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Abstract

We establish the dual notions of scaling and saturation from geometric control theory in

an infinite-dimensional setting. This generalization is applied to the low-mode control

problem in a number of concrete nonlinear partial differential equations. We also

develop applications concerning associated classes of stochastic partial differential

equations (SPDEs). In particular, we study the support properties of probability laws

corresponding to these SPDEs as well as provide applications concerning the ergodic

and mixing properties of invariant measures for these stochastic systems.
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1 Introduction

The main goal of this paper is to develop a flexible framework for establishing control-

lability in important classes of nonlinear partial differential equations. Our primary

motivation for doing this stems from our interest in obtaining support properties of the

Markov process solving the associated stochastic partial differential equation (SPDE)

that results when the control terms are replaced by independent Brownian motions.

Such support properties constitute a fundamental part in proving unique ergodicity

and mixing of the stochastic dynamics. An additional, but more refined goal of this

work is to give practical criteria for the existence and positivity of the density of the

law of the projected SPDE solution onto any finite-dimensional subspace.

General support theorems, or equivalently topological irreducibility results, for

SPDEs were initially restricted to settings where the noise is sufficiently non-

degenerate, allowing one to instantaneously counteract any effect of the drift terms

(see [15,16,23] and the references therein). While such roughly forced SPDEs arise

naturally in the equations describing the statistics of fluctuations in various scaling

limits, they do not cover many interesting examples. Here we are largely motivated by

applications to statistical hydrodynamics and phase field equations. In these settings,

the stochastic forcing is typically localized at a certain scale and one is interested in

how the dynamics propagates the energy to other scales. Consequently, we focus on

the case when randomness enters the equation externally on a few, select directions in

the phase space.

In this degenerate setting, many of the initial approaches to solving the control

problem were only sufficient to imply irreducibility and not global controllability.

Furthermore, the methods used were rather ad hoc [25,27]. On the other hand, system-

atic results close to the setting of this paper were given previously in [4,5,36,37,44–46].

While related, our results more directly extend the geometric control theory work of

Jurdjevic and Kupka [30–32]. One advantage is that this approach interfaces cleanly

the local smoothing/contraction estimates coming from the infinite-dimensional ver-

sion of hypoellipticity [29] developed in [25,27]. Both theories are built on Lie-bracket

calculations and a flag of associated subspaces which capture the ability of the non-

linearity to move randomness and control action between the degrees of freedom,

or rather different scales, in the SPDE setting. To prove these results, we recast the

‘method of saturation’ from [30–32] into a form suitable for the infinite-dimensional

setting. We also make our results applicable to dynamics, which need only exist locally
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in time, on a very general phase space X . In particular, our formalism is well adapted

to infinite-dimensional systems generated by PDEs which might only have a local

existence theory, such as the 3D Euler equations. As such, we think that the control

theoretic contributions in this work hold independent interest beyond the immediate

probabilistic applications which motivated us.

The connection between the control problem and support properties of the associ-

ated stochastic dynamics is well established [1,15,16,49,50]. More precisely, fixing the

initial condition u0, the solution u(t) to an SPDE at time t is obtained by the solution

map φt : ω �→ u(t) where ω is a realization of the stochastic forcing, in our setting

a finite collection of independent Brownian motions. We will assume that u(t) ∈ X

for some function space X and generally take ω ∈ �t = C([0, t], Rm) for finite m.

Approximate controllability is then simply the statement that for any u0, v ∈ X and

δ, t > 0 there exists an ω ∈ �t so that ‖φt (u0, ω)− v‖ ≤ δ.

As already mentioned, a second but related goal of the paper is to give conditions

guaranteeing the positivity of the density of the random variable πu(t), where π is a

continuous projection onto a finite dimensional subspace π(X). This generalizes the

results and techniques from [34]. The fact that the random variable πu(t) ∈ π(X) has

a density with respect to Lebesgue measure on π(X) follows from the general principle

that the push forward of a density through smooth map remains a nice density provided

the Jacobian at typical points is non-degenerate. In our examples, we push forward

the law of the Wiener measure through the projected SPDE solution map πφt to

obtain the random variable πu(t). The theory of Malliavin Calculus precisely shows

that the Jacobian of the map is non-degenerate if the Malliavin covariance matrix is

sufficiently non-degenerate. The needed control over the Malliavin covariance matrix

and its inverse is one of the main results of the theory of hypoellipticity developed

in [25,27]. Positivity of this density then follows from the the work of Ben-Arous-

Léandre [8,9] (see also [6,38]), which makes precise the above ideas concerning the

push forward in the finite-dimensional setting.

The existence of a control which drives the solution exactly, after projection, to a

given point requires an extension of the preceding approximate controllability results

to an ‘exact controllability on projections’ result. More precisely, we show that for

any v ∈ X and δ, t > 0 there exist and ω ∈ �t so that both ‖φt (ω) − v‖ ≤ δ and

πφt (ω) = πv. In [30–32], this extension relies on the structure of smooth vector

fields on Rd . As the phase space in our setting is infinite-dimensional, we had to

develop other methods. Here, we produce this stronger form of controllability using

a more refined notion of saturation, which we call uniform saturation, allowing us to

transfer continuity properties of the underlying semigroups from one approximation

to the next. This transfer of continuity ultimately facilitates the use of the Brouwer

fixed-point theorem to establish exact controllability on projections.

As mentioned above, in addition to this exact controllability on projections result,

to prove positivity of the projected density of the random variable πut , one must

show that the appropriate Jacobian of the projected flow map πφt is non-degenerate

when evaluated at some control which gives the desired exact control on the projected

subspace. The ideas to prove the existence of this non-degenerate control generalize

those in [28] from the finite-dimensional setting, and [34] from the specific context of

the 2D Navier–Stokes equation. These ideas for proving such non-degeneracy leverage
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the fact that the Malliavin covariance matrix was proven to be almost surely non-

degenerate in a closely related setting [25,27].

The first major development in the paper, as carried out in Section 3, extends the

ideas of Jurdjevic and Kupka from control theory [30–32] to dynamics on a very gen-

eral phase space X which need only exist locally in time. Section 4 pairs previously

obtained control information via saturation with the Malliavin calculus to infer sup-

port properties of the solution of the associated SPDE. Specifically, in Section 4 we

provide a self-contained presentation of the Malliavin calculus in the abstract setting

of cocycles, giving criteria for the existence and positivity of the probability density

function (with respect to Lebesgue measure) of the projected stochastic process πu

living on a finite-dimensional subspace of X . The topic of unique ergodicity is also

discussed. It is important to highlight that the criteria given here for the existence and

positivity of πu do not require moment bounds on the Malliavin matrix. For exam-

ple, our hypotheses for existence of the density are comparable to those given in the

language of Dirichlet forms in the work [6].

In order to illustrate our framework, the methods developed in Section 3 and Sec-

tion 4 are applied to a number of specific equations in Section 5. In particular, using

the methods of Section 3 we study the low-mode control problems for a reaction–

diffusion equation, the 2D incompressible Navier–Stokes equation, the Boussinesq

equation and the 3D incompressible Euler equation. Support and ergodic properties of

the associated stochastic perturbations are then inferred using the results of Section 4.

We are optimistic that our techniques will prove useful in the study of other concrete

examples in the future.

While the low-mode control problems for the 2D incompressible Navier–Stokes,

the 3D incompressible Euler equation and variants thereof have been studied pre-

viously [4,5,36,37,44–46] (see also [2,34] for consequences for the support of the

stochastically forced systems), we provide these two examples for completeness of

presentation and to illustrate the efficacy of our formalism. On the other hand the

results for the Reaction–Diffusion equations and the Boussinesq equations are to the

best of our knowledge new and may be seen to compliment other recent works on

ergodic properties of these equations in the presence of a degenerate stochastic forc-

ing [19,27]. Here it is also important to highlight that our formalism is used to show

that equations such as the Navier–Stokes and Boussinesq equations remain uniquely

ergodic when, in addition to the stochastic perturbation terms, we add a more or less

arbitrary deterministic source term.

The organization of the remainder of this paper is as follows. In Section 2, we

provide heuristics which both motivate and give an overview of the rigorous control

methods developed in Section 3. Section 4 concerns applications of the control results

of Section 3 to an associated SPDE whose dynamics generates a continuous adapted

cocycle. In particular, support properties of the law of the solution u of the SPDE

and unique ergodicity are studied from this point of view. In Section 5, the theoretical

frameworks developed in previous sections are applied to specific equations. Basic a

priori estimates for each of the examples studied are saved for the appendices.

123



Saturation in infinite-dimensional control problems Page 5 of 103 16

2 Heuristics, Overview of Methods

In order to introduce the main ideas and methods employed below in concrete exam-

ples, we consider an abstract, controlled evolution equation of the form

du

dt
+ Lu + N (u) = f +

∑

k∈Z
αk(t)σk, u(0) = u0 ∈ X . (2.1)

Our system evolves on a phase space X which, for the purposes of discussion here,

may be thought of as a separable Hilbert space with norm ‖ · ‖. We assume that L is

a linear (unbounded) operator and that N is a polynomial nonlinearity of the form

N (u) =
M
∑

k=2

Nk(u) (2.2)

where the highest-order term NM (u) = NM (u, u, . . . , u) is such that NM (u1, u2, . . . ,

uM ) is a symmetric multilinear operator of degree M and for each 2 ≤ k < M , Nk(u)

is either 0 or a homogeneous operator of degree k. We assume that Z is a finite set of

indices, for example, Z might be subset of Z, Z2, or any other convenient alphabet

of labels. We further assume that the elements f and σk , k ∈ Z , represent fixed

directions in the phase space. The dynamics (2.1) is influenced by the (piecewise

constant) controls αk : [0,∞) → R. Of course in each example presented below

in Section 5, we will make concrete assumptions on L , N , f , σk , etc, so that (2.1)

makes sense and is at least locally well-posed. In particular in Section 5, we will

treat a reaction–diffusion equation, the 2D Boussinesq equation as well as the 2D/3D

Navier–Stokes and Euler equations, all of which can be posed in the form (2.1).

Our goal will be to understand when, for any u0, v0 ∈ X , any hitting time t > 0

and any tolerance of error ε > 0, we can construct a piecewise constant control

α = (αk : k ∈ Z) : [0, t] → R|Z| so that

‖u(t, u0, α · σ)− v0‖ < ε (2.3)

where u(t, u0, α · σ) denotes the solution of equation (2.1) with initial condition u0

and control
∑

k∈Z αk(t)σk . Here |Z| denotes the cardinality of the set Z . Furthermore,

we would often like to show more strongly that if π : X → X is a fixed continuous

projection onto a finite-dimensional subspace of X , and u0, v0 ∈ X , ε, t > 0 are given,

then there exists a piecewise constant control α = (αk : k ∈ Z) : [0, t] → R|Z|

satisfying (2.3) and

π(u(t, u0, α·)) = π(v0); (2.4)

namely, α simultaneously provides approximate control on X and exact control on

π(X). Throughout, both of these control problems will be referred to generically as

the low mode control problems, as one typically assumes that σk(x) ∼ eikx so that we

are trying to drive our system (2.1) through a few select frequencies.
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Of course we do not expect to be able to solve the low mode control problems with-

out making further assumptions on the σk’s. In particular, there needs to be sufficient

control; that is, Z must contain enough elements as is typically dictated by its relative

structure with the nonlinearity N . However, because such assumptions can vary from

equation to equation, our goal in this section is to illustrate how such assumptions

on the controls arise as well as how the methods used to solve the low mode control

problem work.

As we shall see, two notions play a central role in our approach to controlling (2.1),

namely scaling and saturation. The former notion, based on the introduction of a large

parameter, is used to infer new directions along which the system can move besides

the explicit directions (the σk’s) acting on the controlled dynamics. This approach to

deriving the needed controls is illuminating as it provides some explicit understanding

of the construction of a desirable control α; see (2.9) and (2.14). On the other hand,

we will quickly see that composing scalings to produce further directions iteratively

can become unwieldy due to the multiple time scales present in each scaling limit.

The notion of saturation, originally pioneered by Jurdjevic and Kupka in the finite-

dimensional setting of ODEs [30–32], provides a highly effective tool which allows

one to directly use the new trajectories obtained from each scaling limit. Thus, this

saturation machinery allows us to iteratively produce a sequence of seemingly more

controlled systems which nevertheless reach the same portions of the phase space as

the original control problem. Below in Section 3, we develop a generalization of the

Jurdjevic and Kupka approach which is applicable to the abstract spatial setting of a

metric space.

To introduce these two ideas on a basic level, we begin by adopting further notation.

We use the semigroup formalism and write the solution of (2.1) at time t with initial

data u0 ∈ X and constant control α · σ =
∑

k∈Zαkσk ; that is, α : [0,∞) → R|Z| is

independent of the time parameter t , as


α·σ
t u0 = u(t, u0, α · σ). (2.5)

Throughout, we also make extensive use of the ray semigroups

ρ
g
t u0 := u0 + tg, t ≥ 0, (2.6)

defined for any u0, g ∈ X . We let S denote the collection of continuous local semi-

groups on X (see Definition 3.1).1 We use a calligraphic font to distinguish between

subcollections of these semigroups, i.e. F ,G ⊆ S. Specifically, observe that finite

compositions of elements in the set

F0 := {
α·σ : α ∈ R|Z|} (2.7)

represent the totality of possible paths that solutions of (2.1) can be made to follow

using piecewise constant controls. In each problem we consider in Section 5, we will

1 The collection S plays essentially the same role as the family of vector fields on finite-dimensional smooth

manifolds do in Jurdevic and Kupka’s work [30–32].

123



Saturation in infinite-dimensional control problems Page 7 of 103 16

see that there is enough structure to guarantee that indeed F0 ⊆ S. With this notational

convention, we introduce the accessibility sets

AF (u, t) :=
{

�m
tm
· · ·�1

t1
u : �
 ∈ F for all 
 = 1, 2, . . . , m and

∑m
i=1ti = t

}

,

(2.8)

so that the condition (2.3) holds precisely when AF0
(u, t) = X for every u ∈ X and

every t > 0.

2.1 Scaling Arguments

We will primarily use two flavors of scalings to generate new directions in the phase

space. The first scaling increases the magnitude of the control while reducing the time

interval on which it acts, thereby allowing us to see that we can approximately reach

anything in the set u0 + span{σk : k ∈ Z}, u(0) = u0, in arbitrarily small amounts

of time. This gives us the freedom to flow in the direction of any element in the

set span{σk : k ∈ Z} in small times. The second scaling type uses these previously

obtained directions and then cycles them through the nonlinearity N via an appropriate

composition of flows. Due to the resonant interaction between the nonlinearity N and

scaled rays, we are then able to generate new directions not belonging to the span

of the σk’s. As we will see, this process can then be iterated to produce even more

directions.

Remark 2.1 Although the two specific scalings presented below give one recipe for

generating directions in the phase space, the particular path taken in this section may

not generate all needed directions to solve a particular control problem. Indeed, many

other scalings are possible and further ingenuity may be needed to demonstrate access

to new directions. In particular, three of the four examples presented in Section 5 rely

entirely on the two scalings introduced in this section while the Boussinesq equation

requires rather different scaling combinations to produce a suitable control.

To describe the first scaling type in more detail, fix α ∈ Rn and take λ� 1 to be a

scaling parameter. For any u0 ∈ X , take

uλ(t) = 
λα·σ
t/λ u0 (2.9)

and observe that uλ satisfies:

duλ

dt
= α · σ − 1

λ
(Luλ + N (uλ))+

1

λ
f ≈ α · σ, uλ(0) = u0. (2.10)

Thus, one might expect that by employing suitable a priori estimates

lim
λ→+∞

‖
λα
t/λu0 − ρα·σ

t u0‖ = 0 (2.11)
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for any u0 ∈ X , α ∈ Rn and t > 0. In summary, the scaling introduced in (2.9) allows

us to push the dynamics of (2.1) along rays of the form

ρα·σ
t u0 = u0 + (α · σ)t, t ≥ 0,

in a short burst of time (t/λ for λ � 1), thus providing an initial step to generate

directions. Hence, setting

X0 = {α · σ : α ∈ R|Z|} (2.12)

we expect to be able to approximately flow along rays in the direction of elements in

X0 in small positive times.

To describe the intuition behind the second scaling that allows us to generate direc-

tions besides those explicitly acting on the dynamics, we will use the trajectories

ρα·σ
t u0, α ∈ R|Z| obtained by the previous scaling, and ‘push’ the directions α · σ ,

α ∈ R|Z|, through the nonlinear term N . This is carried out as follows. Consider the

scaling

vλ(t) = 
0
t

λM

ρλ2α·σ
1
λ

u0

for λ � 1, where we emphasize that the null superscript in 
0
t/λM means that we

completely ‘turn off’ the control in (2.1). In the above expression for vλ(t), we note

that for λ� 1

ρλ2α·σ
λ−1 u0 = u0 + λα · σ ∼ λα · σ

and thus the scale t/λM is picked to balance the asymptotic behavior of the leading-

order term along λα · σ in N . More formally, presuming that NM (α · σ) 
= 0 we have

NM (λα · σ) = λM NM (α · σ), so that for λ� 1

∫ t/λM

0

(L(vλ)+ N (vλ))ds

≈
∫ t/λM

0

(L(u0 + λα · σ)+ N (u0 + λα · σ)) ds ≈ t NM (α · σ).

where we have also used that vλ ≈ u0 + λα · σ on the short time interval [0, t/λM ].
Hence we see that

vλ(t) = u0 + λα · σ −
∫ t/λM

0

[L(vλ)+ N (vλ)]ds + t

λM
f

≈ u0 + λα · σ − t NM (α · σ), (2.13)

which should be valid for all λ� 1.
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Observe that while we have picked up the direction NM (α ·σ), the trajectory vλ(t)

does not stabilize since u0 + λα · σ blows up as λ → ∞. To take care of this, we

introduce another composition

wλ(t) = ρ−λ2α·σ
λ−1 vλ(t) = ρ−λ2α·σ

λ−1 
0
t/λM ρλ2α·σ

λ−1 u0 (2.14)

which, starting from vλ(t), simply flows along the direction −λ2α · σ in λ−1 time

units. Using (2.13) we see that for λ� 1

wλ(t) ≈ u0 − t NM (α · σ).

One can also see the approximation above by noting that wλ satisfies

dwλ

dt
= − 1

λM
(L(wλ + λα · σ)+ N (wλ + λα · σ))+ 1

λM
f ≈ −NM (α · σ),

(2.15)

starting from wλ(0) = u0. In summary, given suitable PDE-dependent a priori esti-

mates, we therefore expect

limλ→+∞‖ρ−λ2α·σ
λ−1 
0

t/λM ρλ2α·σ
λ−1 u0 − ρ

−NM (α·σ)
t u0‖ = 0, (2.16)

for any fixed u0 and any α · σ , t ≥ 0.

Of course it is not immediately clear that the trajectory given by (2.14) can be

obtained from (2.1) by composing elements solely from the set (2.7). On the other

hand by the first scaling argument, we can expect to get arbitrarily close to ρλ2α·σ
λ−1 u0

for λ� 1 by considering



(λμ)2α·σ
(λμ)−1 for μ = μ(λ)� 1.

Thus for each λ� 1 by picking μ = μ(λ)� 1 and considering



−(λμ)2α·σ
(λμ)−1 
0

t

λM



(λμ)2α·σ
(λμ)−1 u0, (2.17)

we may expect to be able to approximate wλ using the trajectories in F0.

In view of the above discussions we would now like to iterate the use of the two

scalings (2.9) and (2.14) to approximate a much richer collection of ray semigroups.

To this end we define

X1 = span
{

X0 ∪ {NM (g) : g ∈ X0}
}

with X0 as in (2.12) and for k ≥ 2 we define Xk inductively by

Xk = span
{

Xk−1 ∪ {NM (g) : g ∈ Xk−1}
}

. (2.18)
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Thus we might expect to approximately reach points of the form

u0 + v for any v ∈ X∞ :=
⋃

k≥1

Xk (2.19)

by composing the relevant scalings as we did for points in X1 in (2.17) above. Hence

we might expect the density condition

X∞ = X (2.20)

to be sufficient to achieve approximate controllability as in (2.3).

Before turning to the notion of saturation which we will use to facilitate the iterative

process of generating elements in Xk for k ≥ 1 through multiple scalings, we now

make some crucial remarks.

Remark 2.2

(i) If M is even, it is not true in general that we can generate directions in Xk using

the scaling analysis above. This is because one need needs to be able to flow

both forwards and backwards along the directions NM (g), g ∈ Xk−1, using

the ray semigroup. In particular in the case when M is even, it is certainly

not obvious nor true in general that both NM (g),−NM (g) ∈ Xk given that

g ∈ Xk−1, so the second scaling used above does not work when replacing

α · σ with NM (g). We will see that in some special cases, specifically in some

models from fluid mechanics where M = 2, that this scaling analysis can still

in fact be used to realize the sets Xk via the scalings above. See Remark 2.4.2

for a further discussion of this point.

(ii) Given the definition of the Xk’s, it is not clear that the set X∞ is rich enough

to be dense in X . However, we will see that Condition (2.20) is equivalent to

an infinite-dimensional analogue of Hörmander’s condition. See Section 2.4.

(iii) In each of the examples considered below in Section 5, it will not be the case

that NM (g) ∈ X for generic g ∈ X . This will not pose any significant problem,

however, as we are mainly interested in the low mode control problem where

the control subspace X0 will consist of smooth (C∞) elements in X . This, in

particular, will allow us to conclude that NM (g) ∈ X and is smooth for each

g ∈ X0. Moreover, when the scaling above is iterated, we will also be able

to conclude NM (g) ∈ X for each g ∈ Xk and each k ≥ 0. We will therefore

operate under the assumption that NM (g) ∈ X for each g ∈ Xk and each k ≥ 0

for the remainder of this section.

Remark 2.3 At this stage it is important to note some differences between the control

theoretic approach adopted here and the Agrachev-Sarychev approach [4,5,36,37,44–

46]. The latter approach relies on establishing three key properties for the control

problem (2.1):

(I) The Extension Principle. This states that the system (2.1) is approximately con-

trollable on X if and only if the following control problem

∂t u + L(u + h1)+ N (u + h1) = f + h0, (2.21)
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where h0, h1 : [0,∞) → X0 belong to an appropriate class of controls, is

approximately controllable on X . Here, approximate controllability of (2.21)

means that for every ε, t > 0, u0, v ∈ X there exist controls h0, h1 : [0,∞) →
X0 such that the solution u(·, u0) of (2.21) with u(0, u0) = u0 has ‖u(t, u0) −
v‖ < ε. Note that by simply setting h1 ≡ 0, we retain the original control

problem (2.1). Thus this principle is important because (2.21) has more degrees

of freedom (in terms of control) even though both control problems, (2.1) and

(2.21), are equivalent in this sense.

(II) The Convexification Principle. Let X̃1 ⊆ X denote the finite-dimensional sub-

space generated by elements of the form

h0 + NM (h1, h2, . . . , hM ).

The Convexification Principle states that (2.21) is approximately controllable by

the X0-valued controls h0, h1 if and only if the original control problem (2.1) is

approximately controllable by an X̃1-valued control. Note here that X̃1 ⊇ X0.

Thus provided X̃1 � X0, we have gained more control directions over the original

system via equivalence.

(III) The Saturating Property. This simply states that equivalence in (I) and (II) is

transitive so that the process can be iterated, producing an increasing family of

subspaces

X̃1 ⊆ X̃2 ⊆ · · · ⊆ X̃n ⊆ · · ·

such that if∪n X̃n is dense in X , then the original control problem (2.1) is approx-

imately controllable.

The approach adopted here is different in the sense that explicit scalings are used

to generate directions along which the dynamics can move in short bursts of time.

For the two scalings used above, we will see in Section 2.4.1 that the subspaces

Xn, n = 1, 2, . . ., generated in (2.18) precisely coincide with the subspaces produced

iteratively in step (III). Furthermore, the explicit nature of the method not only allows

us to shed light on how the equivalence in (I) and the directions in (II) arise but it

also allows us to bypass showing the Extension Principle and Convexification in each

equation altogether. Later in Remark 2.4, we will highlight another important differ-

ence between the two approaches which allows us to induce simultaneous approximate

control on X and exact control on π(X), π : X → X denoting a continuous projection

onto a finite-dimensional subspace of X . This is done through the combined use of

the explicit scalings and a new, refined notion of saturation called uniform saturation

defined in Section 3.3.

2.2 Saturation

It is clear that there is a tantalizing connection between the scaling arguments (2.11)

and (2.16) and the task of generating controls which approximate points of the form

appearing in (2.19). However, there are a few issues which prevent us from directly
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concluding (2.3) from (2.11) and (2.16) under a density condition like (2.20). First,

notice that in order to iterate our strategy we quickly end up with a horrific tangle of

multiple time scales. Another problem is that the rescaling strategy leading to (2.11)

and to (2.16) are more conducive to studying the time relaxed sets defined by

AF (u,≤ t) :=
⋃

s≤t

AF (u, s) =

{�m
tm
· · ·�1

t1
u : �
 ∈ F , 
 = 1, 2, . . . , m, and

∑m
i=1ti ≤ t}. (2.22)

It is thus clear that further arguments are needed to mediate between points lying in

AF (u,≤ t) to those lying in the more restricted sets AF (u, t).

The notion of saturation addresses these dual considerations and more. Let us begin

with the observation that the relaxed accessibility sets (2.22) provide us with a way

to place a partial ordering on S. Given F ,G ⊆ S we will say that F subsumes G,

denoted by G � F , if

AG(u,≤ t) ⊆ AF (u,≤ t)

for every u ∈ X and t > 0. On the other hand we say that two collections of semigroups

F ,G ⊆ S are equivalent, denoted by F ∼ G, if both G � F and F � G.

As we will see, it is not hard to show that G � F if and only if given any � ∈ G,

u ∈ X and any ε, t > 0 there exists 
1, . . . , 
n ∈ F and t1 + · · · + tn ≤ t so that

‖
n
tn
· · ·
1

t1
u −�t u‖ < ε. (2.23)

This characterization (2.23) allows us to consider ‘one scaling at a time’ as follows.

Let

G0 := {ρξ : ξ ∈ X0} ∪ F0,

and for k ≥ 1 take

Gk := {ρξ : ξ ∈ Xk} ∪ F0

where Xk is defined as above in (2.18). Observe that (2.11) combined with (2.23)

shows that

G0 � F0, (2.24)

where F0 represent the solutions of our original system (2.1) under constant controls

as defined above in (2.7). Similarly combining (2.16) and (2.23) implies that

Gk � Gk−1, (2.25)

for every k ≥ 1.
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Let us now see how combining the observations in (2.24) and (2.25) now allows us

to conclude that

AF (u,≤ t) = X (2.26)

for any u ∈ X and t > 0 under the density condition (2.20). Indeed, the characteriza-

tion of G � F above in (2.23) allows us to conclude that if

Hi � F

for some collection Hi of subsets of S, then

F ∼ F ∪
⋃

i

Hi .

In particular it is clear that the saturate of F defined as

Sat(F) :=
⋃

H�F

H

satisfies Sat(F) ∼ F . Thus in particular we find that (2.24) and (2.25) imply

{ρξ : ξ ∈ X∞} � Sat(F0) ∼ F0,

and hence (2.26) follows from (2.20).

Of course (2.26) does not immediately imply the exact time approximate control-

lability condition (2.3) is satisfied. This is due to the fact that we lack precise control

over the time at which we get close to the target v0. Nevertheless, it turns out that

we can show that (2.26) implies (2.3) in a very general setting. The argument which

establishes this time conversion is roughly the following. Given t > 0, starting from

u0 ∈ X we can get arbitrarily close to a desired target v ∈ X at some time 0 < s < t .

We can then bounce back and forth between this neighborhood and other values in X

to make up the remaining time t − s. For further details, see Lemma 3.7.

2.3 Exact Control on Projections: Uniform Saturation, Fixed Point Arguments

The arguments sketched so far provide a broadly applicable approach to obtaining

approximate controllability at a fixed time t > 0. However, in order to simultaneously

provide an approximate control on X , condition (2.3), and exact control on π(X) as

in (2.4), further refinements of the saturation formalism are needed. As already noted

we are mainly interested in the situation where π : X → X is a continuous projection

onto a finite-dimensional subspace of X .

Below in Section 3.3 we introduce the notion of uniform saturation which essen-

tially guarantees continuity in our control with respect to changes in the initial

condition and target point. This continuity is used conjunction with the Brouwer fixed
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point theorem to infer (2.4) when π has finite-dimensional range. See Theorem 3.14

for our precise formulation. Note that we use the term ‘uniform saturation’ since we

require scaling approximations to hold uniformly over compact subsets of initial data

and compact subsets of the control parameter space. This uniformity allows us to

transfer continuity from one approximation to the next.

While requiring uniformity does complicate the presentation of the saturation for-

malism, the needed estimates at the level of the PDE do not change much. Specifically

we will see that it is sufficient to replace (2.11) with

lim
λ→+∞

sup
u0∈K ,α∈K̃

‖
λα·σ
t/λ u0 − ρα·σ

t u0‖ = 0, (2.27)

for any compact K ⊆ X , K̃ ⊆ Rn . Similarly, (2.16) needs to be extended to

lim
λ→+∞

sup
u0∈K ,g∈K̃

‖ρ−λ2g
1/λ 
0

t/λM ρ
λ2g
1/λ u0 − ρ

−N (g)
t u0‖ = 0, (2.28)

over any compact sets K , K̃ ⊆ X . We may expect such bounds to follow from (2.10)

or (2.13), by similar estimates for any reasonably well-behaved equations of the form

(2.1).

Remark 2.4 The previous paragraph highlights another difference between the control

theoretic approach developed here and the Agrachev-Sarychev approach. In particular,

using the approach developed in our paper, one does not need to prove approximate

controllability and then prove simultaneous approximate control on X and exact con-

trol on π(X) for a given finite-dimensional projection π . Rather, the stronger form of

controllability follows immediately by the strength of the explicit scaling estimates.

In other words, one bypasses this step when estimates such as (2.27) and (2.28) are

satisfied, so long as a dense set of directions can be generated by iterating the scaling

estimates.

