’s inequality, and Theorem 3.5(ii), we
derive

o
7] < = IIVS|?
N
11| < W]l 26| VT 3]
1/2 1/2
< C|\Vwll|w] s w2 1S)
< CRa?/?||S|> + gHVWH2
|I1T| < Ra|S||||w|
1
< CRa?|IS| + 5| VwIP
1
V] < o= (I9rulllwll + [lull7] Vwl))

C
< o (Ra"?|w] +Ra2\|VwH)
C

(Ra +Ra?) + gHVWHQ.

"U

Upon combining estimates for I — I'V with the conditions in (6.1) and the fact that %)\ N 2 My
it follows that

d 2 2 2 c 7 2
g ISI7 A+ el SI7 + VW™ < o5 (Ra” + Ra).
Hence, by Gronwall’s inequality, we arrive at

P02 (Ra” + Ra?)(1 — e,

Lastly, by Lemma 3.1 and (F'3) of the standing hypotheses, we have

(6.5) ISOI? < e 1Sol* + "

(6.6) Ra™! | w(t)|[ 2 < [S()]| + — (Ra5/2+Ra7/4)

We take the square root of (6.5) and add the result to (6.6) to complete the proof. [ ]

6.2. Numerical results. To numerically verify Theorem 6.2 in a way that is consistent

with the numerical simulations corresponding to Theorems 4.2 and 5.3, we compare (1, T)
o (u,T). To begin, consider a simulation with Ra =~ 5.22 x 107, u = 18,000 N = 32,

and Pr = 100. For the finite Prandtl model in section 5, this set of parameters results in
synchronization (see Figure 7). In this situation, however, the synchronization appears to be
limited by the O(Pr~!) error from the Pr = oo model to the Pr < oo reality.

This apparent lack of convergence illustrated in Figure 9 is expected, however, since
Theorem 6.2 only guarantees that the error between (@1, T) and (u,T) decreases to O(Pr~!)
as time increases. Using the same set of parameters, but with larger and larger Pr, results in
tighter and tighter synchronization. To more carefully match the results to the statement of
Theorem 6.2, we calculate Ra™" ||( — u)(¢)|| g2 + |[(T —T)(t)|| at each simulation time ¢. See
Figure 10.
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Figure 9. Hybrid assimilation with Ra ~ 5.22 x 107, p = 18,000, N = 32, and Pr = 100. The temperature
and velocity differences remain almost constant, with no hint of convergence. Note the difference in vertical
azes relative to figures exhibited previously in sections 4.2, 5.2, above.

Ra ~ 5.22 x 107 Ra ~ 5.22 x 107
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Figure 10. Ra™ ! ||(f1 — u)()||g2z + |(T — T)(¢)|| with Ra ~ 5.22 x 107, p = 18,000 N = 32, and various
Pr. As Pr increases, the minimal error between (ﬁ,T) and (u,T) decreases. The plot on the right describes
the relationship between Pr and the error with a logarithmic linear least-squares fit. The slope of this curve
indicates that the error scales with Pr” with v ~ —0.7015. Note that this fitted curve relies on very few data
points, sampled from a very roughly defined synchronization criteria.

While Figure 10 is encouraging, it also highlights a weakness in the data assimilation
scheme unique to this hybrid setting. In both of the previous settings considered here, the
rigorous estimates were pessimistic (at least relative to the numerical experiments performed
here), particularly for the large-but-finite Prandtl case. It appears that the estimates pro-
vided here for this hybrid setting are closer to the reported numerical observations, i.e., the
dependence of the error on Pr as seen in Figure 10 is clearly monotonic, and although a fitted
exponent with so few data points should be considered with some caution, it is interesting
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to note that the fitted exponent is near the rigorous bound of v = —1. Although the precise
value of v = —0.7015 should not be taken too seriously in light of the qualitative and sparse
approach to collecting the data points used in Figure 10, this dependence is clearly closer to
the rigorously estimated value than the parameter dependence of the previous cases.

