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Abstract
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equations (SPDEs). In particular, we study the support properties of probability laws
corresponding to these SPDEs as well as provide applications concerning the ergodic
and mixing properties of invariant measures for these stochastic systems.
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1 Introduction

The main goal of this paper is to develop a flexible framework for establishing control-
lability in important classes of nonlinear partial differential equations. Our primary
motivation for doing this stems from our interest in obtaining support properties of the
Markov process solving the associated stochastic partial differential equation (SPDE)
that results when the control terms are replaced by independent Brownian motions.
Such support properties constitute a fundamental part in proving unique ergodicity
and mixing of the stochastic dynamics. An additional, but more refined goal of this
work is to give practical criteria for the existence and positivity of the density of the
law of the projected SPDE solution onto any finite-dimensional subspace.

General support theorems, or equivalently topological irreducibility results, for
SPDEs were initially restricted to settings where the noise is sufficiently non-
degenerate, allowing one to instantaneously counteract any effect of the drift terms
(see [15,16,23] and the references therein). While such roughly forced SPDEs arise
naturally in the equations describing the statistics of fluctuations in various scaling
limits, they do not cover many interesting examples. Here we are largely motivated by
applications to statistical hydrodynamics and phase field equations. In these settings,
the stochastic forcing is typically localized at a certain scale and one is interested in
how the dynamics propagates the energy to other scales. Consequently, we focus on
the case when randomness enters the equation externally on a few, select directions in
the phase space.

In this degenerate setting, many of the initial approaches to solving the control
problem were only sufficient to imply irreducibility and not global controllability.
Furthermore, the methods used were rather ad hoc [25,27]. On the other hand, system-
atic results close to the setting of this paper were given previously in [4,5,36,37,44-46].
While related, our results more directly extend the geometric control theory work of
Jurdjevic and Kupka [30-32]. One advantage is that this approach interfaces cleanly
the local smoothing/contraction estimates coming from the infinite-dimensional ver-
sion of hypoellipticity [29] developed in [25,27]. Both theories are built on Lie-bracket
calculations and a flag of associated subspaces which capture the ability of the non-
linearity to move randomness and control action between the degrees of freedom,
or rather different scales, in the SPDE setting. To prove these results, we recast the
‘method of saturation’ from [30-32] into a form suitable for the infinite-dimensional
setting. We also make our results applicable to dynamics, which need only exist locally
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in time, on a very general phase space X. In particular, our formalism is well adapted
to infinite-dimensional systems generated by PDEs which might only have a local
existence theory, such as the 3D Euler equations. As such, we think that the control
theoretic contributions in this work hold independent interest beyond the immediate
probabilistic applications which motivated us.

The connection between the control problem and support properties of the associ-
ated stochastic dynamics is well established [1,15,16,49,50]. More precisely, fixing the
initial condition u, the solution u(¢) to an SPDE at time ¢ is obtained by the solution
map ¢; : @ — u(t) where w is a realization of the stochastic forcing, in our setting
a finite collection of independent Brownian motions. We will assume that u(f) € X
for some function space X and generally take w € ; = C([0, t], R™) for finite m.
Approximate controllability is then simply the statement that for any ug, v € X and
8, t > 0 there exists an w € $; so that ||¢; (ug, w) — v|| < 6.

As already mentioned, a second but related goal of the paper is to give conditions
guaranteeing the positivity of the density of the random variable wu (), where 7 is a
continuous projection onto a finite dimensional subspace 7 (X). This generalizes the
results and techniques from [34]. The fact that the random variable wu () € 7 (X) has
adensity with respect to Lebesgue measure on 77 (X) follows from the general principle
that the push forward of a density through smooth map remains a nice density provided
the Jacobian at typical points is non-degenerate. In our examples, we push forward
the law of the Wiener measure through the projected SPDE solution map 7 ¢, to
obtain the random variable wu(t). The theory of Malliavin Calculus precisely shows
that the Jacobian of the map is non-degenerate if the Malliavin covariance matrix is
sufficiently non-degenerate. The needed control over the Malliavin covariance matrix
and its inverse is one of the main results of the theory of hypoellipticity developed
in [25,27]. Positivity of this density then follows from the the work of Ben-Arous-
Léandre [8,9] (see also [6,38]), which makes precise the above ideas concerning the
push forward in the finite-dimensional setting.

The existence of a control which drives the solution exactly, after projection, to a
given point requires an extension of the preceding approximate controllability results
to an ‘exact controllability on projections’ result. More precisely, we show that for
any v € X and §, ¢ > 0 there exist and w € €; so that both ||¢;(w) — v|| < § and
w¢;(w) = mv. In [30-32], this extension relies on the structure of smooth vector
fields on R?. As the phase space in our setting is infinite-dimensional, we had to
develop other methods. Here, we produce this stronger form of controllability using
a more refined notion of saturation, which we call uniform saturation, allowing us to
transfer continuity properties of the underlying semigroups from one approximation
to the next. This transfer of continuity ultimately facilitates the use of the Brouwer
fixed-point theorem to establish exact controllability on projections.

As mentioned above, in addition to this exact controllability on projections result,
to prove positivity of the projected density of the random variable mu,, one must
show that the appropriate Jacobian of the projected flow map m¢; is non-degenerate
when evaluated at some control which gives the desired exact control on the projected
subspace. The ideas to prove the existence of this non-degenerate control generalize
those in [28] from the finite-dimensional setting, and [34] from the specific context of
the 2D Navier—Stokes equation. These ideas for proving such non-degeneracy leverage
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the fact that the Malliavin covariance matrix was proven to be almost surely non-
degenerate in a closely related setting [25,27].

The first major development in the paper, as carried out in Section 3, extends the
ideas of Jurdjevic and Kupka from control theory [30-32] to dynamics on a very gen-
eral phase space X which need only exist locally in time. Section 4 pairs previously
obtained control information via saturation with the Malliavin calculus to infer sup-
port properties of the solution of the associated SPDE. Specifically, in Section 4 we
provide a self-contained presentation of the Malliavin calculus in the abstract setting
of cocycles, giving criteria for the existence and positivity of the probability density
function (with respect to Lebesgue measure) of the projected stochastic process wu
living on a finite-dimensional subspace of X. The topic of unique ergodicity is also
discussed. It is important to highlight that the criteria given here for the existence and
positivity of 7u do not require moment bounds on the Malliavin matrix. For exam-
ple, our hypotheses for existence of the density are comparable to those given in the
language of Dirichlet forms in the work [6].

In order to illustrate our framework, the methods developed in Section 3 and Sec-
tion 4 are applied to a number of specific equations in Section 5. In particular, using
the methods of Section 3 we study the low-mode control problems for a reaction—
diffusion equation, the 2D incompressible Navier—Stokes equation, the Boussinesq
equation and the 3D incompressible Euler equation. Support and ergodic properties of
the associated stochastic perturbations are then inferred using the results of Section 4.
We are optimistic that our techniques will prove useful in the study of other concrete
examples in the future.

While the low-mode control problems for the 2D incompressible Navier—Stokes,
the 3D incompressible Euler equation and variants thereof have been studied pre-
viously [4,5,36,37,44—46] (see also [2,34] for consequences for the support of the
stochastically forced systems), we provide these two examples for completeness of
presentation and to illustrate the efficacy of our formalism. On the other hand the
results for the Reaction—Diffusion equations and the Boussinesq equations are to the
best of our knowledge new and may be seen to compliment other recent works on
ergodic properties of these equations in the presence of a degenerate stochastic forc-
ing [19,27]. Here it is also important to highlight that our formalism is used to show
that equations such as the Navier—Stokes and Boussinesq equations remain uniquely
ergodic when, in addition to the stochastic perturbation terms, we add a more or less
arbitrary deterministic source term.

The organization of the remainder of this paper is as follows. In Section 2, we
provide heuristics which both motivate and give an overview of the rigorous control
methods developed in Section 3. Section 4 concerns applications of the control results
of Section 3 to an associated SPDE whose dynamics generates a continuous adapted
cocycle. In particular, support properties of the law of the solution u# of the SPDE
and unique ergodicity are studied from this point of view. In Section 5, the theoretical
frameworks developed in previous sections are applied to specific equations. Basic a
priori estimates for each of the examples studied are saved for the appendices.
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2 Heuristics, Overview of Methods

In order to introduce the main ideas and methods employed below in concrete exam-
ples, we consider an abstract, controlled evolution equation of the form

du
—+Lu+N(u)=f+Zozk(t)ak, u0) = ug € X. 2.1
dt keZ

Our system evolves on a phase space X which, for the purposes of discussion here,
may be thought of as a separable Hilbert space with norm || - ||. We assume that L is
a linear (unbounded) operator and that N is a polynomial nonlinearity of the form

M
N@) =) Ni(w) 22)

k=2
where the highest-order term Ny (1) = Nps(u, u, ..., u)issuchthat Nys(uy, us, ...,

u ) is a symmetric multilinear operator of degree M and foreach2 < k < M, Ni(u)
is either 0 or a homogeneous operator of degree k. We assume that Z is a finite set of
indices, for example, Z might be subset of Z, Z?, or any other convenient alphabet
of labels. We further assume that the elements f and oy, k € Z, represent fixed
directions in the phase space. The dynamics (2.1) is influenced by the (piecewise
constant) controls o : [0,00) — R. Of course in each example presented below
in Section 5, we will make concrete assumptions on L, N, f, o, etc, so that (2.1)
makes sense and is at least locally well-posed. In particular in Section 5, we will
treat a reaction—diffusion equation, the 2D Boussinesq equation as well as the 2D/3D
Navier—Stokes and Euler equations, all of which can be posed in the form (2.1).

Our goal will be to understand when, for any ug, vo € X, any hitting time ¢ > 0
and any tolerance of error ¢ > 0, we can construct a piecewise constant control
o= (o : ke 2):[0,t] — RIZl g0 that

lu(t, up, o - 0) —woll < ¢ 2.3)

where u(t, ug, o - o) denotes the solution of equation (2.1) with initial condition ug
and control ), <z ok (t)oy. Here | Z| denotes the cardinality of the set Z. Furthermore,
we would often like to show more strongly that if # : X — X is a fixed continuous
projection onto a finite-dimensional subspace of X, and ug, vo € X, €, > 0 are given,
then there exists a piecewise constant control « = (ax : k € Z) : [0,1] — R/ZI
satisfying (2.3) and

w(u(t, uo, a-)) = 1 (vo); (2.4)
namely, « simultaneously provides approximate control on X and exact control on
7 (X). Throughout, both of these control problems will be referred to generically as

the low mode control problems, as one typically assumes that oy (x) ~ ¢'** so that we
are trying to drive our system (2.1) through a few select frequencies.
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Of course we do not expect to be able to solve the low mode control problems with-
out making further assumptions on the oy ’s. In particular, there needs to be sufficient
control; that is, Z must contain enough elements as is typically dictated by its relative
structure with the nonlinearity N. However, because such assumptions can vary from
equation to equation, our goal in this section is to illustrate how such assumptions
on the controls arise as well as how the methods used to solve the low mode control
problem work.

As we shall see, two notions play a central role in our approach to controlling (2.1),
namely scaling and saturation. The former notion, based on the introduction of a large
parameter, is used to infer new directions along which the system can move besides
the explicit directions (the o} ’s) acting on the controlled dynamics. This approach to
deriving the needed controls is illuminating as it provides some explicit understanding
of the construction of a desirable control «; see (2.9) and (2.14). On the other hand,
we will quickly see that composing scalings to produce further directions iteratively
can become unwieldy due to the multiple time scales present in each scaling limit.
The notion of saturation, originally pioneered by Jurdjevic and Kupka in the finite-
dimensional setting of ODEs [30-32], provides a highly effective tool which allows
one to directly use the new trajectories obtained from each scaling limit. Thus, this
saturation machinery allows us to iteratively produce a sequence of seemingly more
controlled systems which nevertheless reach the same portions of the phase space as
the original control problem. Below in Section 3, we develop a generalization of the
Jurdjevic and Kupka approach which is applicable to the abstract spatial setting of a
metric space.

To introduce these two ideas on a basic level, we begin by adopting further notation.
We use the semigroup formalism and write the solution of (2.1) at time ¢ with initial
data ug € X and constant control @ - 0 = Zkez“kUkQ that is, « : [0, 0c0) — RIZl s
independent of the time parameter #, as

DY %uy = u(t, ug, o - o). 2.5)
Throughout, we also make extensive use of the ray semigroups

piug :=uo+1g, >0, (2.6)
defined for any ug, g € X. We let S denote the collection of continuous local semi-
groups on X (see Definition 3.1).! We use a calligraphic font to distinguish between
subcollections of these semigroups, i.e. 7, G € S. Specifically, observe that finite
compositions of elements in the set

Fo:={®d*7 : a e RZN (2.7)

represent the totality of possible paths that solutions of (2.1) can be made to follow
using piecewise constant controls. In each problem we consider in Section 5, we will

! The collection S plays essentially the same role as the family of vector fields on finite-dimensional smooth
manifolds do in Jurdevic and Kupka’s work [30-32].
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see that there is enough structure to guarantee that indeed Fy € S. With this notational
convention, we introduce the accessibility sets

ApQu,t) = {¥" Wy : W eF forallt =1,2,....,mand /" t; =1},
(2.8)

so that the condition (2.3) holds precisely when Az, (u, 1) = X for every u € X and
every t > 0.

2.1 Scaling Arguments

We will primarily use two flavors of scalings to generate new directions in the phase
space. The first scaling increases the magnitude of the control while reducing the time
interval on which it acts, thereby allowing us to see that we can approximately reach
anything in the set ug + span{oy : k € Z}, u(0) = ug, in arbitrarily small amounts
of time. This gives us the freedom to flow in the direction of any element in the
set span{oy : k € Z} in small times. The second scaling type uses these previously
obtained directions and then cycles them through the nonlinearity N via an appropriate
composition of flows. Due to the resonant interaction between the nonlinearity N and
scaled rays, we are then able to generate new directions not belonging to the span
of the oy’s. As we will see, this process can then be iterated to produce even more
directions.

Remark 2.1 Although the two specific scalings presented below give one recipe for
generating directions in the phase space, the particular path taken in this section may
not generate all needed directions to solve a particular control problem. Indeed, many
other scalings are possible and further ingenuity may be needed to demonstrate access
to new directions. In particular, three of the four examples presented in Section 5 rely
entirely on the two scalings introduced in this section while the Boussinesq equation
requires rather different scaling combinations to produce a suitable control.

To describe the first scaling type in more detail, fix « € R" and take . > 1 to be a
scaling parameter. For any ug € X, take

(1) = D15 uo (2.9)
and observe that u; satisfies:
dlxt)L 1 1
7=a~0—X(Luk+N(uk))+Xf%a-a, uy (0) = ug. (2.10)

Thus, one might expect that by employing suitable a priori estimates

li DM o — p%up| =0 2.11
A_y}rlooll 110 — o uoll (2.11)
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forany ug € X, € R" and ¢t > 0. In summary, the scaling introduced in (2.9) allows
us to push the dynamics of (2.1) along rays of the form

o %ug =ug+ (a-o)t, t>0,

in a short burst of time (¢/A for A > 1), thus providing an initial step to generate
directions. Hence, setting

Xo={a -0 : a € RZN (2.12)

we expect to be able to approximately flow along rays in the direction of elements in
X in small positive times.