2.4 Further Remarks on Spanning Conditions

We finally return to the discussion of the sequence of approximating spaces Xk defined

above in (2.18). As already mentioned, the scope of algebraic conditions covered by

this setup is wider than it at first appears. First we will show that condition (2.20) is

equivalent to an infinite-dimensional analogue of Hörmander’s Condition introduced

and employed in [27]. We then conclude this subsection with some remarks showing

that in certain cases when the degree of the polynomial N in (2.1) is even, the subspaces

Xk can still be produced using the scaling and saturation arguments above. Both of

these observations will be crucially used for the examples in Section 5 below.
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2.4.1 Relationship to Hörmander’s Condition

To introduce this infinite-dimensional version of Hörmander’s Condition, starting from

X̃0 := span{σk : k ∈ Z}

for n ≥ 1 let

X̃n := span
{

X̃n−1 ∪ {NM (g1, . . . , gM ) : g j ∈ X̃n−1}
}

where we are assuming that NM (g1, . . . , gM ) ∈ X whenever g1, g2, . . . , gM ∈ Xn

for some n.

Definition 2.5 We say that (NM , σ ) satisfies Hörmander’s Condition on X if

⋃

n≥0

X̃n = X . (2.29)

We now state and prove the following proposition giving equivalence of condi-

tion (2.20) and Hörmander’s condition.

Proposition 2.6 We have that Xk = X̃k for all k ≥ 0. Consequently, condition (2.20)

is satisfied if and only if (NM , σ ) satisfies Hörmander’s condition on X.

Proof Clearly, X0 = X̃0. Also, for k ≥ 1, Xk ⊆ X̃k . To see the opposite inclusion for

k ≥ 1, we adapt the argument in Lemma 6 of [31]. Fix g, h ∈ Xk−1 and consider

Xk−1(g, h) := span {NM (g + αh) : α ∈ R}.

Observe that since NM is multilinear of degree M , Xk−1(g, h) is a finite-dimensional

subspace of Xk , hence is closed. In particular, since the sequence

{

1

λ
(NM (g + λh)− NM (g))

}

λ∈(0,1]
⊆ Xk−1(g, h)

converges asλ → 0 to M ·NM (g, g, . . . , g, h), we conclude that NM (g, g, . . . , g, h) ∈
Xk for all g, h ∈ Xk−1. Recall here that the multilinear operator NM has been sym-

metrized. This argument can then be iterated to see that NM (h1, h2, . . . , hM ) ∈ Xk

for all hi ∈ Xk−1, allowing us to conclude X̃k ⊆ Xk . ��

2.4.2 Even Degree Nonlinearities

Let us next make some remarks concerning even degree polynomial nonlinearity N in

(2.1). Specifically we introduce conditions on N applicable to the 2D Navier–Stokes

equations, the 3D Euler Equations and the 2D Boussinesq equations (in each case in

the absence of boundaries) considered below in Section 5.

Suppose that the leading-order nonlinearity N2 is a bilinear form and assume we

have countable set of elements {e j } j∈N ⊆ X satisfying the following conditions:
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(1) span{e j : j = 1, 2, . . . , n} ⊆ span{σk : k ∈ Z} for some n ≥ 1;

(2) We have the cancellation property

N2(e j , e j ) = 0 for every j ∈ N; (2.30)

(3) For all j, k ∈ N there exists a natural number N ( j, k) such that

N2(e j , ek) ⊆ span{e
 : 
 ≤ N ( j, k)}. (2.31)

To see how these conditions may be satisfied see for example (5.30) below.

In this case defining X0 = span{e j : j = 1, 2, . . . , n} and Xk , k ≥ 1, as

Xk = span
{

Xk−1 ∪ {N2(g) : g ∈ Xk−1}
}

,

we now see that each set Xk can be realized using the two scaling arguments above.

In this regard, the key observation is that for any α ∈ R and j, k ∈ N the first part of

condition (2) implies

N2(αe j + ek) = 2αN2(e j , ek).

Hence by condition (1) and the second part of condition (2), inductively the Xk can

be obtained using the scaling and saturation arguments above by choosing the α to

have the correct sign (either positive or negative). In other, more imprecise words, the

nonlinearity N2 is ‘behaving like’ an odd degree polynomial. In the finite-dimensional

setting, this behavior is captured in the notion of relative degree introduced and studied

in [28]. See also [41].

3 Saturation in Infinite Dimensions

We turn now to provide a rigorous treatment of saturation in the sprit of the framework

developed by Jurdjevic and Kupka [30–32]. Much of the formalism developed here

requires little underlying structure of the phase space, and we therefore present many

of the results in the section in the general setting of a metric space. After introducing

the rigorous setup in Section 3.1, we turn to proving some results about saturation that

are crucial elements for establishing (2.3) in the forthcoming examples in Section 5.

This subsection concludes with a ‘conversion lemma’ (Lemma 3.7) which allows us

to translate controllability on relaxed time sets a la (2.26) to exact time controllabil-

ity (2.3), (2.8). The final subsection (Section 3.3) introduces a more refined version

of saturation, called uniform saturation, which also tracks the continuity of approxi-

mations with respect to parameters. This notion is crucial for the main result of this

section, Theorem 3.14, which is used in conjunction with Lemma 3.6 and Lemma 3.7

to establish establish exact controllability for finite-dimensional projections via (2.4)

in the examples treated below in Section 5.
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3.1 General Notions for Controllability

Let (X , d) be a metric space. We fix an additional point , called the explosive state,

not belonging to X . This is the ‘death state’ where locally-defined semigroups will

live at times after they fail to exist in X .

Definition 3.1 We call a mapping (t, u) Φtu : [0, ) X X a contin-

uous local semigroup on (X , d) if, for every u ∈ X , there exists Tu ∈ (0,∞] such the

following conditions are satisfied:

(i) For t ∈ [0, Tu), 
t u ∈ X and for t ≥ Tu , Φtu = ..
(ii) 
0u = u and for all t, s ∈ [0, Tu) with t+s ∈ [0, Tu), we have that t ∈ [0, T
s u)

and 
t+su = 
t
su.

(iii) For all t ∈ [0, Tu) and all ε > 0, there exists δ > 0 such that whenever (t ′, u′) ∈
[0,∞)× X satisfies

|t − t ′| + d(u, u′) < δ

we have that t ′ ∈ [0, Tu′) and

d(
t u,
t ′u
′) < ε.

For notational convenience, we will use 
 to denote a continuous local semigroup

(t, u) Φtu : [0, ) X X . We will say that 
 is global if Tu = ∞ for

every u ∈ X . Throughout, S will denote the set of all such continuous local semigroups

on X .

Remark 3.2 Some of the semigroups we will work with are only known to be defined

locally in time, e.g. the 3D Euler equation considered in Section 5.4. Thus, when we

write the composition


n
tn

n−1

tn−1
· · ·
1

t1
u

below, it is implicitly assumed that 

j
t j



j−1
t j−1

· · ·
1
t1

u ∈ X for all j = 1, 2, . . . , n.

Given F ⊆ S arbitrary, we now introduce the accessibility sets corresponding to

F , which are simply the points in X that can be reached by iteratively composing

elements in F .

Definition 3.3 Consider F ⊆ S.

(i) For u ∈ X and t > 0, define

AF (u, t) =
{


n
tn

n−1

tn−1
· · ·
1

t1
u : 
 j ∈ F ,

∑

t j = t
}

(3.1)

and take

AF (u,≤ t) =
⋃

0<s≤t

AF (u, s).
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These are the accessibility sets of F .

(ii) We say F is approximately controllable on X if for any t > 0 and any u ∈ X

AF (u, t) = X

where for A ⊆ X , A is the closure of A. Equivalently, F is approximately

controllable on X if for any u, v ∈ X and any t, ε > 0, there exist positive times

t1, . . . , tn and elements 
1, . . . , 
n ∈ F such that t1 + · · · + tn = t and

d(
n
tn

n−1

tn−1
· · ·
1

t1
u, v) < ε.

(iii) Suppose that π : X → Y is continuous where Y is another metric space (which

we will usually take to be a subset of X ). We say that F is approximately control-

lable on X and exactly controllable on π(X) if for any u, v ∈ X and any ε, t > 0,

there exist positive times t1, . . . , tn , 
1, . . . , 
n ∈ F such that t1+· · ·+ tn = t ,

π(
n
tn

n−1

tn−1
· · ·
1

t1
u) = π(v) and d(
n

tn

n−1

tn−1
· · ·
1

t1
u, v) < ε.

Remark 3.4 When X is a Fréchet space and π is a continuous linear projection onto

a finite-dimensional subspace, the notion introduced in Definition 3.3 (iii) reduces to

exact controllability on finite-dimensional projections. This is the setting in which we

provide criteria for establishing (iii) below in Section 3.4 which is based on establishing

approximate controllability with continuous dependence on the target point. Note that

this notion of controllability in (iii) above is a slight generalization of the usual notion

of simultaneous approximate controllability on X and exact control on a given finite-

dimensional projection on X as in [4,5,36,37,44–46] since π here can be a given

continuous mapping and not just a finite-dimensional projection.

3.2 Saturation

The scaling arguments introduced above in Section 2, in particular in (2.10) and (2.13),

do not immediately yield approximate controllability due to the lack of control over

the time parameter. Thus, in order to identify points in the sets

AF (u, t), u ∈ X and t > 0, (3.2)

we first determine points which belong to the time-relaxed sets

AF (u,≤ t), u ∈ X and t > 0,

with the aid of saturation. Under suitable circumstances, for example when

AF (u,≤ t) = X

for all u ∈ X and t > 0, we can then employ general arguments to obtain information

about the exact time sets. This is captured in Lemma 3.7 of this section.
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To see how this works in a general context, we need to introduce some further

definitions.

Definition 3.5 Let F ,G ⊆ S.

(i) We say that G subsumes F , written as F � G, if

AF (u,≤ t) ⊆ AG(u,≤ t), (3.3)

for all u ∈ X and t > 0, where we recall that A denotes the closure of A ⊆ X .

(ii) We say that F is equivalent to G, denoted by F ∼ G, if both G � F and F � G.

(iii) The saturate of F , denoted by Sat(F), is defined by

Sat(F) =
⋃

G�F

G.

The next Lemma gives a characterization of equivalence for collections of semi-

groups. This will provide a basic formulation which we will use in applications below.

Moreover this formulation is the basis for a generalization to the uniform setting

introduced below in Subsection 3.3.

Lemma 3.6 (Saturation Lemma) For any collections F ,G ⊆ S, F � G if and only if

for every � ∈ F , u ∈ X and ε, t > 0 with �t u ∈ X, there exists 
1, . . . , 
n ∈ G

and positive times t1, . . . , tn such that
∑

t j ≤ t and

d(
n
tn

n−1

tn−1
· · ·
1

t1
u, �t u) < ε. (3.4)

Moreover, given any collection Hi ⊆ S such that Hi � G for every i , then G ∼
⋃

i Hi ∪ G. In particular, F ∼ Sat(F).

In the following proofs, we will frequently encounter expressions of the form


n
tn

n−1

tn−1
· · ·
1

t1
u

where 
 j ∈ F . As such, we will write the product above as
∏n

i=1 
i
ti

u. Also, we

introduce the notation

�su :=
n
∑

j=1



j
s−s j−1



j−1
t j−1

· · ·
1
t1

u11[s j−1,s j )(s) (3.5)

where s0 = 0 and s j =
∑ j

k=1 t j so that

�su = 

j
s−s j−1



j−1
t j−1

· · ·
1
t1

u when s j−1 ≤ s < s j .

We offer the abuse of notation � ∈ F when the context is clear.
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Proof of Lemma 3.6 It is clear that if F � G, then the property in (3.4) holds for all


 ∈ F . Suppose now that the characterization leading to (3.4) is assumed. To infer

F � G we will prove that AF (u,≤ t) ⊆ AG(u,≤ t) for any u ∈ X and t > 0. Fix

ε, t > 0 and v ∈ AF (u,≤ t). By hypothesis, there exists 
1,
2, . . . , 
n ∈ F and

times t1, t2, . . . , tn > 0 with
∑

t j ≤ t and

v =
n
∏

i=1


i
ti

u.

By induction on n ≥ 1, we will prove that there exists � ∈ G such that d(v,�su) < ε

for some s ≤
∑

ti . If n = 1 in the product above, then by the hypothesis there is

nothing to prove. Supposing that n ≥ 2 we may write the product as

v =
n
∏

i=1


i
ti

u = 
n
tn

n−1
∏

i=1


i
ti

u.

First, invoking the continuity of 
n
tn

, we may pick δ > 0 such that for all w ∈ X :

d

(

w,

n−1
∏

i=1


i
ti

u

)

< δ implies d(
n
tn
w, v) <

ε

2
. (3.6)

By the inductive hypothesis, we may pick �1 ∈ G such that

d

(

�1
s1

u,

n−1
∏

i=1


i
ti

u

)

< δ

for some s1 ≤
∑

i≤n−1 ti . Also by hypothesis and (3.6), we may pick �2 ∈ G such

that

d

(

�2
s2

�1
s1

u,
n
tn
�1

s1
u

)

<
ε

2

for some s2 ≤ tn . The triangle inequality then implies

d

( n
∏

i=1


i
ti

u,�2
s2

�1
s1

u

)

≤ d

( n
∏

i=1


i
ti

u,
n
tn
�1

s1
u

)

+ d

(


n
tn
�1

s1
u,�2

s2
�1

s1
u

)

<
ε

2
+ ε

2
= ε.

This finishes this part of the proof as s1 + s2 ≤
∑

ti .

To address the second property, it is obvious that G �
⋃

i Hi ∪ G. On the other

hand
⋃

i Hi ∪ G � G follows immediately from the characterization of containment

given by (3.4). This completes the proof. ��
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We now state and prove the ‘Conversion Lemma’ which allows us to convert

between the relaxed sets and the exact time sets. Its statement and proof are fun-

damentally different than in the works of Jurdjevic and Kupka [30–32] because we

cannot rely on topological properties of the underlying space X .

Lemma 3.7 (Conversion Lemma) Suppose that F ⊆ S and that V ⊆ X is open with

the property that

V ⊆ AF (u,≤ t),

for all u ∈ V , t > 0. Then,

V ⊆ AF (u, t),

for all t > 0 and every u ∈ V .

We have the following immediate, but important corollary.

Corollary 3.8 Suppose that F ⊆ S is such that ASat(F)(u,≤ t) = X for any t > 0 and

any u ∈ X. Then F is approximately controllable on X in the sense of Definition 3.10.

Proof of Lemma 3.7 Fix any u, v ∈ V and any ε, t > 0. We will establish the desired

result by showing that there is a corresponding � ∈ F such that d(�t u, v) < ε, where

we are maintaining the notational convention introduced above in (3.5). Observe that,

without loss of generality, we may suppose that ε > 0 is such that B(v, ε) ⊆ V .

As a first step pick any ψ∗ ∈ F . Invoking continuity we may choose ε′ ∈ (0, ε)

such that

σ := inf
ṽ∈B(v,ε′)

{

inf{s > 0 : d(ψ∗s ṽ, v) > ε}
}

> 0.

By assumption, we may pick �0 ∈ F so that

v0 := �0
τ 0 u ∈ B(v, ε′)

for some τ 0 ≤ t (See Figure 1).

If it happens that τ 0 + σ ≥ t then we simply take

�su := �0
s u11[0,τ 0)(s)+ ψ∗s �0

τ 0 11[τ 0,τ 0+σ)(s)

and observe that �t u ∈ B(v, ε). Otherwise, we may find an integer n ≥ 1 so that

τ 0 + nσ < t ≤ τ 0 + (n + 1)σ.

In this later case, define elements vk ∈ B(v, ε′), wk ∈ B(v, ε), �k ∈ F and τ k ,

k = 1, 2, . . . , n, inductively as follows. Let

δ := t − (τ 0 + nσ) < σ.
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Fig. 1 A visual representation of the ‘pinball strategy’ used to prove Lemma 3.7

Having found vk−1 define

wk = ψ∗σ vk−1.

Now, under the given assumptions, we find a 0 < ρk ≤ δ/n and �k ∈ F such that

vk := �k
ρk

wk ∈ B(v, ε′).

Defining τ k = σ + ρk and the map �k
s on the interval s ∈ [0, τ k] by

�k
s := ψ∗s 11[0,σ )(s)+ �k

s ψ
∗
σ 11[σ,τ k ](s)

we find that � ∈ F given by

�su = ψ∗
s−
∑n

l=0 τ l �
n
τ n · · ·�0

τ 0 u11[
∑n

l=0 τ l ,τ 0+(n+1)σ ](s)

+
n
∑

j=0

�
j

s−
∑ j−1

l=0 τ l
�

j−1

τ j−1 · · ·�0
τ 0 u11[

∑ j−1
l=0 τ l ,

∑ j
l=0 τ l )

(s)

has �t ∈ B(v, ε). The proof is now complete. ��
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3.3 Uniform Saturation

In order to obtain results concerning exact controllability on certain projections,

the above framework is not sufficient. As we are specifically interested in finite-

dimensional projections, we introduce an extension of the above formalism which

provides a way of tracking the continuity of controls with respect to parameters. This

continuity is then used in conjunction with the Brouwer fixed point theorem below in

Section 3.4 to establish an abstract result suitable for our applications below.

We begin by extending our notion of continuous semigroups, Definition 3.1, to

include parameter dependence. For what follows we consider an auxiliary metric

space (Y , dY ).

Definition 3.9 Let Z ⊆ Y be non-empty. We call a function

(t, u, p) Φp

t u : [0, ) X Z X

a one-parameter family of continuous local semigroups on X parametrized by Z if,

for every u ∈ X and p ∈ Z , there exists a Tu,p > 0, called the time of existence, for

which the following conditions are met:

(i) For t ∈ [0, Tu,p) we have 

p
t u ∈ X and for t ≥ Tu,p we have Φp

t u = ..

(ii) 

p
0 u = u and for all s, t ≥ 0 with s + t ∈ [0, Tu,p) one has t ∈ [0, T


p
s u,p) and



p
t+su = 


p
t 


p
s u.

(iii) For all t ∈ [0, Tu,p) and all ε > 0, there exists δ > 0 such that whenever

(t ′, u′, p′) ∈ [0,∞)× X × Z satisfies

|t − t ′| + d(u, u′)+ dY (p, p′) < δ

we have t ′ ∈ [0, Tu′,p′) and

d(

p
t u,


p′

t ′ u′) < ε.

Analogously to Definition 3.1 above, we abbreviate 
 for this mapping or write (
, Z)

when we need to emphasize the associated parameter set Z ⊆ Y . For p ∈ Z we write


p for the element in S defined by (t, u) Φp

t u : [0, ) X X .

Before proceeding further, we introduce some useful notations. For Z ⊆ Y , we

let S(Z) denote the collection of one-parameter continuous local semigroups on X

parametrized by Z , and define

S =
⋃

Z⊆Y

S(Z).

A generic element of S will be denoted by 
 and P(
) will denote the parameter

set of 
; that is, P(
) = Z means that 
 ∈ S(Z). We will use F to denote an

arbitrary subset of S using this typographic choice to distinguish between subsets F

of S introduced in the previous section in Definition 3.1. Given F ⊆ S we associate

a subset of S according to
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D(F) := {
p : 
 ∈ F, p ∈ P(
)}. (3.7)

We now define the analogue of the saturate, which we call the uniform saturate, in

this setting. This builds on the characterization of equivalent collections of semigroups

revealed by Lemma 3.6.

Definition 3.10 Suppose that F,G ⊆ S.

(i) We say that G uniformly subsumes F, denoted F �u G if, for any � ∈ F, t, ε > 0,

and any compact subsets K1 ⊆ X , K2 ⊆ P(�), there exists 
1, . . . , 
n ∈ G,

times t1, . . . , tn > 0 and continuous functions fk : K2 → P(
k), k = 1, . . . , n,

such that
∑

t j ≤ t and

sup
u∈K1,p∈K2

d
(

�
p
t u,

n
∏

k=1



k, fk (p)
tk

u
)

< ε. (3.8)

We say that F and G are uniformly equivalent, denoted F ∼u G, if both F �u G

and G �u F.

(ii) The uniform saturate of F, denoted Satu(F) is taken to be

Satu(F) :=
⋃

G�uF

G.

Remark 3.11 It is worth emphasizing that uniform subsumption and uniform saturation

imply regular subsumption and saturation. More precisely if F �u G then D(F) �

D(G). With the fact that F ∼u Satu(F) this implies

D(Satu(F)) ∼ Sat(D(F)). (3.9)

We use this observation below in Corollary 3.15.

We next show that an analog of Lemma 3.6 holds in the setting of Definition 3.10.

Here, however, we have to be careful to show that �u is in fact a transitive relation on

S.

Lemma 3.12 If F �u G and G �u H then F �u H. Moreover if Fi �u G then

⋃

i

Fi ∪G ∼u G, (3.10)

so that, in particular, F ∼u Satu(F).

The approach here mimics the proof of Lemma 3.6 but requires a little more book-

keeping. In particular, in order to use a bound analogous to (3.4) in the proof of

Lemma 3.6 we make the following elementary observation concerning compactness

and continuity:
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Lemma 3.13 Consider two continuous mappings f , g : Y × X → X. Then, given any

compact sets K ⊆ Y , K̃ ⊆ X and any ε > 0 there exists δ > 0 such for any function

h : Y × X → X with

sup
p∈K ,x∈K̃

d(g(p, x), h(p, x)) < δ

we have that

sup
p∈K ,x∈K̃

d( f (p, g(p, x)), f (p, h(p, x))) < ε.

We this in hand we turn to the proof of Lemma 3.12.

Proof of Lemma 3.12 The main step is to establish the desired transitivity in the uniform

subsumption relation. To this end let � ∈ F, ε, t > 0 and K1 ⊆ X , K2 ⊆ P(�),

both compact sets, be given. Suppose for n ≥ 1 and mk ≥ 1, k = 1, . . . , n, we

have 
k ∈ G, �k,l ∈ H, along with continuous functions fk : K2 → P(
k),

gk,l : fk(K2) → P(�k,l) and times tk > 0, sk,l > 0 with

t1 + · · · + tn ≤ t, sk := sk,1 + · · · + sk,mk
≤ tk, for k = 1, . . . , n.

Analogously to (3.5) above we adopt the abbreviated notation

�
k;hk (p)
sk

:=
mk
∏

l=1

�
k,l;hk,l (p)
sk,l

where hk,l(p) := gk,l( fk(p)) p ∈ K2.

Observe that, by the triangle inequality,

sup
u∈K1,p∈K2

d

(

�
p
t u,

n
∏

k=1

�
k;hk (p)
sk

u

)

≤ sup
u∈K1,p∈K2

d

(

�
p
t u,

n
∏

k=1



k; fk (p)
tk

u

)

+
n
∑

l=1

sup
u∈K1,p∈K2

d

( n
∏

k=l



k; fk (p)
tk

l−1
∏

k′=1

�
k′;hk′ (p)
sk′ u,

n
∏

k=l+1



k; fk (p)
tk

l
∏

k′=1

�
k′;hk′ (p)
sk′ u

)

≤ sup
u∈K1,p∈K2

d

(

�
p
t u,

n
∏

k=1



k; fk (p)
tk

u

)

+
n
∑

l=1

sup
v∈K l

1,p∈K2

d

( n
∏

k=l+1



k; fk (p)
tk



l; fl (p)
tl

v,

n
∏

k=l+1



k; fk (p)
tl

�
l;hl (p)
sl

v

)

(3.11)

where

K l
1 :=

{l−1
∏

k=1

�
k;hk (p)
sk

u : u ∈ K1, p ∈ K2

}
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so that, under the standing continuity assumptions, K l
1 is a compact subset of X for

l = 1, . . . , n. Note that as above in Lemma 3.6 we are maintaining the convention

that
∏n

k=n+1 

k; fk (p)
tk

= Id =
∏−1

k′=1 �
k′;hk′ (p)
sk′ .

Under our assumption that F �u G, we may choose n ≥ 1, and elements 
k’s and

fk’s such that

sup
u∈K1,p∈K2

d

(

�
p
t u,

n
∏

k=1



k; fk (p)
tk

u

)

<
ε

2
. (3.12)

Next, according to Lemma 3.13 we choose δl > 0, so that, for any h : Y × X → X ,

the bound

sup
v∈K l

1,p∈K2

d

( n
∏

k=l+1



k; fk (p)
tk



l; fl (p)
tl

v,

n
∏

k=l+1



k; fk (p)
tl

h(p, v)

)

<
ε

2n
(3.13)

holds whenever

sup
v∈K l

1,p∈K2

d(

l; fl (p)
tl

v, h(p, v)) < δl .

On the other hand, invoking that G �u H and referring back to (3.8) we may choose

�l , gl and sl such that

sup
v∈K l

1,p∈K2

d

(



l; fl (p)
tl

v,�
l;hl (p)
sl

v

)

= sup
v∈K l

1,q∈ f (K2)

d

(



l;q
tl

v,�
l;gl (q)
sl

v

)

< δl .

(3.14)

Thus (3.13), (3.14) yield

sup
v∈K l

1,p∈K2

d

( n
∏

k=l+1



k; fk (p)
tk



l; fl (p)
tl

v,

n
∏

k=l+1



k; fk (p)
tl

�
l;hl (p)
sl

v

)

<
ε

2n
. (3.15)

By combining (3.11) with the bounds (3.12) and (3.15) and recalling that ε > 0 was

arbitrary we now conclude that F �u H, as desired.

As above in Lemma 3.6, (3.10) and uniform saturation follows immediately from

(3.8). The proof is now complete. ��

3.4 Exact Controllability for Projections

We are now prepared to state the main final abstract result of this section. Here we

specialize and assume that X is a Fréchet space so that, in particular, an addition

operation, +, is defined and the metric d is shift invariant with respect to +; namely,
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we have the property that

d(u, v) = d(u + w, v + w), for any u, v, w ∈ X .

Theorem 3.14 Consider F ⊆ S and let π : X → X be a linear, continuous projection

operator mapping onto a finite-dimensional subspace W = π(X) of X. For v ∈ X

define

Bπ,v(ε) := {v + w : d(0, w) ≤ ε,w ∈ W }.

Suppose the following:

(i) D(F) is approximately controllable on X; that is, for any u ∈ X , t > 0 we have

that AD(F)(u, t) = X where recall that AD(F)(u, t) is defined as in (3.2).

(ii) For any v ∈ X and ε, ε′, t > 0, there exists an initial condition ũ ∈ X, elements


1, . . . , 
k ∈ F, times s1, . . . , sk > 0, and continuous functions g j : Bπ,v(ε) →
P(
k), j = 1, . . . , k, such that

∑

j s j ≤ t and

sup
ṽ∈Bπ,v(ε)

d

( k
∏

j=1



j;g j (ṽ)
s j

ũ, ṽ

)

< ε′. (3.16)

Then, for all u, v ∈ X, t > 0 and ε > 0 there exists �1, . . . , �n ∈ D(F),

t1, t2, . . . , tn > 0 such that t1 + t2 + · · · + tn = t and

π(�n
tn
· · ·�1

t1
u) = π(v), d(�n

tn
· · ·�1

t1
u, v) < ε. (3.17)

In other words, D(F) is approximately controllable on X and exactly controllable on

W = π(X) in the sense of Definition 3.3.

Proof Fix any u, v ∈ X and any t, ε > 0. Observe that for any ε′ > 0, we may invoke

assumption (ii) and choose ũ ∈ X , 
1, . . . , 
k ∈ F, s1, . . . , sk > 0 and continuous

functions g j : Bπ,v(ε/2) → P(
k), j = 1, 2, . . . , k, such that s :=
∑k

j=1 s j ≤ t/2

and

sup
ṽ∈Bπ,v(ε/2)

d

( k
∏

j=1



j,g j (ṽ)
s j

ũ, ṽ

)

<
ε′

2
.

Using continuity, compactness of the closed ball Bπ,v(ε/2) and assumption (i), we

can pick �1 ∈ D(F) to ensure that

sup
ṽ∈Bπ,v(ε/2)

d

( k
∏

j=1



j,g j (ṽ)
s j

�1
t−su,

k
∏

j=1



j,g j (ṽ)
s j

ũ

)

<
ε′

2

and hence infer that
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sup
ṽ∈Bπ,v(ε/2)

d

( k
∏

j=1



j,g j (ṽ)
s j

�1
t−su − ṽ, 0

)

< ε′, (3.18)

where we have also used the shift invariance of d.

With this bound (3.18) in hand, we now invoke the continuity of π and pick ε′ > 0

such that

ε′ ≤ ε

2
and whenever d(y, 0) < ε′ then ‖π(y)‖W <

ε

2
. (3.19)

For this value of ε′ and the corresponding values of 
 j , g, � etc. leading to (3.18) we

next define

G(w) = π

⎛

⎝v + w −
k
∏

j=1



j,g j (v+w)
s j

�0
t−su

⎞

⎠

for w ∈ W satisfying d(0, w) < ε
2

. According (3.19), (3.18) G defines a continuous

map on

{w ∈ W : d(0, w) < ε/2}

into itself. Recalling that W is a finite-dimensional subspace, we infer from the

Brouwer fixed point theorem that there exists w∗ ∈ W such that

v + w∗ ∈ Bπ,v(ε/2) and π(v) = π

( k
∏

j=0

�
j

t j
u

)

,

where t0 = t − s and �
j

t j
= 


j,g j (v+w∗)
s j

∈ D(F), j = 1, . . . , k. This is the first

condition in (3.17). In view of (3.18) and our choice that ε′ ≤ ε/2 it is clear that

this control also satisfies the global approximation condition in (3.17). The proof is

therefore complete. ��

We will make use of the following corollary of Theorem 3.14 in the examples

considered below in Section 5. To state this result, let us first recall and extend the ‘ray

semigroup’ notation introduced above in (2.6). Following the notational convention

introduced in Definition 3.9, given any Y ⊆ X we take (ρ, Y ) to be the ray semigroup

parameterized by Y ; namely,

(t, u, p) �→ ρ
p
t u : [0,∞)× X × Y → X where ρ

p
t u := u + tp. (3.20)

Corollary 3.15 Suppose that F ⊆ S and suppose that Xn is an increasing sequence

of subspaces of X such that (ρ, Xn) ∈ Satu(F). If ∪n Xn is dense in X then D(F) is

approximately controllable on X and exactly controllable for any continuous projec-

tion mapping into a finite dimensional subspace as in Definition 3.1.
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Proof We will establish this result by showing that the conditions in Theorem 3.14

hold. Regarding the first condition (i), fix any u, v ∈ X and t > 0. By our density

assumption on ∪n Xn we may consider a sequence of elements wn ∈ Xn such that

wn → w = v−u
t

. This in turn implies that ρ
wn
t u → v as n →∞. On the other hand

we have by assumption that ρwn ∈ D(Satu(F)). Referring back to (3.9) this means

that ρwn ∈ Sat(D(F)) for all n. We thus conclude that

v ∈ ASat(D(F))(u, t) ⊆ ASat(D(F))(u,≤ t) = AD(F)(u,≤ t),

where we have use Lemma 3.6 for the last equality. Since u, v ∈ X , t > 0 were

arbitrary here this shows that ASat(D(F))(u, t) = X for any u ∈ X , t > 0. Thus,

by Lemma 3.7, we have that AD(F)(u, t) = X . In particular, we have established

condition (i) of Theorem 3.14.