These results suggest that the practical success of these types of data assimilation schemes
is highly dependent on the data coming from the same model as the simulated system, an
unrealistically stringent restriction if the application of interest is as complicated a process as
weather and/or climate. Recall that the Boussinesq approximation is effectively a “zeroth-
order” approximation for the mantle, meaning the true physical system has several complicated
secondary effects (some of which are unknown) that are not included in the model. The lack
of numerical synchronization in such a simple setting suggests that data assimilation may not
be as adaptable to settings where the exact model is not known. On the other hand, it may be
that these results are indicating that the Pr = oo model does not adequately reflect the large
Pr setting; in other words, does the lack of synchronization imply a fundamental difference
between the finite and infinite Pr settings, or do the O(Pr~1) differences (which are accurately
estimated from the analysis) dominate the potential synchronization?

7. Conclusions and outlook. In section 4, we examined a data assimilation scheme for
the RB system with Pr = co and showed rigorously that synchronization occurs between the
data and assimilating equations under certain conditions on the relaxation parameter p and
the number of projected modes N relative to the Rayleigh number Ra when measurements
of the temperature only are observed. That is, as long as there is enough data (i.e., N is
not too small),  can be chosen large enough to guarantee synchronization. Though this is a
satisfying theoretical result, the numerical experiments in section 4.2 show that synchroniza-
tion often occurs under much weaker conditions on p and N than Theorem 4.2 requires. In
particular, the inequality conditions on p is shown to be at least an order of magnitude away
from being sharp. This gap between the rigorous estimates and the numerical observations
may be due to the particular numerical experiment considered here, or to the lack of strictness
in the relevant estimates (see [18] for some improved bounds on the RB problem for certain
boundary conditions). In addition, the numerical results also demonstrate situations in which
synchronization fails, namely, when @ and/or N are not large enough.

Section 5 shows that synchronization in the temperature measurements only and at finite
Pr is also possible, although the rate of convergence is slower than with infinite Pr and the
relationship between Ra, Pr, u, and IV needed to achieve synchronization remains somewhat
ambiguous. As in the infinite Pr case, the conditions imposed on p appear quite pessimistic
when compared to numerical experiments, where it is not clear what the source of this differ-
ence between the analysis and the numerical experiments may be.

Finally, when the true values are taken from simulations with Pr < oo, but the assimilating
equations use Pr = oo, the synchronization is highly dependent on Pr, as predicted by the
rigorous bounds. This hybrid setting illustrates that the difference between the two systems
is dominating the error, rather than the dynamical error in the synchronization process.
Although the numerical simulations agree well with the rigorous predictions in this setting,
they do indicate a pessimistic outlook for additional settings wherein the exact evolution of
the dynamics for a data assimilation system of this type is unknown. In particular, as noted
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above, we have omitted several details in our model of mantle convection that play a vital role
in the evolution and may have an effect similar to the difference between finite and infinite
Pr. To investigate this further, data assimilation applied to the internally heated convective
setting (see [45, 77, 78], for example) and possibly the anelastic or compressible convective
systems [55] will be explored.

The current consideration of the difference between the infinite and near-infinite Prandtl
number convective systems lends itself to further investigations wherein the assimilating model
is different from the physical system from which the observations are obtained. For exam-
ple, one might consider the effects of imprecisely defined boundary conditions, i.e., what if
the observations were obtained from a convective simulation in which the velocity satisfied a
Navier-slip condition, but the nudged system was modeled with a no-slip condition? Other
variations in the model itself might include slight variations in the geometry between the two
systems, and additional terms in the equations themselves such as internal heating mentioned
above. The rub of the matter is that data assimilation techniques, if they are meant to apply
to physical settings such as weather, climate, and investigations of the earth’s mantle, must
consider the fallibility of the model they are relying on; that is, do variations in the underlying
model itself allow for synchronization of the model with the observed truth? On the other
hand, do the results obtained here indicate that the infinite Prandtl model is not an adequate
model of large Pr convection, i.e., is the lack of synchronization indicative of fundamental dif-
ferences between the models that are otherwise not accounted for? Further consideration of
these questions for the convective problem, and for the nudging approach to data assimilation
for more complicated systems, is imperative not only to understand the potential application
of these methods but also to quantify the impact that model assumptions can have on the
original system.
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