To describe the intuition behind the second scaling that allows us to generate direc-
tions besides those explicitly acting on the dynamics, we will use the trajectories
of%up, a € R/Z! obtained by the previous scaling, and ‘push’ the directions « - o,
a € RIZ! through the nonlinear term N. This is carried out as follows. Consider the
scaling

2 .
va(t) = %, P
A

A

for A > 1, where we emphasize that the null superscript in d>? /ym Teans that we

completely ‘turn off” the control in (2.1). In the above expression for v, (¢), we note
that for A > 1
Voo _
P51 Ug=uyg+Arx-0 ~Ax-o

and thus the scale 7/AM is picked to balance the asymptotic behavior of the leading-
order term along A« - o in N. More formally, presuming that Njs(« - o) # 0 we have
Ny Oa-0) = MM Ny (o - o), so that for & > 1

t/aM
|7 @+ Nes
t/aM
%/ (L(up+ra-0)+ Nug+ra-0))ds ~tNy(x - o).
0

where we have also used that v, ~ ug + A« - o on the short time interval [0, ¢ /AM ].
Hence we see that

t/aM P
v () =ug+ra-o —/ [L(vy) + Nlds + —; f
0 A
Xug+Aix -0 —tNy(a-o), (2.13)

which should be valid for all A > 1.
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Observe that while we have picked up the direction Ny (« - o), the trajectory vy (¢)
does not stabilize since uy + A« - o blows up as A — oo. To take care of this, we
introduce another composition

_ —22q-0 _ —22a-0 5,0 2a-o
wy(t) = Py -1 V(1) = Py -1 CDI/AMP)\A uo (2.14)
which, starting from vy (1), simply flows along the direction —A%« - o in A~ time
units. Using (2.13) we see that for A > 1

wy (1) X ug —tNy (o - o).
One can also see the approximation above by noting that w; satisfies

dw;\ 1 1
e =—W(L(wx +)Loz~a)+N(w)\+Xa-cr))+)\—Mf%—NM(a-o),

(2.15)

starting from w; (0) = u¢. In summary, given suitable PDE-dependent a priori esti-
mates, we therefore expect

. 2 2q- 24- _N .
limy s pooll0, 2 0 @0 )4 Tug — o "M ugl =0, (2.16)

for any fixed up and any o - 0, ¢ > 0.
Of course it is not immediately clear that the trajectory given by (2.14) can be
obtained from (2.1) by composing elements solely from the set (2.7). On the other

Vao

hand by the first scaling argument, we can expect to get arbitrarily close to p; "7 ug
for A > 1 by considering
(A/L)zomf _
CID(M)_l for w=puR)>1.
Thus for each A > 1 by picking & = u(X) > 1 and considering
(I)_()Ll/«)za‘g 0 (D()L;L)zot-a (217)

(O dr et MO
we may expect to be able to approximate w; using the trajectories in Fy.
In view of the above discussions we would now like to iterate the use of the two
scalings (2.9) and (2.14) to approximate a much richer collection of ray semigroups.
To this end we define

X, = span{Xo U (Nu(g) : g € Xol

with Xg as in (2.12) and for k > 2 we define X inductively by

Xy = span{Xe1 U {Nu(g) © g € X1}, (2.18)
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Thus we might expect to approximately reach points of the form

up+v foranyv € X := UXk (2.19)
k>1

by composing the relevant scalings as we did for points in X in (2.17) above. Hence
we might expect the density condition

Xoo=X (2.20)

to be sufficient to achieve approximate controllability as in (2.3).

Before turning to the notion of saturation which we will use to facilitate the iterative
process of generating elements in Xy for & > 1 through multiple scalings, we now
make some crucial remarks.

Remark 2.2

(i) If M iseven, itis not true in general that we can generate directions in X using
the scaling analysis above. This is because one need needs to be able to flow
both forwards and backwards along the directions Nps(g), g € Xy—1, using
the ray semigroup. In particular in the case when M is even, it is certainly
not obvious nor true in general that both Njs(g), —Ny(g) € X given that
g € Xk—1, so the second scaling used above does not work when replacing
o - o with Ny (g). We will see that in some special cases, specifically in some
models from fluid mechanics where M = 2, that this scaling analysis can still
in fact be used to realize the sets X via the scalings above. See Remark 2.4.2
for a further discussion of this point.

(i)  Given the definition of the X}’s, it is not clear that the set X, is rich enough
to be dense in X. However, we will see that Condition (2.20) is equivalent to
an infinite-dimensional analogue of Hormander’s condition. See Section 2.4.

(iii)  In each of the examples considered below in Section 5, it will not be the case
that Nps(g) € X for generic g € X. This will not pose any significant problem,
however, as we are mainly interested in the low mode control problem where
the control subspace X will consist of smooth (C*°) elements in X. This, in
particular, will allow us to conclude that Nj/(g) € X and is smooth for each
g € Xo. Moreover, when the scaling above is iterated, we will also be able
to conclude Ny/(g) € X for each g € X and each k > 0. We will therefore
operate under the assumption that Ny, (g) € X foreach g € Xy andeachk > 0
for the remainder of this section.

Remark 2.3 At this stage it is important to note some differences between the control
theoretic approach adopted here and the Agrachev-Sarychev approach [4,5,36,37,44—
46]. The latter approach relies on establishing three key properties for the control
problem (2.1):

(I) The Extension Principle. This states that the system (2.1) is approximately con-
trollable on X if and only if the following control problem

du + L+ hy) + N+ hi) = f+ho, (2.21)
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where ho, hy : [0,00) — X belong to an appropriate class of controls, is
approximately controllable on X. Here, approximate controllability of (2.21)
means that for every €, ¢ > 0, ug, v € X there exist controls hg, k1 : [0, 00) —
X such that the solution u(-, ug) of (2.21) with u(0, ug) = ug has ||u(t, ug) —
v|| < €. Note that by simply setting 7; = 0, we retain the original control
problem (2.1). Thus this principle is important because (2.21) has more degrees
of freedom (in terms of control) even though both control problems, (2.1) and
(2.21), are equivalent in this sense.

(IT) The Convexification Principle. Let X| C X denote the finite-dimensional sub-
space generated by elements of the form

ho+ Ny (hy, ha, ..., hag).

The Convexification Principle states that (2.21) is approximately controllable by
the X-valued controls kg, &1 if and only if the original control problem (2.1)1s
approximately controllable by an X;-valued control. Note here that X; 2 Xj.
Thus provided X| D X, we have gained more control directions over the original
system via equivalence.

(ITT) The Saturating Property. This simply states that equivalence in (I) and (II) is
transitive so that the process can be iterated, producing an increasing family of
subspaces

XjCXpC---CX, C

such that if U, X, is dense in X, then the original control problem (2.1) is approx-
imately controllable.

The approach adopted here is different in the sense that explicit scalings are used
to generate directions along which the dynamics can move in short bursts of time.
For the two scalings used above, we will see in Section 2.4.1 that the subspaces
X,, n=1,2, ..., generated in (2.18) precisely coincide with the subspaces produced
iteratively in step (IIT). Furthermore, the explicit nature of the method not only allows
us to shed light on how the equivalence in (I) and the directions in (II) arise but it
also allows us to bypass showing the Extension Principle and Convexification in each
equation altogether. Later in Remark 2.4, we will highlight another important differ-
ence between the two approaches which allows us to induce simultaneous approximate
control on X and exact control on 7 (X), 7 : X — X denoting a continuous projection
onto a finite-dimensional subspace of X. This is done through the combined use of
the explicit scalings and a new, refined notion of saturation called uniform saturation
defined in Section 3.3.

2.2 Saturation
It is clear that there is a tantalizing connection between the scaling arguments (2.11)

and (2.16) and the task of generating controls which approximate points of the form
appearing in (2.19). However, there are a few issues which prevent us from directly
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concluding (2.3) from (2.11) and (2.16) under a density condition like (2.20). First,
notice that in order to iterate our strategy we quickly end up with a horrific tangle of
multiple time scales. Another problem is that the rescaling strategy leading to (2.11)
and to (2.16) are more conducive to studying the time relaxed sets defined by

Ar(u,<t) = UA]-‘(M» 5) =

s<t

W Wy e Fe=1,2,....m, and Y/ 1; <t}. (2.22)

It is thus clear that further arguments are needed to mediate between points lying in
Ar(u, <t) to those lying in the more restricted sets A r(u, t).

The notion of saturation addresses these dual considerations and more. Let us begin
with the observation that the relaxed accessibility sets (2.22) provide us with a way
to place a partial ordering on S. Given F,G C S we will say that F subsumes G,
denoted by G < F, if

Agu,=1) S Ar(u,<1)
foreveryu € X andt > 0. On the other hand we say that two collections of semigroups
F,G C S are equivalent, denoted by F ~ G, ifboth G < Fand F X G.
As we will see, it is not hard to show that G < F if and only if given any ¥ € G,
u € Xandanye,t > 0 there exists ®!, ..., ®" € Fandt; +---+1, < so that
@) - @l u— Wl <e. (2.23)

This characterization (2.23) allows us to consider ‘one scaling at a time’ as follows.
Let

Go := {p* : & € Xo} U Ty,
and for k > 1 take
Gk i=1{p* & e X} U R

where X is defined as above in (2.18). Observe that (2.11) combined with (2.23)
shows that

Go < Fo, (2.24)

where F represent the solutions of our original system (2.1) under constant controls
as defined above in (2.7). Similarly combining (2.16) and (2.23) implies that

Gr < Gr—1, (2.25)

for every k > 1.

@ Springer



Saturation in infinite-dimensional control problems Page 130f 103 16

Let us now see how combining the observations in (2.24) and (2.25) now allows us
to conclude that

Aru,<1) =X (2.26)

for any u € X and ¢ > 0 under the density condition (2.20). Indeed, the characteriza-
tion of G < F above in (2.23) allows us to conclude that if

Hi < F
for some collection H; of subsets of S, then

F~FulJH.

1

In particular it is clear that the saturate of F defined as

smﬂ:[JH
H<F

satisfies Sat(F) ~ F. Thus in particular we find that (2.24) and (2.25) imply
(0% : € € Xoo} < Sat(Fo) ~ Fo,

and hence (2.26) follows from (2.20).

Of course (2.26) does not immediately imply the exact time approximate control-
lability condition (2.3) is satisfied. This is due to the fact that we lack precise control
over the time at which we get close to the target vy. Nevertheless, it turns out that
we can show that (2.26) implies (2.3) in a very general setting. The argument which
establishes this time conversion is roughly the following. Given ¢t > 0, starting from
up € X we can get arbitrarily close to a desired target v € X atsome time 0 < s < ¢.
We can then bounce back and forth between this neighborhood and other values in X
to make up the remaining time ¢ — s. For further details, see Lemma 3.7.

2.3 Exact Control on Projections: Uniform Saturation, Fixed Point Arguments

The arguments sketched so far provide a broadly applicable approach to obtaining
approximate controllability at a fixed time ¢ > 0. However, in order to simultaneously
provide an approximate control on X, condition (2.3), and exact control on 7 (X) as
in (2.4), further refinements of the saturation formalism are needed. As already noted
we are mainly interested in the situation where  : X — X is a continuous projection
onto a finite-dimensional subspace of X.

Below in Section 3.3 we introduce the notion of uniform saturation which essen-
tially guarantees continuity in our control with respect to changes in the initial
condition and target point. This continuity is used conjunction with the Brouwer fixed
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point theorem to infer (2.4) when m has finite-dimensional range. See Theorem 3.14
for our precise formulation. Note that we use the term ‘uniform saturation’ since we
require scaling approximations to hold uniformly over compact subsets of initial data
and compact subsets of the control parameter space. This uniformity allows us to
transfer continuity from one approximation to the next.

While requiring uniformity does complicate the presentation of the saturation for-
malism, the needed estimates at the level of the PDE do not change much. Specifically
we will see that it is sufficient to replace (2.11) with

lim  sup 1977 uo — o uoll =0, (2.27)

A=>+00 upeK,aek

for any compact K C X, K C R Similarly, (2.16) needs to be extended to

. -2 22 -N
lim sup ”)01/)L gd)?/)LMpl/fMO 2 (g)uO” =0, (2.28)
A— 400 >

upek,gek

over any compact sets K, K C X. We may expect such bounds to follow from (2.10)
or (2.13), by similar estimates for any reasonably well-behaved equations of the form
(2.1).

Remark 2.4 The previous paragraph highlights another difference between the control
theoretic approach developed here and the Agrachev-Sarychev approach. In particular,
using the approach developed in our paper, one does not need to prove approximate
controllability and then prove simultaneous approximate control on X and exact con-
trol on 7 (X) for a given finite-dimensional projection 7. Rather, the stronger form of
controllability follows immediately by the strength of the explicit scaling estimates.
In other words, one bypasses this step when estimates such as (2.27) and (2.28) are
satisfied, so long as a dense set of directions can be generated by iterating the scaling
estimates.

2.4 Further Remarks on Spanning Conditions

We finally return to the discussion of the sequence of approximating spaces X defined
above in (2.18). As already mentioned, the scope of algebraic conditions covered by
this setup is wider than it at first appears. First we will show that condition (2.20) is
equivalent to an infinite-dimensional analogue of Hormander’s Condition introduced
and employed in [27]. We then conclude this subsection with some remarks showing
that in certain cases when the degree of the polynomial N in (2.1) is even, the subspaces
X can still be produced using the scaling and saturation arguments above. Both of
these observations will be crucially used for the examples in Section 5 below.
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2.4.1 Relationship to Hormander’s Condition
To introduce this infinite-dimensional version of Hormander’s Condition, starting from
)~(0 = span{oy : k € Z}

forn > 1let

X, = span {f(n—l U{Npm(g1,....,8m) 1 8j € f(n—l}}

where we are assuming that Nys(g1, ..., gm) € X whenever g1, 82,...,8u € X,
for some n.

Definition 2.5 We say that (N, o) satisfies Hormander’s Condition on X if

U =x. (2.29)
>0

=

We now state and prove the following proposition giving equivalence of condi-
tion (2.20) and Hormander’s condition.

Proposition 2.6 We have that Xy = Xy for all k > 0. Consequently, condition (2.20)
is satisfied if and only if (N, o) satisfies Hormander’s condition on X.

Proof Clearly, Xo = Xo. Also, fork > 1, Xi C X - To see the opposite inclusion for
k > 1, we adapt the argument in Lemma 6 of [31]. Fix g, # € Xy—1 and consider

Xk—1(g,h) :=span{Ny (g +ah) : « € R}.

Observe that since Ny is multilinear of degree M, Xj_1(g, h) is a finite-dimensional
subspace of X, hence is closed. In particular, since the sequence

1
{X(NM(g‘f‘)\h) —NM(g))} C Xk—1(g.h)
re(0,1]

convergesasi — OtoM-Ny(g, g, ..., &, h),weconcludethat Ny (g, g,...,8,h) €
Xy for all g, h € Xi_1. Recall here that the multilinear operator Ny has been sym-
metrized. This argument can then be iterated to see that Nys(hy, ha, ..., hy) € Xk
for all h; € X;_1, allowing us to conclude f(k C Xg. O

2.4.2 Even Degree Nonlinearities

Let us next make some remarks concerning even degree polynomial nonlinearity N in
(2.1). Specifically we introduce conditions on N applicable to the 2D Navier-Stokes
equations, the 3D Euler Equations and the 2D Boussinesq equations (in each case in
the absence of boundaries) considered below in Section 5.