Turning to the second condition in Theorem 3.14, again fix any u, v ∈ X , t > 0

and a finite dimensional projection π . For any given ε, ε′ > 0 we may show that the

condition (3.16) is satisfied by taking ũ = v. Indeed, since π(X) is finite dimensional

we can approximate the basis elements u(1), . . . , u(N ) up to any precision δ > 0 by

elements in Xn for some n = n(π, δ). In particular this implies that we may choose δ

and ũ(1), . . . , ũ(N ) ∈ Xn such that

sup
|α|≤ε

d(ρ
α1ũ(1)+...+αN ũ(N )

t v, ρ
α1u(1)+···+αN u(N )

t v) <
ε′

2
.

Combining this observation with the fact that (ρ, Xn) ∈ Satu(F) we thus conclude

(3.16), completing the proof. ��

Remark 3.16 The following observation concerning uniform subsumption and ray

semigroups is used several times below in order to establish the conditions for Corol-

lary 3.15. Maintaining our assumption that the phase space X is a Fréchet space

consider a collection F ⊂ S. Suppose that Y1, Y2 are linear subspaces of X such that

(ρ, Y1), (ρ, Y2) ∈ Satu(F).

Then an argument similar to the one given in Lemma 3.12 yields that

(ρ, span{Y1 ∪ Y2}) ∈ Satu(F).

4 Applications to Stochastic Partial Differential Equation

We now turn our attention to applying the previous control results to stochastic partial

differential equations (SPDEs) of the form

∂t u + Lu + N (u) = f +
∑

k∈Z
σk∂t Wk (4.1)
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where L is a linear operator, N is a nonlinear operator, σk and f are fixed spatial

functions, and {Wk}k∈Z is an independent collection of standard real-valued Brownian

motions. We assume that the set Z is finite and that the phase space X is a Hilbert

space with norm ‖ · ‖ and inner product 〈 · , · 〉X .

Observe that by replacing the Brownian motions Wk( · ) with actuators
∫ ·

0 αkds in

(4.1) we obtain the control system (2.1). Our goal in this section is to illustrate some

implications of the controllability of the system (2.1) for the SPDE (4.1). Specifically,

we present results concerning topological irreducibility, unique ergodicity as well as

density properties of finite-dimensional projections of (4.1) for which the control

properties (2.3) and (2.4) play a crucial role.

To avoid the technicalities of defining solutions of (4.1) in a general abstract setting,

we will instead simply posit the existence of a suitable cocycle φ. See Definition 4.1

below and, for example, [3] for a general discussion of this formalism. The analysis

in this section is carried out from this starting point. Below in Section 5, we provide

details of a concrete functional setting in each example, hence inferring the existence

of such a cocycle φ corresponding to an equation of the form (4.1) on a case-by-case

basis.

4.1 Cocycle Setting

Let us now recall the precise setting of the cocycle formalism. In the process, we will

introduce some assumptions used throughout this section and notational conventions

used throughout the rest of the paper.

In what follows it will be convenient to take the Wiener space as our underlying

probability space. For this purpose we take the sample space � to be

� := {V : (−∞,∞) → R|Z| continuous with V (0) = 0} (4.2)

and endow � with the usual topology induced by the semi-norms

‖V ‖∞,s,t = sup
s∈[s,t]

|V (s)| for any V ∈ � (4.3)

defined for −∞ < s < t <∞. Similarly for t > 0 we take

�t := {V : [0, t] → R|Z| continuous with V (0) = 0}.

We use ‖ · ‖∞,t := ‖ · ‖∞,0,t to denote the sup norm on �t as in (4.3). We will also

make use of the Cameron-Martin subspace Ht ⊆ �t defined as

Ht := {H ∈ H1([0, t];R|Z|) : H(0) = 0} (4.4)

and endowed with the inner product

〈H , G〉Ht
=
∫ t

0

Ḣ Ġds,
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for any H , G ∈ Ht .

We let P denote the Wiener measure on the space �, which is the unique measure

so that the process induced by the evaluation map on � is a two-sided Brownian

motion on R|Z|. The associated expectation will be denoted by E. Here the σ -algebra

is provided by the Borel subsets of �. See, for example, [42] for detailed constructions.

We define the shift map θs : �→ � for s ∈ R by

θs V (t) = V (t + s)− V (s) for any V ∈ �, t ∈ R. (4.5)

Recall that {θs}s∈R is a group of measure preserving transformations; namely, θsθr =
θs+r for any s, r ∈ R and P(�) = P(θs(�)) for any s ∈ R and � ∈ F .

We recall the definition of a (continuous, adapted) cocycle as follows:

Definition 4.1 We say that a mapping φ : [0,∞) × X × � → X is a continuous

adapted cocycle if

(1) φ is continuous;

(2) for every u ∈ X and V ∈ �, φ0(u, V ) = u;

(3) for every u ∈ X , V ∈ � and t, s > 0,

φt+s(u, V ) = φt (φs(u, V ), θs V ) (4.6)

where we recall that θs is the shift map;

(4) For any t > 0, u ∈ X , V , Ṽ ∈ �,

if V (s) = Ṽ (s) for all s ∈ [0, t] then φt (u, V ) = φt (u, Ṽ ). (4.7)

Throughout this section, we let φ denote an arbitrary fixed cocycle satisfying (1)-(4).

Note that the level of generality of a continuous cocycle will be sufficent to establish

the irreducibility and ergodicity results Sections 4.2, 4.3. In order to prove results

on finite-dimensional projections below in Section 4.4 some further, more refined

conditions on φ will be imposed (see Assumption 4.13).

Remark 4.2 Given t > 0 and any measurable map E : �t → � such that for any

V ∈ �t

E(V )(s) = V (s) for every s ∈ [0, t].

We can define a map φE
t : X ×�t → X according to

φE
t (u, V ) := φt (u, E(V )), (4.8)

for any continuous adapted cocycle φ. In view of assumption (4), it is clear that φE
t

is independent of E and continuous on X . In what follows we will abuse notation and

consider φt as also defining a continuous map from X ×�t into X .
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It is worth emphasizing that assumption (4) implies that, for every fixed u ∈ X the

random process

t �→ φt (u, W ) is adapted to the filtration generated by W . (4.9)

This property will allow us to associate a Markovian framework with φ in what fol-

lows.2

Remark 4.3 Below in the examples considered in Section 5, we have that each concrete

formulation of (4.1) can be written as a continuous functional of the sample path of the

Brownian motion. In fact this is a property typically enjoyed by systems with additive

noise since we can write solutions of (4.1) as u(t, u0, W ) = v(t, u0, W )+σ W where

v obeys

∂tv + L(v + σ W )+ N (v + σ W ) = f , v(0) = u0,

We can then in turn define the cocycle φ by φt (u0, V ) = v(t, u0, V ) + σ V which

make sense for every V = (Vk)k∈Z ∈ �.

Remark 4.4 Of course the notation of a cocycle introduced above can be extended

to cover systems defined locally in time. Just as with the formalism in Section 3 we

expect that many of the results in this section can be extended to such a local setting.

For the sake of clarity and simplicity, we will refrain from addressing this situation

here leaving this case for future work. For applications of degenerate control problems

to locally defined finite dimensional stochastic systems, see [28] in a general context

and [7,24] for further specific applications.

We associate a Markovian framework with φ as follows. In view of (4.9) and the

cocycle property (4.6)

Pt g(u0) = Eg(φt (u0, W )) for any g ∈Mb(X), (4.10)

defines a Feller Markov semigroup. Here Mb(X) is the collection of real valued

bounded, measurable functions from X . The associated transition kernel is given by

Pt (u0, A) = (Pt 1A)(u0) for any t ≥ 0, u0 ∈ X , A ∈ B(X), (4.11)

where B(X) denotes the Borel σ -algebra of subsets of X . Recall that Pt acts dually

on probability measures μ on X via

μPt (A) =
∫

X

Pt (u, A)μ(du) =
∫

X

E[1A(φ(u, W ))]μ(du)

2 In the language of [3], condition (4) in Definition 4.1 in implies that φ defines a Markov random dynamical

system. Thus, in particular, φ is in the wider class of cocycles for which a corresponding Markovian

framework can be defined.
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for any A ∈ B(X). We call a probability measure μ on B(X) invariant if

μPt = μ

for all t > 0.3

Finally it remains to connect the cocycle formalism with the control theoretic setting

described above in Sections 2 3. Observe that to the cocycle φ we may associate the

following collection of continuous (global) semigroups F0 given by

F0 = {(t, u) �→ φt (u, Vα) : Vα(s) = sα for α ∈ R|Z|, s ≥ 0}. (4.12)

Observe that φt (u0, Vα) is a continuous semigroup in the sense of Definition 3.1 for

any fixed α ∈ R|Z|.

Remark 4.5 Following the notation introduced in Section 2, we recall that 
α·σ
t u0

formally denotes the solution of (2.1) with initial condition u0 ∈ X and control

α ∈ L2([0,∞);R|Z|). In particular, given a Cameron-Martin direction V ∈ Ht (cf.

(4.4)) we have that

u(t, u0, V ) = φt (u0, V ) = 
α·σ
t u0

where α = V̇ . Notationally the use of φ is natural in this section as we are now

considering sample paths from a Brownian forcing which does not have a traditional

time derivative.

The notions of controllability given in Definition 3.3 are equivalently formulated

in the cocycle formalism as follows:

Definition 4.6 Let φ be a continuous adapted cocycle. We say that

(i) φ is approximately controllable if the associated collection of continuous semi-

groups F0 given by (4.12) are approximately controllable on X . In other words φ

is approximately controllability if, for any u, v ∈ X and any δ, t > 0, there exists

a piecewise linear function V ∈ �t so that

‖φt (u, V )− v‖ < δ. (4.13)

(ii) Let π : X → X be a projection onto a finite-dimensional subspace of X . If, for

any u, v ∈ X and t, δ > 0, there is a piecewise linear function V ∈ �t such that

(4.13) holds and additionally

π(φt (u, V )) = π(v) (4.14)

3 Recall that the collection of such measures is a convex set with the extremal points being the ergodic

invariant measures, i.e. those measures μ such that if Pt 1A = 1A μ-almost everywhere, then μ(A) ∈ {0, 1}.
Note that any two ergodic invariant measures either coincide or are mutually singular. See, e.g., [40] for

further details.
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then we say that φ is approximately controllable and exactly controllable on

π(X). If there exists V ∈ �t such that (4.14) holds, then we say that φ is exactly

controllable on π(X).

4.2 Topological Irreducibility

We now show that approximate controllability implies a form of topological irre-

ducibility that all points on the phase space are approximately reached with positive

probability.

Lemma 4.7 Let φ be a continuous adapted cocycle and Pt (u0, A) be its associated

Markov transition function. If φ is approximately controllable, then Pt (u, Bδ(v)) > 0

for all u, v ∈ X and δ > 0 or, in other words, supp(Pt (u, · )) = X. Furthermore, for

any compact set K ⊆ X and any δ, t > 0, v ∈ X, there exists an ε0 = ε0(K , δ, t, v) >

0 such that

inf
u∈K

Pt (u, Bδ(v)) ≥ ε0 > 0. (4.15)

Remark 4.8 Generally the first consequence in Lemma 4.7 is a sufficient form of

topological irreducibility to establish unique ergodicity. See Corollary 4.9 and Corol-

lary 4.12 below and also [25]. The uniform lower bound over compact sets, (4.15), is

useful in establishing rates of convergence to the stationary distribution.

Proof of Lemma 4.7 Let t, δ > 0 and u ∈ X . First observe that approximate con-

trollability of φ implies the existence of a piecewise linear V ∈ �t such that

‖φt (u, V ) − v‖ < δ
2
. By assumption, the mapping φt (u, · ) : �t → X is continu-

ous. Hence, there exists an ε > 0 so that if ‖Ṽ − V ‖∞,t < ε with Ṽ ∈ �t then

‖φt (u, Ṽ ) − φt (u, V )‖ < δ/2. Combining everything we have ‖Ṽ − V ‖∞,t < ε

implies

‖φt (u, Ṽ )− v‖ ≤ ‖φt (u, Ṽ )− φt (u, V )‖ + ‖φt (u, V )− v‖ < δ.

Since, for any ε > 0, P(‖W − V ‖∞,t < ε) > 0, the proof of the first statement now

follows.

Turning to the proof of the second statement, fix K ⊆ X compact and let δ, t > 0

and v ∈ X . First observe that Pt ( · , Bδ(v)) : X → [0, 1] is continuous by dominated

convergence and the fact that φ is a continuous cocycle. Indeed, note that for any

u ∈ X we have

lim
w→u

Pt (w, Bδ(v)) = lim
w→u

∫

1{‖φt (w,W )−v‖<δ} dP

=
∫

lim
w→u

1{‖φt (w,W )−v‖<δ} dP = Pt (u, Bδ(v)).
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Consequently, for every u ∈ K define εu > 0 such that the following holds

‖w − u‖ < εu implies Pt (w, Bδ(v)) ≥ 1
2

Pt (u, Bδ(v)) .

Since {Bεu (u) : u ∈ K } is an open cover of the compact set K , there exists a finite

subcover {Bεuk
(uk) : k = 1, . . . , m} for some collection {u1, . . . , um} ⊆ K . By the

first statement proven, Pt (uk, Bδ(v)) > 0 for each k and hence

inf
u∈K

Pt (u, Bδ(v)) ≥ ε0 := 1
2

min
k

Pt (uk, Bδ(v)) > 0,

which is the desired result. ��

We have the following simple but important consequence:

Corollary 4.9 If φ is approximately controllable, then μ(B) > 0 for any invariant

measure μ and any open set B ⊆ X. In other words, supp(μ) = X for every probability

measure μ which is invariant under Pt .

Proof For k ∈ N, define the subsets

Ak = {u ∈ X : Pt (u, B) ≥ k−1}

and note that since μ is invariant

μ(B) =
∫

X

Pt (u, B)μ(du) ≥ 1
k
μ(Ak)

for every k ∈ N. Since, according to Lemma 4.7, Pt (u, B) > 0 for every u ∈ X we

have that μ(Ak) ↑ μ(X) = 1 as k →∞. In particular, 1
k
μ(Ak) > 0 for some k ∈ N,

thus finishing the proof. ��

4.3 Unique Ergodicity

We turn next to examine some consequences of approximate controlability for unique

ergodicity in systems like (4.1).

In [25], the concept of an asymptotically strong Feller Markov process was intro-

duced. The asymptotic strong Feller property is a generalization of the well-known

strong Feller property. It furnishes the semigroup Pt with just enough smoothing to

be able to conclude unique ergodicity when all its invariant measures have a point of

common support (see Theorem 4.11 below). This is useful especially for classes of

stochastic partial differential equations where the strong Feller property appears to be

untenable to prove or may not hold.

Following [25,27], we will work mainly in the context of the following lemma

which establishes the asymptotically strong Feller property by means of an estimate

controlling the derivative of the Markov semigroup with respect to the initial condition.

For further reference, see Section 1.1 from [25].
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Proposition 4.10 (Proposition 3.12 from [25], Proposition 1.1 from [27]) A Markov

semigroup {Pt }t≥0 on X is asymptotically strong Feller at a point u ∈ X if there exist

an open neighborhood U of u and positive sequences {tn}n≥1 and {δn}n≥1 with {tn}n≥1

non-decreasing and {δn} converging to zero such that

sup
‖ξ‖=1

|D Ptn f (v)ξ | ≤ C(| f |∞ + δn‖D f ‖∞) (4.16)

for all n ∈ N, v ∈ U and all test functions f ∈ C1(X). Here

| f |∞ = sup
x∈X

| f (x)|, ‖D f ‖∞ = sup
x∈X ,‖ξ‖=1

|D f (x)ξ |

and C > 0 is a fixed constant.

In the current context, our interest in the asymptotic strong Feller property is the

following result. See also Theorem 2.1 and Corollary 2.2 from [27].

Theorem 4.11 (Theorem 3.16 from [25]) Suppose Pt is asymptotically strong Feller

at a point u ∈ X. If Pt admits two distinct ergodic invariant measures μ and ν, then

u /∈ supp(μ) ∩ supp(ν).

Combining this result with Lemma 4.7 gives the following.

Corollary 4.12 If φ is approximately controllable and the associated Markov semi-

group Pt asymptotically strong Feller at some point u ∈ X, then Pt has at most one

invariant measure.

Proof Lemma 4.7 implies that the support of any invariant measure is the whole space.

Because the semigroup is asymptotically strong Feller, Theorem 4.11 implies that any

distinct ergodic measure must have disjoint supports. Since the support is the whole

space, there can be at most one ergodic invariant measure. Since any invariant measure

can be decomposed into ergodic invariant measures, there can be at most one invariant

probability measure. ��

Establishing the asymptotically strong Feller property, in particular the estimate

(4.16), is a story in and of itself. In fact, one of the central assumptions often employed

to assure this property is a formal ‘Hörmanader like’ bracket condition very remi-

niscent of, if not exactly the same as, the condition used to establish approximate

controllability. A further discussion on the formal relationship between Hörman-

der’s condition and sufficient conditions for approximate controllability is given at

the end of Section 2. In regards to establishing the asymptotically strong Feller prop-

erty from Hörmander’s condition, we refer the reader to [27] for a general framework

and assumptions. In particular, see Meta-Theorem 1.5 and Theorem 8.1 in this article

[27]. The methods introduced in [25,27] have also played a central role in a number

of other recent works [13,18,19,22].
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4.4 Strict Positivity of the Density on Finite-Dimensional Projections

We next show how the stronger form of controllability outlined in equation (2.4)

can be used to show that, for any fixed u ∈ X and t > 0, the random variable

π(φt (u, W )) has a strictly positive density with respect to Lebesgue measure on π(X).

See Theorem 4.20 and Theorem 4.23 below. Here π is any projection onto a finite-

dimensional subspace of X . Throughout this subsection, we take m to be the dimension

of π(X) so that π(X) ∼= Rm and let {e j }mj=1 to be an orthonormal basis for π(X).

For the results in this section we impose some further properties on the con-

tinuous adapted cocycle φ. These assumptions essentially allow us to work in the

setting of Malliavin calculus. While the proofs in this section make significant use

of methods from the Malliavin calculus, cf. [6,38,39], our presentation is essentially

self-contained.

Our additional standing assumptions on φ are as follows:

Assumption 4.13

(i) For every u ∈ X and t > 0, the map φt (u, · ) : �t → X is Frechét differ-

entiable in the Cameron-Martin subspace Ht of �t where Ht is defined as in

(4.4). The derivative with respect to the ‘noise variable’ will be denoted by

Dw, respectively.4

(ii) For any fixed V ∈ �t , the map φt ( · , V ) : X → X is Frechét differentiable

in X . This derivative with respect to the ‘initial condition’ will be denoted by

Du and we suppose

Duφ : [0,∞)× X ×�× X → X is continuous. (4.17)

(iii) For all t > 0, v ∈ X and V ∈ �t , the linear map Duφt (v, V ) is non-

degenerate; i.e.,

Duφt (v, V )ξ 
= 0 whenever ξ ∈ X \ {0}.

(iv) For every u ∈ X and V ∈ �t the following integral representation

Dwφt (u, V )H =
∑

k∈Z

∫ t

0

Js,t (u, V )σk Ḣk(s) ds (4.18)

holds for any H = (Hk)k∈Z ∈ Ht where Js,t is the Jacobi flow and is defined

by

Js,t (u, V )ξ = (Duφt−s)(φs(u, V ), θs V )ξ for ξ ∈ X . (4.19)

(v) For any u ∈ X , s ≤ t and V ∈ �t the adjoint J ∗s,t (u, V ) of the linear map

Js,t (u, V ) is also non-degenerate.

4 The random variable Dwφt (u, W )H coincides with the Malliavian derivative of φt (u, W ) in the direction

H . See Section 1.2.1 of [39].
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Remark 4.14 We emphasize that our assumptions are not particularly restrictive for

the type of SPDEs in which we are interested. Below in Section 5 we show how (i)

– (v) follow from routine a priori estimates. See also Remark 4.16 concerning the

structural assumptions (4.18) and (4.19).

Remark 4.15 One can show that the Jacobi flow Js,t satisfies

Js,t (u, V )ξ = Jr ,t (u, V )Js,r (u, V )ξ (4.20)

for s ≤ r ≤ t , u, ξ ∈ X , V ∈ �t . We will use this group property extensively below.

Note also that (4.19), (4.17) with (4.18) implies that, for any t > 0

Dwφ : [0, t] × X ×�t ×Ht → X is continuous. (4.21)

Remark 4.16 Returning to the formal setting of the abstract stochastic evolution equa-

tion (4.1), it is not hard to see that for any ξ ∈ X , s < t and u0 ∈ X , ρ := Js,t (u0, W )ξ

would be expected to satisfy the linear system

∂tρ + Lρ + DN (u)ρ = 0, ρ(s) = ξ,

on the interval [s, t] where u = u( · , u0, W ) is the solution of (4.1) corresponding to

u0 and the Brownian path W . Here again DN is the Frechet Derivative of N so that,

recalling polynomial structure of N given in (2.2), we have

DN (u)ρ =
M
∑

k=2

k Nk(ρ, u, . . . , u).

On the other hand the Malliavin derivative ρ̄ = Dwφt (u0, W )H in the noise direction

H ∈ Ht would be expected to satisfy

∂t ρ̄ + Lρ̄ + DN (u)ρ̄ =
∑

k∈Z
σk Ḣk, ρ(0) = 0.

Thus, our assumption (4.18) is simply a reflection of the Duhamel formula. See, e.g.,

[25] and below in Section 5 for further details in a concrete setting.

A basic object in the Malliavin calculus is the Malliavin covariance matrix (see,

e.g., [39]). The spectral and invertibility properties of this operator can be used to

derive important consequences for the law of the associated random variable. For

example, in finite dimensions, such properties are often used to derive the existence

and regularity of the probability density function; cf. [6,34,38,39]. The Malliavin

matrix and its spectral properties are also central to proofs of unique ergodicity in

[13,18,19,22,25,27]. In our current cocycle setting we define this operator as follows:
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Definition 4.17 For any u ∈ X and V ∈ �t , let

Mt (u, V ) := Dwφt (u, V )(Dwφt (u, V ))∗ (4.22)

where (Dwφt (u, V ))∗ is the adjoint of Dwφt (u, V ). Equivalently Mt (u, V ) is defined

by

〈Mt (u, V )ξ, ρ〉X =
∑

k∈Z

∫ t

0

〈Js,t (u, V )σk , ξ 〉X 〈Js,t (u, V )σk , ρ〉X ds (4.23)

for any ρ, ξ ∈ X .

(i) For any fixed V ∈ �t , the we refer to the operator Mt (u, V ) as the Gramian

following the terminology of control theory. For t > 0 u ∈ X and V ∈ �t , we

say that the Gramian Mt (u, V ) is non-degenerate for the control V if

〈Mt (u, V )ξ, ξ 〉X > 0 for all ξ ∈ X \ {0}. (4.24)

(ii) When V ∈ �t is replaced by the random variable W , we call Mt (u, W ) the

Malliavin Covariance Matrix of the random variable φt (u, W ). We say that the

Malliavin Covariance Matrix Mt (u, W ) is non-degenerate if it is non-degenerate

for almost every Brownian path, i.e.,

P
(

〈Mt (u, W )ξ, ξ 〉X > 0 for all ξ ∈ X \ {0}
)

= 1. (4.25)

Remark 4.18 The condition (4.25) is a nontrivial property of stochastic systems like

(4.1). We may expect such a condition to hold when (4.1) satisfies some form of the

Hörmander bracket condition. See, e.g. [39], for the finite-dimensional setting. The

infinite dimensional case has been addressed in [19,27,34]. In these works on SPDEs,

it is established that the associated Malliavin matrix satisfies bounds like

P

(

sup
ξ∈Sα,N

〈Mt (u, W )ξ, ξ 〉X
‖ξ‖2

X

> ε

)

≥ 1− rα,N (ε) (4.26)

where rα,N (ε) → 0 as ε → 0 for any fixed α ∈ (0, 1) and N ≥ 1. Here Sα,M :=
{ξ ∈ X : ‖PN ξ‖ ≥ α‖ξ‖} where PN is the projection onto the first N elements of

an orthonormal basis for X . Note that, by a simple limiting argument one may infer

(4.25) from (4.26).

Remark 4.19 In what follows t > 0, u ∈ X and even V ∈ � will sometimes be fixed

quantities. We therefore frequently adopt the abbreviated notations

M = Mt (u, V ), φ = φt (u, V ) Dwφ = Dwφt (u, V ), (4.27)
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exhibiting the dependence on V etc. only when it is warranted. We will also take

Mπ = Mπ
t (u, V ) = π Mt (u, V )π (4.28)

for the ‘projected Grammian (or Malliavin) matrix’.

With these preliminaries now in place we turn to the first result in this section.

It gives a criterion under which π(φt (u, W )) possesses a probability density. This

‘absolute continuity’ result is an adaptation of Theorem 5.2.2 in Bouleau and Hirsch

[6] to the setting of this paper.

Theorem 4.20 Let φ be a continuous adapted cocycle satisfying the conditions

imposed in Assumption 4.13. Suppose π is a projection onto a finite dimensional

subspace of X and assume that for some fixed u ∈ X and t > 0, the Malliavin matrix

Mt (u, W ) is non-degenerate, in the sense of Definition 4.17, (ii). Then the law of

the random variable π(φt (u, W )) is absolutely continuous with respect to Lebesgue

measure on π(X) ∼= Rm .

Remark 4.21 The proof of Theorem 4.20 relies on Federer’s coarea formula to establish

the desired absolute continuity. Recall that for n ≥ m, any Lipshitz continuous η :
Rn → Rm and any measurable, non-negative g : Rn → R

∫

Rn

g(y)Jn(η)(y)dy =
∫

Rm

∫

η−1(x)

g(y)dH
n−m(y)dx (4.29)

where Hn−m is the n − m dimensional Hausdorff measure on Rn and

Jn(η) :=
√

det(∇η)(∇η)∗. (4.30)

Here, ∇η is the Jacobian of η and (∇η)∗ is the adjoint of this matrix.5 See e.g. [17]

for further details.

Proof of Theorem 4.20 Since u ∈ X , t > 0 are fixed throughout we adopted the abbre-

viated notation as in Remark 4.19 exhibiting the dependence on the Brownian path as

needed. We proceed by showing that

E

(

ψ(π(φ(W )))
√

det(Mπ (W ))

)

= 0, (4.31)

for any ψ : Rm → [0,∞) with ψ(x) = 0 almost surely on Rm . Since we have

assumed that M is non-degenerate it follows that

√

det(Mπ (W )) > 0 (4.32)

5 Recall that, by Rademacher’s theorem, every Lipshitz continuous function is differentiable almost every-

where.
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up to a set of measure zero. Hence (4.31) and (4.32) imply that ψ(π(φ(W ))) = 0

almost surely for any such ψ . By now selecting ψ = 1B where B ⊆ Rm is any

Borel set with Lebesgue measure zero we infer the desired absolute continuity of

π(φt (u, W )) with respect to Lebesgue measure on Rm , hence the desired result.

In order to apply the coarea formula (4.29) to prove (4.31) we make use of the

Girsanov theorem with a suitable truncation of the projected Malliavin matrix Mπ .

Fix

{h
}
≥1 to be an orthonormal basis of L2([0, t];R|Z|)

so that the elements H
( · ) =
∫ ·

0 h
(s) ds form an orthonormal basis in Ht . Using the

assumed continuity of Dwφ we have that

〈Mei , e j 〉X =
∞
∑


=1

〈

DwφH
〈(Dwφ)∗ei , H
〉Ht
, e j

〉

=
∞
∑


=1

〈DwφH
, e j 〉〈DwφH
, ei 〉.

(4.33)

Truncating in this expansion we define the random matrices Mπ
n according to

(Mπ
n )i j = 〈Mπ

n ei , e j 〉 :=
n
∑


=1

〈DwφH
, e j 〉〈DwφH
, ei 〉, (4.34)

for n ≥ 1. For any y ∈ Rn we denote

Ty W (r) = W (r)+
n
∑


=1

y
 H
(r)

for r ≥ 0. Since H
 are fixed elements in Ht , we observe that the translation Ty W is

an admissible Girsanov shift for any given values of n ≥ 1, y ∈ Rn .

Fix any ρ ∈ C∞(Rn; (0,∞)) satisfing
∫

Rn ρ(y) dy = 1. Then, for any ψ : Rm →
[0,∞) bounded and measurable, the Girsanov theorem implies

Eψ(π(φ(W )))
√

det(Mπ
n (W )) =

∫

Rn

Eψ(π(φ(W )))
√

det(Mπ
n (W ))ρ(y) dy

= E

∫

Rn

ψ(π(φ(Ty W )))G H (y, W )ρ(y)

√

det(Mπ
n (Ty W )) dy

(4.35)

where G H (y, W ) > 0 denotes the Girsanov density associated to the shift Ty W .

For any n ≥ m define η : Rn → Rm according to η(y) = π(φ(Ty W )). By

Assumption 4.13, it is clear that η is P-almost surely Lipschitz and we have that

Jn(η)(y) =
√

det(Mπ
n (Ty W ))
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P-almost surely, where Jn is defined according to (4.30). Thus, the coarea formula

(4.29) implies that, for any n ≥ m,

∫

Rn

ψ(π(φ(Ty W )))G H (y, W )ρ(y)

√

det(Mπ
n (Ty W )) dy

=
∫

Rm

[ ∫

η−1(x)

ψ(π(φ(Ty W )))G H (y, W )ρ(y) dH
n−m(y)

]

dx

=
∫

Rm

ψ(x)

[ ∫

η−1(x)

G H (y, W )ρ(y) dH
n−m(y)

]

dx = 0, (4.36)

almost surely.

By combining (4.35) and (4.36) we obtain that

Eψ(π(φ(W )))
√

det(Mπ
n (W )) = 0.

In view of (4.33) and (4.34), Mπ
n (W ) → Mπ (W ) almost surely. We therefore infer

(4.31) from Fatou’s lemma, completing the proof. ��

Remark 4.22 Perusing this proof, it is notable that Theorem 4.20 still holds under the

weaker condition that only Mπ = π Mt (u, W )π is non-degenerate.

We next state and prove the final result of this section which gives a sufficient

condition under which, for fixed u ∈ X and t > 0, the density of π(φt (u, W )) is

strictly positive. We refer to Nualart [38, Theorem 4.2.2] and [34, Theorem 8.1] for

previous related results.

Theorem 4.23 Let φ be a continuous adapted cocycle satisfying the hypotheses of

Assumption 4.13. In addition we suppose that

a) Mt (u, V ) is non-degenerate from some fixed u ∈ X, t > 0 and a fixed sample path

V ∈ �t ; cf. Definition 4.17, (i).

b) φ is exactly controllable on π(X) as in Definition 4.6.

If, for some s > 0, the law of π(φt+s(u, W )) has a density pt+s( · ) with respect to

Lebesgue measure on Rm , then pt+s(x) > 0 for Lebesgue almost every x ∈ Rm .

As in the proof Theorem 4.20, Theorem 4.23 is established with aide of a carefully

chosen change of variables using the Girsanov Theorem. Two additional ingredients

are needed for the proof: one concerns invertibility properties of M while the second

is a quantitative version of the inverse function theorem. We provide some further

intuition, beyond the given proof, as to why the invertibility of M and the exact

controlability of φ on π(X) implies that the density is strictly positive in Remark 4.27

following the proof.

Regarding the Grammian Matrix Mt (u, V ) we make the following observation. It

shows that once this matrix is non-degenerate at a time t , it remains non-degenerate

for all later times t + s.
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Lemma 4.24 Let u ∈ X and t > 0. Suppose that V ∈ �t is such that Mt (u, V ) is

non-degenerate, cf. (4.24). Then, for any s > 0 and any Ve ∈ �t+s with Ve(r) = V (r)

for every r ∈ [0, t], the operator Mt+s(u, Ve) is also non-degenerate.

Proof of Lemma 4.24 First let u ∈ X , t > 0 and V ∈ �t be as in the statement of the

lemma, and suppose that Ve ∈ �t+s satisfies Ve(r) = V (r) for r ∈ [0, t]. We first

observe that, cf. (4.23),

〈Mt+s(u, Ve)ξ, ξ 〉X =
∑

k∈Z

∫ t

0

〈Jr ,t+s(u, Ve)σk , ξ 〉2X dr

+
∑

k∈Z

∫ t+s

t

〈Jr ,t+s(u, Ve)σk , ξ 〉2X dr .

≥
∑

k∈Z

∫ t

0

〈Jr ,t+s(u, Ve)σk , ξ 〉2X dr ,

which holds for any ξ ∈ X . Let J ∗r ,t+s be the adjoint of Jr ,t+s(u, Ve) in X . Using the

group property (4.20) and (4.7) we have

∑

k∈Z

∫ t

0

〈Jr ,t (u, V )σk , J ∗t,t+sξ 〉2X dr = 〈Mt (u, V )J ∗t,t+sξ, J ∗t,t+sξ 〉X .

From Assumption 4.13 we have that J ∗t,t+sξ 
= 0 whenever ξ . Thus, combining these

observations, we infer the desired non-degeneracy of Mt+s(u, Ve), completing the

proof. ��

The following quantitative invertibility criteria for C1 functions may be established

in a very similar fashion to the standard Inverse Function Theorem. Also note that our

statement here is a variation of Lemma 4.2.1 of [38].

Lemma 4.25 Suppose that G ⊆ C1(Rm) is a collection such that

(i) For every g ∈ G, g(0) = 0.

(ii) There is an 0 < A <∞ such that

‖∇g(0)−1‖ ≤ A for every g ∈ G. (4.37)

(iii) For some γ̄ > 0

sup
x∈Bγ̄ (0)

A‖∇g(x)−∇g(0)‖ <
1

2
for every g ∈ G. (4.38)

Then, for any γ ∈ (0, γ̄ ], there is a κ = κ(γ ) > 0 such that, for every g, Ug =
g(Bγ (0)) is open set with g diffeomorphic between Bγ (0) and Ug with

Bκ(0) ⊆ g(Bγ (0)) = Ug, for every g ∈ G. (4.39)
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Proof of Theorem 4.23 Let u ∈ X , t > 0, V ∈ �t be as in the statement of the

result and let s > 0 be such that π(φt+s(u, W )) has density pt+s( · ) with respect to

Lebesgue measure on Rm . We proceed by showing that, for any x ∈ Rm , there exists

a continuous function hx : Rm → R such that

hx (x) > 0 and

∫

Bε(x)

pt+s(y)dy ≥
∫

Bε(x)

hx (y)dy for every ε > 0. (4.40)

With such an hx the desired result, that pt+s(x) > 0 for almost every x , then follows

from the Lebesgue differentiation theorem.

To establish (4.40) for a suitable hx we begin by building Vx ∈ �t+s with

π(φt+s(u, Vx )) = x and Mt+s(u, Vx ) is non-degenerate, (4.41)

for any x ∈ Rm . By assumption Mt (u, V ) is non-degenerate. On the other hand, since

the φ is exactly controllable on π(X), there exists a piecewise linear V̂ ∈ �s so that

π(φs(φt (u, V ), V̂ )) = x . (4.42)

We now define Vx ∈ �s+t according to

Vx (r) =
{

V (r) for r ∈ [0, t]
V̂ (r)+ V (t) for r ∈ [t, t + s].

(4.43)

With (4.42) and the cocycle property (4.6) we infer the first condition in (4.41). By

Lemma 4.24, since Mt (u, V ) is non-degenerate, we conclude that Mt+s(u, Vx ) is itself

non-degenerate, yielding the second condition in (4.41).

With this Vx in hand we construct hx in terms of a suitable Girsanov density and a

small perturbations around (π Mt+s(u, Vx )π)−1. For any y ∈ Rm we take

T x
y W (τ ) = W (τ )+

m
∑


=1

y


∫ τ

0

〈Jr ,t+s(u, Vx )σk, e
〉X dr for any τ ∈ [0, t + s],

(4.44)

where we recall that the elements ei are an orthonormal basis for π(X). In particular

we have that

∫ ·

0

〈Jr ,t+s(u, Vx )σk, e
〉X dr ∈ Ht+s,

so that T x
y W is an admissible Girsanov shift for any y ∈ Rm .
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Fix a ρ ∈ C(Rm; (0,∞)) satisfing
∫

Rm ρ(y) dy = 1. From the Girsanov theorem

we infer that, for any measurable ψ : Rm → [0,∞),

∫

ψ(y)pt+s(y)dy =
∫

Rm

Eψ(π(φt+s(W )))ρ(y) dy

= E

∫

Rm

ψ(π(φt+s(T
x
y W )))Gx (y, W )ρ(y) dy

= E

∫

Rm

ψ(gx (y, W )+ π(φt+s(W )))Gx (y, W )ρ(y) dy

(4.45)

where Gx (y, W ) is the Girsanov density associated to the shift Ty W and

gx (y, Ṽ ) = π(φt+s(Ty Ṽ ))− π(φt+s(Ṽ )) (4.46)

for any Ṽ ∈ �t+s . We therefore obtain an expression for an hx from (4.45) with the

desired proprieties in (4.40) by showing that gx is invertible and changing variables.

In view of Assumption 4.13, gx (y, Ṽ ) is differentiable in y for any Ṽ ∈ �t+s and

∇gx (y, Ṽ ) = T(T x
y Ṽ )

where T : �t+s → Rm×m is the continuous map given by

(T(Ṽ ))i j :=
∑

k∈Z

∫ t+s

0

〈Jr ,t+s(u, Ṽ )σk, ei 〉〈Jr ,t+s(u, Vx )σk, e j 〉dr .

In particular we have that ∇gx (0, Vx ) := Mπ
t+s(u, Vx ). Thus, the non-degeneracy of

Mt+s(u, Vx ), (4.41), and the continity of T implies that there exists a δ > 0, α > 0,

such that,

| det∇gx (y, Ṽ )| ≥ α ‖∇gx (0, Ṽ )−1‖

≤ 1

α
‖∇gx (0, Ṽ )−∇gx (y, Ṽ )‖ <

α

2
, (4.47)

whenever |y| + ‖Ṽ − Vx‖∞,t+s < 2δ.

Observe that, choosing δ > 0 so that (4.47), we have

G := {gx ( · , Ṽ ) : ‖Ṽ − Vx‖∞,t+s < δ} ⊆ C1(Rm)

satisfies the conditions of Lemma 4.25. Picking γ = min{δ, γ̄ } we invoke the lemma

and obtain the κ > 0 so that (4.39) holds. For Ṽ we let f x ( · , Ṽ ) be the corresponding

inverse of gx ( · , Ṽ ) mapping U
Ṽ
:= gx (Bγ (0), Ṽ ) to Bγ (0). Continuing from (4.45)

and denoting H
x

δ (W ) = 1{‖W−V x‖∞,t+s<δ} we have
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∫

ψ(y)pt+s(y)dy

≥ EH
x

δ (W )

∫

Bγ (0)

ψ(gx (y, W )+ π(φt+s(W )))Gx (y, W )ρ(y) dy

= EH
x

δ (W )

∫

UW

ψ(z + π(φt+s(W )))Gx ( f x (z, W ), W )ρ( f x (z, W ))| det∇ f x (z, W )| dz

≥ EH
x

δ (W )

∫

Bκ (0)

ψ(z + π(φt+s(W )))Gx ( f x (z, W ), W )ρ( f x (z, W ))

| det∇gx ( f (z, W ), W )| dz

=
∫

Rm

ψ(z)hx (z)dz

where

hx (z) := E

[

1{‖W−V x‖∞,t+s<δ}1{|X(z,W )|<κ}Gx ( f x (X(z), W ), W )ρ( f x (X(z), W ))

| det∇gx ( f x (X(z), W ), W )|

]

and X(z, W ) = z − π(φt+s(W )). In view of (4.47), standard properties of Brownian

motion and noting that ρ and Gx are both strictly positive we therefore conclude that

hx (x) is strictly positive. Hence hx satisfies (4.40), completing the proof of the result.

��

Remark 4.26 Note that, in contrast to Theorem 4.20 which requires M to be non-

degenerate for almost every Brownian path, Theorem 4.23 simply requires that the

M be non-degenerate for a single V ∈ �t . In practice, however, we will prove an

estimate like (4.26) and use the implication (4.25) to select one path from a set of full

P measure on �t to satisfy the conditions in Theorem 4.23.

Remark 4.27 While the exact controllability of π(φ) produces, for each x ∈ Rm ,

at least one noise path Vx ∈ �t+s such that x = π(φt+s(u, Vx )) the invertibil-

ity of π Mt+s(u, Vx )π shows that the tangent space around this point x produced

by Cameron-Martin perturbations Ht+s is of full rank. Indeed, to show that

Dwπ(φt+s(u, Vx )) is of full rank in Ht+s we would like to show that, for any unit

length ξ ∈ Rm there is a corresponding perturbation Hξ ∈ Ht+s of Vx , such that

π(φt+s(u, Vx + εHξ )) ≈ x + εDwπ(φ(u, Vx ))Hξ = x + εξ, (4.48)

for 0 < ε � 1. We may produce such an Hξ by solving the following least squares

problem. Assuming that Hξ has the form Hξ = (Dwφt+s(u, Vx ))
∗πη then, cf. (4.22),

we have that ξ = Dwπ(φt+s)Hξ when η = Mπ
t−s(t, Vx )

−1ξ . Hence

Hξ = (Dwφt+s(u, Vx ))
∗π Mπ

t−s(t, Vx )
−1ξ.

yields (4.48).
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5 Examples

The goal of this section is to see how the results of Sections 3 and 4 can be applied

to study specific degenerately forced problems. In particular we will consider the

following examples illustrating different aspects of the theory introduced previously:

(i) The Reaction–Diffusion equation.

(ii) The 2D Navier–Stokes equations.

(iii) The 2D Boussinesq equations.

(iv) The 3D Euler equations.

In each example we will also see how the control results in Section 3 can be used

in conjunction with the formalism introduced in Section 4 to infer properties of the

support of the law of the random variable solving the associated stochastic partial

differential equation. In the examples (ii) and (iii), we also deduce unique ergodicity

of invariant measures in the presence of inhomogenous forcing terms. To the best of

the authors’ knowledge, the results concerning (i) and (iii) are new while the results on

(ii) and (iii) in similar functional settings have been obtained and discussed previously

in, respectively, [2,4,5,25,27,34] and [36,37,45]. Nevertheless, the examples (ii) and

(iii) illustrate the applicability of the methods of Section 3 and Section 4.

5.1 Reaction–Diffusion Equation

For a first example, we consider the following reaction–diffusion equation

∂t u − κ∂xx u = f (u)+ σ · ∂t V (5.1)

where κ > 0 is the diffusivity constant. The (scalar) equation (5.1) is posed on the

interval [0, π ] and is supplemented with the Dirichlet boundary conditions

u(t, 0) = 0 = u(t, π) for all t ≥ 0. (5.2)

Here, the nonlinearity f is assumed to be an odd polynomial of the form

f (v) =
2n−1
∑

k=0

bkv
k, n ≥ 2. (5.3)

We suppose that the leading-order coefficient b2n−1 in the nonlinearity is such that

b2n−1 ≤ −ν

for some ν > 0. In particular this implies that, for some constant K depending only

on f

v f (v) ≤ K − ν

2
v2n and sup

v∈R

f ′(v) ≤ K (5.4)
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for all v ∈ R. The term σ · V takes the form

σ · ∂t V =
∑

k∈Z
σk∂t Vk (5.5)

The controlled directions Z ⊆ Z≥1 = {1, 2, 3, . . .} are a finite subset with σk(x) =
sin(kx) and V = (Vk)k∈Z is a fixed element in

� = {V : (−∞,∞) → R|Z| continuous with V (0) = 0},

following the notation introduced in Section 4.

We proceed with our analysis of (5.1)–(5.2) by recalling the cocycle setting in

Proposition 5.1 followed by the main control results in Theorem 5.3. The main scaling

estimates are encapsulated in Lemmas 5.9 and 5.10 below.

5.1.1 Mathematical Setting, Cocycle Formulation

Regarding the mathematical formulation of (5.1)–(5.2) we consider weak solutions.

Smoother classes of solutions of (5.1)–(5.2) could just as well be considered but we

omit detailed discussion for simplicity and clarity of presentation.6 We refer to, e.g.,

[47,52] for further background on general mathematical theory surrounding (5.1) and

its variants.

The phase space for the cocycle associated with (5.1)– (5.2) is taken to be the Hilbert

space X = L2 = L2([0, π ]) equipped with the standard norm ‖ · ‖ and inner product

〈 · , · 〉. Note that {σk : k = 1, 2, 3, . . .} provides an orthogonal basis for L2. As usual

we take H1
0 = H1

0 ([0, π ]) to be all of the elements in L2 whose (weak) derivative

is in L2 and which vanishes at 0 and π . Some of the forthcoming estimates will also

involve bounds in L2n = L2n([0, π ]) where 2n−1 is the degree of the polynomial f .

Of course, (5.1) does not make sense directly for generic elements V in �. Following

Remark 4.3, we define the solution u(t, u0, V ) of (5.1) corresponding to the initial

condition u(0, u0, V ) = u0 ∈ L2 by u(t, u0, V ) := v(t, u0, V ) + σ · V where

σ · V =
∑

k∈Z σk(x)Vk(t) and v = v(t, u0, V ) solves the equation

∂tv − κ∂xx (v + σ · V ) = f (v + σ · V ), v(0) = u0, (5.6)

in the weak sense.

To make this all precise, we have the following well posedness results for (5.1)–

(5.2) which is compatible with the setting of Section 3 and much of Section 4. The

proof of this well posedness result is based on standard a priori estimates which we

outline below in Appendix A.1.1.

Proposition 5.1 Consider (5.1)–(5.2) with f as in (5.3) and Z finite. Then, for any

V ∈ � and u0 ∈ L2, there exists a unique weak solution u = u( · , u0, V ), namely

u ∈ L2
loc([0,∞); H1

0 ) ∩ C([0,∞), L2) ∩ L2n
loc([0,∞), L2n) (5.7)

6 Note also that (5.1) is just one example of a wide variety of reaction–diffusion equations which are in

principal accessible to the formalism developed above in Sections 3 and 4. See also, Remark 5.6 below.

123



Saturation in infinite-dimensional control problems Page 49 of 103 16

with u(0) = u0 and such that v := u − σ · V solves (5.6) in the weak sense; that

is integrated against smooth, compactly supported test functions. Furthermore, the

induced mapping φ : [0,∞) × L2 × � → L2 given by φt (u0, V ) = u(t, u0, σ · V )

is a continuous adapted cocycle in the sense of Definition 4.1.

Remark 5.2 The notion of solutions to (5.1) given in Proposition 5.1 subsumes two

more classical notions which arise as special cases. If V belongs to the Cameron-Martin

space Ht as defined in (4.4), then the more usual sense of weak solution solutions

of (5.1) are well defined and coincide with the solutions provided by Proposition 5.1.

On the other hand, if we replace V ∈ �by a standard two-sided |Z|-dimensional Brow-

nian motion W , then (5.1) may be regarded as a stochastic partial differential equation

for which we may obtain solutions in the setting of infinite-dimensional stochastic

analysis as in, e.g., [16]. Regardless, since the noise is additive, upon replacing V

by W in (5.6) and defining u(t, u0, W ) = v(t, u0, W ) + σ · W we obtain the same

pathwise solution as the one defined using the stochastic analysis approach. See, e.g.,

[10,12].

5.1.2 Statement of the Main Results for Equation (5.1)

In order to state the main control results for the reaction–diffusion equation (5.1), we

first outline further assumptions we make on the noise/control directions σ = (σk :
k ∈ Z). Let

f∗(v1, v2, . . . , v2n−1) = b2n−1v1v2 . . . v2n−1 (5.8)

denote the multilinear form corresponding to the leading-order term in f and define

L2-subspaces Xm , m ≥ 0, by

Y = X0 = span{σk : k ∈ Z} (5.9)

and

Xm = span{Xm−1 ∪ { f∗(h1, h2, . . . , h2n−1) : hi ∈ Xm−1}}. (5.10)

We recall as in Definition 2.5 that the pair ( f∗, σ ) satisfies Hörmander’s condition on

L2 if
⋃

m≥0 Xm is dense in L2.

Our main control result is the following:

Theorem 5.3 Suppose that we are under the conditions of Proposition 5.1 and that

( f∗, σ ) satisfies Hörmander’s condition on L2. Let π : L2 → L2 be any continuous

linear projection onto a finite-dimensional subspace π(X) ⊆ L2. Then the associated

cocycle φ is approximately controllable on L2 and exactly controllable on π(X) in

the sense of Definition 4.6.

Example 5.4 With the use of elementary trigonometric identities, one may verify the

Hörmander condition algebraically for a wide variety of configurations of Z and f in

(5.1). For example recall that

123



16 Page 50 of 103 N. E. Glatt-Holtz et al.

sin( j x) sin(kx) sin(lx)

= 1

4
(sin((l + j − k)x)+ sin((l − j + k)x)− sin((l + j + k)x)

− sin((l − j − k)x))

for any j, k, l. Thus, in the case when the degree of f is 3, the Hörmander condition

is satisfied if, for instance, {1, 2} ⊂ Z .

Recall that the structure of the cocycle φ allows us to define a Markov semigroup

Pt with associated transitions Pt (u0, A), u0 ∈ L2 and A ⊆ L2 Borel, as in (4.10)

and (4.11). Combining the previous result with Lemma 4.7 and Corollary 4.9 of

Section 4, we have the following immediate consequence.

Corollary 5.5 Suppose the assumptions of Theorem 5.3 are satisfied. For any t > 0,

u0 ∈ L2 and B ⊆ L2 open we have Pt (u0, B) > 0. Furthermore, any invariant

measure μ for Pt satisfies μ(B) > 0 for all B ⊆ L2 open.

Remark 5.6 Note that a much broader class reaction–diffusion of equations in regards

to boundary conditions, the structure of the reaction term f and the spatial dimension

are all accessible to the formalisms presented in Section 3 and Section 4. We choose

to focus on the special case presented in (5.1)–(5.2) for simplicity and clarity of

exposition in our first example.

Similarly, to keep the presentation of this first example simple, we will avoid the

Malliavin calculus and focus on the rigorous scaling arguments giving control on the

phase space L2 as stated in Theorem 5.3. Indeed, to be able to apply the results of

Section 4.4, we need to establish a non-degeneracy for the Malliavin matrix associated

with (5.1) al la Definition 4.17. In previous work, [27], the analysis of this operator was

carried out for (5.1) in a smoother space where the maximum principal is immediately

applicable. It is expected that the Malliavin analysis carried out in [27] could be

readily extended to the L2 setting followed here. Conversely, with some further work,

the controlability results of this section could be generalized to arbitary higher order

Sobolev spaces which was the setting of [27].

We leave both questions, along with more general more general formulations of

(5.1), for future work.

5.1.3 Proof of the Main Control Result

Given the existence of the cocycle φ, observe that by taking the parameter space

Y = span{σk : k ∈ Z}, we have defined a one-parameter family of continuous

(global) semigroups (t, u0, h) �→ 
h
t u0 : [0,∞)× L2 × Y → L2 by setting


h
t u0 = φt (u0, Vh)

where Vh ∈ � is defined by Vh(t) = th. See Definition 3.9 in Section 3.3. Throughout,

we will denote this one-parameter family using the notation (
, Y ) and take F =
{(
, Y )}.
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The proof of Theorem 5.3 follows immediately from Corollary 3.15 once we estab-

lish the following result.

Theorem 5.7 For each m ≥ 0, (ρ, Xm) ∈ Satu(F).

Here we recall that (ρ, Xm) is the one-parameter family of continuous (global)

semigroups defined by

ρh
t u0 = u0 + th, t ≥ 0, u0 ∈ L2, h ∈ Xm,

and Xm is as in (5.10). The notion of the uniform saturate Satu(F) of a one-parameter

family of continuous (global) semigroups F is given in Definition 3.10 above.

Theorem 5.7 will be proven inductively using the next two scaling estimates. The

first result, Lemma 5.9, starts the inductive generation of the subspaces Xm by showing

that (ρ, X0) ∈ Satu(F). In light of the heuristics outlined in Section 2, the second

scaling estimate, Lemma 5.10 allows us to ‘push’ existing directions through the

nonlinearity f to iteratively show that (ρ, Xm) ∈ Satu(F) for all m ≥ 0.

Remark 5.8 By the proof of Proposition 2.6, we recall that Xm , m ≥ 1, satisfies

Xm = span
{

Xm−1 ∪ { f∗(h) : h ∈ Xm−1}
}

.

Note that this simplifies the argument since we will only need to see how to generate

directions of the form f∗(h) for h ∈ Xm−1.

Lemma 5.9 Let K1 ⊆ L2 and K2 ⊆ X0 be compact and fix ε, t > 0. Then there exists

λ0 > 0 such that for all λ ≥ λ0

sup
u0∈K1,h∈K2

‖
λh
t/λu0 − ρh

t u0‖ < ε. (5.11)

In particular, (ρ, X0) ∈ Satu(F).

Lemma 5.10 Fix m ≥ 0 and let K1 ⊆ L2 and K2 ⊆ Xm be compact. Then for all

ε, t > 0, there exists λm > 0 such that for all λ ≥ λm

sup
u0∈K1,h∈K2

‖ρ−λ2h

λ−1 
0
t/λ2n−1 ρλ2h

λ−1 u0 − ρ
f∗(h)

t u0‖ < ε (5.12)

where we recall that 2n − 1 is the degree of the polynomial nonlinearity f .

Before turning to the proof of these two lemmata let us first make precise how

Theorem 5.7 follows assuming these two bounds. The proofs of these each of these

lemmata are given immediately afterwards.

Proof of Theorem 5.7 We note that (ρ, X0) ∈ Satu(F) by Lemma 5.9. Also, since

f∗(αu) = α2n−1 f∗(u) and 2n − 1 is odd, Lemma 5.10 implies that if (ρ, Xm) ∈
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Satu(F) for some m ≥ 0, then for all h ∈ Xm , (ρ, Ym+1(h)) ∈ Satu(F) where

Ym(h) := {α f∗(h) : α ∈ R}. Since the ray semigroup has the property that

ρ
αg
t ρ

βh
t u0 = ρ

(αg+βh)
t u0

for all g, h, u0 ∈ L2, t > 0 and α, β ∈ R, it follows that (ρ, Xm+1) ∈ Satu(F). This

finishes the proof. ��

Proof of Lemma 5.9 We proceed to establish a bound suitable for (5.11) by estimating

as follows

‖
λh
t/λu0 − ρh

t u0‖ ≤ ‖
λh
t/λu0 − ρh

t πN u0‖ + ‖u0 − πN u0‖ (5.13)

where N > 0 is to be determined. Here, πN : L2 → L2 is the projection onto the

Fourier modes of size N or less, i.e.,

πN u =
N
∑

k=1

uk sin(kx), where uk = 〈u, sin(kx)〉

and 〈 · , · 〉 denots the L2 inner product. Introducing the shorthand notations

uλ(t) = 
λh
t/λu0, wN (t) = ρh

t πN u0, vN
λ (t) = 
λh

t/λu0 − ρh
t π N u0 = uλ(t)− wN ,

we observe that vN
λ satisfies,

∂tv
N
λ −

κ

λ
∂xxv

N
λ =

1

λ
f (uλ)+

κ

λ
∂xxw

N , (5.14)

cf. (2.10) above. Thus, taking an L2 inner product with vλ

d

dt
‖vN

λ ‖2 + 2κ

λ
‖∂xv

N
λ ‖2 = −2κ

λ
〈∂xv

N
λ , ∂xw

N
λ 〉

+ 2

λ
〈vN

λ , f (wN )〉 + 2

λ
〈vN

λ , f (uλ)− f (wN )〉.

Since f (u)− f (v) = f ′(ξu,v)(u− v) for some ξu,v lying between u and v and since,

cf. (5.4), we have that supz∈R f ′(z) ≤ K , we infer

d

dt
‖vN

λ ‖2 ≤2K

λ
‖vN

λ ‖2 + κ

λ
‖wN‖2

H1 +
C

λκ
‖ f (wN )‖2

L1

≤2K

λ
‖vN

λ ‖2 + C

λ
(1+ ‖wN‖2(2n−1)

H1 ),

where we have also used the 1D Sobolev embedding of H1 ⊆ L∞ and Young’s

inequality. Here, crucially C = C(κ) > 0 is independent of λ > 0. Gronwall’s

inequality then implies that

123



Saturation in infinite-dimensional control problems Page 53 of 103 16

‖vN
λ (t)‖2 ≤

{

‖u0 − πN u0‖2 + C

λ

∫ t

0

(1+ ‖wN‖2(2n−1)

H1 ) ds

}

e
2K
λ

t

≤C

(

‖u0 − πN u0‖2 +
1+ ‖πN u0‖2(2n−1)

H1 + ‖h‖2(2n−1)

H1

λ

)

.

With this bound, (5.13) and the inverse Poincaré inequality, we conclude that, for any

u0 ∈ L2 and h ∈ X0,

‖
λh
t/λu0 − ρh

t u0‖ ≤ C1

(

‖u0 − πN u0‖ +
1+ N 2n−1‖u0‖2n−1 + Ñ 2n−1‖h‖2n−1

√
λ

)

(5.15)

where Ñ = max{k > 0 : k ∈ Z}. Here we emphasize that the constant C1 =
C1(κ, K , t) > 0 is independent of λ > 0, u0 ∈ L2, h ∈ X0 as well as N > 0 and Ñ .

Let ε, t > 0 and K1 ⊂ L2, K2 ⊂ X0 compact be arbitrarily given. Cover K1 with a

finite collection of balls Bε̄(v
(1)
0 ), . . . , Bε̄(v

(M)
0 ) where ε̄ = ε/(4C1) and the constant

C1 is as in (5.15). Then, from (5.15), we obtain

sup
u0∈K1,h∈K2

‖
λh
t/λu0 − ρh

t u0‖ ≤ C1 max
j=1,...,M

sup

u0∈Bε̄(v
(M)
0 )

(2‖u0 − v
( j)
0 ‖ + ‖v( j)

0 − πN v
( j)
0 ‖)

+ N 2n−1C1√
λ

(

1+ sup
u0∈K1

‖u0‖2n−1 + sup
h∈K2

‖h‖2n−1

)

≤ C1 max
j=1,...,M

‖v( j)
0 − πN v

( j)
0 ‖ + C2 N 2n−1

√
λ

+ ε

2
(5.16)

for any N ≥ Ñ where the constant C1 = C1(κ, K ) is independent of the compact sets

K1, K2 both C1 and C2 are independent of N , λ > 0 and ε > 0. We can thus choose

N > 0 sufficiently large so that

C1 max
j=1,...,M

‖v( j)
0 − πN v

( j)
0 ‖ ≤ ε

4
(5.17)

Since this choice of N is taken independent of C2 the desired bound, (5.11), follows

for all λ ≥ λ0 = 16C2
2 N 2(2n−1)

√
ε

. This finishes the proof of Lemma 5.9. ��

Proof of Lemma 5.10 Fix m ≥ 0 and let K1 ⊆ L2
0 and K2 ⊆ Xm be compact. Fix

ε, t > 0. Maintaining the notation that πN : L2 → L2 denotes the projection onto the

modes of size N or less, we let
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wN
λ (t) = ρ−λ2h

λ−1 
0
t/λ2n−1 ρλ2h

λ−1 u0,

r N (t) = ρ
f∗(h)

t πN u0,

φN
λ (t) = ρ−λ2h

λ−1 
0
t/λ2n−1 ρλ2h

λ−1 u0 − ρ
f∗(h)

t πN u0 = wλ(t)− r N .