Suppose that the leading-order nonlinearity N, is a bilinear form and assume we
have countable set of elements {e;};en € X satisfying the following conditions:

@ Springer



16 Page 16 of 103 N. E. Glatt-Holtz et al.

(1) span{e; : j=1,2,...,n} Cspan{oy : k € Z} forsomen > I;
(2) We have the cancellation property

Na(ej,ej) =0 for every j € N; (2.30)
(3) Forall j, k € N there exists a natural number N (j, k) such that
Na(ej. ex) C spanfeg : €< N(j, k). (2.31)

To see how these conditions may be satisfied see for example (5.30) below.
In this case defining Xo = spanfe; : j =1,2,...,n}and X,k > 1, as

X = span{Xe1 U Na(g) + g € i1},

we now see that each set Xy can be realized using the two scaling arguments above.
In this regard, the key observation is that for any « € R and j, k € N the first part of
condition (2) implies

Ny(aej + ex) = 2aNs(ej, ex).

Hence by condition (1) and the second part of condition (2), inductively the X can
be obtained using the scaling and saturation arguments above by choosing the « to
have the correct sign (either positive or negative). In other, more imprecise words, the
nonlinearity N3 is ‘behaving like’ an odd degree polynomial. In the finite-dimensional
setting, this behavior is captured in the notion of relative degree introduced and studied
in [28]. See also [41].

3 Saturation in Infinite Dimensions

We turn now to provide a rigorous treatment of saturation in the sprit of the framework
developed by Jurdjevic and Kupka [30-32]. Much of the formalism developed here
requires little underlying structure of the phase space, and we therefore present many
of the results in the section in the general setting of a metric space. After introducing
the rigorous setup in Section 3.1, we turn to proving some results about saturation that
are crucial elements for establishing (2.3) in the forthcoming examples in Section 5.
This subsection concludes with a ‘conversion lemma’ (Lemma 3.7) which allows us
to translate controllability on relaxed time sets a la (2.26) to exact time controllabil-
ity (2.3), (2.8). The final subsection (Section 3.3) introduces a more refined version
of saturation, called uniform saturation, which also tracks the continuity of approxi-
mations with respect to parameters. This notion is crucial for the main result of this
section, Theorem 3.14, which is used in conjunction with Lemma 3.6 and Lemma 3.7
to establish establish exact controllability for finite-dimensional projections via (2.4)
in the examples treated below in Section 5.
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3.1 General Notions for Controllability

Let (X, d) be a metric space. We fix an additional point &, called the explosive state,
not belonging to X. This is the ‘death state’ where locally-defined semigroups will
live at times after they fail to exist in X.

Definition 3.1 We call a mapping (t,u) — ®,u : [0,00) x X — X U {8} a contin-
uous local semigroup on (X, d) if, for every u € X, there exists 7, € (0, oo] such the
following conditions are satisfied:

(i) Fort €[0,7,), ®;u € X and fort > T, Du = £..
(i) ®ou = uandforallt,s € [0, T,) witht+s € [0, T,,), we have thatt € [0, T, )
and &, u = O, Du.
(iii) Forall¢ € [0, T,) and all € > 0, there exists § > 0 such that whenever (t', u’) €
[0, 00) x X satisfies

It —t| +du.u') <38
we have that ¢’ € [0, T,) and
d(®u, dyu') < s.

For notational convenience, we will use ® to denote a continuous local semigroup
(t,u) — P 2 [0,00) x X — X U {&}. We will say that ® is global if T, = oo for
every u € X. Throughout, S will denote the set of all such continuous local semigroups
on X.

Remark 3.2 Some of the semigroups we will work with are only known to be defined
locally in time, e.g. the 3D Euler equation considered in Section 5.4. Thus, when we
write the composition

Oy ppl D) u

In = In—1

below, it is implicitly assumed that <I>{] CID,J;} . <I>tllu € Xforallj=1,2,...,n.

Given F C § arbitrary, we now introduce the accessibility sets corresponding to
F, which are simply the points in X that can be reached by iteratively composing
elements in F.

Definition 3.3 Consider F C S.

(i) Foru € X and ¢t > 0, define
Ap,n)={®p ol dju: & e F, Y=t} (3.1

In—1

and take

Ar(u,<t) = U Ar(u,s).

O<s<t
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These are the accessibility sets of F.
(i) We say F is approximately controllable on X if for any t > O and any u € X

Aru,t) =X

where for A € X, A is the closure of A. Equivalently, F is approximately
controllable on X if for any u, v € X and any ¢, ¢ > 0, there exist positive times
f1,...,t, and elements ®!, ..., ®" € Fsuchthatt; +---+1, = ¢ and

d(®] dp 1 D) u,v) <e.

(iii) Suppose that 7 : X — Y is continuous where Y is another metric space (which
we will usually take to be a subset of X). We say that F is approximately control-
lable on X and exactly controllable on 7w (X) if forany u, v € X andany ¢, ¢ > 0,
there exist positive times 71, . . ., t,, &, ..., ®" € F such that t+---+t, =t,

(@)Dl u)y=m(v) and d(P] D DLuv) <e.

Remark 3.4 When X is a Fréchet space and 7 is a continuous linear projection onto
a finite-dimensional subspace, the notion introduced in Definition 3.3 (iii) reduces to
exact controllability on finite-dimensional projections. This is the setting in which we
provide criteria for establishing (iii) below in Section 3.4 which is based on establishing
approximate controllability with continuous dependence on the target point. Note that
this notion of controllability in (iii) above is a slight generalization of the usual notion
of simultaneous approximate controllability on X and exact control on a given finite-
dimensional projection on X as in [4,5,36,37,44—46] since m here can be a given
continuous mapping and not just a finite-dimensional projection.

3.2 Saturation

The scaling arguments introduced above in Section 2, in particular in (2.10) and (2.13),
do not immediately yield approximate controllability due to the lack of control over
the time parameter. Thus, in order to identify points in the sets

Ar(u,1), ue Xandt > 0, (3.2)
we first determine points which belong to the time-relaxed sets
W, ueXandt > 0,
with the aid of saturation. Under suitable circumstances, for example when

Aru,<1) =X

forallu € X and t > 0, we can then employ general arguments to obtain information
about the exact time sets. This is captured in Lemma 3.7 of this section.
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To see how this works in a general context, we need to introduce some further
definitions.

Definition 3.5 Let 7, G C S.

(1) We say that G subsumes F, written as F < G, if

Ar(u, <1) S Ag(u, < 1), (3-3)

forallu € X and t > 0, where we recall that A denotes the closure of A C X.
(i) We say that F is equivalent to G, denoted by F ~ G, ifbothG < F and F < G.
(iii) The saturate of F, denoted by Sat(F), is defined by

saF) = | J G

g=F

The next Lemma gives a characterization of equivalence for collections of semi-
groups. This will provide a basic formulation which we will use in applications below.
Moreover this formulation is the basis for a generalization to the uniform setting
introduced below in Subsection 3.3.

Lemma 3.6 (Saturation Lemma) For any collections F,G C S, F < G if and only if
forevery W € F,u € X and ¢,t > 0 with W;u € X, there exists ol ... d"eg
and positive times t1, . . ., t, such thaty_ tj <tand

d(®] )1 Dy u, W) < e (3.4)

Moreover, given any collection H! C S such that H' < G for every i, then G ~
\U; H' U G. In particular, F ~ Sat(F).

In the following proofs, we will frequently encounter expressions of the form
) Dl Dy u

In—1

where ®/ € F. As such, we will write the product above as []/_, CD;'iu. Also, we
introduce the notation

n
: ' I pl
D=y b DT Dpull () (3.5
j=1

where so = 0and s; = Y {_, t; so that
O, = D /71 dly when s;<s <s;
ST Fs—sjo Tt 1 j-1 = J*

We offer the abuse of notation ® € F when the context is clear.
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Proof of Lemma 3.6 1t is clear that if F < G, then the property in (3.4) holds for all
® e F. Suppose now that the characterization leading to (3.4) is assumed. To infer
F < G we will prove that Ar(u, <t) € Ag(u, <t) forany u € X and ¢ > 0. Fix
e, t >0and v € Ar(u, < t). By hypothesis, there exists ol @2, ..., d" € Fand
times t1,f, ..., 4, > Owith } ¢; <t and

n
v= 1_[ D u.
1
i=1

By induction onn > 1, we will prove that there exists ¥ € G such thatd (v, ¥su) < ¢
for some s < > 7. If n = 1 in the product above, then by the hypothesis there is
nothing to prove. Supposing that n > 2 we may write the product as

n n—1
— U L i
v=[]®iu=} []u
i=1 i=1

First, invoking the continuity of ®; , we may pick § > 0 such that for all w € X
n-1 o .
d(w, E (Diiu> < 8 implies d(CD;‘nw, V) < 7 (3.6)
By the inductive hypothesis, we may pick ¥' € G such that
n—1
d<\IlSllu, 1_[ d>£[u> <4é
i=1

for some 51 < ZiSn_l ;. Also by hypothesis and (3.6), we may pick ¥? € G such
that

d(\l:fz\l@lu, <I>Zl\Il§1u> < %

for some s, < t,,. The triangle inequality then implies

n n
d(H @ u, \1:32\11;14> < d<l_[ @ u, o \Ilglu) + d(@;jl\p;u, \Irfzqtilu)
i=1 i=1
€ n €
<-4+ -==s
2 2
This finishes this part of the proof as s; +s2 < Y _#;. '
To address the second property, it is obvious that G < (U; H' U G. On the other
hand |J; H' UG < G follows immediately from the characterization of containment

given by (3.4). This completes the proof. O
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We now state and prove the ‘Conversion Lemma’ which allows us to convert
between the relaxed sets and the exact time sets. Its statement and proof are fun-
damentally different than in the works of Jurdjevic and Kupka [30-32] because we
cannot rely on topological properties of the underlying space X.

Lemma 3.7 (Conversion Lemma) Suppose that F € S and that V C X is open with
the property that

VCAr(u, <t),
forallu € V, t > 0. Then,
VCAr(u,t),

forallt > 0 andeveryu € V.

We have the following immediate, but important corollary.

Corollary 3.8 Suppose that F C S is such that Ay (u, < t) = X foranyt > 0 and
anyu € X. Then F is approximately controllable on X in the sense of Definition 3.10.

Proof of Lemma 3.7 Fix any u, v € V and any ¢, > 0. We will establish the desired
result by showing that there is a corresponding ® € F such thatd (®,u, v) < ¢, where
we are maintaining the notational convention introduced above in (3.5). Observe that,
without loss of generality, we may suppose that ¢ > 0 is such that B(v, &) C V.

As a first step pick any ¢* € F. Invoking continuity we may choose ¢’ € (0, ¢)
such that

o= inf |inf{s >0 d(ri, v) > s}} > 0.

v€B(v,&’)
By assumption, we may pick W° € F so that
. 0 /
vy 1= \Ilrou € B(v, &)

for some 0 < 7 (See Figure 1).
If it happens that ¥ 4+ o > ¢ then we simply take

@y = Wully 0(s) + YW 10 1040 (5)
and observe that ®,u € B(v, ¢). Otherwise, we may find an integer n > 1 so that
0 + no <t < t0+(n+1)a.

In this later case, define elements vy € B(v, &), wy € B(v,¢), vk e F and ¥,
k=1,2,...,n,inductively as follows. Let

8:=t—(‘ro+na)<o.
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Fig.1 A visual representation of the ‘pinball strategy’ used to prove Lemma 3.7

Having found vi_; define
Wi = Yy vk_1.
Now, under the given assumptions, we find a0 < p; < §/n and I'* € F such that
. k /
Vg = Fpkwk € B(v,¢&").
Defining 7 = o + p; and the map \Il]s< on the interval s € [0, T¥] by
Wy = Yl 0,0) () + TiWa Tl oty (s)
we find that @ € F given by

0
<I>Su = 1,[/:_2?;0 rlq’;ln e ‘I’TOMH[Z?:O rl’t0+(n+1)0](s)

1=0

n
J Jj—1 0 ) .
* Z:0 ‘I’S—ijl r"I’T’;l o \Ilfou]l[zgol LD WA fl)(s)
j:

has ®; € B(v, €). The proof is now complete. ]
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3.3 Uniform Saturation

In order to obtain results concerning exact controllability on certain projections,
the above framework is not sufficient. As we are specifically interested in finite-
dimensional projections, we introduce an extension of the above formalism which
provides a way of tracking the continuity of controls with respect to parameters. This
continuity is then used in conjunction with the Brouwer fixed point theorem below in
Section 3.4 to establish an abstract result suitable for our applications below.

We begin by extending our notion of continuous semigroups, Definition 3.1, to
include parameter dependence. For what follows we consider an auxiliary metric
space (Y, dy).

Definition 3.9 Let Z C Y be non-empty. We call a function

(t,u,p) — PYu:[0,00) x X x Z — X U{}

a one-parameter family of continuous local semigroups on X parametrized by Z if,

for every u € X and p € Z, there exists a T, , > 0, called the time of existence, for

which the following conditions are met:

(i) Fort € [0, Ty, ) we have CDf)u € X and for t > T, , we have Yy = @...

(i) CDSM =uandforall s, > 0 withs +¢ € [0, T, ,) one has t € [0, chfu,p) and
oF u =o' olu.

(iii) For all + € [0, 7, ,) and all ¢ > 0, there exists § > 0 such that whenever
@', u', p') €[0,00) x X x Z satisfies

|t —t'| +d,u’)+dy(p.p') <6
we have 1’ € [0, T,y ) and
d(®u, ®7u') < e.

Analogously to Definition 3.1 above, we abbreviate ® for this mapping or write (P, Z)
when we need to emphasize the associated parameter set Z C Y. For p € Z we write
&7 for the element in S defined by (¢, u) — ®Yu: [0,00) x X — X U {&}.

Before proceeding further, we introduce some useful notations. For Z C Y, we
let G(Z) denote the collection of one-parameter continuous local semigroups on X
parametrized by Z, and define

6= ]Je®.

zcyY

A generic element of & will be denoted by ® and P (&) will denote the parameter
set of ®; that is, P(®) = Z means that & € S(Z). We will use § to denote an
arbitrary subset of & using this typographic choice to distinguish between subsets F
of § introduced in the previous section in Definition 3.1. Given § € & we associate
a subset of S according to
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DE) :={d? : ® € F, peP@)} 3.7

We now define the analogue of the saturate, which we call the uniform saturate, in
this setting. This builds on the characterization of equivalent collections of semigroups
revealed by Lemma 3.6.

Definition 3.10 Suppose that §, & C G.

(1) We say that & uniformly subsumes §, denoted § <, & if, forany ¥V € §,¢,¢ > 0,
and any compact subsets K1 € X, K» € P(W¥), there exists ol ... D" e B,
times fq, ..., t, > 0 and continuous functions f; : K, — 73(¢>k), k=1,...,n,
such that ) " 7; < and

n
sup d(llf,pu, l—[ Cka’fk(p)u> <e. (3.8)
uek,peks k=1

We say that § and & are uniformly equivalent, denoted § ~, &, if both § <, &
and ® <, §.
(i1) The uniform saturate of §, denoted Sat,, () is taken to be

Sat, () = U &.

U

Remark 3.11 Itis worth emphasizing that uniform subsumption and uniform saturation
imply regular subsumption and saturation. More precisely if § <, ® then D(§) <
D(&). With the fact that § ~,, Sat, () this implies

D(Sat, () ~ Sat(D(F)). (3.9

We use this observation below in Corollary 3.15.