As in the proof of the previous lemma N > 0 is a free parameter which will be fixed

futher on below.

Referring back to (2.15) we see that wN
λ satisfies

∂tw
N
λ −

κ

λ2n−1
∂xx (w

N
λ + λh) = 1

λ2n−1
f (wN

λ + λh).

With this equation and using also that wN
λ = φN

λ + r N , we conclude that φN
λ obeys

∂tφ
N
λ −

κ

λ2n−1
∂xxφ

N
λ =

κ

λ2n−1
∂xx (r

N + λh)+ f (wN
λ + λh)− f (r N + λh)

λ2n−1

+ f (r N + λh)− f ∗(λh)

λ2n−1
. (5.18)

Multiplying (5.18) by φN
λ and integrating we obtain

d

dt
‖φN

λ ‖2 + 2κ

λ2n−1
‖∂xφ

N
λ ‖2 = 2κ

λ2n−1
〈φN

λ , ∂xxr N + λ∂xx h〉

+ 2

λ2n−1
〈φN

λ , ( f (wN
λ + λh)− f (r N + λh))

+ ( f (r N + λh)− f ∗(λh))〉. (5.19)

Since f (wN
λ +λh)− f (r N+λh) = f ′(ξ)φ for some ξ between wN

λ +λh and r N−λh

and using (5.4) we have that

2〈φN
λ , f (wN

λ + λh)− f (r N + λh)〉
λ2n−1

≤ 2K

λ2n−1
‖φN

λ ‖2 (5.20)

On the other hand, from (5.3), we have

f (r N + λh)− f ∗(λh) =
2n−2
∑

k=0

bk

k
∑

l=0

(

k

l

)

λlhl(r N )k−l

+ b2n−1

2n−2
∑

l=0

(

2n − 1

l

)

λlhl(r N )2n−1−l .
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Thus, for λ ≥ 1, we have

〈φN
λ , f (r N + λh)− f ∗(λh)〉

λ2n−1
≤ C

λ
‖φN

λ ‖(1+ ‖h‖2n−1

L4(2n−1))(1+ ‖r N‖2n−1

L4(2n−1))

(5.21)

for a constant C depending only on f and which is in particular independent of λ ≥ 1.

Combining (5.19)–(5.21) we infer:

d

dt
‖φN

λ (t)‖ ≤ 2K

λ2n−1
‖φN

λ ‖

+
C(‖r N‖H2 + λ‖h‖H2 + λ2n−2(1+ ‖h‖2n−1

L4(2n−1))(1+ ‖r N‖2n−1

L4(2n−1)))

λ2n−1

≤ 2K

λ2n−1
‖φN

λ ‖

+ C
(1+ ‖h‖2n−1

H2 )(1+ ‖r N‖2n−1

H2 )

λ

≤ 2K

λ2n−1
‖φN

λ ‖

+ C
(1+ ‖h‖2n−1

H2 )(1+ N 2(2n−1)‖u0‖2n−1 + ‖ f ∗(h)‖2n−1

H2 )

λ

where we have also used Sobolev embedding and the inverse Poincaré inequality.

Here the generic constant C > 0 is independent of N , λ and the data. Hence, with

Grönwall’s inequality

‖φN
λ (t)‖ ≤ C

(

‖u0 − πN u0‖ +
(1+ ‖h‖2n−1

H2 )(1+ N 2(2n−1)‖u0‖2n−1 + ‖ f ∗(h)‖2n−1

H2 )

λ

)

(5.22)

where again the constant C = C(t, κ, f ) is independent of λ, N , u0 and h.

With (5.22) in hand we infer the desired bound (5.12) by employing an argument

very similar to the one used in the proof of the previous Lemma. See (5.16) above.

The proof of Lemma 5.10 is now complete. ��

5.2 2D Incompressible Navier–Stokes Equations

For our next example, we explain how the scaling and saturation framework can be

applied to the 2D Navier–Stokes equations and its stochastic counterpart. In particular,

it is worth underlining that the control framework developed here allows us to show

unique ergodicity for the 2D stochastic Navier–Stokes equations established in [25]

even when the equations are subject to a more or less arbitrary background forcing.

Many of the results in this subsection have been previously established, although

with different techniques. We will therefore be more sparing in technical details in this
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section. We refer the reader to [2,4,5,34] and to the introduction for further references

concerning the low-mode control problem for the 2D Navier–Stokes equations.

The 2D Navier–Stokes equations take the form

∂t u+ u · ∇u− ν�u+ ∇ p = f + ρ · ∂t V , ∇ · u = 0, (5.23)

where the unknowns are the velocity u = (u1, u2) : T2 → R2 and pressure p : T2 →
R, the latter of which is a constraint maintaining the divergence-free condition of the

flow. As in the aforementioned works, we consider the 2D Navier–Stokes equations

on T2 so that the nonlinear interactions are more tractable to analyze. The parameter

ν > 0 in (5.70) is the kinematic viscosity. The volumetric source term f = ( f1, f2) :
T2 → R2 may be used to model components of a large-scale stirring mechanism,

but it will be taken to have an essentially arbitrary form for the mathematical results

which follow. As in the previous example, ρ represents a finite set of sinusoidal control

directions driven by the actuators V . See (5.26) below for the precise formulation of

the controls we consider.

As with the other systems in this section, when we consider the stochastic process

that results from taking V to be Brownian motion in (5.27) we obtain solutions of

the stochastic Navier–Stokes equation. Of course, for general V ∈ � we do not make

sense of (5.23) directly. Rather, we use the additive structure of the noise/control term

and work with a shifted equation. See Remark 4.3 and Proposition 5.11 below.

For simplicity and to connect with previous results, we consider (5.23) in its vorticity

formulation. Taking ξ = curl(u) = ∇⊥ · u = ∂x1 u2 − ∂x2 u1, we have

∂tξ + u · ∇ξ − ν�ξ = g + σ · ∂t V , u = K ∗ ξ (5.24)

where g = curl(f) = ∂x1 f2 − ∂x2 f1. In the above, K denotes the Biot-Savart kernel

which recovers u from ξ , thus allowing us to consider the vorticity formulation of

(5.23) in a closed form.7

Following the setup in [25], we will consider controls of the type

σ · V =
∑

k∈Z
(v0

k (t) cos(k · x)+ v1
k (t) sin(k · x)), V (t) = (v0

k (t), v1
k (t))k∈Z ,

(5.26)

where V ∈ � := {V : (−∞,∞) → R2|Z| continuous with V (0) = 0}. Here the

controlled set of frequencies Z sit in the upper half plane

Z ⊆ Z2
+ :=

{

j = ( j1, j2) ∈ Z2

=0 : j1 > 0 or j1 = 0, j2 > 0

}

.

7 Here recall that given any ξ ∈ H we define the stream function ψ as the solution of �ψ = ξ supplemented

with periodic boundary conditions. We then take

u = ∇⊥ψ = ∇⊥(�)−1ξ (5.25)

so that the operator K has the symbol k⊥/|k|2.
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We show that configurations of Z for which we have two non-orthogonal frequencies

of distinct length are controllable in what follows.

Mathematical Formulations

Let us begin by futher recalling the mathematical setting of (5.24). As in the previous

example, cf. Remark 4.3, we will consider solutions of the shifted system

∂t ξ̄ +K(ξ̄ + σ · V ) · ∇(ξ̄ + σ · V )− ν�(ξ̄ + σ · V ) = g (5.27)

where K is the Biot-Savart operator. We thus define the solution of (5.24) correspond-

ing to initial condition ξ0 and ‘noise path’ V ∈ � as ξ( · , ξ0, V ) := ξ̄ ( · , ξ0, V )+σ ·V ,

where ξ̄ ( · , ξ0, V ) is the solution of (5.27) with the given V starting from ξ0. Regard-

ing the functional setting for (5.24) and its associated cocycle, we consider solutions

evolving on

H =
{

ξ ∈ L2(T2) :
∫

T2
ξ dx = 0

}

(5.28)

recalling that solutions of (5.24) maintain the following mean-free condition:

∫

T2
ξ dx = 0

provided that the source g does.8 In what follows, we maintain the notation ‖ · ‖ and

〈 · , · 〉 for the usual L2 norm and inner product. We denote the higher order Sobolev

spaces according to Hm := Hm(T2) ∩ H for m ≥ 1.

We have the following:

Proposition 5.11 Fix any g ∈ H and assume that σ consists of a finite number of

frequencies (i.e. suppose Z is a finite set). Then, for any ξ0 ∈ H and any V ∈ �, there

is a unique ξ( · ) = ξ( · , ξ0, V ) with

ξ ∈ L2
loc([0,∞); H1) ∩ C([0,∞); H) (5.29)

with ξ̄ = ξ − σ · V solving (5.27) (in the usual weak sense). This solution ξ( · , ξ0, V )

depends continuously in [0,∞) × H × � on t, ξ0 and V so that (5.24) uniquely

defines a continuous adapted cocycle φ in the sense of Definition 4.1. Additionally,

this cocycle satisfies Assumption 4.13.

Much of Proposition 5.11 is essentially standard and we refer the reader to, e.g.,

[11,51] for the necessary estimates and technical details. In regards to the cocycle

associated with (5.24) satisfying Assumption 4.13, see the Appendix in [25].

8 As usual this assumption is mathematically convenient as it guarantees that the Poincaré inequality holds.

The general case follows in any case from a Galilean transformation.
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LowMode Control Results

With the mathematical framework provided by Proposition 5.11 in hand, we now

state the main controllability results for (5.24). For these results we make use of the

following spanning condition on the controlled directions Z in (5.26) found in [25]:

Definition 5.12 We say that Z is a sufficent control set if:

(i) There exists two elements k1, k2 ∈ Z such that |k1| 
= |k2|.
(ii) Integer linear combinations of elements of Z generate Z2.

As a concrete example we have that Z is a sufficent control set if Z ⊇
{(1, 0), (1, 1)}.

Remark 5.13 As shown in [25], the condition given in Definition 5.12 yields the span-

ning condition (2.20). Also note that, for any k

(K ∗ sin(k · x)) · ∇ sin(k · x) = cos2(k · x)
k⊥ · k
|k|2 = 0 (5.30)

and similarly for other combinations of sines and cosine functions. Thus the ‘rela-

tive degree conditions’ given above in Section 2.4.2 apply and we may obtain the

spaces (2.18) in an iterative fashion with scaling and saturation arguments. Properties

analogous to (5.30) also play a key role for the Boussinesq and Euler examples below.

Our main control result is the following:

Theorem 5.14 Suppose that Z ⊆ Z2
+ defining the controlled directions in (5.24) is

a sufficient control set in the sense of Definition 5.12. For any g ∈ H, consider

the cocycle φ corresponding to Z and g for the 2D Navier–Stokes equations (defined

according to Proposition 5.11). Then for any continuous, finite dimensional projection

π : H → Rm , φ is approximately controllable and exactly controllable on π(H) as

in Definition 4.6; that is, for any ξi , ξ f ∈ H and any time t > 0, ε > 0 there exists a

V ∈ � such that

‖ξ(t, ξi , V )− ξ f ‖ < ε and π(ξ(t, ξi , V )) = π(ξ f ).

This result follows immediately from scaling estimates of the type (5.11) and (5.12)

analyzed in the previous example. Since we will detail such estimates the fluids setting

in the analogous but more difficult cases of the Boussinesq equation (5.32)–(5.33) (see

Lemmas 5.22, 5.23) and the 3D Euler equations (5.70) (cf. Lemmas 5.35, 5.36) we omit

further details here. Note that, as for the 3D Euler equations below, the approximate

controllability of 2D Navier–Stokes equations under the conditions in Theorem 5.14

can also be established in Hm for every m ≥ 1.
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Implications for the Stochastic Navier–Stokes Equations

Let us now describe some implications of Theorem 5.12 for the stochastic 2D Navier–

Stokes equations. That is, in vorticity form we now consider

dξ + (u · ∇ξ − ν�ξ) dt = g dt + σ dW , u = K ∗ ξ. (5.31)

As before, the solution evolves on the periodic box T2, K denotes the Biot-Savart

kernel, and g is any element in H . The stochastic forcing σ dW maintains the structure

given in (5.26). Solutions ξ(t, ξ0, W ) of (5.31) define a Markov transition kernel via

Pt (ξ0, A) = P(ξ(t, u0, W ) ∈ A)

where ξ0 is any element on H and A ⊆ H is Borel. As in the previous example, we

take φ to be the cocycle corresponding to (5.24) defined according to Proposition 5.11.

We have the following results concerning (5.31):

Theorem 5.15 Consider any g ∈ H and any σ corresponding to a Z which is a

sufficent control set in the sense Definition 5.12. Then:

(i) The resulting Markov kernel defined by (5.31) possesses exactly one invariant

measure μ which is ergodic. Moreover, supp μ = H.9

(ii) For any ξ0 ∈ H, t > 0 and any continuous projection π : H → Rm onto a finite-

dimensional subspace, the probability law of π(ξ(t, ξ0)) is absolutely continuous

with respect to Lebesgue measure on Rm and its probability density is almost

everywhere positive.

Theorem 5.15 may be established using [25,27,34] combined with Theorem 5.14

and the results in Section 4. For the first item, we proceed by establishing the con-

dition required by Corollary 4.12. The asymptotic strong Feller condition (4.16) is

demonstrated exactly as in [25,27] and relies in particular on a spectral analysis of

the Malliavin matrix associated to (5.31). See Definition 4.17 and the condition (4.26)

above. The other condition in Corollary 4.12 concerns approximate controlability and

follows from Theorem 5.14. The full support of the invariant measure is an immediate

consequence of Theorem 5.14 combined with Corollary 4.9. Regarding the second

item concerning the regularity of the law of π(ξ), we again combing the estimate

(4.26) with the exact controllability guaranteed by Theorem 5.14 to infer the desired

support properties from Theorems 4.20, 4.23.

Remark 5.16 In the case when g = 0, unique ergodicity of (5.31) follows using the

same methods as above but one does not need the control theoretic approach outlined

in Section 3. Indeed when g = 0, the solution in the absence of noise relaxes to zero as

t →∞; i.e., the global attractor is trivial. Thus setting the control to be identically zero

then implies that 0 is in the support of any ergodic invariant probability measure. Hence

by ergodic decomposition and the asymptotic strong Feller property, there can be only

9 The Markov semigroup {Pt } may furthermore be shown to be mixing in a suitable Wasserstein distance.

See [26].
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one such measure. On the other hand when g 
= 0, the time infinity deterministic

dynamics are highly non-trivial. Thus one needs further, delicate control arguments to

establish topological irreducibility needed to ensure unique ergodicity of the stochastic

system. It is important to point out that the main control result in the case of g 
= 0

follows by the main results in [4,5] using the Agrachev-Sarychev approach.

5.3 Boussinesq Equations

We next consider an example involving the Boussinesq Equations for convective flu-

ids. These equations couple the Navier–Stokes equation to an active scalar equation

evolving the temperature (or some other proxy determining the density) of the fluid.

The crucial approximation here is that the density may be regarded as constant with

the important exception of terms due to buoyancy forces.

In this example, we are interested in the case where a volumetric random forc-

ing/control acts only in the equation for the density (or temperature) through a few

select frequencies. Specifically, we consider a 2D formulation of the Boussinesq equa-

tions in the absence of boundaries. This specific setup is partially motivated by the

recent work [19]. More generally, note that stochastic perturbations acting in the tem-

perature equation as in (5.33) below has a significant physical motivation as a model

for radiogenic heating and other volumetric heat sources driving turbulent convection.

See [20,21,43,48].

From the point of view of the control theoretic formalism developed here, it is worth

emphasizing that the Boussinesq equations present a more delicate set of nonlinear

interactions compared with the other examples considered in this section. In particular,

this example illustrates that scalings detailed in Section 2, while very powerful, are by

no means the only way of leveraging the saturation formalism introduced in Section 3.

5.3.1 Mathematical Formulation

Following [19] it will be convenient to consider the Boussinesq Equations in terms of

the vorticity of the flow. In this formulation the equations read

∂tξ + u · ∇ξ − ν�ξ = g∂xθ, ξ(0) = ξ0 (5.32)

∂tθ + u · ∇θ − κ�θ = h0 + σ · ∂t V , θ(0) = θ0. (5.33)

where ξ = ∇⊥ · u = ∂x u2 − ∂yu1 is the vorticity of the velocity u = (u1, u2) and θ

is the temperature of the fluid. The system (5.32)–(5.33) is posed on T2 = [−π, π ]2
with periodic boundary conditions.10

The physical parameters in the problem are ν, κ, g > 0, which correspond to the

kinematic viscosity, thermal diffusivity and gravitation constants, respectively. The

thermal body force h0 + σ · ∂t V is such that h0 : T2 → R is any fixed sufficiently

smooth function and

10 Note that, as with the 2D Navier–Stokes equations in (5.24) the vorticity formulation in (5.32)–(5.33)

represents a closed system of equations as u is uniquely recovered from ξ via the Biot-Savart law. See (2.25)

above.
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σ · V =
∑

k∈Z
(v0

k (t) cos(k · x)+ v1
k (t) sin(k · x)), V (t) = (v0

k (t), v1
k (t))k∈Z ,

(5.34)

where V ∈ � := {V : (−∞,∞) → R2|Z| continuous with V (0) = 0}. Also, in the

sum above,

Z ⊆ Z2
+ :=

{

j = ( j1, j2) ∈ Z2
0 : j1 > 0 or j1 = 0, j2 > 0

}

are the directions which are directly actuated by the term σ ·∂t V . We will make further

assumptions on Z below for the control results in Theorem 5.18. See also Remark 5.19.

Note that, as in the previous example of the 2D Naiver-Stokes equations, the system

(5.32)–(5.33) preserves the mean value of solutions. As such we will again restrict our

discussion to mean-zero solutions. In particular, we will invoke the Poincaré inequality

in the estimates below.

For most of the following discussion, we consider solutions of the Boussinesq

Equations evolving continuously in L2. Thus accounting for the mean zero condition,

we take the phase space to be

H =
{

U = (ξ, θ) ∈ (L2(T2))2 :
∫

ξ dx =
∫

θ dx = 0

}

.

We will at times also consider smoother solutions of (5.32)–(5.33) and hence make

use of the Hilbert spaces Hm := Hm(T2)2 ∩ H for m ≥ 1.

Following the discussion in Remark 4.3 as well as the setting of Section 5.1, we

recall that the solution U (t) = (ξ(t), θ(t)) = (ξ(t, U0, V ), θ(t, U0, V )) of (5.32)–

(5.33) with initial condition U0 = (ξ0, θ0) ∈ H is defined by

U (t) = (ξ(t), θ(t)) := (ξ̃ (t, U0, V ), θ̃ (t, U0, V ))+ (0, σ · V )

where Ũ := (ξ̃ (t, U0, σ · V ), θ̃ (t, U0, σ · V )) satisfies (ξ̃ (0), θ̃ (0)) = (ξ0, θ0) and

∂t ξ̃ + ũ · ∇ ξ̃ − ν�ξ̃ = g∂x (θ̃ + σ · V ) (5.35)

∂t θ̃ + ũ · ∇(θ̃ + σ · V )− κ�(θ̃ + σ · V ) = h0. (5.36)

We recall that the shifted equation above allows us to consider solutions of (5.32)–

(5.33) when V is merely continuous. Additionally, if V is replaced by a standard

two-sided Brownian motion W on R2|Z| in the equations above, the resulting random

process U = (ξ, θ) is the same as the one defined by (5.32)–(5.33), again with V

replaced by W , using the Itô calculus. See Remarks 4.3, 5.2 above.

With these preliminaries in hand, we next state the main structural result which

allows us to apply the results of Section 3 and Section 4.

Proposition 5.17 For every U0 = (ξ0, θ0) ∈ H and V ∈ �, there exists a unique

U = (ξ, θ) ∈ L2
loc([0,∞); H1) ∩ C([0,∞); H)
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such that U (0) = U0 and Ũ = (ξ, θ − σ · V ) solves (5.35)–(5.36) in the usual weak

sense. Moreover,

(i) The mapping φ : [0,∞) × H × � → H defined by φt (U0, V ) = (ξ(t, U0, σ ·
V ), θ(t, U0, σ ·V )) is a continuous adapted cocycle in the sense of Definition 4.1

which moreover satisfies each of the conditions in Assumption 4.13.

(ii) If U0 ∈ Hm for some m ≥ 1, the corresponding solution U maintains the

regularity

U ∈ L2
loc([0,∞); Hm+1) ∩ C([0,∞); Hm).

(iii) For m ≥ 0 let X0(m) denote the subspace of Hm given by

X0(m) = span

{(

0

sin(k · x)

)

,

(

0

cos(k · x)

)

: k ∈ Z

}

. (5.37)

Then the mapping 
 : [0,∞)× Hm × X0(m)→ Hm defined by


h
t U0 = (ξ̃ (t, U0, Vh), θ̃ (t, U0, Vh))+ (0, σ · Vh),

where U0 = (ξ0, θ0) ∈ Hm and Vh(t) = th, is a one-parameter family of

continuous (global) semigroups on H m in the sense of Definition 3.9.

Proposition 5.17 is proved in Appendix A.1 using standard a priori bounds.

Statement of the Main Results

Our main goal in this section is to prove the following control result concerning

(5.32)–(5.33).

Theorem 5.18 Suppose that Z ⊇ {(1, 0), (0, 1)}. Then we have the following control-

lability results (cf. Definitions 3.3, 4.6 above):

(i) For any continuous, linear projection π : H → H onto a finite dimensional

subspace π(H), φ is approximately controllable on H and exactly controllable

on π(H).

(ii) Let m ≥ 0 and F(m) denote the one-parameter family of continuous (global)

semigroups defined by

F(m) := {(
, X0(m))} (5.38)

where X0(m) was defined in (5.37). Then for any continuous, linear projection

π : Hm → Hm onto a finite-dimensional subspace π(Hm), D(F(m)) is approx-

imately controllable on Hm and exactly controllable on π(Hm).

Remark 5.19 We make the assumption that Z ⊇ {(1, 0), (0, 1)} for concreteness and

simplicity of presentation. Similar to the the low-mode control problem for the Navier–

Stokes equation presented in the previous example, this assumption can be replaced
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with a general algebraic condition that Z contains elements that generate Z2 with the

appropriate integer linear combinations. See Remark 5.3 in [19] and the accompanying

diagrams for a further discussion of this point.

Invoking the results in Section 4, we obtain the following corollary as a simple

consequence of the previous control results and Proposition 5.17.

Corollary 5.20 Let Pt denote the Markov transition kernel associated to the cocycle

φt (U0, W ) defined by (5.32)–(5.33) via Proposition 5.17. Then we have the following:

(1) For all t > 0 and U0 ∈ H, supp(Pt (U0, · )) = H.

(2) There exists a unique invariant measure μ for Pt and this measure has full support,

i.e., supp(μ) = H.

(3) Suppose that π : H → H is a continuous, linear projection onto a finite-

dimensional subspace π(H) and let t > 0, U0 ∈ H. Then the random variable

πφt (U0, W ) has a density pt with respect to Lebesgue measure on π(H) which

is strictly positive almost everywhere.

Remark 5.21 Although we establish the stronger control result above on the spaces

Hm , we remain in the L2 phase space to deduce properties of random variables

φt (U0, W ), U0 ∈ L2 and t > 0, where W is a standard two-sided, 2|Z|-dimensional

Brownian motion defined on the Wiener space (�, P). This is allows us to connect

seamlessly with the results in [19] concerning the spectral properties of the Malliavin

covariance matrix Mt (U0, W ) corresponding to φt (U0, W ).

Proof of Corollary 5.20 Conclusion (1) of the result follows immediately by combining

Theorem 5.18 and Proposition 5.17 with Lemma 4.7. Regarding the second item (2),

the existence of an invariant measure μ is established with standard energy estimates

and the Krylov-Bogoliubov averaging procedure. For the question of the uniqueness

of μ, we rely on Corollary 4.12. Here the asymptotic strong Feller condition (4.16) fol-

lows precisely as in [19, Proposition 2.6]. 11 The second requirement of Corollary 4.12,

the approximate controllability condition, is precisely the content of Theorem 5.18.

Finally to establish conclusion (3), we combine Theorem 5.18 and Proposition 5.17

with Theorems 4.20, 4.23 from Section 4. Fixing t > 0 and U0 ∈ L2 and applying

Theorem 4.1 of [19] with Remark 4.18 of this paper, we find that the Malliavin matrix

Ms(U0, W ) associated with (5.32)-(5.33) is non-degenerate for any 0 < s ≤ t . The

fact that the random variable πφt (U0, W ) is absolutely continuous with respect to

Lebesgue measure follows by combining Theorem 5.18, Proposition 5.17 and The-

orem 4.20. Regarding the claim that the associated density is almost surely positive,

we fix any 0 < s < t so that Ms(U0, W ) is non-degenerate. This then implies the

existence of a fixed deterministic path V ∈ � such that the Gramian matrix Ms(U0, V )

is non-degenerate and Theorem 4.23 applies. The proof is now complete. ��

The remainder of this section is devoted to establishing Theorem 5.18. Before diving

into this proof, we introduce some further notation which eases the presentation below

and allows us to connect to the setup presented in [19].

11 Strictly speaking, [19] establishes (4.16) without the inhomogeneous term h0. However, this additional

term does not introduce further complications for establishing the non-degeneracy condition.
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Notation

For U = (ξ, θ) ∈ R2, we define mappings πξ , πθ : R2 → R by πξU = ξ and

πθU = θ . On the other hand for α ∈ R, we let ιξ , ιθ : R → R2 be given by

ιξα =
(

α

0

)

and ιθα =
(

0

α

)

.

For U = (ξ, θ), Ũ = (ξ̃ , θ̃ ) : T2 → R2 sufficiently smooth, we define the following

operators

AU := −νιξ�ξ − κιθ�θ,

B(U , Ũ ) := ιξ [(K ∗ ξ) · ∇ ξ̃ ] + ιθ [(K ∗ ξ) · ∇ θ̃ ],
GU = −gιξ∂xθ, (5.39)

where recall that K denotes the Biot-Savart kernel and ν, κ, g > 0 are the positive

constants defined in (5.32)–(5.33). We let

F(U ) = AU + B(U , U )+ GU . (5.40)

For the basis elements, we write

σ 0
k (x) = ιθ cos(k · x) := ιθe0

k (x), σ 1
k (x) = ιθ sin(k · x) := ιθ e1

k (x), (5.41)

and

ψ0
k (x) = ιξ cos(k · x) := ιξ e0

k (x), ψ1
k (x) = ιξ sin(k · x) := ιξ e1

k (x), (5.42)

where k ∈ Z2 and x ∈ T2. For N ≥ 1, we take

HN = {ψ j

k , σ
j

k : |k| ≤ N , j ∈ {0, 1}} (5.43)

and take PN to be the projection onto this subspace of Hm for m ≥ 0. Combining

these notations, observe that we may rewrite (5.32)–(5.33) in an abbreviated fashion

as

d

dt
U + F(U ) = ιθ h0 + ιθ (σ · ∂t V ), U (0) = U0. (5.44)

Proof of the Main Control Result

With these preliminaries in hand we now prove Theorem 5.18. As in the reaction–

diffusion and 2D Navier–Stokes examples, Theorem 5.18 is established via a suitable

sequence of scaling lemmata. In this example, however, the path taken to produce new

directions inductively using the nonlinearity is different than the one taken for the
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reaction–diffusion equation, hence different than the one discussed in the hueristics

section (Section 2).

We proceed by first stating the scaling lemmata without proof. We then combine

them and leverage Corollary 3.15 to prove Theorem 5.18. The section concludes

by proving each of the scaling estimates based on energy bounds and commutator

estimates.

First, we state the pure noise scaling estimate which starts the inductive generation

of controllable directions

Lemma 5.22 Fix m ≥ 0, t > 0 and suppose that K1 ⊆ Hm and K2 ⊆ X0(m) are

compact sets where recall that X0(m) is defined in (5.37). Then

lim
λ→∞

sup
U0∈K1,h∈K2

‖
λh
t/λU0 − ρh

t U0‖Hm = 0. (5.45)

where, as usual ρ denotes the ray semigroup (2.6). Consequently, we have that

(ρ, X0(m)) ∈ Satu(F(m))) with F(m) defined as in (5.38).

For the next scaling estimate, fixing α ∈ R we introduce the following dynamics

defined by the equation

∂tU = α

(

g∂x e

j

κ�e

j − b(πξU , e


j )

)

= −Aασ 

j − Gασ 


j − B(αU , σ 

j ),

U (0) = U0, (5.46)

where

b(ξ, θ) = (K ∗ ξ) · ∇θ, (5.47)

with 
 ∈ {0, 1}, j ∈ Z2
+ and the elements e


j , σ 

j are the sinusoidal directions defined

in (5.41). One can readily check that for any U0 ∈ Hm , equation (5.46) has a unique

global solution belonging to Hm . Furthermore, using cancelations like (5.30) one

infers that the solution of (5.46) is explicitly given by

�
ασ 


j

t U0 := U (t) = U0 + tα

(

g∂x e

j

κ�e

j − b(πξU0, e


j )

)

. (5.48)

Thus, for each 
 ∈ {0, 1}, j ∈ Z2
+ and m ≥ 0, (�, {ασ 


j : α ∈ R}) defines a one-

parameter family of global semigroups on Hm according to (5.48).

Lemma 5.23 Let m ≥ 0, t > 0 and fix j ∈ Z2
+, 
 ∈ {0, 1}. Also, let K1 ⊆ Hm and

K2 ⊆ {ασ 

j : α ∈ R} be compact. Then

lim
λ→∞

sup
U0∈K1,φ∈K2

‖ρ−λ2ιθφ

λ−1 
0
t/λ ρ

λ2ιθφ

λ−1 U0 − �
φ
t U0‖Hm = 0. (5.49)
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Remark 5.24 Observe that although F defined by (5.40) is a second-degree poly-

nomial, the second-order terms that appear in the expansion governing Wλ(t) =
ρ
−λ2ιθφ

λ−1 
0
t/λρ

λ2ιθφ

λ−1 U0 are zero since B(σ l
k, σ

l
k) = 0 for any l ∈ {0, 1}, k ∈ Z2

+.

See (5.67) below and recall (2.15) in the heuristics section above.