We next show that an analog of Lemma 3.6 holds in the setting of Definition 3.10.
Here, however, we have to be careful to show that <, is in fact a transitive relation on
S.

Lemma3.12 If§ <, ® and & 5, 9 then § <, 9. Moreover lf%i <u & then

Us'ue~, e (3.10)

so that, in particular, § ~, Sat, (§).

The approach here mimics the proof of Lemma 3.6 but requires a little more book-
keeping. In particular, in order to use a bound analogous to (3.4) in the proof of
Lemma 3.6 we make the following elementary observation concerning compactness
and continuity:
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Lemma 3.13 Consider two continuous mappings f, g : Y x X — X. Then, given any
compact sets K C Y, K C X and any ¢ > 0 there exists § > O such for any function
h:Y x X — X with

sup d(g(p,x),h(p,x)) <$é
peK . xeK

we have that

sup d(f(p,g(p,x)), f(p,h(p,x))) <e.
peK.,xeK

We this in hand we turn to the proof of Lemma 3.12.

Proof of Lemma 3.12 The main step is to establish the desired transitivity in the uniform
subsumption relation. To this end let ¥ € §, ¢, > 0 and K1 C X, K» € P(V),
both compact sets, be given. Suppose forn > 1l and my > 1,k = 1,...,n, we
have ®* ¢ &, Tk ¢ g, along with continuous functions f; : K, — P(CDk),
gkl fk(K2) — P((*!) and times # > 0, sk, > 0 with

4t ty <t, Sk:=Sp1+ -+ Skme =, fork=1,...,n.

Analogously to (3.5) above we adopt the abbreviated notation

k h k,L;h
«w ]—[Fs“ S where  hyi(p) = gra(fi(p) p € Ko

Observe that, by the triangle inequality,

up ( H phi ) < s ( 1—[ P )

ueki,peks ueki,peks
n I
k; k' h /(p) k; k'shy (p)
+ Z sup (1_[ CD Ji(p) l_[ r k 1_[ CD Ji(p) 1_[ FS/\/ k )
1=1 4€K1,pekr = k=1 k=I+1 k=1
< sup d(\lf,pu, H@Z;f"(p)u)
uek,peks k=1

n n
+Z sup (l—[ D) GNP, I ¢§§.fk(ﬁ)r§jh1(P)v) G.11)

=1 veK{.peKy k=41 k=I+1

where

K! —{Hrkhk(p)u:ueKl,png}
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so that, under the standing continuity assumptions, K i is a compact subset of X for
I =1,...,n. Note that as above in Lemma 3.6 we are maintaining the convention

k; fi(p) —1 pKshe(p)
that [Ti_, . @, =ld =[], Ts, © .
Under our assumption that § <, &, we may choose n > 1, and elements ®*’s and
fi’s such that

n
sup d(‘ll,pu, I1 cbf,jf’f“’)u> < % (.12)
uek,peks k=1

Next, according to Lemma 3.13 we choose §; > 0, so that, forany 7 : ¥ x X — X,
the bound

n n
k; [; k: &
sup d( 1_[ thk fk(P)@tlfl(P)v, l_[ thl fk(l’)h(p, U)) < Z (313)
vek|.peKs  “\r=i41 k=I+1

holds whenever

sup  d(@ P v, h(p,v)) < 8.
veK{,peKz

On the other hand, invoking that & <, $ and referring back to (3.8) we may choose
g and s; such that

sup d(cbgf’(p)v, I’gh’(p)v> = sup d(dDqu, F?}g’(q)v> < §.
vek!l, peks vekl ge f(K2)
(3.14)

Thus (3.13), (3.14) yield

n n
. . . . £
sup d( [ &%ty T] q)g,fk(p)ré}hz(p)v> <L G
vek!.peKs =i+l k=I+1

By combining (3.11) with the bounds (3.12) and (3.15) and recalling that ¢ > 0 was
arbitrary we now conclude that § <, 9, as desired.

As above in Lemma 3.6, (3.10) and uniform saturation follows immediately from
(3.8). The proof is now complete. O

3.4 Exact Controllability for Projections
We are now prepared to state the main final abstract result of this section. Here we

specialize and assume that X is a Fréchet space so that, in particular, an addition
operation, +, is defined and the metric d is shift invariant with respect to +; namely,
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we have the property that
du,v) =du+w,v+w), forany u,v,w € X.

Theorem 3.14 Consider § C S andletw : X — X be a linear, continuous projection
operator mapping onto a finite-dimensional subspace W = n(X) of X. Forv € X
define

B™V() ={v+w:d0,w) <e, we W}

Suppose the following:

(i) D(S) is approximately controllable on X; that is, for any u € X, t > 0 we have
that Ap(z)(u, t) = X where recall that Apz)(u, t) is defined as in (3.2).

(ii) Forany v € X and &, &', t > 0, there exists an initial condition i € X, elements
&l ..., dF € F timessy, ..., 55 >0, and continuous functions g; : B™V(g) —
P(@K), j=1,...,k such thatzj s; <tand

sup d(l_[ o/ 5) <é. (3.16)

vEB™V(g) =1

Then, for all u,v € X, t > 0 and ¢ > O there exists wl o own ¢ D),
ity ..oty >0suchthatty +t, +---+1t, =t and

(WL W) = (), AW W v) <e. (3.17)

In other words, D(F) is approximately controllable on X and exactly controllable on
W = 7 (X) in the sense of Definition 3.3.

Proof Fix any u, v € X and any ¢, ¢ > 0. Observe that for any ¢’ > 0, we may invoke
assumption (ii) and choose u € X, L oF ¢ S, 1, ..., > 0 and continuous
functions g; : B™?(g/2) — P(d:'k), j=1,2,...,k, suchthat s := Z’;Zl s;p<t/2
and

/
sup (1_[ @J g’(v)~ ~> %

JEBTU(e/2) N[y

Using continuity, compactness of the closed ball B™V(¢/2) and assumption (i), we
can pick W'l e D(F) to ensure that

J:8j(®) 7.8 @) ~ ¢
sup <l—[CI> ! \Ptly,l_[dl' ! > <3

DB (e/2) \j|
and hence infer that
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k ~
sup d(H o1l -3, 0) <, (3.18)
UeB™(e/2) \j
where we have also used the shift invariance of d.
With this bound (3.18) in hand, we now invoke the continuity of 7 and pick &’ > 0
such that
/

¢’ < — and whenever d(y, 0) < ¢’ then |7 (y)||lw < % (3.19)

NSNS

For this value of ¢’ and the corresponding values of ®/, g, W etc. leading to (3.18) we
next define

k
Gw)y=nml|lv+w-— l_[ @ﬁ}gj(v+w)\llt()_su
j=1

for w € W satisfying d(0, w) < % According (3.19), (3.18) G defines a continuous
map on

fweW :dO,w) <e/2}

into itself. Recalling that W is a finite-dimensional subspace, we infer from the
Brouwer fixed point theorem that there exists w* € W such that

k
v+w* e B"Y(g/2) and 7w (v) = n(H \I/,]ju>,
j=0
where fo = t — s and \Ilt]j = <I>§]fgj(v+w*) e D), j = 1,...,k. This is the first
condition in (3.17). In view of (3.18) and our choice that &’ < &/2 it is clear that
this control also satisfies the global approximation condition in (3.17). The proof is
therefore complete. O

We will make use of the following corollary of Theorem 3.14 in the examples
considered below in Section 5. To state this result, let us first recall and extend the ‘ray
semigroup’ notation introduced above in (2.6). Following the notational convention
introduced in Definition 3.9, given any ¥ € X we take (p, Y) to be the ray semigroup
parameterized by Y ; namely,

(t,u,p) > pfu:[0,00) x X x Y — X where plu:=u-+1tp. (3.20)
Corollary 3.15 Suppose that § € & and suppose that X, is an increasing sequence
of subspaces of X such that (p, X,)) € Sat,(§). If U, X,, is dense in X then D(F) is

approximately controllable on X and exactly controllable for any continuous projec-
tion mapping into a finite dimensional subspace as in Definition 3.1.
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Proof We will establish this result by showing that the conditions in Theorem 3.14
hold. Regarding the first condition (i), fix any u#, v € X and ¢ > 0. By our density
assumption on U, X, we may consider a sequence of elements w, € X, such that
w, — w = **. This in turn implies that o, "u — v asn — oo. On the other hand
we have by assumption that p*» € D(Sat, (§)). Referring back to (3.9) this means
that p*» € Sat(D(F)) for all n. We thus conclude that

V€ Asa@) W, 1) € Asa@) W, < 1) = Apg)(u, < 1),

where we have use Lemma 3.6 for the last equality. Since u,v € X, t > 0 were
arbitrary here this shows that Agam(g)) (#,t) = X forany u € X, t > 0. Thus,
by Lemma 3.7, we have that Apg)(u,t) = X. In particular, we have established
condition (i) of Theorem 3.14.

Turning to the second condition in Theorem 3.14, again fix any u,v € X, t > 0
and a finite dimensional projection 7. For any given ¢, ¢’ > 0 we may show that the
condition (3.16) is satisfied by taking i = v. Indeed, since 7 (X) is finite dimensional
we can approximate the basis elements u", ..., u™) up to any precision § > 0 by
elements in X, for some n = n(mw, §). In particular this implies that we may choose §
and #D, ..., a™ e X, such that

7 i) O] ) €
aju -+ toyu oaju+toyu
sup d(p; v, oy V) < —.

la|<e 2

Combining this observation with the fact that (p, X,)) € Sat,(§) we thus conclude
(3.16), completing the proof. O

Remark 3.16 The following observation concerning uniform subsumption and ray
semigroups is used several times below in order to establish the conditions for Corol-
lary 3.15. Maintaining our assumption that the phase space X is a Fréchet space
consider a collection § C &. Suppose that Y7, Y> are linear subspaces of X such that

(0, Y1), (p, Y2) € Sat, (F).

Then an argument similar to the one given in Lemma 3.12 yields that

(p, span{Y U Y2}) € Sat, (§).

4 Applications to Stochastic Partial Differential Equation

We now turn our attention to applying the previous control results to stochastic partial
differential equations (SPDEs) of the form

du+Lu—+Nu) = f+ Zaka,wk 4.1)
keZ
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where L is a linear operator, N is a nonlinear operator, oy and f are fixed spatial
functions, and { W },.c z is an independent collection of standard real-valued Brownian
motions. We assume that the set Z is finite and that the phase space X is a Hilbert
space with norm || - || and inner product (-, -)x.

Observe that by replacing the Brownian motions W (- ) with actuators fo akds in
(4.1) we obtain the control system (2.1). Our goal in this section is to illustrate some
implications of the controllability of the system (2.1) for the SPDE (4.1). Specifically,
we present results concerning topological irreducibility, unique ergodicity as well as
density properties of finite-dimensional projections of (4.1) for which the control
properties (2.3) and (2.4) play a crucial role.

To avoid the technicalities of defining solutions of (4.1) in a general abstract setting,
we will instead simply posit the existence of a suitable cocycle ¢. See Definition 4.1
below and, for example, [3] for a general discussion of this formalism. The analysis
in this section is carried out from this starting point. Below in Section 5, we provide
details of a concrete functional setting in each example, hence inferring the existence
of such a cocycle ¢ corresponding to an equation of the form (4.1) on a case-by-case
basis.

4.1 Cocycle Setting

Let us now recall the precise setting of the cocycle formalism. In the process, we will
introduce some assumptions used throughout this section and notational conventions
used throughout the rest of the paper.

In what follows it will be convenient to take the Wiener space as our underlying
probability space. For this purpose we take the sample space €2 to be

Q:={V: (—o0, 00) — R'?! continuous with V (0) = 0} 4.2)
and endow €2 with the usual topology induced by the semi-norms

IVlso,s. = sup |V(s)] forany V e Q “4.3)

s€ls,t]
defined for —oo < s < t < oco. Similarly for # > 0 we take
Q :={V:[0,t] > R'Z! continuous with V(0) = 0}.

Weuse || - lloor := 1 - lloo,0.r to denote the sup norm on £2; as in (4.3). We will also
make use of the Cameron-Martin subspace H; C ; defined as

H, = {H € H'([0,1];R'Z)) : H(0) =0} (4.4)

and endowed with the inner product

t
(H,G)y, = / HGds,
0
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forany H, G € H;.

We let P denote the Wiener measure on the space €2, which is the unique measure
so that the process induced by the evaluation map on €2 is a two-sided Brownian
motion on RIZ!. The associated expectation will be denoted by E. Here the o -algebra
is provided by the Borel subsets of 2. See, for example, [42] for detailed constructions.

We define the shift map 65 : 2 — Q for s € R by

O, V(@) =V(t+s)—V(s) forany Ve Q,reR. 4.5)

Recall that {6 }scR is a group of measure preserving transformations; namely, 0,6, =
Os4+r forany s,r € Rand P(I') = P(6,(I")) forany s € Rand I" € F.
We recall the definition of a (continuous, adapted) cocycle as follows:

Definition 4.1 We say that a mapping ¢: [0,00) x X X @ — X is a continuous
adapted cocycle if

(1) ¢ is continuous;
(2) foreveryu € Xand V € Q, ¢o(u, V) = u;
(3) foreveryu € X,V € Qandt,s > 0,

Grs(u, V) = ¢1(ps(u, V), 05V) (4.6)

where we recall that 6, is t[le shift map;
(4) Foranyt >0, u e X,V,V € Q,

if V(s) = V(s) forall s € [0, ¢] then ¢ (u, V) = ¢ (u, V). 4.7)

Throughout this section, we let ¢» denote an arbitrary fixed cocycle satisfying (1)-(4).
Note that the level of generality of a continuous cocycle will be sufficent to establish
the irreducibility and ergodicity results Sections 4.2, 4.3. In order to prove results
on finite-dimensional projections below in Section 4.4 some further, more refined

conditions on ¢ will be imposed (see Assumption 4.13).

Remark 4.2 Given t > 0 and any measurable map £ : @, — € such that for any
Ve

EWV)(s) =V (s) foreverys € [0,1].
We can define a map ¢f : X x €, — X according to
OF (. V) = 1w, E(V)), (48)

for any continuous adapted cocycle ¢. In view of assumption (4), it is clear that qb,g
is independent of £ and continuous on X. In what follows we will abuse notation and
consider ¢; as also defining a continuous map from X x €; into X.
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It is worth emphasizing that assumption (4) implies that, for every fixed u € X the
random process

t — ¢;(u, W) is adapted to the filtration generated by W. (4.9)

This property will allow us to associate a Markovian framework with ¢ in what fol-
lows.?

Remark 4.3 Below in the examples considered in Section 5, we have that each concrete
formulation of (4.1) can be written as a continuous functional of the sample path of the
Brownian motion. In fact this is a property typically enjoyed by systems with additive
noise since we can write solutions of (4.1) as u(t, ug, W) = v(t, ug, W) +o W where
v obeys

v+ Lw+oW)+ Nv+oW)=f, v()=uo,

We can then in turn define the cocycle ¢ by ¢ (ug, V) = v(t, ug, V) + oV which
make sense for every V = (Vi)rez € 2.

Remark 4.4 Of course the notation of a cocycle introduced above can be extended
to cover systems defined locally in time. Just as with the formalism in Section 3 we
expect that many of the results in this section can be extended to such a local setting.
For the sake of clarity and simplicity, we will refrain from addressing this situation
here leaving this case for future work. For applications of degenerate control problems
to locally defined finite dimensional stochastic systems, see [28] in a general context
and [7,24] for further specific applications.