Our next scaling ‘estimate’ is somewhat surprising given that it produces an exact

formula. See [19, Lemma 5.1] and the surrounding computations. Note that particular

composition of �’s below is motivated by the definition of the Lie bracket between

two vector fields, for it immediately follows from (5.48) that �
−ασ n

k
t = �

ασ n
k

−t .

Lemma 5.25 Let m ≥ 0. Then for any U0 ∈ Hm , k, j ∈ Z2
+, 
, n ∈ {0, 1} and any

α, β ∈ R,

�
−ασ n

k
t �

−βσ 

j

t �
ασ n

k
t �

βσ 

j

t U0 = U0 + t2αβ[[F, σ 

j ], [F, σ n

k ]], (5.50)

for every t ≥ 0 where

[[F, σ 

j ], [F, σ n

k ]] = g

(

0

b(∂x en
k , e


j )− b(∂x e

j , en

k )

)

. (5.51)

We recall that

[G1, G2] = DG2G1 − DG1G2 (5.52)

is the Lie Bracket of C1 vector fields Gi : Hm → Hm . The computation yielding

(5.51) is detailed in [19, Section 5.1].

Lastly, we note the following scaling result, whose proof we omit as it is nearly

identical to the proof of Lemma 5.23. This will allow us to generate all nontrivial rays

in basis vorticity directions.

Lemma 5.26 Fix m ≥ 0, j, k ∈ Z2
+ and 
, n ∈ {0, 1} and t > 0. Let K1 ⊆ Hm be

compact and 0 < N <∞. Then we have

lim
λ→∞

sup
U0∈K1,|α|+|β|≤N

‖ρ
−λ2(αψ l

j+βψn
k )

λ−1 
0
t/λ2ρ

λ2(αψ l
j+βψn

k )

λ−1 U0 − ρ
αβ[[F,ψ


k ],ψn
j ]

t U0‖Hm = 0

where, cf. (5.52),

[[F, ψ

k ], ψn

j ] := ιξ [(K ∗ e

k) · ∇en

j + (K ∗ en
j ) · ∇e


k]

with F defined according to (5.40) and the elements ψ and e are defined by (5.42).

With the scaling Lemmas 5.22, 5.23, 5.25 and 5.26 in hand we now proceed to

combine these bounds to prove Theorem 5.18
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Proof of Theorem 5.18 Once again, we show that the conditions of Corollary 3.15 apply

for a suitable sequence of subspaces Xn . Let m ≥ 0 and observe that Lemma 5.22

implies that (ρ, X0(m)) ∈ Satu(F(m)). Let Y θ
0 (m) = X0(m). For n ≥ 1 we iteratively

define

Y θ
n (m) := span

{

Y θ
n−1(m) ∪ {[[F, φ], [F, φ̃]] : φ, φ̃ ∈ Y θ

n−1(m)}
}

.

Invoking Proposition 5.2 from [19], one may show inductively that, for each n ≥ 1, Y θ
n

consists of spans of elements of the form σ 

j defined according to (5.41). In particular,

Y θ
n (m) ⊆ Hm . Combining Lemma 5.23 with Lemma 5.25 and Remark 3.16, we

conclude that

(ρ, Y θ
n (m)) ∈ Satu(F(m)), (5.53)

for all n ≥ 1.

Now, according Remark 5.3 and Lemma 6.10 of [19], observe that

span{σ 

j : j ∈ Z2

+, 
 ∈ {0, 1}} ⊆
⋃

n≥0

Y θ
n (m). (5.54)

Thus, due to Lemma 5.23, we have that, cf. (5.48),

(�, {ασ 

j : α ∈ R}) ∈ Satu(F(m)) for every j ∈ Z2

+, 
 ∈ {0, 1}. (5.55)

Now since {e

j = πθσ



j : j ∈ Z2

+, 
 ∈ {0, 1}} is a basis for Hm(T2) for any m ≥ 0,

we combine (5.53) and (5.55) with (5.54) to deduce

(ρ, αψ

j ) ∈ Satu(F(m)) whenever j = ( j1, j2) ∈ Z2

+, j1 
= 0, 
 ∈ {0, 1}. (5.56)

See Definition 3.10 above. Note carefully that, due to the presence of the ∂x in (5.48),

the ray semigroups in (5.56) omit the directions ψ

j along the y-axis where j1 = 0. To

recover these missing directions, we invoke Lemma 5.26 and elementary trigonometric

identities as in, e.g., [25]. Combining this observation with (5.53) and (5.56) and

invoking Remark 3.16, we finally conclude that (ρ, Xn(m)) ∈ Satu(F(m)) where

Xn(m) =
{

{ψ

j : j ∈ Z2

+, | j | ≤ n, 
 ∈ {0, 1}} ∪ {σ 

j : j ∈ Z2

+, | j | ≤ n, 
 ∈ {0, 1}}
}

.

Since ∪n≥1 Xn(m) is a dense subset of Hm , we now infer Theorem 5.18 from Corol-

lary 3.15, thus concluding the proof. ��

We now turn to proving each scaling estimate.

Proof of Lemma 5.22 We begin by introducing the following shorthand notation

Vλ(t) = (ξ̄λ(t), θ̄λ(t)) = 
λh
t/λU0 − ρ

ιθ h
t Ũ0 and ρ(t) = (ρξ (t), ρθ (t)) = ρ

ιθ h
t Ũ0.
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Here choice of the initial condition Ũ0 is made precise below.

Arguing as in (2.10) and (5.14), we obtain the following system for Vλ:

∂t ξ̄λ +
1

λ
[(K ∗ (ξ̄λ + ρξ ) · ∇(ξ̄λ + ρξ )− ν�(ξ̄λ + ρξ )] = 1

λ
g∂x (θ̄λ + ρθ ), (5.57)

∂t θ̄λ +
1

λ
[(K ∗ (ξ̄λ + ρξ )) · ∇(θ̄λ + ρθ )− κ�(θ̄λ + ρθ )] = 1

λ
h0. (5.58)

We begin by establishing 5.22 in the L2 topology. Observe that

1

2

d

dt
(‖ξ̄λ‖2 + ‖θ̄λ‖2)+1

λ
(ν‖∇ ξ̄λ‖2 + κ‖∇ θ̄λ‖2)

= −1

λ

(

〈(K ∗ (ξ̄λ + ρξ ) · ∇ρξ , ξ̄λ〉

+ 〈(K ∗ (ξ̄λ + ρξ ) · ∇ρθ , θ̄λ〉
+ ν〈∇ ξ̄λ,∇ρξ 〉 + κ〈∇ θ̄λ,∇ρθ 〉

− 〈g∂x (θ̄λ + ρθ ), ξ̄λ〉 − 〈h0, θ̄λ〉
)

= −1

λ
(T 0

1 + T 0
2 + T 0

3 + T 0
4 + T 0

5 + T 0
6 ). (5.59)

With Agmon’s inequality and the smoothing properties of the Biot-Savart kernel, we

obtain

|T 0
1 + T 0

2 | ≤ C‖K ∗ (ξ̄λ + ρξ )‖L∞‖ρ‖H1‖Vλ‖ ≤ C(‖ρ‖2
H1‖Vλ‖

+ ‖ρ‖H1‖Vλ‖‖Vλ‖H1) (5.60)

≤ C‖ρ‖2
H1(‖Vλ‖2 + 1)+ ν

2
‖∇ ξ̄λ‖2 + κ

2
‖∇ θ̄λ‖2 (5.61)

where C does not depend on λ. For the remaining terms we simply estimate

|T 0
3 + T 0

4 + T 0
5 + T 0

6 | ≤ C(‖Vλ‖2 + ‖ρ‖2
H1 + ‖h0‖2)

+ ν

2
‖∇ ξ̄λ‖2 + κ

2
‖∇ θ̄λ‖2. (5.62)

Here again C is independent of λ. Combining the preceding two bounds with (5.59)

yields

d

dt
‖Vλ‖2 ≤ C

λ
[(‖ρ‖2

H1 + 1)‖Vλ‖2 + ‖ρ‖2
H1 + ‖h0‖2].

Hence, from Grönwall’s inequality and recalling the definition of ρ we infer

‖Vλ(t)‖2 ≤ exp
(

C(‖h‖2
H1 + ‖Ũ0‖2 + 1)

)

(

‖U0 − Ũ0‖2 + 1+ ‖h0‖2

λ

)

(5.63)
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where note carefully that C may depend on t (and other universal quantities) but is

independent of λ. Arguing in the same fashion as in (5.16) where Ũ0 is taken to be

suitable Fourier truncation of U0, now yields the desired bound (5.45) for m = 0.

We next turn to estimates in Hm for m ≥ 1. Here we have

1

2

d

dt
(‖ξ̄λ‖2

Hm + ‖θ̄λ‖2
Hm )+ 1

λ
(ν‖ξ̄λ‖2

Hm+1 + κ‖θ̄λ‖2
Hm+1)

= −1

λ

(

∑

|β|≤m

〈(∂β(K ∗ (ξ̄λ + ρξ ) · ∇(ρξ + ξ̄λ))

− (K ∗ (ξ̄λ + ρξ ) · ∇∂β ξ̄λ), ∂
β ξ̄λ〉

+
∑

|β|≤m

〈∂β(K ∗ (ξ̄λ + ρξ ) · ∇(ρθ + θ̄λ))

− (K ∗ (ξ̄λ + ρξ ) · ∇∂β θ̄λ), ∂
β θ̄λ〉

+ ν〈ξ̄λ, ρ
ξ 〉Hm+1 + κ〈θ̄λ, ρ

θ 〉Hm+1

− 〈g∂x (θ̄λ + ρθ ), ξ̄λ〉Hm − 〈h0, θ̄λ〉Hm

)

= −1

λ
(T1 + T2 + T3 + T4 + T5 + T6).

Regarding the first two terms, Sobolev embedding, interpolation and the one-degree

smoothing of the Biot-Savart kernel implies

|T1 + T2| ≤ C(‖K ∗ (ξ̄λ + ρξ )‖W m,4‖Vλ‖W m,4‖Vλ‖Hm

+ ‖K ∗ (ξ̄λ + ρξ )‖W m,4‖ρ‖W m+1,4‖Vλ‖Hm )

≤ C(‖ Bvl + ρξ‖Hm‖Vλ‖1/2

Hm+1‖Vλ‖3/2
Hm + ‖ξ̄λ

+ ρξ‖Hm‖ρ‖Hm+2‖Vλ‖Hm )

≤ ν

2
‖ξ̄λ‖2

Hm+1 +
κ

2
‖θ̄λ‖2

Hm+1 + C(‖Vλ‖6
Hm + ‖ρ‖4

Hm+2 + 1). (5.64)

Regarding the remaining terms we have

|T3 + T4 + T5 + T6| ≤ C(‖Vλ‖2
Hm + ‖ρ‖2

Hm+1 + ‖h0‖2
Hm )

+ ν

2
‖ξ̄λ‖2

Hm+1 +
κ

2
‖θ̄λ‖2

Hm+1 .

Fixing T > 0 and combining these inequalities we find

d

dt
‖Vλ‖2

Hm ≤
C

λ

(

‖Vλ‖6
Hm + ‖Ũ0‖4

Hm+2 + T 4‖h‖4
Hm+2 + ‖h0‖2

Hm + 1
)

, (5.65)
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for all t ∈ [0, T ], where C is independent of λ > 0. Invoking Lemma B.2, we obtain

the bound

‖Vλ(t)‖2
Hm ≤‖U0 − Ũ0‖2

Hm Rλ(t, ‖U0 − Ũ0‖2
Hm + ‖Ũ0‖4

Hm+2

+ T 4‖h‖4
Hm+2 + ‖h0‖2

Hm + 1)

+ (‖Ũ0‖4
Hm+2 + T 4‖h‖4

Hm+2 + ‖h0‖2
Hm + 1)

× Rλ(t, ‖U0 − Ũ0‖2
Hm + ‖Ũ0‖4

Hm+2

+ T 4‖h‖4
Hm+2 + ‖h0‖2

Hm + 1)− 1) (5.66)

for every t ∈ [0, T ∗λ ∧ T ) where we recall that Rλ is defined in (B.2).

We now complete the proof by using (5.66) in similar fashion to (5.15), (5.16) above

to infer (5.45). Fix any ε > 0 and cover K1 with a finite number of ε balls B(ε, V
j

0 ),

j = 1, . . . , M . For N > 0, define

Nג := sup
U0∈K1,h∈K2

(4‖U0‖2
Hm + ‖PN U0‖4

Hm+2 + T 4‖h‖4
Hm+2 + ‖h0‖2

Hm + 1)

where recall that PN is the projection onto HN as in (5.43). Note that this quantity is

finite for every N in view of the standing assumptions on the compact sets K1, K2.

Noting the monotonicity of Rλ and invoking (5.66) we find

sup
U0∈K1,h∈K2

‖
λh
t/λU0 − ρh

t U0‖2
Hm

≤ 4 sup
U0∈K1,h∈K2

‖
λh
t/λU0 − ρh

t PN U0‖2
Hm + 4 sup

U0∈K1

‖PN U0 −U0‖2
Hm

≤ 16ε + 16 max
j=1,...,M

‖PN V
j

0 − V
j

0 ‖
2
Hm (Rλ(t, Nג )+ 1)+ Nג (Rλ(t, Nג )− 1)

which holds on the interval t ∈ [0, T ∗λ Nג) ) ∧ T ). Picking N large enough

that max j=1,...,M ‖PN V
j

0 − V
j

0 ‖2
Hm ≤ ε and noting that for any fixed N ,

limλ→∞ T ∗λ Nג) ) = ∞ and limλ→∞ Rλ(t, Nג ) = 1 we obtain that

lim sup
λ→∞

sup
U0∈K1,h∈K2

‖
λh
t/λU0 − ρh

t U0‖2
Hm ≤ 48ε.

for all t ∈ [0, T ]. Since this holds for any ε > 0 (5.45) now follow for m ≥ 1,

completing the proof. ��

Remark 5.27 Note that the bound (5.64) is rather crude and can be significantly sharp-

ened to improve (5.65) and hence the rates of convergence as λ→∞ in Lemma 5.70.

Similar remarks apply to the bound (5.68) below and hence to rates of convergence

in Lemma 5.23. Since these rates have no immediate bearing on our results, here we

omit the more refined estimates.
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Proof of Lemma 5.23 Fix U0 ∈ K1 and φ ∈ K2. Recycling some of the notation used

in the proof of the previous scaling result, in this proof we let

Wλ(t) = ρ
−λ2ιθφ

λ−1 
0
t/λρ

λ2ιθφ

λ−1 U0,

�(t) = (γ ξ , γ θ ) := �
φ
t Ũ0,

Vλ(t) = (ξ̄λ(t), θ̄λ(t)) = Wλ(t)− �(t).

Arguing as in (2.15) and referring back to (5.46), using the extended phase space

notation we obtain

d

dt
Vλ =−

1

λ
[A(Wλ + λφ)+ B(Wλ + λφ, Wλ + λφ)

+ G(Wλ + λφ)− ιθ h0]
+ Aφ + Gφ + B(�, φ)

=− 1

λ
[A(Vλ + �)+ B(Vλ + �, Vλ + �)

+ G(Wλ + �)− ιθ h0] − B(Vλ, φ) (5.67)

where, recalling (5.39), we have used that B(φ, Wλ + λφ) = 0 as πξφ = 0.

Notice that (5.67) is quite similar in formulation to (5.57)–(5.58). Here B(Vλ, φ)

the only ‘new’ term. Observe that

|〈B(Vλ, φ), Vλ〉| = |〈(K ∗ ξ̄λ) · ∇φ, ξ̄λ〉| ≤ C‖Vλ‖2.

Proceeding otherwise as in Lemma 5.22 with estimates analogous to (5.62) and (5.62),

we obtain

d

dt
‖Vλ‖2 ≤C‖Vλ‖2 + C

λ
[(‖�‖2 + 1)‖Vλ‖2 + ‖�‖2

H1 + ‖h0‖2]

≤C‖Vλ‖2 + C

λ
[(‖Ũ0‖2 + 1)‖Vλ‖2 + ‖Ũ0‖2

H1 + ‖h0‖2 + 1]

where the constant C may depend on the compact set K2 and t > 0 but is crucially

independent of λ > 0. Here recall (5.48) to justify the second bound. Taking X(s) =
eCs‖Vλ(s)‖2 we infer that d

dt
X ≤ C

λ
[(‖Ũ0‖2 + 1)X + ‖Ũ0‖2

H1 + ‖h0‖2 + 1]. We

therefore obtain a bound very similar to (5.63) but which has a constant prefactor eCt

which is still independent of λ. The bound (5.49) now follows for m = 0 by arguing

as in the proof of Lemma 5.9.

Regarding the convergence in Hm for m ≥ 1, notice that,

|
∑

|β|≤m

〈∂β B(Vλ, φ), ∂β Vλ〉| ≤ C‖Vλ‖2
Hm .
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Otherwise, arguing as in (5.64), we obtain

d

dt
‖Vλ‖2

Hm ≤ C‖Vλ‖2
Hm +

C

λ

(

‖Vλ‖6
Hm + ‖Ũ0‖4

Hm+2 + ‖h0‖2
Hm + 1

)

(5.68)

with C independent of λ. Here we take X(s) = ‖Vλ‖2
Hm eCt so that d

dt
X ≤ C

λ
(X6 +

‖Ũ0‖4
Hm+2+‖h0‖2

Hm +1). Thus, from Lemma B.2, we deduce a bound very similar to

(5.66) but with a constant prefactor eCt . The desired convergence (5.49) thus follows

for any m ≥ 1 by arguing mutatis mutandis as in the Proof of Lemma 5.22. ��

Proof of Lemma 5.25 The proof is a direct computation. From (5.48) it immediately

follows that

�
ασ n

k
t �

βσ 

j

t U0 = U0 + t

(

g∂x (αen
k + βe


j )

κ�(αen
k + βe


j )− b(πξU0, αen
k + βe


j ))

)

− t2gαβ

(

0

b(∂x e

j , en

k )

)

,

where recall b is as in (5.47). Since α, β ∈ R and U0 ∈ Hm were arbitrary, we can

use the formula above and cancelations in b like (5.30) to conclude that

�
−ασ n

k
t �

−βσ 

j

t �
ασ n

k
t �

βσ 

j

t U0 = U0 + t2αβg

(

0

b(∂x en
k , e


j )− b(∂x e

j , en

k )

)

:= U0 + t2αβ[[F, σ 

j ], [F, σ n

k ]], (5.69)

which is the desired identity. ��

5.4 3D Incompressible Euler Equation

We next turn to the low mode control problem for the three-dimensional incompressible

Euler equation. In contrast to the previously considered equations, this example is

notable since:

(i) We will see that dissipation is not needed to establish controllability results using

the formalism developed in Section 3.

(ii) A major open problem is to determine whether the Euler equations develop sin-

gularities starting from smooth initial conditions. See, e.g., [14]. Our saturation

formalism introduced in Section 2 allows us to show that the addition of a low

mode control to the Euler equations can act to prevent blow up of solutions. See

Theorem 5.32 and Remark 5.33 below.

Before proceeding further, a few preliminary remarks are in order. First, since

we will consider the Euler equations in the absence of boundaries, the results and

techniques presented in this section also apply to the 3D incompressible Navier–

Stokes equations with only minor modifications. We omit details for the simplicity
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and clarity of presentation. Second, it may be noted that our presentation does not focus

on applications to the stochastic counterpart of the Euler equations. Note that while

it is technically feasible to generalize some of the results Section 4 to locally defined

dynamics, we avoid this generalization here given the complexity of the results as they

already stand. To see how such a generalization is possible in the finite-dimensional

setting of SDEs, see [7,24,28].

Regarding existing literature concerning the controllability of the Euler equation,

let us mention [36,37,45] and also [41,44] for related work on the 3D Navier–Stokes

equations. The reference [36] treats the same control problem as below but using the

Agrachev-Sarychev approach in the functional setting of Hm for an arbitrary but fixed

m ∈ N. Below we treat the dynamics on the space C∞ = ∩m≥0 Hm using the methods

of Section 3. In particular, because m ∈ N can be arbitrary the main result in [36]

implies the main control result for this dynamics (Theorem 5.112 below). For general

background on the mathematical theory of inviscid, incompressible flow, see [33,35].

Mathematical Formulation

The 3D Euler equations are

∂t u+ (u · ∇)u+ ∇ p = g + h,

∇ · u = 0, u(0) = u0. (5.70)

The equations (5.70) are posed on the torus T3 = [0, 2π ]3 with periodic boundary

conditions, and the unknowns are the fluid velocity field u = (u1, u2, u2) : T3 → R3

and the pressure p : T3 → R. The term g+h represents an external volumetric force.

We assume that g is a fixed background forcing and that h is a control which takes values

in a finite dimensional control parameter space X0. Specifically we consider examples

where X0 consists of trigonometric vector fields in order to make our computations

tractable. A precise possible formulation for h is given below. See (5.77) and (5.78).

Throughout what follows, we will assume that there is no mean flow on the initial

condition u0 or on the external forcing terms g and h; that is,

∫

T3
u0(x) dx =

∫

T3
g(x) dx =

∫

T3
h(x) dx = 0.

Consequently, this mean-free condition will be preserved by the solution of (5.70).

Regarding the local semigroup formulation of (5.70), we consider C∞ smooth

solutions as follows. We define the spaces Hm for m ≥ 0 by

Hm =
{

u ∈ Hm(T3)3 : ∇ · u = 0,

∫

u dx = 0

}

. (5.71)
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We recycle previously used notation for the L2 norm ‖ · ‖ and inner product 〈 · , · 〉,
as well as the notation used for Hm norms ‖ · ‖Hm . We let

X :=
{

u ∈ C∞(T3)3 : ∇ · u = 0,

∫

u dx = 0

}

=
⋂

m≥0

Hm . (5.72)

where C∞(T3) is the collection of smooth, periodic functions. In this example, the

ambient (Frechét) phase space is (X , d∞) where the metric d∞ is given by12

d∞(v, v̄) =
∞
∑

m=0

2−m(1 ∧ ‖v − v̄‖Hm ).

Let us next recall some results concerning the local (in time) existence and unique-

ness of smooth solutions of (5.70). For this we fix a ‘death state’ /∈ X .

Proposition 5.28 Fix any g ∈ X and any finite dimensional space X0 ⊆ X .

(i) For any u0 ∈ X and any h ∈ X0, there exists a unique 0 < Tu0,h ≤ ∞ and

u( · ) = u( · , u0, h) ∈ C([0, Tu0,h),X ) (5.73)

solving (5.70) such that if Tu0,h <∞, then

lim sup
t→Tu0,h

‖∇u(t)‖L∞ = ∞. (5.74)

(ii) Take (Tu0,h)u0∈X ,h∈X0
to be the collection of positive times defined in (i) and

Φh

t u0 :=

{

u(t,u0,h) when t < Tu0,h,

when t Tu0,h.

Then the mapping (t,u0,h) Φh

t u0 : [0, ) X0 is a one-

parameter family of continuous local semigroups on (X , d∞) parametrized by

X0 in the sense of Definition 3.9.

The proof of Proposition 5.28 is fairly standard (see [33,35]) and is based on a

priori estimates which we recall below in Appendix A.3.

The Control Parameter Space and Algebraic Conditions

With the basic mathematical setting for (5.70) in hand, we detail the assumptions on

the control parameter space X0 which will allow us to prove exact control results.

For this purpose, we begin by defining a divergence-free trigonometric basis as

follows. For each k ∈ Z3

=0, pick â

(0)
k , â

(1)
k ∈ R3 such that

â
(0)
k · k = â

(1)
k · k = â

(0)
k · â(1)

k = 0, |â(0)
k |

2 = |â(1)
k |

2 = 1

4π
. (5.75)

12 Note that this is equivalent to the usual Fréchet topology on C∞ via Sobolev embedding.
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For k ∈ Z3

=0 and l, m ∈ {0, 1}, we define

ek,l,m = 2â
(l)
k Re(ime−ik·x ) =

{

2â
(l)
k cos(k · x) if m = 0,

2â
(l)
k sin(k · x) if m = 1.

We denote

Fk := span{ek,l,m : l, m ∈ {0, 1}}, (5.76)

for any k ∈ Z3

=0. Notice that Fk = F−k for any k ∈ Z3


=0.

To specify the control space X0 for (5.70), we consider any subset Z ⊆ Z3

=0 and

define

X0 = span{ek,l,m : k ∈ Z, m, l ∈ {0, 1}} = span{Fk : k ∈ Z} (5.77)

so that, in particular, the control h has the form

h(t) = σ · α =
∑

k∈Z,
l,m∈{0,1}

αk,l,m(t)ek,l,m . (5.78)

Note that the control parameter α takes values in R4|Z|.

Remark 5.29 To simplify our presentation, we restrict to the case when each wave

vector k is ‘fully-controlled’. Note that a very similar restriction on the control config-

uration was imposed above for both the 2D Navier–Stokes equations and Boussinesq

equations studied previously above; see (5.26) and (5.34), respectively.

Below we will show that following algebraic condition on Z , identified in [41], is

sufficient to establish controllability properties for (5.70).

Definition 5.30 Let j, k ∈ Z3

=0. We say that j+ k is an admissible move from j, k if

j, k are linearly independent and |j| 
= |k|. (5.79)

Here | · | denotes the standard Euclidean norm. Let Z0 := Z and for n ≥ 1 define Zn

inductively by

Zn := {l ∈ Z3

=0 : l = k + j, l an admissible move from k, j ∈ Zn−1} ∪ Zn−1.

We say that Z is a determining set of modes if

Z∞ :=
⋃

n≥0

Zn = Z3

=0. (5.80)
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Remark 5.31 It is possible to give a complete algebraic characterization of con-

figurations Z ⊂ Z3

=0 which are determining sets of modes. See Proposition 5.2

in [41] for a detailed discussion of this point. On the other hand, variations on

the conditions given in Definition 5.30 are possible to guarantee the controllabil-

ity of (5.70). In particular, we will show that controllability follows if, for example,

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ Z .

Statement of the Main Result

With these preliminaries in hand, we now state the main result of this section.

Theorem 5.32 Take F = {(
, X0)} to be the associated one-parameter family of

continuous local semigroups defined by (5.70) and let π : X → X be any continuous,

linear projection operator onto a finite-dimensional subspace π(X ) ⊆ X . Suppose

that either of the following conditions is satisfied:

(i) Z is a determining set of modes according to Definition 5.30.

(ii) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ Z.

Then D(F) is approximately controllable on X and exactly controllable on π(X ) in

the sense of Definition 3.3. Here recall that D(F) is defined in (3.7).

Remark 5.33 A notable consequence of this result is that it implies blow-up can be

averted in equation (5.70) by allowing control over a few low modes. Moreover, this is

still true even in the presence of an arbitrary the fixed background forcing term g ∈ X .

The proof of Theorem 5.32 is based on three lemmata which we state next. The

first concerns the algebraic structure of the nonlinear terms in (5.70), while the second

and third results provide quantitative bounds on the usual scalings (2.9) and (2.14).

For the first Lemma it is convenient to introduce some notation for nonlinear portion

of (5.70). Given any f, f̃ ∈ X ,

B(f, f̃) = P(f · ∇ f̃ + f̃ · ∇f) (5.81)

where P is the Leray projection operator onto mean-free, divergence-free vector fields.

Equivalently we may write

B(f, f̃) = f · ∇ f̃ + f̃ · ∇f +∇q (5.82)

where q : T3 → R solves

−�q = ∇ · (f · ∇ f̃ + f̃ · ∇f).

In particular this shows that B(f, f̃) ∈ X whenever f, f̃ ∈ X . See, for example, [11,51]

for further details.

Note that even though B is a second-degree polynomial nonlinearity, a cancellation

condition similar to the situation described in Section 2.4.2 holds for B. This cancella-

tion allows us to ‘reach’ successively higher frequencies though the scaling analysis.
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Lemma 5.34 The following algebraic relationships between B defined by (5.81) and

Fk given as (5.76) hold.

(i) For every k ∈ Z3

=0 we have that

B(e, ẽ) = 0 for all e, ẽ ∈ Fk. (5.83)

(ii) For every j, k ∈ Z3

=0,

span {B(e, ẽ) : e ∈ Fj, ẽ ∈ Fk} ⊆ span{Fj−k ∪ Fj+k}. (5.84)

If j + k is an admissible move from j, k ∈ Z3

=0, then equality holds in (5.84);

that is,

span {B(e, ẽ) : e ∈ Fj, ẽ ∈ Fk} = span{Fj−k ∪ Fj+k}. (5.85)

(iii) Finally,

F(1,1,1) ⊆ span {B(B(e, ẽ), ˜̃e) : e, ẽ, ˜̃e ∈ F(1,0,0) ∪ F(0,1,0) ∪ F(0,0,1)}. (5.86)

Turning to quantitative bounds on scalings we have:

Lemma 5.35 Let t > 0 and fix compact sets K1 ⊆ X and K2 ⊆ X0. Then there

exists λ0 = λ0(K1, K2, t) > 0 sufficiently large such that for all λ ≥ λ0 we have

that 
λh
t/λu0 ∈ X for all u0 ∈ K1, h ∈ K2. In other words, defining Tu0,h as in

Proposition 5.28, we have for λ ≥ λ0

λ inf
u0∈K1,h∈K2

Tu0,λh ≥ t . (5.87)

Moreover

lim
λ→∞

sup
u0∈K1,h∈K2

d∞(
λh
t/λu0, ρ

h
t u0) = 0. (5.88)

Here recall that ρ is the ray semigroup defined in (2.6). Consequently, (ρ, X0) ∈
Satu(F).

Lemma 5.36 Fix t > 0 and let K1, K2 ⊆ X be compact sets. Then there exists

λ0 = λ0(K1, K2, t) > 0 large enough such that for all λ ≥ λ0, 
0
t/λ2 ρλ2h

1/λ u0 ∈ X for

all u0 ∈ K1 and h ∈ K2. Moreover,

lim
λ→∞

sup
u0∈K1,h∈K2

d∞(ρ−λ2h
1/λ 
0

t/λ2 ρλ2h
1/λ u0, ρ

−B(h,h)
t u0) = 0 (5.89)

where B is defined in (5.81).
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Proof of the Main Results

Before proving the three lemmata above, we first see why combining them implies

Theorem 5.32.

Proof of Theorem 5.32 As with the main results in the previous examples, the proof

proceeds by establishing the conditions for controllability given in Corollary 3.15.