We associate a Markovian framework with ¢ as follows. In view of (4.9) and the
cocycle property (4.6)

Pig(uo) = Eg(¢;(uo, W)) forany g e Mp(X), (4.10)

defines a Feller Markov semigroup. Here My (X) is the collection of real valued
bounded, measurable functions from X. The associated transition kernel is given by

Pi(ug, A) = (P,14)(ug) foranyt >0, ug € X, A € B(X), @.11)

where B(X) denotes the Borel o-algebra of subsets of X. Recall that P; acts dually
on probability measures p on X via

nPi(A) Z/XPt(MaA)H(d“)ZfXE[lA(‘P(“a W) lu(du)

2 Inthe language of [3], condition (4) in Definition 4.1 in implies that ¢ defines a Markov random dynamical
system. Thus, in particular, ¢ is in the wider class of cocycles for which a corresponding Markovian
framework can be defined.
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for any A € B(X). We call a probability measure p on B(X) invariant if
whr=p

forallt > 0.3

Finally it remains to connect the cocycle formalism with the control theoretic setting
described above in Sections 2 3. Observe that to the cocycle ¢ we may associate the
following collection of continuous (global) semigroups Fo given by

Fo={{t,u) = ¢ (u, Vo) : Vo(s) = sa fora € RIZ! s > 0. (4.12)

Observe that ¢, (1o, V) is a continuous semigroup in the sense of Definition 3.1 for
any fixed o € RIZ!.

Remark 4.5 Following the notation introduced in Section 2, we recall that ®%“ug
formally denotes the solution of (2.1) with initial condition ug € X and control
a € L%([0, 00); RIZh). In particular, given a Cameron-Martin direction V € H; (cf.
(4.4)) we have that

u(t, ug, V) = ¢y (uo, V) = ®*uy

where @ = V. Notationally the use of ¢ is natural in this section as we are now
considering sample paths from a Brownian forcing which does not have a traditional
time derivative.

The notions of controllability given in Definition 3.3 are equivalently formulated
in the cocycle formalism as follows:

Definition 4.6 Let ¢ be a continuous adapted cocycle. We say that

(1) ¢ is approximately controllable if the associated collection of continuous semi-
groups Fo given by (4.12) are approximately controllable on X. In other words ¢
is approximately controllability if, for any u, v € X and any §, ¢ > 0, there exists
a piecewise linear function V € €2; so that

llp: (e, V) — v <é. (4.13)
(i) Let 7 : X — X be a projection onto a finite-dimensional subspace of X. If, for
any u,v € X and t, § > 0, there is a piecewise linear function V € €2; such that

(4.13) holds and additionally

(¢ (u, V)) = m(v) (4.14)

3 Recall that the collection of such measures is a convex set with the extremal points being the ergodic
invariant measures, i.e. those measures u such thatif Pr114 = 14 p-almost everywhere, then ;1(A) € {0, 1}.
Note that any two ergodic invariant measures either coincide or are mutually singular. See, e.g., [40] for
further details.

@ Springer



16 Page 34 0f 103 N. E. Glatt-Holtz et al.

then we say that ¢ is approximately controllable and exactly controllable on
7 (X). If there exists V € €; such that (4.14) holds, then we say that ¢ is exactly
controllable on 7 (X).

4.2 Topological Irreducibility

We now show that approximate controllability implies a form of topological irre-
ducibility that all points on the phase space are approximately reached with positive
probability.

Lemma 4.7 Let ¢ be a continuous adapted cocycle and P;(ug, A) be its associated
Markov transition function. If ¢ is approximately controllable, then P;(u, Bs(v)) > 0
forallu,v € X and § > 0 or, in other words, supp(P;(u, -)) = X. Furthermore, for
any compact set K C X andany$§,t > 0, v € X, there existsan ey = €9(K, 8,1, v) >
0 such that

inf P,(u, Bs(v)) > €y > O. (4.15)
uek

Remark 4.8 Generally the first consequence in Lemma 4.7 is a sufficient form of
topological irreducibility to establish unique ergodicity. See Corollary 4.9 and Corol-
lary 4.12 below and also [25]. The uniform lower bound over compact sets, (4.15), is
useful in establishing rates of convergence to the stationary distribution.

Proofof Lemma4.7 Let t,8 > 0 and u € X. First observe that approximate con-
trollability of ¢ implies the existence of a piecewise linear V e €, such that
lo:(u, V) —v|| < % By assumption, the mapping ¢;(u, -): Q; — X is continu-
ous. Hence, there exists an ¢ > 0 so that if ||V — Voo < & with V € € then
g (u, V) — ¢ (u, V)| < 8/2. Combining everything we have |V — Voo, < €
implies

e (u, V) = vl < [pe (u, V) — ¢y, V| + llpe (u, V) — v < 8.

Since, for any ¢ > 0, P(||W — V||« < &) > 0, the proof of the first statement now
follows.

Turning to the proof of the second statement, fix K € X compact and let 5,1 > 0
and v € X. First observe that P;( - , Bs(v)): X — [0, 1] is continuous by dominated
convergence and the fact that ¢ is a continuous cocycle. Indeed, note that for any
u € X we have

uljlglu Pi(w, Bs(v)) = uljlglu/ 116, (w, w)—v) <8} AP

= /ul)i;nuluwxw,vv)—vnd} dP = Pi(u, B5(v)).
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Consequently, for every u € K define ¢, > 0 such that the following holds
lw —ull < &, implies Pr(w, Bs(v)) = 5 Pr(u, Bs(v)).

Since {Bg, (1) : u € K} is an open cover of the compact set K, there exists a finite
subcover {Bguk (ur) : k =1,..., m} for some collection {uy,...,u,} € K. By the
first statement proven, Py (uy, Bs(v)) > 0 for each k and hence

inf P;(u, Bs(v)) = €0 := 3 min P;(ug, Bs(v)) > 0,
uek k

which is the desired result. |

We have the following simple but important consequence:

Corollary 4.9 If ¢ is approximately controllable, then w(B) > 0 for any invariant
measure | and any open set B C X. In other words, supp(un) = X for every probability
measure |t which is invariant under P;.

Proof For k € N, define the subsets
Av={ueX: P B >k}

and note that since w is invariant
u(B) = f Pi(u. Byu(du) = Liu(Ay)
X

for every k € N. Since, according to Lemma 4.7, P;(u, B) > 0 for every u € X we
have that w(Ax) 1 w(X) = 1 as k — oo. In particular, %M(Ak) > 0 for some k € N,
thus finishing the proof. O

4.3 Unique Ergodicity

We turn next to examine some consequences of approximate controlability for unique
ergodicity in systems like (4.1).

In [25], the concept of an asymptotically strong Feller Markov process was intro-
duced. The asymptotic strong Feller property is a generalization of the well-known
strong Feller property. It furnishes the semigroup P; with just enough smoothing to
be able to conclude unique ergodicity when all its invariant measures have a point of
common support (see Theorem 4.11 below). This is useful especially for classes of
stochastic partial differential equations where the strong Feller property appears to be
untenable to prove or may not hold.

Following [25,27], we will work mainly in the context of the following lemma
which establishes the asymptotically strong Feller property by means of an estimate
controlling the derivative of the Markov semigroup with respect to the initial condition.
For further reference, see Section 1.1 from [25].
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Proposition 4.10 (Proposition 3.12 from [25], Proposition 1.1 from [27]) A Markov
semigroup {P:};>0 on X is asymptotically strong Feller at a point u € X if there exist
an open neighborhood U of u and positive sequences {t,},>1 and {8, }n>1 with {t,,}n>1
non-decreasing and {8,} converging to zero such that

H;l”lgl IDPy, f()E] = C(Ifloo + 8ullDf lloo) (4.16)

foralln € N, v € U and all test functions f € C'(X). Here

[floo =sup | f(X)|, IDfllcc=sup [Df(x)&]
xeX xeX,|Ell=1

and C > 0 is a fixed constant.

In the current context, our interest in the asymptotic strong Feller property is the
following result. See also Theorem 2.1 and Corollary 2.2 from [27].

Theorem 4.11 (Theorem 3.16 from [25]) Suppose Py is asymptotically strong Feller
at a point u € X. If Py admits two distinct ergodic invariant measures (1 and v, then

u ¢ supp(u) N supp(v).
Combining this result with Lemma 4.7 gives the following.

Corollary 4.12 If ¢ is approximately controllable and the associated Markov semi-
group P; asymptotically strong Feller at some point u € X, then P; has at most one
invariant measure.

Proof Lemma 4.7 implies that the support of any invariant measure is the whole space.
Because the semigroup is asymptotically strong Feller, Theorem 4.11 implies that any
distinct ergodic measure must have disjoint supports. Since the support is the whole
space, there can be at most one ergodic invariant measure. Since any invariant measure
can be decomposed into ergodic invariant measures, there can be at most one invariant
probability measure. O

Establishing the asymptotically strong Feller property, in particular the estimate
(4.16), is a story in and of itself. In fact, one of the central assumptions often employed
to assure this property is a formal ‘Hormanader like’ bracket condition very remi-
niscent of, if not exactly the same as, the condition used to establish approximate
controllability. A further discussion on the formal relationship between Horman-
der’s condition and sufficient conditions for approximate controllability is given at
the end of Section 2. In regards to establishing the asymptotically strong Feller prop-
erty from Hormander’s condition, we refer the reader to [27] for a general framework
and assumptions. In particular, see Meta-Theorem 1.5 and Theorem 8.1 in this article
[27]. The methods introduced in [25,27] have also played a central role in a number
of other recent works [13,18,19,22].
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4.4 Strict Positivity of the Density on Finite-Dimensional Projections

We next show how the stronger form of controllability outlined in equation (2.4)
can be used to show that, for any fixed u € X and ¢+ > 0, the random variable
7 (¢: (u, W)) has a strictly positive density with respect to Lebesgue measure on 77 (X).
See Theorem 4.20 and Theorem 4.23 below. Here 7 is any projection onto a finite-
dimensional subspace of X. Throughout this subsection, we take m to be the dimension
of w(X) so that 7 (X) = R™ and let {e; };f‘zl to be an orthonormal basis for 7 (X).

For the results in this section we impose some further properties on the con-
tinuous adapted cocycle ¢. These assumptions essentially allow us to work in the
setting of Malliavin calculus. While the proofs in this section make significant use
of methods from the Malliavin calculus, cf. [6,38,39], our presentation is essentially
self-contained.

Our additional standing assumptions on ¢ are as follows:

Assumption 4.13

(i) Foreveryu € X and ¢ > 0, the map ¢;(u, - ): Q; — X is Frechét differ-
entiable in the Cameron-Martin subspace H; of €2; where H; is defined as in
(4.4). The derivative with respect to the ‘noise variable’ will be denoted by
D, respectively.*

(ii))  For any fixed V € €, the map ¢;(-, V) : X — X is Frechét differentiable
in X. This derivative with respect to the ‘initial condition’ will be denoted by
D, and we suppose

Dy :[0,00) x X x 2 x X — X is continuous. 4.17)

(iii) Forallt > 0, v € X and V € €, the linear map D,¢;(v, V) is non-
degenerate; i.e.,

Dy,¢: (v, V)E #0 whenever & € X \ {0}.

(iv) Foreveryu € X and V € ; the following integral representation

t
Dutu VIt = 3 [ st Vyon (o) ds (4.18)
keZ 0
holds for any H = (Hy)xez € H; where J; ; is the Jacobi flow and is defined
by
Js,i(u, V)§ = (Dupy—s)(¢s(u, V), 0;V)§  for & € X. (4.19)

(v) Foranyu € X,s <tandV € Q the adjoint J,(u, V) of the linear map
Js.:(u, V) is also non-degenerate.

4 The random variable Dy p; (u, W) H coincides with the Malliavian derivative of ¢ (u, W) in the direction
H. See Section 1.2.1 of [39].
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Remark 4.14 We emphasize that our assumptions are not particularly restrictive for
the type of SPDEs in which we are interested. Below in Section 5 we show how (i)
— (v) follow from routine a priori estimates. See also Remark 4.16 concerning the
structural assumptions (4.18) and (4.19).

Remark 4.15 One can show that the Jacobi flow J, ; satisfies
Js,t(ua V)%' = Jr,t(u» V)Js,r(uv V)%' (4.20)

fors <r <t,u,& € X,V e Q;. We will use this group property extensively below.
Note also that (4.19), (4.17) with (4.18) implies that, for any r > 0

Dy : [0,1] x X x Q; x H; — X is continuous. 4.21)

Remark 4.16 Returning to the formal setting of the abstract stochastic evolution equa-
tion (4.1), itis not hard to see thatforany & € X,s < tandug € X, p := J; 1 (uo, W)&
would be expected to satisfy the linear system

dp+Lp+DNup =0, pls)=4§,

on the interval [s, t] where u = u( -, ug, W) is the solution of (4.1) corresponding to
uo and the Brownian path W. Here again DN is the Frechet Derivative of N so that,
recalling polynomial structure of N given in (2.2), we have

M

DN(@)p =Y kNi(p.u,....u).
k=2

On the other hand the Malliavin derivative p = Dy, ¢, (ug, W) H in the noise direction
H € 'H; would be expected to satisty

0p +Lp+DNwp =) orHe. p(0)=0.
keZ

Thus, our assumption (4.18) is simply a reflection of the Duhamel formula. See, e.g.,
[25] and below in Section 5 for further details in a concrete setting.

A basic object in the Malliavin calculus is the Malliavin covariance matrix (see,
e.g., [39]). The spectral and invertibility properties of this operator can be used to
derive important consequences for the law of the associated random variable. For
example, in finite dimensions, such properties are often used to derive the existence
and regularity of the probability density function; cf. [6,34,38,39]. The Malliavin
matrix and its spectral properties are also central to proofs of unique ergodicity in
[13,18,19,22,25,27]. In our current cocycle setting we define this operator as follows:
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Definition 4.17 Forany u € X and V € Q, let
M;(u, V) := Dy (u, V)(Dy(u, V))* (4.22)

where (Dy,¢; (1, V))* is the adjoint of Dy, ¢, (u, V). Equivalently M, (u, V) is defined
by

t
(Mi(u, V)&, p)x = Z/o (Js.e(u, V)or, &) x(Js.t(u, V)oy , p)xds (4.23)
keZ

for any p, § € X.

(i) For any fixed V € €, the we refer to the operator M;(u, V) as the Gramian
following the terminology of control theory. Fort > Ou € X and V € Q;, we
say that the Gramian M, (u, V) is non-degenerate for the control V if

(M, (u, V)E,E)x > 0 forall & e X\ {0}. (4.24)

(i) When V € ; is replaced by the random variable W, we call M;(u, W) the
Malliavin Covariance Matrix of the random variable ¢; (1, W). We say that the
Malliavin Covariance Matrix M, (u, W) is non-degenerate if it is non-degenerate
for almost every Brownian path, i.e.,

P((M,(u, W)E, E)x > 0 forall £e X\ {0}) —1. (4.25)

Remark 4.18 The condition (4.25) is a nontrivial property of stochastic systems like
(4.1). We may expect such a condition to hold when (4.1) satisfies some form of the
Hormander bracket condition. See, e.g. [39], for the finite-dimensional setting. The
infinite dimensional case has been addressed in [19,27,34]. In these works on SPDEs,
it is established that the associated Malliavin matrix satisfies bounds like

P( (My(u, WE, &) x
sup ————
Sesa,N

||E||§( > e) >1—rqn(e) (4.26)

where ry y(€) — 0 as € — 0 for any fixedw € (0,1) and N > 1. Here Sy i 1=
{€ € X : |PvE]l = «| €|} where Py is the projection onto the first N elements of
an orthonormal basis for X. Note that, by a simple limiting argument one may infer
(4.25) from (4.26).

Remark 4.19 In what follows ¢t > 0, u € X and even V € Q will sometimes be fixed
quantities. We therefore frequently adopt the abbreviated notations

M=Mw,V), ¢=0¢:u,V) Dy = Dy(u,V), (4.27)
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exhibiting the dependence on V etc. only when it is warranted. We will also take
M* =M, V)=naM;u,V)r (4.28)

for the ‘projected Grammian (or Malliavin) matrix’.

With these preliminaries now in place we turn to the first result in this section.
It gives a criterion under which 7 (¢:(u, W)) possesses a probability density. This
‘absolute continuity’ result is an adaptation of Theorem 5.2.2 in Bouleau and Hirsch
[6] to the setting of this paper.

Theorem 4.20 Let ¢ be a continuous adapted cocycle satisfying the conditions
imposed in Assumption 4.13. Suppose m is a projection onto a finite dimensional
subspace of X and assume that for some fixed u € X andt > 0, the Malliavin matrix
M, (u, W) is non-degenerate, in the sense of Definition 4.17, (ii). Then the law of
the random variable w(¢; (u, W)) is absolutely continuous with respect to Lebesgue
measure on w(X) = R™.

Remark 4.21 The proof of Theorem 4.20 relies on Federer’s coarea formula to establish
the desired absolute continuity. Recall that for n > m, any Lipshitz continuous n :
R" — R and any measurable, non-negative g : R” — R

/ gWMIn(m(y)dy = / / g)dH" " (y)dx (4.29)
R" R Jy=1(x)

where H" ™™ is the n — m dimensional Hausdorff measure on R” and

Jn(m) = /det(V) (V)*. (4.30)

Here, V7 is the Jacobian of 5 and (Vn)* is the adjoint of this matrix.> See e.g. [17]
for further details.

Proof of Theorem 4.20 Since u € X,t > 0 are fixed throughout we adopted the abbre-
viated notation as in Remark 4.19 exhibiting the dependence on the Brownian path as
needed. We proceed by showing that

E(W(ﬂ(cb(W)))\/ det(M”(W))) =0, (4.31)

for any ¥ : R™ — [0, 00) with ¥(x) = 0 almost surely on R™. Since we have
assumed that M is non-degenerate it follows that

Jdet(M™(W)) > 0 (4.32)

5 Recall that, by Rademacher’s theorem, every Lipshitz continuous function is differentiable almost every-
where.
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up to a set of measure zero. Hence (4.31) and (4.32) imply that ¢ (7 (¢p(W))) = 0
almost surely for any such ¥. By now selecting v = 1p where B C R™ is any
Borel set with Lebesgue measure zero we infer the desired absolute continuity of
7 (¢ (u, W)) with respect to Lebesgue measure on R, hence the desired result.

In order to apply the coarea formula (4.29) to prove (4.31) we make use of the
Girsanov theorem with a suitable truncation of the projected Malliavin matrix M™.
Fix

{h¢}e>1 to be an orthonormal basis of L%([0, t]; RlZl)

so that the elements Hy(-) = fo h¢(s) ds form an orthonormal basis in H;. Using the
assumed continuity of D,,¢ we have that

00 00
(Mei,ej)x = Y (Du¢Hi((Duwg) er. Hop,.ej) = (DudHe. e;)(Du¢Hy. e;).
- - (4.33)
Truncating in this expansion we define the random matrices M, according to
n
(M7)ij = (M ei,ej) =Y (Du¢He, e;){DudpH, ei), (4.34)

=1
forn > 1. For any y € R" we denote
n
TyW(r) = W(r)+ > yeHe(r)
=1

for r > 0. Since Hy are fixed elements in H,, we observe that the translation 7\, W is
an admissible Girsanov shift for any given values of n > 1, y € R".

Fix any p € C*°(R"; (0, 00)) satisfing fR" p(y)dy = 1. Then, for any ¢ : R" —
[0, o0) bounded and measurable, the Girsanov theorem implies

Ey (7 (0 (W)))y/det(M (W) =/R” Ey (7 (0 (W)))y/det(M7 (W))p(y) dy
= E/l;n Y@ ((TyW)))Gu(y, W)p(y) /det(M7 (T, W)) dy

(4.35)
where G (y, W) > 0 denotes the Girsanov density associated to the shift 7, W.

For any n > m define n : R" — R"™ according to n(y) = n(¢(T,W)). By
Assumption 4.13, it is clear that n is P-almost surely Lipschitz and we have that

Jn(m(y) = /det(MT (T, W))
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P-almost surely, where J,, is defined according to (4.30). Thus, the coarea formula
(4.29) implies that, for any n > m,

fRn Y (@(TyW))Gu(y, W)p(y),/det(M] (TyW)) dy

=/ [/ ” )llf(n(aﬁ(TyW)))GH(y, W)p(y)dH”_’”(y)} dx
m 1 (x

=/ W(X)[/ ” )GH()’» W)p(y) dH”m(y)] dx =0, (4.36)
m n* X

almost surely.
By combining (4.35) and (4.36) we obtain that

Ey (7 (¢ (W)))y/ det(M;7 (W)) = 0.

In view of (4.33) and (4.34), M (W) — M”™ (W) almost surely. We therefore infer
(4.31) from Fatou’s lemma, completing the proof. O

Remark 4.22 Perusing this proof, it is notable that Theorem 4.20 still holds under the
weaker condition that only M”™ = 7w M, (u, W)x is non-degenerate.

We next state and prove the final result of this section which gives a sufficient
condition under which, for fixed u € X and ¢ > 0, the density of (¢, (u, W)) is
strictly positive. We refer to Nualart [38, Theorem 4.2.2] and [34, Theorem 8.1] for
previous related results.

Theorem 4.23 Let ¢ be a continuous adapted cocycle satisfying the hypotheses of
Assumption 4.13. In addition we suppose that

a) M;(u, V) is non-degenerate from some fixedu € X, t > 0 and a fixed sample path
V € Q; cf. Definition 4.17, (i).
b) ¢ is exactly controllable on w(X) as in Definition 4.6.

If, for some s > 0, the law of w(pss(u, W)) has a density p:+s(-) with respect to
Lebesgue measure on R™, then p;s(x) > 0 for Lebesgue almost every x € R™.

As in the proof Theorem 4.20, Theorem 4.23 is established with aide of a carefully
chosen change of variables using the Girsanov Theorem. Two additional ingredients
are needed for the proof: one concerns invertibility properties of M while the second
is a quantitative version of the inverse function theorem. We provide some further
intuition, beyond the given proof, as to why the invertibility of M and the exact
controlability of ¢ on 7 (X) implies that the density is strictly positive in Remark 4.27
following the proof.

Regarding the Grammian Matrix M, (u, V') we make the following observation. It
shows that once this matrix is non-degenerate at a time ¢, it remains non-degenerate
for all later times ¢ + s.
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Lemmad4.24 Letu € X andt > 0. Suppose that V € ; is such that M;(u, V) is
non-degenerate, cf. (4.24). Then, for any s > 0and any V, € Qs with Vo(r) = V(r)
for everyr € [0, t], the operator M;1s(u, V,) is also non-degenerate.

Proofof Lemma 4.24 Firstletu € X, > 0and V € Q; be as in the statement of the
lemma, and suppose that V, € Q4 satisfies V. (r) = V(r) for r € [0, ¢]. We first
observe that, cf. (4.23),

t
My, VoE )y = 3 /0 Uttt Voo, )3dr

keZ

t+s
+ Z/ <Jr,t+s(u» Ve)ok , E)%(dr .

kez V!

t
-y /0 Urass i, Vo)or )3,

keZ

which holds for any & € X. Let J*,, ; be the adjoint of J; ;+4(u, V) in X. Using the
group property (4.20) and (4.7) we have

t
Z/(; (Jr,l(us V)Gk ’ J:r-{-sé)%(dr = (MZ(M, V)J:[_Hyé’ ][T[J,-_yé)X'
keZ

From Assumption 4.13 we have that J;*, , (& # 0 whenever &. Thus, combining these
observations, we infer the desired non-degeneracy of M, (u, V,), completing the
proof. O

The following quantitative invertibility criteria for C! functions may be established
in a very similar fashion to the standard Inverse Function Theorem. Also note that our
statement here is a variation of Lemma 4.2.1 of [38].

Lemma 4.25 Suppose that G € CY(R™) is a collection such that

(i) Forevery g € G, g(0) =0.
(ii) Thereisan 0 < A < oo such that

Vg <A foreverygeg. (4.37)

(iii) For some y > 0

1
sup A|Vg(x) —Vg)| <= foreverygeg. (4.38)
xeB; (0) 2

Then, for any y € (0, y], there is a k = k(y) > 0 such that, for every g, Uy =
g(By (0)) is open set with g diffeomorphic between B, (0) and Ug with

B (0) € g(B,(0)) =U,, foreverygeg. (4.39)
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Proofof Theorem4.23 1etu € X,t > 0, V € £, be as in the statement of the
result and let s > 0 be such that 7 (¢;4s(u, W)) has density p;ys(-) with respect to
Lebesgue measure on R™. We proceed by showing that, for any x € R, there exists
a continuous function 2* : R™ — R such that

h*(x) >0 and / Pres(V)dy > / h*(y)dy foreverye > 0. (4.40)
Be(x) Be(x)

With such an 2* the desired result, that p;¢(x) > 0 for almost every x, then follows
from the Lebesgue differentiation theorem.
To establish (4.40) for a suitable 2* we begin by building V, € ;4 with

(P45, Vy)) = x and M,4(u, V) is non-degenerate, 4.41)

forany x € R™. By assumption M, (u, V') is non-degenerate. On the other hand, since
the ¢ is exactly controllable on 7 (X), there exists a piecewise linear V € Q; so that

(s (¢ (u, V), V)) = x. (4.42)

We now define V, € Q4 according to

V(r) forr € [0, t]

Velr) =13 A
V)+ V() forrelt,t+s].

(4.43)

With (4.42) and the cocycle property (4.6) we infer the first condition in (4.41). By
Lemma4.24, since M, (u, V') is non-degenerate, we conclude that M, (u, Vy) is itself
non-degenerate, yielding the second condition in (4.41).

With this V, in hand we construct #* in terms of a suitable Girsanov density and a
small perturbations around (7w My (u, Vo))~ . For any y € R™ we take

m T
T;W(r) =W()+ Zy/g/ (Jr.i+s, Vx)or, eg)x dr forany T € [0, 1 + 5],
0
=1

(4.44)

where we recall that the elements e; are an orthonormal basis for 7 (X). In particular
we have that

/ (Jr,t+s(us Vi)ok, eg)x dr € HI+S3
0

so that 7' W is an admissible Girsanov shift for any y € R™.
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Fixa p € C(R™; (0, 00)) satisfing me p(¥)dy = 1. From the Girsanov theorem
we infer that, for any measurable ¢ : R” — [0, 00),

[ vy = [ Eva@memdy
—E [ @ TG 6 Wp() dy

= E/R V(g (y, W) + (s (W)NG* (v, W)p(y) dy
(4.45)

where G*(y, W) is the Girsanov density associated to the shift 7, W and

80, V) = (s (Ty V) — 7 (Br5(V)) (4.46)

for any V € Q4. We therefore obtain an expression for an A" from (4.45) with the
desired proprieties in (4.40) by showing that g* is invertible and changing variables.
In view of Assumption 4.13, g*(y, V) is differentiable in y for any Ve Q45 and

Ve (y, V) =UT}V)

where T : Q;1; — R”*™ is the continuous map given by

Gy =) / U bt V)0 €)oo s Vil €)dr

keZ

In particular we have that Vg* (0, Vy) := M7, (u, V,). Thus, the non-degeneracy of
M;ys(u, Vy), (4.41), and the continity of T implies that there existsa § > 0, ¢ > 0,
such that,

|det Vg™ (y, V)| = a [[Vg* (0, V)71

=<

- ~ o
5 Vg (0, V) = Vg*(y, V)|l < 5 (4.47)
whenever |y| + |V — Vylloo.rts < 28.

Observe that, choosing § > 0 so that (4.47), we have

={g" (-, V) IV = Villsosts <8} S C'(R™)

satisfies the conditions of Lemma 4.25. Picking y = min{§, y} we invoke the lemma
and obtain the k¢ > 0 so that (4.39) holds. For V we let e, V) be the corresponding
inverse of g*( -, V) mapping Uy := g* (B, (0), V) to B, (0). Continuing from (4.45)
and denoting 75" (W) = 1yw—v=~ <sy we have

”oo,t+x
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/ Y (¥) prs (y)dy

= EA5 (W) 50 V(g (v, W) + 1(pr4s (WG (v, W)p () dy

=Es5" (W) UWZ + (s (WG (f* (2, W), W)p(f*(z, W))|det V f*(z, W)|dz
VY (z + 7 (Prys WG (f* (2, W), W)p(f*(z, W)) dz
B, (0) |det Vg*(f(z, W), W)|

= / Y ()h* (2)dz
Rm

> EAG (W)

where

XN, [1{|wVX|OO,,+,V<6}1{|X<Z,W)<K}Gx(fx(X(z), W), Wp(f*(X(2), W))}
h*(z):=E

|det Vg* (f*(X(2), W), W)

and X (z, W) = z — (45 (W)). In view of (4.47), standard properties of Brownian
motion and noting that p and G* are both strictly positive we therefore conclude that
h*(x) is strictly positive. Hence h* satisfies (4.40), completing the proof of the result.

O

Remark 4.26 Note that, in contrast to Theorem 4.20 which requires M to be non-
degenerate for almost every Brownian path, Theorem 4.23 simply requires that the
M be non-degenerate for a single V € ;. In practice, however, we will prove an
estimate like (4.26) and use the implication (4.25) to select one path from a set of full
P measure on €2; to satisfy the conditions in Theorem 4.23.

Remark 4.27 While the exact controllability of w(¢) produces, for each x € R™,
at least one noise path V, € ;4 such that x = 7w (¢s45(u, Vy)) the invertibil-
ity of w M;1s(u, Vi) shows that the tangent space around this point x produced
by Cameron-Martin perturbations H;ys is of full rank. Indeed, to show that
Dyt (pr45(u, Vy)) is of full rank in H;;; we would like to show that, for any unit
length & € R™ there is a corresponding perturbation He € H;4¢ of Vi, such that

(P45 (u, Vi + €He)) ~ x + €Dym(p(u, Vi) He = x + €8, (4.48)

for 0 < € <« 1. We may produce such an Hg by solving the following least squares
problem. Assuming that H has the form Hg = (Dy, ¢, (u, Vy))*mn then, cf. (4.22),
we have that £ = Dy, (¢h;45) He when n = M (¢, Vx)_lé. Hence

Hy = (Dyrysu, Vi) mM® (1, Vi) '&.
yields (4.48).

@ Springer



Saturation in infinite-dimensional control problems Page470f 103 16

5 Examples

The goal of this section is to see how the results of Sections 3 and 4 can be applied
to study specific degenerately forced problems. In particular we will consider the
following examples illustrating different aspects of the theory introduced previously:

(i) The Reaction—Diffusion equation.
(i) The 2D Navier—Stokes equations.
(iii) The 2D Boussinesq equations.
(iv) The 3D Euler equations.