Under the assumption (i) define subspaces

Xn := span

(

⋃

k∈Zn

Fk

)

(5.90)

for every n ≥ 0, where Zn is as in Definition 5.30. Note that (5.80) implies ∪n≥1 Xn is

a dense subset of X . As such, by proving inductively that (ρ, Xn) ∈ Satu(F) for every

n ≥ 0, the desired controllability result immediately follows from Corollary 3.15.

According to Lemma 5.35, we have that (ρ, X0) ∈ Satu(F). Next, utilizing

Lemma 5.34 and the cancellation (5.83) we infer that

lim
λ→∞

sup
u0∈K ,|α|≤R

d∞(ρ
−λ2(e+αẽ)
1/λ 
0

t/λ2 ρ
λ2(e+αẽ)
1/λ u0, ρ

−αB(e,ẽ)
t u0) = 0 (5.91)

for any R > 0, any compact set K ⊆ X and any pair e ∈ Fk, ẽ ∈ Fj,

k, j ∈ Z3

=0. Thus if (ρ, Xn−1) ∈ Satu(F) for some n ≥ 1, we immediately infer

that (ρ, span{B(e, ẽ)}) ∈ Satu(F) for any e ∈ Fk, ẽ ∈ Fj such that k, j ∈ Zn−1.

Invoking Remark 3.16 with (5.85) and the assumed structure of the sets Zn−1 and Zn ,

we infer that (ρ, Xn) ∈ Satu(F). This completes the proof under assumption (i).

To show the result under assumption (ii), define

Z0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}

and then iteratively define sets Zn precisely as in Definition 5.30 starting from this

particular choice of Z0. Using this definition of the index sets Zn , we define Xn ⊆ X

as in (5.90). As in the previous case, we will show inductively that (ρ, Xn) ∈ Satu(F)

for every n ≥ 0. After that, we will show explicitly that Z∞ = Z3

=0, cf. (5.80), thus

completing the proof under assumption (ii).

The implication that (ρ, Xn−1) ∈ Satu(F) implies (ρ, Xn) ∈ Satu(F) for n ≥ 1 is

demonstrated exactly as in the case of assumption (i). We now show that (ρ, X0) ∈
Satu(F). Define

Z−1 := {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and X−1 := span
⋃

k∈Z−1

Fk.

Invoking Lemma 5.35, we see that (ρ, X−1) ∈ Satu(F). Next, the estimate (5.91)

implies that (ρ, span{B(e, ẽ)}) ∈ Satu(F) for any pair e, ẽ ∈ F(1,0,0) ∪ F(0,1,0) ∪
F(0,0,1). Making note of the containment (5.84) and second use of (5.91) we infer
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(ρ, span{B(B(e, ẽ), ˜̃e)}) ∈ Satu(F) for any e, ẽ, ˜̃e ∈ F(1,0,0)∪ F(0,1,0)∪ F(0,0,1). With

(5.86) and Remark 3.16, we now conclude (ρ, X0) ∈ Satu(F).

With the induction for case (ii) now in hand, we have left to show that Z∞ = Z3

=0.

There are many ways to do this explicitly. For example, note that (1, 1, 1) paired with

any of (1, 0, 0), (0, 1, 0), (0, 0, 1) satisfies (5.79). Also, we note that if k ∈ Z∞ then

−k ∈ Z∞. Consequently, we obtain

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1)} ⊆ Z∞.

Starting from these directions, it is not hard to show that by using a sequence of

admissible moves (in the sense of Definition 5.30) the set Z∞ includes all three axes;

namely,

{(n, 0, 0) : n ∈ Z
=0} ∪ {(0, n, 0) : n ∈ Z
=0} ∪ {(0, 0, n) : n ∈ Z
=0} ⊆ Z∞.

Now take an arbitary element (n1, n2, n3) ∈ Z3

=0. If n1 
= n2, we obtain (n1, n2, 0) ∈

Z∞ as the admissible move from (n1, 0, 0), (0, n2, 0) ∈ Z∞. Otherwise if n1 = n2, we

can obtain successively (n1±1, n2, 0) ∈ Z∞ and then (n1, n2, 0) ∈ Z∞ via admissible

moves. Similar if n2
3 
= n2

1 + n2
2 we find that (n1, n2, n3) ∈ Z∞ via the admissible

move from (n1, n2, 0), (0, 0, n3) ∈ Z . Otherwise if n2
3 = n2

1 + n2
2 we simply make

the admissible move to (n1, n2, n3± 1) ∈ Z∞ from (n1, n2, 0), (0, 0, n3± 1) ∈ Z∞.

We then obtain (n1, n3, n3) ∈ Z∞ from (n1, n2, n3 ± 1),∓(0, 0, 1) ∈ Z∞. With this

we have thus completed the proof of case (ii) and hence of Theorem 5.32. ��

Proof of Lemma 5.34 Consider basis elements ek,l1,m1 , ej,l2,m2 for j, k ∈ Z3

=0 with

li , mi ∈ {0, 1}. First observe that we can extend the definition of these elements

naturally to include any mi ∈ Z, and these new elements are clearly constant multiples

of the original basis elements. We will use this fact below. Now for any li ∈ {0, 1} and

any mi ∈ Z, a tedious but routine computation yields

ek,l1,m1 · ∇ej,l2,m2+ej,l2,m2 · ∇ek,l1,m1

=− 2

(

(â
(l1)
k · j)â(l2)

j + (â
(l2)
j · k)â

(l1)
k

)

Re(im1+m2+1e−i(k+j)·x )

+ 2(−1)m2

(

(â
(l1)
k · j)â(l2)

j − (â
(l2)
j · k)â

(l1)
k

)

Re(im1+m2+1e−i(k−j)·x ).

Recalling that the Leray projection operator P acts as

P[Re(ve−ik·x )] = Re

(

v − v · k
|k|2 k

)

e−ik·x
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for any k ∈ Z3 and v ∈ C3, we therefore obtain

B(ek,l1,m1 , ej,l2,m2)

= −2r
l1,l2
k,j Re(im1+m2+1e−i(k+j))+ 2(−1)m2 s

l1,l2
k,j

Re(im1+m2+1e−i(k−j)·x )) (5.92)

where

r
l1,l2
k,j := (â

(l1)
k · j)

⎛

⎝â
(l2)
j −

â
(l2)
j · k
|k + j|2 (k + j)

⎞

⎠

+ (â
(l2)
j · k)

(

â
(l1)
k −

â
(l1)
k · j
|k + j|2 (k + j)

)

,

s
l1,l2
k,j := (â

(l1)
k · j)

⎛

⎝â
(l2)
j −

â
(l2)
j · k
|k − j|2 (k − j)

⎞

⎠

− (â
(l2)
j · k)

(

â
(l1)
k +

â
(l1)
k · j
|k − j|2 (k − j)

)

.

In particular this shows that if j = k then B(ek,l1,m1 , ej,l2,m2) = 0. This implies the

first item, (5.83).

We also use (5.92) to address part (ii) of the result. Since by definition of the Leray

projection

r
l1,l2
k,j · (k + j) = 0, s

l1,l2
k,j · (k − j) = 0,

we infer that r
l1,l2
k,j and s

l1,l2
k,j can be written as linear combinations of elements â

(l)
k+j

and â
(l)
k−j, respectively. As such we have that

span {B(e, ẽ) : e ∈ Fj, ẽ ∈ Fk} ⊆ span{Fj−k ∪ Fj+k}. (5.93)

Next notice that

B(ek,l1,m, ej,l2,0)+ B(ek,l1,m−1, ej,l2,1) = −4r
l1,l2
k,j Re(im+1e−i(k+j)) (5.94)

and similarly

B(ek,l1,m, ej,l2,0)− B(ek,l1,m−1, ej,l2,1) = −4s
l1,l2
k,j Re(im+1e−i(k−j)).
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Thus, taking linear combinations we find that the sets

F̃k+j :=
{[

(Ak · j)
(

Aj −
Aj · k
|k + j|2 (k + j)

)

+ (Aj · k)
(

Ak −
Ak · j
|k + j|2 (k + j)

)

]

Re(ime−i(k+j)·x )

: m ∈ {0, 1}, Ak, Aj ∈ R3 with Ak · k = 0 = Aj · j
}

F̃k−j :=
{[

(Ak · j)
(

Aj −
Aj · k
|k − j|2 (k − j)

)

− (Aj · k)
(

Ak +
Ak · j
|k − j|2 (k − j)

)

]

Re(ime−i(k−j)·x )

: m ∈ {0, 1}, Ak, Aj ∈ R3 with Ak · k = 0 = Aj · j
}

(5.95)

are both subsets of span {B(e, ẽ) : e ∈ Fj, ẽ ∈ Fk}. Thus to obtain the opposite

inclusion in (5.93) and complete the proof it is sufficient to show F̃k+j = Fk+j and

F̃k−j = Fk−j. For this purpose we simply exhibit suitable choices of elements Ak, Aj ∈
R3, orthogonal to, respectively, k, j so that the R3-valued pre-factors of the elements

in F̃k+j and F̃k−j span the planes orthogonal to k+ j and k− j respectively. Take Āk

and Āj non-zero vectors which are orthogonal to k, k × j and j, k × j respectively.

Thus

[

(Āk · j)
(

Āj −
Āj · k
|k + j|2 (k + j)

)

+ (Āj · k)
(

Āk −
Āk · j
|k + j|2 (k + j)

)

]

is a pre-factor of an element in F̃k+j. Also, taking Ak ∈ R3 with Ak · k = 0 abitrary

and Aj = k × j, we see that

(Ak · j)(k × j) (5.96)

is a pre-factor of an element in F̃k+j. Clearly, the previous two vectors are orthog-

onal. To show that these vectors can be chosen non-zero, we invoke the algebraic

assumptions (5.79) on k, j. For the second vector, we may obviously choose Ak so

that Ak · j 
= 0. Regarding the first vector, doting with j we obtain

(Āj · k)(Āk · j)
(

1− 2k · j+ 2|j|2
|k + j|2

)

.

Since this expression can only be zero when one of Āj · k, Āk · j is zero or |j| = |k|.
According to (5.79) neither occur and we infer the second vector must be non-zero. A

very similar argiment also shows that F̃k−j = Fk−j so that now (5.85) follows.

For the final item, (5.86), arguing precisely as in (5.94), (5.95) and choosing the

first vector in (5.96) we find that

span {(0, 0, 1)Re(ime−i(1,1,0)·x ) : m ∈ {0, 1}} ⊆ span {B(e, ẽ) : e ∈ F(1,0,0), ẽ ∈ F(0,1,0)}.
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Next, another laborious but routine computation similar to (5.94) reveals that the span

of elements of the form

B(e(0,0,1),l,m, (0, 0, 1)Re(e−i(1,1,0)·x ))+ B(e(0,0,1),l,m−1, (0, 0, 1)Re(ie−i(1,1,0)·x ))

for m, l ∈ {0, 1} contains F(1,1,1). This implies (5.86) now completing the proof. ��

We conclude this section by establishing the two scaling estimates, Lemmas 5.35

and 5.36. For these estimates we will make use of the ODE comparison stated in

Proposition B.1.

Proof of Lemma 5.35 Fix any K1, K2 ⊆ X compact. For any u0 ∈ K1 and h ∈ K2 we

set

wλ(τ ) = 
λh
τ/λu0 − ρh

τ u0 and ρ(τ) = ρh
τ u0. (5.97)

which are well defined elements for τ in the interval [0, λTu0,λh) where Tu0,λh is the

time of existence of 
λh
· u0; see Proposition 5.28. Arguing as in (2.10) we find

∂t wλ +
1

λ
(ρ + wλ) · ∇(ρ + wλ)+ ∇ pλ =

1

λ
g ∇ · wλ = 0 = ∇ · ρ (5.98)

Here note that the pressure term pλ : T3 → R is a smooth function which maintains

the divergence-free condition (5.98).

Fixing any m ≥ 3, we estimate wλ in the Hm norm as follows. Using that wλ is

divergence-free we have

d

dt
‖wλ‖2

Hm =
∑

|β|≤m

2

λ
〈∂βwλ,−∂β((ρ + wλ) · ∇(ρ + wλ)+ g)〉

=
∑

|β|≤m

2

λ
〈∂βwλ, (ρ + wλ) · ∇∂βwλ − ∂β((ρ + wλ) · ∇wλ)〉

+ 〈wλ, g − (ρ + wλ) · ∇ρ〉Hm

: = 1

λ
(T1 + T2). (5.99)

Using standard Sobolev embeddings and interpolation (see, for example, [33]), we

estimate the first term as follows:

|T1| ≤ C (‖ρ + wλ‖Hm‖∇wλ‖L∞ + ‖∇(ρ + wλ)‖L∞‖wλ‖Hm ) ‖wλ‖Hm

≤ C(‖wλ‖3
Hm + ‖wλ‖2

Hm‖ρ‖Hm ) ≤ C(‖wλ‖3
Hm + ‖ρ‖3

Hm ). (5.100)
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To estimate T2, using that Hm is an algebra for m ≥ 2, we obtain

|T2| ≤‖w‖Hm (‖g‖Hm + ‖(ρ + wλ) · ∇ρ‖Hm )

≤‖w‖Hm (‖g‖Hm + (‖ρ‖Hm + ‖wλ‖Hm )‖ρ‖Hm+1)

≤C(‖w‖3
Hm + ‖g‖3/2

Hm + ‖ρ‖3
Hm+1).

Fixing T > 0 arbitrary and combining these estimates with (5.99), we conclude

d

dt
‖w‖2

Hm ≤
C

λ
(‖w‖3

Hm + ‖g‖3/2
Hm + ‖u0‖3

Hm+1 + T 3‖h‖3
Hm+1) (5.101)

for all t ∈ [0, T ∧λTu0,λh). Here we note carefully that the constant C does not depend

on λ > 0, u0, h ∈ X .

With (5.101) and the criteria (5.74) we now establish the desired result (5.87) and

(5.88) by invoking the comparison lemma (Lemma B.2). According to (5.74) and

Agmond’s inequality

lim sup
s→λTu0,λh

‖wλ(s)‖Hm = ∞,

for every m ≥ 3. Thus, noting that wλ(0) = 0, Remark B.3 implies for all t ∈ [0, T ]
and

λ ≥ CT (‖g‖3/2
Hm + ‖u0‖3

Hm+1 + T 3‖h‖3
Hm+1)

we have λTu0,λh ≥ T as well as the comparison

‖wλ(t)‖2
Hm≤ (‖g‖3/2

Hm + ‖u0‖3
Hm+1 + T 3‖h‖3

Hm+1)

(Rλ(t, ‖g‖3/2
Hm + ‖u0‖3

Hm+1 + T 3‖h‖3
Hm+1)− 1).

Here note that Rλ is defined in (B.2). Now, for m ≥ 3 take

Mm := sup
u0∈K1,h∈K2

(‖g‖3/2
Hm + ‖u0‖3

Hm+1 + T 3‖h‖3
Hm+1).

Since K1, K2 are compact subsets of X , Mm is a finite for any m. Thus for λ ≥ CT Mm

we obtain that infu0∈K1,h∈K2 λTu0,λh ≥ T and

sup
u0∈K1,h∈K2

‖
λh
τ/λu0 − ρh

τ u0‖2
Hm ≤ Mm(Rλ(Mm)− 1) (5.102)

for every τ ∈ [0, T ]. Noting that lim supλ→∞ Mm(Rλ(t, Mm) − 1) = 0 completes

the proof. ��
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Proof of Lemma 5.36 Fixing u0, h ∈ X we once again introduce the abbreviated nota-

tions

uλ(τ ) = ρ−λ2h
1/λ 
0

τ/λ2 ρλ2h
1/λ u0, wλ(τ ) = uλ(τ )− ρ−B(h,h)

τ u0, ρ(τ ) = ρ−B(h,h)
τ u0

defined on a interval of existence [0, λ2Tu0+λh); cf. Proposition 5.28. Arguing as in

(2.15) and referring back to (5.82) we have

∂t wλ = −
1

λ2
((uλ + λh) · ∇(uλ + λh)+ g)+ h · ∇h+∇ pλ

= − 1

λ2
((wλ + ρ) · ∇(wλ + ρ)+ g)− 1

λ
((wλ + ρ) · ∇h

+ h · ∇(wλ + ρ))+∇ pλ. (5.103)

with ∇ ·wλ = 0 = ∇ · ρ. Here, as in the previous lemma, pλ : T3 → R enforces the

divergence-free condition.

We now make estimates for the Hm norm of wλ for m ≥ 3. Taking derivatives of

(5.103), then L2 inner products and summing over multi-indies |β| ≤ m we find that

1

2

d

dt
‖wλ‖2 = 1

λ2

∑

|β|≤m

〈(wλ + ρ) · ∇∂βwλ − ∂β [(wλ + ρ) · ∇(wλ + ρ)+ g], ∂βwλ〉

+ 1

λ

∑

|β|≤m

〈h · ∇∂βwλ − ∂β [h · ∇(wλ + ρ)+ (wλ + ρ) · ∇h], ∂βwλ〉

= 1

λ2
T1 +

1

λ
T2. (5.104)

Note that we have used the fact that wλ is divergence free to obtain the commutator

terms. With commutator estimates similar to (5.100) above we find that for any m ≥ 3

|T1| ≤ C(‖wλ + ρ‖Hm‖wλ‖2
Hm + ‖wλ + ρ‖Hm‖ρ‖Hm+1‖wλ‖Hm + ‖g‖Hm‖wλ‖Hm )

≤ C(‖wλ‖3
Hm + ‖ρ‖3

Hm+1 + ‖g‖3/2
Hm + 1).

Likewise we have

|T2| ≤C(‖h‖Hm+1‖wλ‖2
Hm + ‖h‖Hm+1‖ρ‖Hm+1‖wλ‖Hm )

≤C(‖wλ‖3
Hm + (‖ρ‖3/2

Hm+1 + 1)‖h‖3/2

Hm+1).

Note that as above in the previous lemma the constant C depends only on m universal

quantities and is independent of λ > 0.

Combining these bound with (5.104) yields

d

dt
‖wλ‖2 ≤ C

λ
(‖wλ‖3

Hm + ‖ρ‖3
Hm+1 + ‖g‖3/2

Hm + (‖ρ‖3/2

Hm+1 + 1)‖h‖3/2

Hm+1 + 1).
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which is valid on [0, λ2Tu0+λh) where we again emphasize that the constant C does

not depend on λ > 0 or u0, h ∈ X . Repeating the arguments from the analogous

bound (5.101) in the proof of the previous Lemma, yields the desired result. ��
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Appendix A: Supplemental PDE Bounds

A.1. A Priori Estimates

Here we present a collection of a priori estimates which assure that the solution maps

in each equation have the necessary cocycle and semigroup structures. We begin with

the a priori estimates for the reaction–diffusion equations (5.1).

A.1.1. Reaction–Diffusion

Recall that for V ∈ �, we define solutions u = u(t, u0, V ) with u(0) = u0 of (5.1)

by u(t, u0, V ) = v(t, u0, σ · V )+ σ · V where v satisfies the shifted equation (5.6).

In order to make the estimates more legible, for k ≥ 0, T > 0 we introduce the sup

norms

|V |k,T = sup
t∈[0,T ]

‖V ( · , t)‖W k,∞([0,2π ]).

Proposition 5.1 follows immediately once we establish:

Proposition A.1 We have the following estimates.

(a) Let u0 ∈ L2, T > 0, V ∈ � and v( · ) = v( · , u0, σ · V ). Then there exists a

constant C1 > 0 depending only on T , ‖u0‖, |σ ·V |2,T such that for any t ∈ [0, T ]

‖v(t)‖2 + 2κ

∫ t

0

‖∂xv(s)‖2ds + ν

∫ t

0

‖v(s)‖2n ds ≤ C1. (A.1)

(b) Let u1, u2 ∈ L2, T > 0, V1, V2 ∈ � and set w(t) = v(t, u1, σ ·V1)−v(t, u2, σ ·
V2), w0 = u1 − v1 and V̄ = V1 − V2. Then there exists a constant C2 > 0

depending only on T , ‖ui‖, |σ · Vi |2,T such that for any t ∈ [0, T ]

‖w(t)‖2 + 2κ

∫ t

0

‖∂xw(s)‖2ds ≤ C2(‖w0‖2 + |∂xx (σ · V̄ )|2T + |σ · V̄ |T ).

(A.2)
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Proof of Proposition A.1 To obtain the first estimate (A.1), observe that there exists a

constant K = K (|σ · V |T ) > 0 such that

1

2

d

dt
‖v(t)‖2 ≤ −κ‖∂xv(t)‖2 + κ‖v(t)‖‖∂xx (σ · V )‖ + 〈v, f (v + σ · V )〉

≤ −κ‖∂xv(t)‖2 + 2πκ‖v(t)‖|∂xx (σ · V )|T + K − ν

2
‖v(t)‖2n . (A.3)

Hence we have that

1

2

d

dt
‖v(t)‖2 ≤ K1‖v(t)‖2 + K2

for some constants K1 > 0 and K2 = K2(|σ ·V |2,T ) > 0. Gronwall’s inequality then

implies the existence of a constant K3 depending only on T , ‖u0‖, |σ ·V |2,T such that

for all t ∈ [0, T ]

‖v(t)‖2 ≤ K3. (A.4)

Integrating (A.3) with respect to time and using the estimate (A.4) we arrive at the

bound (A.1).

Turning our attention to the second estimate (A.2), note that for t ∈ [0, T ]

1

2

d

dt
‖w(t)‖2 ≤ −κ‖∂xw(t)‖2 + 2πκ‖w(t)‖|∂xx (σ · V̄ )|T

+ κ〈w, f (v1 + σ · V1)− f (v2 + σ · V2)〉. (A.5)

To estimate the last term above, recall the explicit form form of the Mean Value

Theorem applied to the polynomial f : For a, b ∈ R we have

f (b)− f (a) = (b − a) f ′(ξ) = (b − a)

∫ 1

0

f ′(a + β(b − a)) dβ (A.6)

for some ξ = ξ(a, b) lying between a, b. Hence since f ′ ≤ K for some constant

K > 0 only depending on f we find that

〈w, f (v1 + V1)− f (v2 + V2)〉 = 〈w, f ′(ξ)w〉 + 〈w, f ′(ξ)(σ · V̄ )〉

≤ K‖w‖2 + |σ · V̄ |0,T

∫ 2π

0

|w|| f ′(ξ)| dx . (A.7)
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Integrating (A.5) with respect to time using the bound (A.7) and applying Young’s

inequality we obtain the estimate

1

2
‖w(t)‖2 + κ

∫ t

0

‖∂xw(s)‖2 ds

≤ ‖w0‖2 + K1

∫ t

0

‖w(s)‖2 ds + K2|σ · V̄ |22,T

+ |σ · V̄ |0,T ‖w‖Ln([0,2π ]×[0,t])‖ f ′(ξ)‖L p([0,2π ]×[0,t])

where p = 2n/(2n−2), for some constants K1, K2 > 0. Applying the estimate (A.1)

to the last term above using the explicit form for f ′(ξ) = f ′(ξ(v1+σ ·V1, v2+σ ·V2)),

we determine the existence of a constant K3 depending only on T , ‖ui‖, |σ · Vi |2,T

such that

1

2
‖w(t)‖2 + κ

∫ t

0

‖∂xw(s)‖2 ds ≤ ‖w0‖2

+ K1

∫ t

0

‖w(s)‖2 ds + K2|σ · V̄ |22,T + K3|σ · V̄ |0,T . (A.8)

From this, using Gronwall’s inquality we arrive at the claimed estimate (A.2) when

combined with (A.8). ��

A.2. Boussinesq Equations

We now provide the needed a priori estimates for the Boussinesq equations (5.32)–

(5.33). We begin by establishing the L2 estimates below in Proposition A.2 for the

shifted equation (5.35)–(5.36) so that the φ defined in the statement of Proposition 5.17

is a continuous adapted cocycle. For k ≥ 0 and T > 0, we again use compact notation

for sup norms, which in this context will read

|V |k,T = sup
t∈[0,T ]

{‖V (·, t)‖W k,∞(T2)}.

Proposition A.2 We have the following:

(1) Fix T > 0, θ̃ (0), ξ̃ (0) ∈ L2 and V ∈ �. Then for all t ∈ [0, T ] we have that

‖θ̃ (t)‖2 + ‖ξ̃ (t)‖2 +
∫ t

0

ν‖∇ ξ̃ (s)‖2 + κ‖∇ θ̃ (s)‖ ds ≤ C (A.9)

where C > 0 is a constant depending only on ‖ξ̃ (0)‖, ‖θ̃ (0)‖, T , κ, g, |σ ·
V |2,T , ‖h0‖.

(2) Let (ξ̃1, θ̃1, V1) and (ξ̃2, θ̃2, V2) solve (5.35)–(5.36) with ξ̃i (0), θ̃i (0) ∈ L2 and

Vi ∈ �. Then if ξ̄ = ξ̃1 − ξ̃2, θ̄ = θ̃1 − θ̃2, T > 0, V̄ = V1 − V2, we have for

t ∈ [0, T ]
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‖ξ̄ (t)‖2 + ‖θ̄ (t)‖2 ≤ C
(

‖ξ̄ (0)‖2 + ‖θ̄ (0)‖2 + |σ · V̄ |1,T

)

(A.10)

for some constant C > 0 where C depends only on ‖ξ̃i (0)‖, ‖θ̃i (0)‖, T , κ, g, |σ ·
Vi |2,T , ‖h0‖.

Proof We begin by establishing the bound (A.9). Let T > 0 and t ∈ [0, T ]. First

observe that

1

2

d

dt
‖ξ̃‖2 + ν‖∇ ξ̃‖2 ≤ g‖ξ̃‖‖∂xθ‖ + 4π2g‖ξ̃‖|σ · V |1,T

≤ C1‖ξ̃‖2 + κ

2
‖∂x θ̃‖2 + κ

2
|σ · V |21,T

for some constant C1 > 0 depending only on g, κ . Also note that

1

2

d

dt
‖θ̃‖2 + κ‖∇ θ̃‖2 ≤ C2‖θ̃‖‖ũ‖|σ · V |1,T + κ‖θ̃‖‖σ · V ‖H2 + ‖θ̃‖‖h0‖

≤ C3(‖θ̃‖2 + ‖ξ̃‖2|σ · V |21,T + ‖h0‖2 + |σ · V |2,T )

for some constant C3 = C3(κ) > 0. Summing the previous two inequalities we obtain

1

2

d

dt
(‖ξ̃‖2 + ‖θ̃‖2)+ ν

2
‖∇ ξ̃‖2 + κ

2
‖∇ θ̃‖2 ≤ C(‖θ̃‖2 + ‖ξ̃‖2)+ D (A.11)

for some constants C = C(κ, g, |σ ·V |1,T ) > 0 and D = D(κ, ‖h0‖, |σ ·V |2,T ) > 0.

Applying Gronwall’s inequality we obtain

‖ξ̃ (t)‖2 + ‖θ̃ (t)‖2 ≤ C

for all t ∈ [0, T ]where C > 0 is a constant depending only on‖ξ̃ (0)‖, ‖θ̃ (0)‖, T , κ, g,

‖h0‖, |σ ·V |2,T . Plugging this back into the righthand side of (A.11) gives the desired

bound (A.9).

Moving onto the second estimate (A.10), first note that since 〈ξ̄ , ũ1 · ∇ ξ̄〉 = 0

1

2

d

dt
‖ξ̄‖2 + ν‖∇ ξ̄‖2 ≤ g‖ξ̄‖‖∂x θ̄‖ + g‖ξ̄‖‖∂x (σ · V̄ )‖ − 〈ξ̄ , (ũ1 − ũ2) · ∇ ξ̃2〉,

1

2

d

dt
‖θ̄‖2 + κ‖∇ θ̄‖2 ≤ 〈θ̄ , ũ2 · ∇(θ̃2 + σ · V2)− ũ1 · ∇(θ̃1 + σ · V1)〉

+ κ‖θ̄‖‖σ · V̄ ‖H2
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To combine the estimates as we did above, we now bound the terms remaining in inner

product form as follows:

− 〈ξ̄ , (ũ1 − ũ2) · ∇ ξ̃2〉 = 〈(ũ1 − ũ2) · ∇ ξ̄ , ξ̃2〉
≤ C1‖∇ ξ̄‖‖ũ1 − ũ2‖L4‖ξ̃2‖L4

≤ C2‖∇ ξ̄‖‖ξ̄‖‖∇ ξ̃2‖1/2‖ξ̃2‖1/2

≤ ν

2
‖∇ ξ̄‖2 + C ′‖ξ̄‖2‖∇ ξ̃2‖‖ξ̃2‖,

for some constant C ′ > 0 depending on ν, and in a similar fashion

〈θ̄ , ũ2 · ∇(θ̃2 + σ · V2)− ũ1 · ∇(θ̃1 + σ · V1)〉
= −〈(ũ2 − ũ1) · ∇ θ̄ , θ̃2 + σ · V2〉 + 〈θ̄ , ũ1 · ∇(σ · V̄ )〉

≤ κ

4
‖∇ θ̄‖2 + C ′′‖ξ̄‖2‖∇(θ̃2 + σ · V2)‖‖θ̃2 + σ · V2‖

+ C ′′′‖θ̄‖‖ξ̃1‖|∇(σ · V̄ )|T

for some constant C ′′ > 0 depending only on κ and some constant C ′′′ > 0. Thus

by summing the first two inequalities, applying the inequalities above and weighting

appropriately using Young’s inequality we obtain

1

2

d

dt
(‖ξ̄‖2 + ‖θ̄‖2)+ ν

2
‖∇ ξ̄‖2 + κ

2
‖∇ θ̄‖2 ≤ C f [‖ξ̄‖2 + ‖θ̄‖2] + D‖ξ̃1‖2|σ · V̄ |21,T

for some constants C, D > 0 depending only on κ, ν, g and

f = 1+ ‖∇ ξ̃2‖2 + ‖ξ̃2‖2 + ‖∇(θ̃2 + σ · V2)‖2 + ‖θ̃2 + σ · V2‖2.

Gronwall’s inequality then implies that for t ∈ [0, T ]

‖ξ̄ (t)‖2 + ‖θ̄ (t)‖2 ≤
(

‖ξ̄ (0)‖2 + ‖θ̄ (0)‖2

+ D|σ · V̄ |1,T

∫ t

0

‖ξ̃1(s)‖2 ds

)

exp

(∫ t

0

C f (s) ds

)

.