In each example we will also see how the control results in Section 3 can be used
in conjunction with the formalism introduced in Section 4 to infer properties of the
support of the law of the random variable solving the associated stochastic partial
differential equation. In the examples (ii) and (iii), we also deduce unique ergodicity
of invariant measures in the presence of inhomogenous forcing terms. To the best of
the authors’ knowledge, the results concerning (i) and (iii) are new while the results on
(ii) and (iii) in similar functional settings have been obtained and discussed previously
in, respectively, [2,4,5,25,27,34] and [36,37,45]. Nevertheless, the examples (ii) and
(iii) illustrate the applicability of the methods of Section 3 and Section 4.

5.1 Reaction-Diffusion Equation
For a first example, we consider the following reaction—diffusion equation
ou —kdyxu = f(u)+o -0,V (5.1

where k > 0 is the diffusivity constant. The (scalar) equation (5.1) is posed on the
interval [0, ] and is supplemented with the Dirichlet boundary conditions

u(t,0) =0 = u(t, ) forall > 0. (5.2)

Here, the nonlinearity f is assumed to be an odd polynomial of the form
2n—1
f)y=Y" bt n>=2 (5.3)
k=0
We suppose that the leading-order coefficient by, 1 in the nonlinearity is such that
byp—1 < —v

for some v > 0. In particular this implies that, for some constant K depending only

on f

W) <K — 2 and  sup f'(v) < K (5.4)
2 veR
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for all v € R. The term o - V takes the form

-9,V = Z 010 Vi (5.5)
keZ

The controlled directions Z € Z>; = {1, 2, 3, ...} are a finite subset with oy (x) =
sin(kx) and V = (V) z is a fixed element in

Q= {V : (—o0, 00) = RZ! continuous with V (0) = 0},

following the notation introduced in Section 4.

We proceed with our analysis of (5.1)—(5.2) by recalling the cocycle setting in
Proposition 5.1 followed by the main control results in Theorem 5.3. The main scaling
estimates are encapsulated in Lemmas 5.9 and 5.10 below.

5.1.1 Mathematical Setting, Cocycle Formulation

Regarding the mathematical formulation of (5.1)—(5.2) we consider weak solutions.
Smoother classes of solutions of (5.1)—(5.2) could just as well be considered but we
omit detailed discussion for simplicity and clarity of presentation.® We refer to, e.g.,
[47,52] for further background on general mathematical theory surrounding (5.1) and
its variants.

The phase space for the cocycle associated with (5.1)—(5.2) is taken to be the Hilbert
space X = L2 = L?([0, 7]) equipped with the standard norm || - || and inner product
(-, -). Note that {o} : k =1, 2, 3, ...} provides an orthogonal basis for L?. As usual
we take H(} = H(} ([0, 7]) to be all of the elements in L? whose (weak) derivative
is in L? and which vanishes at 0 and 7. Some of the forthcoming estimates will also
involve bounds in L?" = L?" ([0, r]) where 21 — 1 is the degree of the polynomial f.

Of course, (5.1) does not make sense directly for generic elements V in 2. Following
Remark 4.3, we define the solution u(z, ug, V') of (5.1) corresponding to the initial
condition u(0, ug, V) = ug € L? by u(t,uo, V) := v(t,uo, V) + o - V where
0-V=>3cz0(x)Vi(t) and v = v(z, ug, V) solves the equation

v —kdxx(V+0o-V)y=f(v+0o-V), v(0) = uo, (5.6)

in the weak sense.

To make this all precise, we have the following well posedness results for (5.1)—
(5.2) which is compatible with the setting of Section 3 and much of Section 4. The
proof of this well posedness result is based on standard a priori estimates which we
outline below in Appendix A.1.1.

Proposition 5.1 Consider (5.1)—(5.2) with f as in (5.3) and Z finite. Then, for any
Ve Qandug e L2, there exists a unique weak solution u = u( -, ug, V), namely

u e L3 ([0,00); H)) N C([0, 00), L?) N L3 ([0, 00), L*") (5.7)

loc

6 Note also that (5.1) is just one example of a wide variety of reaction—diffusion equations which are in
principal accessible to the formalism developed above in Sections 3 and 4. See also, Remark 5.6 below.
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with u(0) = ug and such that v := u — o - 'V solves (5.6) in the weak sense; that
is integrated against smooth, compactly supported test functions. Furthermore, the
induced mapping ¢ : [0, 00) x L?x Q — L? given by ¢:(ug, V) = u(t,up,o - V)
is a continuous adapted cocycle in the sense of Definition 4.1.

Remark 5.2 The notion of solutions to (5.1) given in Proposition 5.1 subsumes two
more classical notions which arise as special cases. If V belongs to the Cameron-Martin
space H; as defined in (4.4), then the more usual sense of weak solution solutions
of (5.1) are well defined and coincide with the solutions provided by Proposition 5.1.
On the other hand, if wereplace V € 2 by a standard two-sided | Z|-dimensional Brow-
nian motion W, then (5.1) may be regarded as a stochastic partial differential equation
for which we may obtain solutions in the setting of infinite-dimensional stochastic
analysis as in, e.g., [16]. Regardless, since the noise is additive, upon replacing V
by W in (5.6) and defining u(¢, ug, W) = v(t, ug, W) + o - W we obtain the same
pathwise solution as the one defined using the stochastic analysis approach. See, e.g.,
[10,12].

5.1.2 Statement of the Main Results for Equation (5.1)

In order to state the main control results for the reaction—diffusion equation (5.1), we
first outline further assumptions we make on the noise/control directions ¢ = (o :
ke Z). Let

feui,v2, .., v221) = bop_1v1v2 .. V2 (5.8)

denote the multilinear form corresponding to the leading-order term in f and define
Lz—subspaces Xm,m >0, by

Y = Xo = span{oy : k € Z} 5.9
and
Xm = span{Xp—1 U{fi(h1, ho, ..., hou—1)  hi € Xim—1}}. (5.10)

We recall as in Definition 2.5 that the pair ( fi, o) satisfies Hormander’s condition on
L?if |, = Xm is dense in L.
Our main control result is the following:

Theorem 5.3 Suppose that we are under the conditions of Proposition 5.1 and that
(f+, 0) satisfies Hormander’s condition on L*. Let w : L*> — L? be any continuous
linear projection onto a finite-dimensional subspace w(X) € L*. Then the associated
cocycle ¢ is approximately controllable on L* and exactly controllable on 7 (X) in
the sense of Definition 4.6.

Example 5.4 With the use of elementary trigonometric identities, one may verify the
Hormander condition algebraically for a wide variety of configurations of Z and f in
(5.1). For example recall that
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sin(jx) sin(kx) sin(/x)
= %(sin((l +j—k)x)+sin((l — j+k)x) —sin(( + j + k)x)
—sin((/ — j — k)x))

for any j, k, [. Thus, in the case when the degree of f is 3, the Hormander condition
is satisfied if, for instance, {1, 2} C Z.

Recall that the structure of the cocycle ¢ allows us to define a Markov semigroup
P; with associated transitions P, (ug, A), ug € L? and A C L? Borel, as in (4.10)
and (4.11). Combining the previous result with Lemma 4.7 and Corollary 4.9 of
Section 4, we have the following immediate consequence.

Corollary 5.5 Suppose the assumptions of Theorem 5.3 are satisfied. For any t > 0,
ug € L? and B - L? open we have P;(ug, B) > 0. Furthermore, any invariant
measure w for P, satisfies n(B) > 0 for all B C L? open.

Remark 5.6 Note that a much broader class reaction—diffusion of equations in regards
to boundary conditions, the structure of the reaction term f and the spatial dimension
are all accessible to the formalisms presented in Section 3 and Section 4. We choose
to focus on the special case presented in (5.1)—(5.2) for simplicity and clarity of
exposition in our first example.

Similarly, to keep the presentation of this first example simple, we will avoid the
Malliavin calculus and focus on the rigorous scaling arguments giving control on the
phase space L? as stated in Theorem 5.3. Indeed, to be able to apply the results of
Section 4.4, we need to establish a non-degeneracy for the Malliavin matrix associated
with (5.1) al la Definition 4.17. In previous work, [27], the analysis of this operator was
carried out for (5.1) in a smoother space where the maximum principal is immediately
applicable. It is expected that the Malliavin analysis carried out in [27] could be
readily extended to the L setting followed here. Conversely, with some further work,
the controlability results of this section could be generalized to arbitary higher order
Sobolev spaces which was the setting of [27].

We leave both questions, along with more general more general formulations of
(5.1), for future work.

5.1.3 Proof of the Main Control Result
Given the existence of the cocycle ¢, observe that by taking the parameter space

Y = span{ox : k € Z}, we have defined a one-parameter family of continuous
(global) semigroups (¢, ug, h) +— CDf‘uo :[0,00) x L? x Y — L? by setting

ug = ¢ (uo, Vi)
where V), € Qisdefined by V},(t) = th. See Definition 3.9 in Section 3.3. Throughout,

we will denote this one-parameter family using the notation (P, Y) and take § =
{(®, )}
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The proof of Theorem 5.3 follows immediately from Corollary 3.15 once we estab-
lish the following result.

Theorem 5.7 For eachm > 0, (p, X,,) € Sat, (§).
Here we recall that (p, X;,) is the one-parameter family of continuous (global)
semigroups defined by

plug =uo+1th, t >0, ug € L>, h € X,,

and X, is as in (5.10). The notion of the uniform saturate Sat, (§) of a one-parameter
family of continuous (global) semigroups § is given in Definition 3.10 above.
Theorem 5.7 will be proven inductively using the next two scaling estimates. The
firstresult, Lemma 5.9, starts the inductive generation of the subspaces X, by showing
that (p, Xo) € Sat, (). In light of the heuristics outlined in Section 2, the second
scaling estimate, Lemma 5.10 allows us to ‘push’ existing directions through the
nonlinearity f to iteratively show that (p, X,,) € Sat, (§) for all m > 0.

Remark 5.8 By the proof of Proposition 2.6, we recall that X,,,, m > 1, satisfies
X,, = span{Xm_1 U{fuh) : h e Xm_l}}.

Note that this simplifies the argument since we will only need to see how to generate
directions of the form f,(h) forh € X,;,_1.

Lemmab5.9 Let K| C L? and K> C X be compact and fix e, t > 0. Then there exists
Ao > 0 such that for all A > rg

sup (|} uo — p'uoll < e (5.11)
upeki,hek,

In particular, (p, Xo) € Sat, ().

Lemma5.10 Fix m > 0 and let K1 < L? and K» € X,, be compact. Then for all
e, t > 0, there exists A, > 0 such that for all .. > Ay,

a2 2 - (h
sup o, " @0 ) o — pf Mol < e (5.12)

upeK,hek,
where we recall that 2n — 1 is the degree of the polynomial nonlinearity f.

Before turning to the proof of these two lemmata let us first make precise how
Theorem 5.7 follows assuming these two bounds. The proofs of these each of these
lemmata are given immediately afterwards.

Proof of Theorem 5.7 We note that (p, Xo) € Sat,(F) by Lemma 5.9. Also, since
filau) = o® 1 f,(u) and 2n — 1 is odd, Lemma 5.10 implies that if (p, X,,) €
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Sat, (§) for some m > 0, then for all & € X,,, (o, Yin+1(h)) € Sat,(F) where
Y (h) :={afi(h) : @ € R}. Since the ray semigroup has the property that

h, +Bh
ptg B pt(ag B )uo

for all g, h, ug € L% t>0anda, B € R, it follows that (p, X,,+1) € Sat, (§). This
finishes the proof. O

Proof of Lemma 5.9 We proceed to establish a bound suitable for (5.11) by estimating
as follows

1} u0 — pf'uoll < 1} u0 — pf Ty uoll + lluo — wnuo| (5.13)

where N > 0 is to be determined. Here, 7y : L?> — L? is the projection onto the
Fourier modes of size N or less, i.e.,
TNU = Zuk sin(kx), where u; = (u, sin(kx))

k=1

and (-, -) denots the L? inner product. Introducing the shorthand notations

w, (1) = @ fuo, wh (@) = plenug, vy (1) =} uo — pfwVug = up(t) — w",
we observe that vﬁ\v satisfies,
K 1 K
0oy = S0y = — f () + e, (5.14)

cf. (2.10) above. Thus, taking an L? inner product with v;,
d 2K
i +—||a o |2 = === (0, dxwy)

2 2
+ s F@) + Sl f) = f@™).
Since f(u) — f(v) = f'(&4.0)(u — v) for some &, ,, lying between u and v and since,
cf. (5.4), we have that sup_.g f'(z) < K, we infer

d Ny 2K yo K. N> C Ny 2
I P <=1 1P+ SV I+ 1 @I
<= 1P+~ ™ G-y,

where we have also used the 1D Sobolev embedding of H' € L and Young’s
inequality. Here, crucially C = C(x) > 0 is independent of A > 0. Gronwall’s
inequality then implies that
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c [’ 202n—1 2K
||U,1\v(f)||2§{||M0—7TNM0||2+7/ A+ w33y ds et
0

2(2n—1 2(2n—1
1+ yuo 2370 + 11125 >>

§C<|lu0 — mnuoll? + -

With this bound, (5.13) and the inverse Poincaré inequality, we conclude that, for any
uo € L? and h € Xy,

1+N2n—l||u0||2n—1 +1\72n—1||h”2n—1>
Vi

M h
@7 /510 — pyuoll = Ci (Iluo — yuoll +

(5.15)

where N = max{k > 0 : k € Z}. Here we emphasize that the constant C; =
Ci(k, K,t) > 0Oisindependent of A > 0, ug € L% he Xo as well as N > 0 and N.

Lete,t > 0and K| C L%, K> C X compact be arbitrarily given. Cover K| with a
finite collection of balls B; (v(()l)), ..., Bz (v(()M)) where £ = ¢/(4C1) and the constant
Cy is asin (5.15). Then, from (5.15), we obtain

sup (|0 uo — pluoll < €1 max  sup  2llug — vy | + llvg” — g 1)
upgeK,hekr Jj=

.....

upeBz (v(()M))

N2n—]C
+ 71<1 + sup [lugl* ' + sup IIhIIZ"‘l)
upekK hekKy

. . C N2n—1 e

é./) _ an(()J)” + hat A + = (516)

N

, llv
j=L... M

forany N > N where the constant C; = C (k, K) is independent of the compact sets
K1, K7 both C; and C; are independent of N, & > 0 and € > 0. We can thus choose
N > 0 sufficiently large so that

¢ — vl < (5.17)

€
v -
j=1,..M 4

Since this choice of N is taken independent of C; the desired bound, (5.11), follows
16C2N2(2n—1)
forall A > g = —2——

7 . This finishes the proof of Lemma 5.9. O

Proof of Lemma 5.10 Fix m > 0 and let Ky € L3 and K» € X,, be compact. Fix
e,t > 0. Maintaining the notation that 77y : L> — L? denotes the projection onto the
modes of size N or less, we let
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— 2
(t) - ;0 )L hq)o/)Lanl p)):—]ilu()v

rN(f) = p/* P ryuo,

f*( ) N

oY (1) = p " @0 oy Pl g — g = wi(t) — V.