Applying the first inequality (A.9) to estimate
∫ t

0 ‖ξ̃1(s)‖2 ds and
∫ t

0 f (s) ds, we obtain

the desired inequality. ��

We next turn our attention to the a priori estimates needed to validate Assump-

tion 4.13. Here it will be convenient to express the system (5.32)–(5.33) using the

abstract evolution equation notation for the solution U = (ξ(t), θ(t)):

dU

dt
+ AU + GU + B(U , U ) = ιθ h0 + ιθ (σ · ∂t V ), (A.12)
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which we recall was introduced above equation (5.44). Following Remark 4.16, our

principal interest will be in establishing estimates for the linear equation

∂tρ + Aρ + Gρ + B(U , ρ)+ B(ρ, U ) = 0, ρ(s) = ρ0 (A.13)

where ρ0 ∈ H and U solves (A.12). To do so, we will make use of the following

inequalities for u, v, w ∈ H

|〈u, B(v,w)〉| ≤ C‖∇u‖1/2‖u‖1/2‖∇(K ∗ v)‖1/2‖K ∗ v‖1/2‖∇w‖ (A.14)

≤ C1‖∇u‖‖u‖ + C2‖v‖2‖∇w‖2 (A.15)

where C, C1, C2 > 0 are constants. The first inequality (A.14) is L4-L4-L2 bound

followed by an application of the Gagliardo-Nirenberg interpolation inequality. The

second (A.15) is simply Young’s inequality applied to the righthand side of (A.14).

Proposition A.3 We have the following:

(1) Fix T > 0, ρ0 ∈ H and let ρ = (ρ1, ρ2) solve (A.13) with ρ(0) = ρ0 and

corresponding U with U (0) = U0 ∈ H. Then there exists a constant C > 0

depending only on ‖U0‖, T , κ, ν, g, |σ · V |2,T , ‖h0‖ such that for all 0 ≤ s ≤
t ≤ T

‖ρ(t)‖2 +
∫ t

s

ν‖∇ρ1(v)‖2 + κ‖∇ρ2(v)‖2 dv ≤ C . (A.16)

(2) Fix T > 0 and let U1, U2 solve (A.12) with corresponding initial data

U1(0), U2(0) ∈ H and corresponding V1, V2 ∈ �. Here we assume that U1 and

U2 solve (A.12) with the same h0 ∈ L2. Let ρ1, ρ2 solve (A.13) with correspond-

ing data ρ1(s), ρ2(s) ∈ H and corresponding U1, U2. Set ρ̄0 = ρ1(s) − ρ2(s),

and Ū = U1 − U2. Then there exists a constant C > 0 depending only on

T , ‖Ui (0)‖, κ, ν, g, |σ · Vi |C2,T , ‖h0‖ such that for all 0 ≤ s ≤ t ≤ T

‖ρ̄(t)‖2 ≤ C(‖ρ̄0‖2 + ‖Ū (0)‖2 + |σ · V̄ |C1,T ). (A.17)

Proof We begin by establishing (1). Observe that

1

2

d

dt
‖ρ(t)‖2 + ν‖∇ρ1(t)‖2 + κ‖∇ρ2(t)‖2 + 〈ρ, Gρ〉 + 〈ρ, B(ρ, U )〉 = 0

and

|〈ρ, Gρ〉| = g|〈ρ1, ∂xρ2〉| ≤
κ

2
‖∇ρ2‖2 + C‖ρ‖2
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for some constant C > 0 depending only on g, κ . Applying the inequality (A.15), we

also find that

|〈ρ, B(ρ, U )〉| ≤ C1‖∇ρ‖‖ρ‖ + C2‖ρ‖2‖∇U‖2

≤ ν ∧ κ

4
‖∇ρ‖2 + C(1+ ‖∇U‖2)‖ρ‖2

for some constant C > 0. Putting these estimates together produces the bound

1

2

d

dt
‖ρ(t)‖2 + ν

4
‖∇ρ1(t)‖2 + κ

4
‖∇ρ2(t)‖2 ≤ C(1+ ‖∇U‖2)‖ρ‖2. (A.18)

Since we also have that

1

2

d

dt
‖ρ(t)‖2 ≤ C(1+ ‖∇U‖2)‖ρ‖2,

applying Gronwall’s inequality and then Proposition A.2 implies

‖ρ(t)‖2 ≤ ‖ρ0‖2 exp

(∫ t

s

2C(1+ ‖∇U (v)‖2 dv

)

≤ C

for all 0 ≤ s ≤ t ≤ T where C > 0 is a constant depending only on

‖U0‖, T , κ, ν, g, |σ · V |2,T , ‖h0‖. Using the information on the righthand side of

equation (A.18), integrating with respect to time, and then applying Proposition A.2

again we arrive at the estimate in (1).

To see (2), note that

0 =1

2

d

dt
‖ρ̄(t)‖2 + ν‖∇ρ̄1‖2 + κ‖∇ρ̄2‖2 + 〈ρ̄, Gρ̄〉

+ 〈ρ̄, B(ρ1, U1)− B(ρ2, U2)〉 + 〈ρ̄, B(U1, ρ1)− B(U2, ρ2)〉.

We can again bound 〈ρ̄, Gρ̄〉 as follows:

|〈ρ̄, Gρ̄〉| ≤ κ

2
‖∇ρ̄2||2 + C‖ρ̄‖2

for some constant C > 0 depending only on g, κ . Using bilinearity and (A.15), also

observe that

|〈ρ̄, B(ρ1, U1)− B(ρ2, U2)〉| ≤ |〈ρ̄, B(ρ̄, U1)〉| + |〈ρ̄, B(ρ2, Ū )〉|
≤ C1‖∇ρ̄‖‖ρ̄‖ + C2‖ρ̄‖2‖∇U1‖2 + C3‖ρ2‖2‖∇Ū‖2

and

|〈ρ̄, B(U1, ρ1)− B(U2, ρ2)〉| = |〈ρ̄, B(Ū , ρ2)〉|
≤ C4‖∇ρ̄‖‖ρ̄‖ + C5‖Ū‖2‖∇ρ2‖2
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for some constants Ci > 0. Combining these estimates and applying Young’s inequal-

ity to the terms C1‖∇ρ̄‖‖ρ̄‖ and C4‖∇ρ̄‖‖ρ̄‖ we find that

1

2

d

dt
‖ρ̄(t)‖2 + ν

4
‖∇ρ̄1‖2 + κ

4
‖∇ρ̄2‖2

≤ C(1+ ‖∇U1‖2)‖ρ̄‖2 + C3‖ρ2‖2‖∇Ū‖2 + C5‖Ū‖2‖∇ρ2‖2. (A.19)

By Proposition A.2, we note that

‖Ū‖2 ≤ C(‖Ū (0)‖2 + |σ · V̄ |21,T ) (A.20)

where C > 0 is a constant depending only on T , ‖Ui (0)‖, κ, g, |σ ·Vi |C2,T , ‖h0‖. By

the first part of this proposition, we also have that

‖ρ2‖2 ≤ C ′ (A.21)

where C ′ > 0 is a constant depending only on ‖U2(0)‖, T , κ, ν, κ, g, |σ ·
V2|C2,T , ‖h0‖. Applying the inequalities (A.20)–(A.21) to the righthand side of (A.19)

and then applying Gronwall’s inequality produces the estimate

‖ρ̄(t)‖2 ≤
(

‖ρ̄0‖2 + C

∫ t

s

‖∇Ū (v)‖2

)

exp

(

C

∫ t

s

1+ ‖∇U1(v)‖2 dv

)

+ C(‖Ū (0)‖2 + |σ · V̄ |1,T )

∫ t

s

‖U1(v)‖2 dv

)

exp

(

C

∫ t

s

1+ ‖∇U1(v)‖2 dv

)

(A.22)

where C > 0 is a constant depending only on T , ‖Ui (0)‖, κ, ν, g, |σ · Vi |C2,T , ‖h0‖.
Applying Proposition A.2 again, we arrive at the claimed bound in (2). ��

All parts of Assumption 4.13 follow from the above proposition except (v) which

concerns the non-degeneracy of the L2-adjoint of the Jacobi flow. This, however, can

be established by following a nearly identical process to the one used in the case of

the two-dimensional Navier–Stokes equations as in Proposition 2.2 of [34]. There,

non-degeneracy follows by uniqueness of the associated backwards PDE satisfied by

the adjoint.

Finally, we establish the higher-order Sobolev a priori estimates for the Boussinesq

equations (5.32)–(5.33) when forced by a smoother V ; that is, we now consider the

equations

∂tξ + u · ∇ξ − ν�ξ = g∂xθ, ξ(0) = ξ0 (A.23)

∂tθ + u · ∇θ − κ�θ = f , θ(0) = θ0 (A.24)

where f is a generic constant element in the relevant Sobolev space. Note that the

only difference between equations (5.32)–(5.33) and the equations above is that the

forcing term h0 + σ · ∂t V has replaced by f .
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Proposition A.4 We have the following:

(i) Suppose that ξ0, θ0, f ∈ L2 and let (ξ, θ) be the corresponding solution of

(A.23)–(A.24). Then

sup
r∈[0,t]

(‖ξ(r)‖ + ‖θ(r)‖) ≤ C(‖ξ0‖ + ‖θ0‖ + t‖ f ‖) (A.25)

and

∫ t

0

(‖∇ξ‖2 + ‖∇θ‖2)dr ≤ C(‖ξ0‖2 + ‖θ0‖2 + t2‖ f ‖2) (A.26)

where the constant C depends only κ, ν, g and universal quantities.

(ii) Suppose that ξ0, θ0, f ∈ Hm for any m ≥ 1. Then

sup
r∈[0,t]

(‖ξ(r)‖Hm + ‖θ(r)‖Hm )+
∫ t

0

(‖ξ‖Hm+1 + ‖θ‖Hm+1)dr

≤ C exp
(

C(‖ξ0‖2 + ‖θ0‖2 + t2‖h‖2 + t)
)

(1+ ‖ξ0‖Hm + ‖θ0‖Hm + t‖ f ‖Hm ).

(A.27)

(iii) Fix any m ≥ 0 and suppose U0 = (ξ0, θ0), Ũ0 = (ξ̃0, θ̃0) ∈ Hm(T2)2 and

f , f̃ ∈ Hm(T2). Let (ξ, θ), (ξ̃ , θ̃ ) be the solutions of (A.23)–(A.24) the corre-

sponding to this data. Then

sup
r∈[0,t]

(‖ξ(r)− ξ̃ (r)‖Hm + ‖θ(r)− θ̃ (r)‖Hm )

≤ C
(

‖ξ0 − ξ̃0‖Hm + ‖θ0 − θ̃0‖Hm + t‖ f − f̃ ‖Hm

)

. (A.28)

where C is a constant depending only on κ, ν, g, ‖U0‖Hm , ‖Ũ0‖Hm , ‖ f ‖Hm ,

‖ f̃ ‖Hm , t and universal quantities.

Proof We begin with the basic L2 estimates for (A.23)–(A.24). Multiplying the first

equation by ξ , the second equation by θ and integrating over the domain yields

1

2

d

dt
‖ξ‖2 + ν‖∇ξ‖2 = 〈g∂xθ, ξ 〉 ≤ g2

2ν
‖θ‖2 + ν

2
‖∇ξ‖2,

and

1

2

d

dt
‖θ‖2 + κ‖∇θ‖2 = 〈 f , θ〉 ≤ ‖ f ‖‖θ‖.

The fact that the velocity u is divergence free justifies dropping the non-linear con-

tributions in the above. Suitably weighting and then adding these two inequalities we

find
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d

dt

(

‖ξ‖2 + g2

2νκ
‖θ‖2

)

+ ν‖∇ξ‖2 + g2

ν
‖∇θ‖2 ≤ g2

νκ
‖ f ‖‖θ‖. (A.29)

The first item, (A.25), follows immediately. Moreover

∫ t

0

(‖∇ξ‖2 + ‖∇θ‖2)dr ≤C

(

‖ξ0‖2 + ‖θ0‖2 + sup
r∈[0,t]

‖θ(r)‖ · t‖ f ‖
)

≤C
(

‖ξ0‖2 + ‖θ0‖2 + (‖ξ0‖ + ‖θ0‖ + t‖ f ‖)t‖ f ‖
)

,

implying (A.26).

Given any multi-index α and taking the associated spatial derivatives of (5.32)–

(5.33) we obtain

∂t∂
αξ + ∂α(u · ∇ξ)− ν�∂αξ = g∂x∂

αθ, ∂t∂
αθ + ∂α(u · ∇θ)− κ�∂αθ = ∂α f .

Multiplying, integrating and summing over |α| ≤ m yields

1

2

d

dt
‖ξ‖2

Hm + ν‖ξ‖2
Hm+1 =

∑

|α|≤m

〈g∂x∂
αθ − ∂α(u · ∇ξ), ∂αξ 〉 (A.30)

1

2

d

dt
‖θ‖2

Hm + κ‖θ‖2
Hm+1 =

∑

|α|≤m

〈∂α f − ∂α(u · ∇θ), ∂αθ〉 (A.31)

Taking advantage of the fact that u is divergence free and applying standard interpo-

lation/commutator estimates produces for any m ≥ 1

∑

|α|≤m

|〈∂α(u · ∇ξ), ∂αξ 〉|

=
∑

|α|≤m

|〈∂α(u · ∇ξ)− u · ∇∂αξ, ∂αξ 〉|

≤ C
∑

|α|≤m

(‖∂αu‖L∞‖∇ξ‖ + ‖∇u‖L4‖∂αξ‖L4)‖ξ‖Hm

≤ C‖∇ξ‖‖ξ‖3/2
Hm‖ξ‖1/2

Hm+1 ≤
ν

6
‖ξ‖2

Hm+1 + C‖∇ξ‖4/3‖ξ‖2
Hm . (A.32)

Similarly

∑

|α|≤m

|〈∂α(u · ∇θ), ∂αθ〉|

=
∑

|α|≤m

|〈∂α(u · ∇θ)− u · ∇∂αθ, ∂αθ〉|

≤ C
∑

|α|≤m

(‖∂αu‖L∞‖∇θ‖ + ‖∇u‖L4‖∂αθ‖L4)‖θ‖Hm
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≤ C(‖ξ‖1/2
Hm‖ξ‖1/2

Hm+1‖∇θ‖‖θ‖Hm + ‖ξ‖1/2‖∇ξ‖1/2‖θ‖3/2
Hm‖θ‖1/2

Hm+1)

≤ ν

6
‖ξ‖2

Hm+1 +
κ

4
‖θ‖2

Hm+1 + C(‖ξ‖2
Hm + (‖∇θ‖2 + ‖∇ξ‖4/3)‖θ‖2

Hm ). (A.33)

Finally

∑

|α|≤m

|〈g∂x∂
αθ, ∂αξ 〉| ≤

√
3g2

2ν
‖θ‖2

Hm +
ν

6
‖ξ‖2

Hm+1 . (A.34)

Combining (A.30), (A.31) with the estimates (A.32)–(A.34) we now obtain

d

dt

(

1+ ‖ξ‖2
Hm +

√
3g2

2νκ
‖θ‖2

Hm

)

+ ν‖ξ‖2
Hm+1 +

√
3g2

ν
‖θ‖2

Hm+1

≤ C‖h‖Hm‖θ‖Hm + C(1+ ‖∇θ‖2 + ‖∇ξ‖4/3)(‖θ‖2
Hm + ‖ξ‖2

Hm ). (A.35)

Thus, taking X := (1+‖ξ‖2
Hm+

√
3g2

2νκ
‖θ‖2

Hm )1/2, Y := (ν‖ξ‖2
Hm+1+

√
3g2

ν
‖θ‖2

Hm+1)
1/2

we have,

d

dt
X + CY ≤ C‖h‖Hm + C(1+ ‖∇θ‖2 + ‖∇ξ‖2)X .

With this bound and (A.26) we now infer infer (A.27).

We turn next to establish the continuous dependence estimates Let ξ = ξ − ξ̃ ,

ζ = θ − θ̃ , φ = f − f̃ . Then (ξ, ζ ) satisfy

∂tξ + ũ · ∇ξ + (K ∗ ξ) · ∇ξ − ν�ξ = g∂xζ,

∂tζ + ũ · ∇ζ + (K ∗ ξ) · ∇θ − κ�ζ = φ. (A.36)

Start with the L2 based estimates

d

dt
‖ξ‖2 + ν‖∇ξ‖2 =〈g∂xζ − (K ∗ ξ) · ∇ξ, ξ 〉

≤g2

ν
‖ζ‖2 + ν

4
‖∇ξ‖2 + ‖∇ξ‖‖K ∗ ξ‖L∞‖ξ‖

≤g2

ν
‖ζ‖2 + ν

4
‖∇ξ‖2 + C‖∇ξ‖‖∇ξ‖1/2‖ξ‖3/2

≤g2

ν
‖ζ‖2 + ν

2
‖∇ξ‖2 + C‖∇ξ‖4/3‖ξ‖2 (A.37)
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where we used Agmond’s inequality for the penultimate estimate. Similarly

d

dt
‖ζ‖2 + κ‖∇ζ‖2 = 〈φ − (K ∗ ξ) · ∇θ, ζ 〉

≤ C‖φ‖‖ζ‖ + ‖∇θ‖‖ξ‖1/2‖∇ξ‖1/2‖ζ‖

≤ C‖φ‖‖ζ‖ + ν

2
‖∇ξ‖2 + C‖∇θ‖2‖ζ‖2. (A.38)

Combining the estimates (A.37), (A.38) we obtain the bound

d

dt
(‖ξ‖2 + ‖ζ‖2) ≤ C‖φ‖2 + C(1+ ‖∇θ‖2 + ‖∇ξ‖2)‖ζ‖2. (A.39)

We turn to make the continuous dependence estimates in higher Sobolev norms.

Applying ∂α for any multi-index α and summing over all |α| ≤ m for any m ≥ 1, we

find that

d

dt
‖ξ‖2

Hm + ν‖ξ‖2
Hm+1 =

∑

|α|≤m

〈∂α(g∂xζ − ũ · ∇ξ − (K ∗ ξ) · ∇ξ), ∂αξ 〉 := I1,

(A.40)

d

dt
‖ζ‖2

Hm + κ‖ζ‖2
Hm+1 =

∑

|α|≤m

〈∂α(φ − ũ · ∇ζ − (K ∗ ξ) · ∇θ), ∂αζ 〉 := I2.

(A.41)

Regarding I1 we have

|I1| ≤ C‖ζ‖2
Hm +

ν

2
‖ξ‖2

Hm+1 + C‖ξ‖2
Hm

∑

|α|≤m

‖∂α ũ‖L∞

+ C‖ξ‖Hm (‖∇ξ‖L4

∑

|α|≤m

‖∂α(K ∗ ξ)‖L4 + ‖ξ‖Hm+1‖K ∗ ξ‖L∞)

≤ C‖ζ‖2
Hm +

ν

2
‖ξ‖2

Hm+1 + C(‖ξ̃‖Hm+1 + ‖ξ‖Hm+1)‖ξ‖2
Hm (A.42)

For I2

|I2| ≤ ‖φ‖Hm‖ζ‖Hm + C‖ζ‖2
Hm

∑

|α|≤m

‖∂α ũ‖L∞

+ C‖ζ‖Hm (‖∇θ‖L4

∑

|α|≤m

‖∂α(K ∗ ξ)‖L4 + ‖θ‖Hm+1‖K ∗ ξ‖L∞)

≤ ‖φ‖Hm‖ζ‖Hm + C‖ξ̃‖Hm+1‖ζ‖2
Hm + C‖θ‖Hm+1‖ζ‖Hm‖ξ‖Hm . (A.43)
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Combining these estimates we conclude that

d

dt
(‖ξ‖2

Hm + ‖ζ‖2
Hm )

≤ ‖φ‖Hm‖ζ‖Hm + C(1+ ‖ξ̃‖Hm+1 + ‖ξ‖Hm+1 + ‖θ‖Hm+1)(‖ξ‖2
Hm + ‖ζ‖2

Hm ).

��

A.3. Euler Equations

Proposition 5.28 follows immediately once we establish the following result.

Proposition A.5 Fix any g ∈ X and any finite-dimensional subspace X0 ⊂ X .

(i) For any u0 ∈ X and any h ∈ X0, there exists a unique 0 < Tu0,h ≤ ∞ and

u(·) = u(·, u0, h) ∈ C([0, Tu0,h);X ) solving (5.70) such that if Tu0,h <∞ then

lim sup
t↑Tu0,h

‖∇u(t)‖L∞ = ∞.

(ii) For any u0 ∈ X and any h ∈ X0, let

τ n
u0,h = inf{t > 0 : ‖u(t)‖H3 ≥ n} and τu0,h = sup

n∈N

τ n
u0,h

.

Then τu0,h > 0 and τu0,h ≤ Tu0,h. Moreover for all m ≥ 3, t < τ n
u0,h

and n ∈ N

we have the estimate

‖u(t)‖2
Hm ≤ ‖u0‖Hm eC(n+1)t +

∫ t

0

CeC(n+1)(t−s)‖g + h‖Hm ds

for some constant C depending only on m.

(iii) Let u1(0), u2(0) ∈ X , h1, h2 ∈ X0 and u1(t, u1(0), h1) and u2(t) =
u(t, u2(0), h2). Let n, T > 0. Then for all t < τ n

u1(0),h1
∧ τ n

u2(0),h2
there exists

a constant C depending only on m and a constant D > 0 depending only on

m, T , ‖u2(0)‖Hm , ‖u1(0)‖Hm+1 , ‖g + h2‖Hm , ‖g + h1‖Hm+1 such that

‖u1(t)− u2(t)‖2
Hm ≤ ‖u1(0)− u2(0)‖2

Hm eDt + Cm

∫ t

0

eD(t−s)‖h1 − h2‖2
Hm ds.

Proof of Proposition A.5 For the proof of (i), see [33,35]. To see (ii), first note that for

h ∈ X0 and u0 ∈ X , the fact that τu0,h > 0 and τu0,h ≤ Tu0,h follow from (i) and

the Gagliardo-Nirenberg inequality. To obtain the claimed estimate, let f = g+h and

observe that for all multi-indices β with |β| ≤ m, m ≥ 3, we have the estimate

1

2

d

dt
‖∂βu(t)‖2 = 〈∂βu(t), ∂β f〉 − 〈∂βu(t), ∂β B(u(t), u(t))〉

≤ ‖u(t)‖Hm‖f‖Hm − 〈∂βu(t), ∂β B(u(t), u(t))− B(u(t), ∂βu(t))〉
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where in the inequality we used the fact that 〈∂βu(t), B(u(t), ∂βu(t))〉 = 0 as u(t) is

divergence-free. To estimate the contribution from the nonlinear term, we first observe

that by interpolation and Agmon’s inequality

‖∂β B(u(t), u(t))− B(u(t), ∂βu(t))‖ ≤ cm‖u(t)‖W 1,∞‖u(t)‖Hm

≤ c′m‖u(t)‖H3‖u(t)‖Hm

as m ≥ 3, where cm, c′m are constants depending only on m. Putting these estimates

together, we find that

1

2

d

dt
‖∂βu(t)‖2 ≤ ‖u(t)‖Hm‖f‖Hm + c′m‖u(t)‖H3‖u(t)‖2

Hm .

Summing over all multi-indices β with |β| ≤ m and using Young’s inequality produces

1

Cm

d

dt
‖u(t)‖2

Hm ≤ ‖f‖2
Hm + (1+ ‖u(t)‖H3)‖u(t)‖2

Hm

for some constant Cm depending only on m. Supposing that t < τ n
u0,h, Gronwall’s

inequality then implies the claimed estimate in (ii).

To prove (ii), let w(t) = u1(t)−u2(t). Then for m ≥ 3 and any multi-index β with

|β| ≤ m we have the estimate

1

2

d

dt
‖∂βw(t)‖2 = 〈∂βw(t), ∂β(h1 − h2)〉

+ 〈∂βw(t), ∂β B(u2(t), u2(t))− ∂β B(u1(t), u1(t))〉
≤ ‖w(t)‖Hm‖h1 − h2‖Hm + 〈∂βw(t),

∂β B(u2(t), u2(t))− ∂β B(u1(t), u1(t))〉
= ‖w(t)‖Hm‖h1 − h2‖Hm

− 〈∂βw(t), ∂β B(w(t), u1(t))+ ∂β B(u2(t), w(t))

− B(u2(t), ∂
βw(t))〉

where again we used the fact that u2 is divergence-free as 〈∂βw(t), B(u2(t), ∂
βw(t))〉

= 0. Note by interpolation

|〈∂βw(t), ∂β B(w(t), u1(t))+ ∂β B(u2(t), w(t))− B(u2(t), ∂
βw(t))〉|

≤ cm(‖w(t)‖2
Hm‖u1(t)‖Hm+1 + ‖w(t)‖2

Hm‖u2(t)‖Hm ).

for some constant cm depending only on m. Thus combining this inequality with

the previous, summing over all multi-indices β with |β| ≤ m and applying Young’s

inequality produces the following bound

1

C

d

dt
‖w(t)‖2

Hm ≤ ‖h1 − h2‖2
Hm + ‖w(t)‖2

Hm (‖u1(t)‖Hm+1 + ‖u2(t)‖Hm + 1)

123



Saturation in infinite-dimensional control problems Page 99 of 103 16

for some constant C > 0 depending only on m. Now for any T > 0 if t < τ n
u1(0),h1

∧
τ n

u2(0),h2
∧ T , by the estimate in (ii) and Gronwall’s inequality there exists a constant

D > 0 depending only on m, T , ‖u2(0)‖Hm , ‖u1(0)‖Hm+1 , ‖g+h2‖Hm , ‖g+h1‖Hm+1

such that

‖w(t)‖2
Hm ≤ ‖w(0)‖2

Hm eDt + C

∫ t

0

eD(t−s)‖h1 − h2‖2
Hm ds.

This finishes the proof of the estimate in (iii). ��

Appendix B: Comparison Theorem

For the estimates in Section 5, we make repeated use of the following comparison

principal.

Proposition B.1 Let f : R → R be locally Lipschitz continuous. Fix 0 < T ≤ ∞ and

suppose that φ : [0, T ) → [0,∞) is continuous and satisfies

φ(t) = φ(s)+
∫ t

s

f (φ(u)) du

for all 0 ≤ s ≤ t < T . On the other hand suppose that for some 0 < S ≤ ∞,

ψ : [0, S) → [0,∞) is continuous with ψ(0) = φ(0),

lim sup
t→S

ψ(t) = ∞

and

ψ(t) ≤ ψ(s)+
∫ t

s

f (ψ(u)) du

for all 0 ≤ s ≤ t < T ∧ S. Then S ≥ T and ψ(t) ≤ φ(t) for all 0 ≤ t ≤ T .

In particular, we will leverage this proposition for the estimates above in the form

of the following corollary.

Corollary B.2 Let T > 0. Suppose that for every λ > 0, there exists a Tλ ∈ (0,∞]
and a C1-function xλ : [0, Tλ)→ [0,∞) satisfying

dxλ

dt
≤ c0

λ
(x

p
λ + κ0) on [0, T ∧ Tλ) and lim sup

t→Tλ

xλ(t) = ∞, (B.1)
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where c0, κ0 > 0 and p > 1 are constants independent of λ > 0. For γ, λ > 0 and

t ≥ 0, define

T ∗λ (γ ) = λ

2c0(p − 1)γ p−1
and Rλ(t, γ ) =

(

1− 2c0(p − 1)γ p−1

λ
t

)− 1
p−1

.

(B.2)

Then for all 0 ≤ t ≤ T ∗λ (xλ(0)+ κ0) ∧ T we have

xλ(t) ≤ xλ(0)Rλ(t, xλ(0)+ κ0)+ κ0(Rλ(t, xλ(0)+ κ0)− 1) (B.3)

Remark B.3 Observe that if xλ(0) = x0 ≥ 0 is independent of λ > 0, then the

comparison (B.3) holds for all t ∈ [0, T ] and all λ ≥ 2c0T (p − 1)(x0 + κ0)
p−1.

Let us first prove Corollary B.2 using Proposition B.1 and then establish the Propo-

sition thereafter.

Proof of Corollary B.2 Under the given conditions on xλ notice that

d(xλ + κ0)

dt
≤ 2c0

λ
(xλ + κ0)

p

Now consider y solving

dy

dt
= 2c0

λ
y p y(0) = y0.

When y0 ≥ 0, this equation has the unique solution

y(t, y0) := y0

(

1− t
2c0(p − 1)

λ
y

p−1
0

)− 1
p−1

.

defined on the interval [0, λ

2c0(p−1)y
p−1
0

). Thus, by comparing y(·, xλ(0)+κ0) to xλ+κ0,

we obtain the desired result by invoking Proposition B.1. ��
Proof of Proposition B.1 We first show that ψ remains below φ on their common inter-

val of definition. Let R < T ∧ S and define

T0 := inf
t∈[0,R)

{ψ(t) > φ(t)} ∧ R. (B.4)

Let us show that T0 = R. If not, then there exist times T0 ≤ T1 < T2 < R such that

ψ(T1) = φ(T1) and ψ(t) > φ(t) for every T1 < t ≤ T2.

Take

K = {φ(t) : t ∈ [T1, T2]} ∪ {ψ(t) : t ∈ [T1, T2]}.
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By the continuity of φ and ψ , K is compact and since f is locally Lipshitz, there

exists a constant CK > 0 such that

| f (u)− f (v)| ≤ CK |u − v| for all u, v ∈ K .

Now, for T1 < t ≤ T2,

0 < ψ(t)− φ(t) ≤
∫ t

T1

f (ψ(r))− f (φ(r)) dr ≤ CK

∫ t

T1

ψ(r)− φ(r) du.

Invoking Grönwall’s inequality, we have that ψ(t) = φ(t) = 0 for t ∈ [T1, T2], a

contridiction.

To show that T ≥ S we again argue by contridiction and suppose on the contrary

that S < T . Take

Sn = inf
t∈[0,S)

{ψ(t) > n}.

Then, by what we have already established, φ(Sn) ≥ ψ(Sn) = n. This in turn would

imply that supt∈[0,S] φ(t) = ∞, violating the continuity of φ and yielding the desired

contridiction. The proof is complete. ��
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