As in the proof of the previous lemma N > 0 is a free parameter which will be fixed
futher on below.
Referring back to (2.15) we see that w){v satisfies

1
Ol A = o fwd k).

N
O W, )LZn

With this equation and using also that wiv = ¢){V + ", we conclude that ¢§V obeys

F@Y +ah) — £V +ah)

K K
3t¢)1\v T 2n-1 8Xx¢/{\’ =W3xx(rlv + Ah) + S
FN 4+ Ah) — f*(Ah)
" A2n—1 : (5.18)
Multiplying (5.18) by qbff and integrating we obtain
LIBNIP + = o8NP 6 Buer 1 Ak
dr* 32n—1 19x Py, )\2n ; x -
2
+ 22n—1 (d))]\\/’ (f(w){v + M) — f(rN + Ah))
+ (f(rN 4+ Ah) — f*(1h))). (5.19)

Since f(w) +Arh)— f(rN +1h) = f'(£)¢ for some & between wl +1h and rV — Ak
and using (5.4) we have that

2(0Y, fwl 4+ ah) — fF(rN + Ah)) 2K

o = il I (5.20)
On the other hand, from (5.3), we have
2n—2
FEN 4 ah) = fX(uh) = Z by Z( )Alhl(rN)k_l
2n—2

+b2n ! Z < ))\’lhl(rN)Zn—l—l'
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Thus, for A > 1, we have

@Y, N + xh) — f£*(0h))
)L2n71

C - -
= 110+ WAl ) O+ IV i)
(5.21)

for a constant C depending only on f and which is in particular independent of 1 > 1.
Combining (5.19)—(5.21) we infer:

d 2K
Sl Ol = S 19

CUIN g2 + ARl g2 + 22772+ RIS ) A+ 1PV 125 00)
+ L L
)LZn—l

2K
< Syl

Lot RIS DA+ 1Y 125

A

2K
< Syl

ot 1175 D+ N2 g 2= [ (175
A

where we have also used Sobolev embedding and the inverse Poincaré inequality.
Here the generic constant C > 0 is independent of N, A and the data. Hence, with
Gronwall’s inequality

(I+ ||h||2nz ])(1 + N2Cn=D ||”0||2n ! + ||f*(h)||2n2 1)
N H H
b5 (¢ <C — T +
” S ( )” = (”MO NMOH 2 )

(5.22)

where again the constant C = C(¢, «, f) is independent of A, N, ug and h.

With (5.22) in hand we infer the desired bound (5.12) by employing an argument
very similar to the one used in the proof of the previous Lemma. See (5.16) above.
The proof of Lemma 5.10 is now complete. O

5.2 2D Incompressible Navier-Stokes Equations

For our next example, we explain how the scaling and saturation framework can be
applied to the 2D Navier—Stokes equations and its stochastic counterpart. In particular,
it is worth underlining that the control framework developed here allows us to show
unique ergodicity for the 2D stochastic Navier—Stokes equations established in [25]
even when the equations are subject to a more or less arbitrary background forcing.
Many of the results in this subsection have been previously established, although
with different techniques. We will therefore be more sparing in technical details in this
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section. We refer the reader to [2,4,5,34] and to the introduction for further references
concerning the low-mode control problem for the 2D Navier—Stokes equations.
The 2D Navier—Stokes equations take the form

osu+u-Va—vAu+Vp=£f+p-0;V, V.-u=0, (5.23)

where the unknowns are the velocity u = (u1, u) : T> — R? and pressure p : T> —
R, the latter of which is a constraint maintaining the divergence-free condition of the
flow. As in the aforementioned works, we consider the 2D Navier—Stokes equations
on T? so that the nonlinear interactions are more tractable to analyze. The parameter
v > 01n (5.70) is the kinematic viscosity. The volumetric source term f = (fi, f>) :
T? — R? may be used to model components of a large-scale stirring mechanism,
but it will be taken to have an essentially arbitrary form for the mathematical results
which follow. As in the previous example, p represents a finite set of sinusoidal control
directions driven by the actuators V. See (5.26) below for the precise formulation of
the controls we consider.

As with the other systems in this section, when we consider the stochastic process
that results from taking V' to be Brownian motion in (5.27) we obtain solutions of
the stochastic Navier—Stokes equation. Of course, for general V € Q2 we do not make
sense of (5.23) directly. Rather, we use the additive structure of the noise/control term
and work with a shifted equation. See Remark 4.3 and Proposition 5.11 below.

For simplicity and to connect with previous results, we consider (5.23) in its vorticity
formulation. Taking & = curl(u) = Vi u= Ox, U2 — Ox, 1, wWe have

WE+u-VE—VvAE=g+0-9,V, u=Kxé (5.24)

where g = curl(f) = 9y, f2 — 9y, f1. In the above, K denotes the Biot-Savart kernel
which recovers u from &, thus allowing us to consider the vorticity formulation of
(5.23) in a closed form.”

Following the setup in [25], we will consider controls of the type

o-V = Z(v,?(t) cos(k - x) + v,l (t)sin(k - x)), V() = (vf(t), U/l (kez,
keZ
(5.26)

where V € Q :={V : (—o0, >0) — R2Z! continuous with V(0) = 0}. Here the
controlled set of frequencies Z sit in the upper half plane

Zgzizz{j:(jl,jz)eziozjl>00rj1=0,j2>0}.

7 Here recall that givenany &£ € H we define the stream function  as the solution of Ay = & supplemented
with periodic boundary conditions. We then take

u=viy =vi)l (5.25)

so that the operator K has the symbol Kt / [k|2.
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We show that configurations of Z for which we have two non-orthogonal frequencies
of distinct length are controllable in what follows.

Mathematical Formulations

Let us begin by futher recalling the mathematical setting of (5.24). As in the previous
example, cf. Remark 4.3, we will consider solutions of the shifted system

WE+KE+o- V) VE+o-V)—vAE+0-V)=¢g (5.27)

where IC is the Biot-Savart operator. We thus define the solution of (5.24) correspond-
ing to initial condition &y and ‘noise path’ V € Qas&(-, &y, V) := 5( -, &,V)+o-V,
where £( -, &9, V) is the solution of (5.27) with the given V starting from &. Regard-
ing the functional setting for (5.24) and its associated cocycle, we consider solutions
evolving on

H = {g e LT : /zédx = o} (5.28)
T

recalling that solutions of (5.24) maintain the following mean-free condition:

/ Edx =0
T

provided that the source g does.® In what follows, we maintain the notation || - || and
(-, -) for the usual L2 norm and inner product. We denote the higher order Sobolev
spaces according to H™ := H™(T?) N H form > 1.

We have the following:

Proposition 5.11 Fix any g € H and assume that o consists of a finite number of
frequencies (i.e. suppose Z is a finite set). Then, for any &y € H and any V € Q, there
is aunique £(-) = &(-, &, V) with

£e L} (10,00); H') N C([0, 00); H) (5.29)

withé =& — o -V solving (5.27) (in the usual weak sense). This solution £( -, &, V)
depends continuously in [0,00) x H x Q on t,& and V so that (5.24) uniquely
defines a continuous adapted cocycle ¢ in the sense of Definition 4.1. Additionally,
this cocycle satisfies Assumption 4.13.

Much of Proposition 5.11 is essentially standard and we refer the reader to, e.g.,
[11,51] for the necessary estimates and technical details. In regards to the cocycle
associated with (5.24) satisfying Assumption 4.13, see the Appendix in [25].

8 Asusual this assumption is mathematically convenient as it guarantees that the Poincaré inequality holds.
The general case follows in any case from a Galilean transformation.
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Low Mode Control Results

With the mathematical framework provided by Proposition 5.11 in hand, we now
state the main controllability results for (5.24). For these results we make use of the
following spanning condition on the controlled directions Z in (5.26) found in [25]:

Definition 5.12 We say that Z is a sufficent control set if:

(i) There exists two elements k1, ko € Z such that |ky| # |kz|.
(ii) Integer linear combinations of elements of Z generate Z>.

As a concrete example we have that Z is a sufficent control set if Z 2

{(1,0), (1, D}.

Remark 5.13 As shown in [25], the condition given in Definition 5.12 yields the span-
ning condition (2.20). Also note that, for any k

kKt ok
|k|?

(K xsin(k - x)) - Vsin(k - x) = cosz(k - X) =0 (5.30)

and similarly for other combinations of sines and cosine functions. Thus the ‘rela-
tive degree conditions’ given above in Section 2.4.2 apply and we may obtain the
spaces (2.18) in an iterative fashion with scaling and saturation arguments. Properties
analogous to (5.30) also play a key role for the Boussinesq and Euler examples below.

Our main control result is the following:

Theorem 5.14 Suppose that Z C Z%_ defining the controlled directions in (5.24) is
a sufficient control set in the sense of Definition 5.12. For any g € H, consider
the cocycle ¢ corresponding to Z and g for the 2D Navier—Stokes equations (defined
according to Proposition 5.11). Then for any continuous, finite dimensional projection
. H— R™, ¢ is approximately controllable and exactly controllable on w(H) as
in Definition 4.6; that is, for any &;, & ¢ € H and any time t > 0, & > 0 there exists a
V € Q such that

1§ &, V) =&l <e and m(§(,§,V))=m(Ey).

This result follows immediately from scaling estimates of the type (5.11) and (5.12)
analyzed in the previous example. Since we will detail such estimates the fluids setting
in the analogous but more difficult cases of the Boussinesq equation (5.32)—(5.33) (see
Lemmas 5.22,5.23) and the 3D Euler equations (5.70) (cf. Lemmas 5.35, 5.36) we omit
further details here. Note that, as for the 3D Euler equations below, the approximate
controllability of 2D Navier—Stokes equations under the conditions in Theorem 5.14
can also be established in H™ for every m > 1.
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Implications for the Stochastic Navier-Stokes Equations

Let us now describe some implications of Theorem 5.12 for the stochastic 2D Navier—
Stokes equations. That is, in vorticity form we now consider

dé + (u-VE —vA&)dt =gdt +odW, u=KxE&. (5.31)

As before, the solution evolves on the periodic box T2, K denotes the Biot-Savart
kernel, and g is any element in H. The stochastic forcing o d W maintains the structure
given in (5.26). Solutions & (¢, &y, W) of (5.31) define a Markov transition kernel via

Pi (50, A) = P(&(r, up, W) € A)

where & is any element on H and A € H is Borel. As in the previous example, we
take ¢ to be the cocycle corresponding to (5.24) defined according to Proposition 5.11.
We have the following results concerning (5.31):

Theorem 5.15 Consider any g € H and any o corresponding to a Z which is a
sufficent control set in the sense Definition 5.12. Then:

(i) The resulting Markov kernel defined by (5.31) possesses exactly one invariant
measure |4 which is ergodic. Moreover, supp u = H e

(ii) Foranyé&y € H,t > 0 and any continuous projection w : H — R™ onto a finite-
dimensional subspace, the probability law of w (£ (¢, &y)) is absolutely continuous
with respect to Lebesgue measure on R™ and its probability density is almost
everywhere positive.

Theorem 5.15 may be established using [25,27,34] combined with Theorem 5.14
and the results in Section 4. For the first item, we proceed by establishing the con-
dition required by Corollary 4.12. The asymptotic strong Feller condition (4.16) is
demonstrated exactly as in [25,27] and relies in particular on a spectral analysis of
the Malliavin matrix associated to (5.31). See Definition 4.17 and the condition (4.26)
above. The other condition in Corollary 4.12 concerns approximate controlability and
follows from Theorem 5.14. The full support of the invariant measure is an immediate
consequence of Theorem 5.14 combined with Corollary 4.9. Regarding the second
item concerning the regularity of the law of 7 (£), we again combing the estimate
(4.26) with the exact controllability guaranteed by Theorem 5.14 to infer the desired
support properties from Theorems 4.20, 4.23.

Remark 5.16 In the case when g = 0, unique ergodicity of (5.31) follows using the
same methods as above but one does not need the control theoretic approach outlined
in Section 3. Indeed when g = 0, the solution in the absence of noise relaxes to zero as
t — 00;1i.e., the global attractor is trivial. Thus setting the control to be identically zero
then implies that 0 is in the support of any ergodic invariant probability measure. Hence
by ergodic decomposition and the asymptotic strong Feller property, there can be only

9 The Markov semigroup { P;} may furthermore be shown to be mixing in a suitable Wasserstein distance.
See [26].
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one such measure. On the other hand when g # 0, the time infinity deterministic
dynamics are highly non-trivial. Thus one needs further, delicate control arguments to
establish topological irreducibility needed to ensure unique ergodicity of the stochastic
system. It is important to point out that the main control result in the case of g # 0
follows by the main results in [4,5] using the Agrachev-Sarychev approach.

5.3 Boussinesq Equations

We next consider an example involving the Boussinesq Equations for convective flu-
ids. These equations couple the Navier—Stokes equation to an active scalar equation
evolving the temperature (or some other proxy determining the density) of the fluid.
The crucial approximation here is that the density may be regarded as constant with
the important exception of terms due to buoyancy forces.

In this example, we are interested in the case where a volumetric random forc-
ing/control acts only in the equation for the density (or temperature) through a few
select frequencies. Specifically, we consider a 2D formulation of the Boussinesq equa-
tions in the absence of boundaries. This specific setup is partially motivated by the
recent work [19]. More generally, note that stochastic perturbations acting in the tem-
perature equation as in (5.33) below has a significant physical motivation as a model
for radiogenic heating and other volumetric heat sources driving turbulent convection.
See [20,21,43,48].

From the point of view of the control theoretic formalism developed here, it is worth
emphasizing that the Boussinesq equations present a more delicate set of nonlinear
interactions compared with the other examples considered in this section. In particular,
this example illustrates that scalings detailed in Section 2, while very powerful, are by
no means the only way of leveraging the saturation formalism introduced in Section 3.

5.3.1 Mathematical Formulation

Following [19] it will be convenient to consider the Boussinesq Equations in terms of
the vorticity of the flow. In this formulation the equations read

0§ +u-VE—VvAE =g0,0, §(0) =% (5.32)
WO +u-VO—«kA0=h"+0-8,V, 6(0)= 6. (5.33)

where & = V4w =0 — dyu1 is the vorticity of the velocity u = (u1, u2) and 0
is the temperature of the fluid. The system (5.32)—(5.33) is posed on T2 = [-7, 7]?
with periodic boundary conditions. '

The physical parameters in the problem are v, «, g > 0, which correspond to the
kinematic viscosity, thermal diffusivity and gravitation constants, respectively. The
thermal body force A% + o - 3,V is such that 1% : T> — R is any fixed sufficiently
smooth function and

10 Note that, as with the 2D Navier-Stokes equations in (5.24) the vorticity formulation in (5.32)—(5.33)
represents a closed system of equations as u is uniquely recovered from & via the Biot-Savart law. See (2.25)
above.
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oc-V = Z(U,?(t) cos(k - x) + vp (1) sin(k - x)), V(1) = (1), v} ()rez,
keZ
(5.34)

where V €  := {V : (—o00, o0) — R2Z! continuous with V (0) = 0}. Also, in the
sum above,

Zgz'i::|j=(j1,j2)ez(2,:j1>00rj1=0,j2>0}

are the directions which are directly actuated by the term o - d; V. We will make further
assumptions on Z below for the control results in Theorem 5.18. See also Remark 5.19.

Note that, as in the previous example of the 2D Naiver-Stokes equations, the system
(5.32)—(5.33) preserves the mean value of solutions. As such we will again restrict our
discussion to mean-zero solutions. In particular, we will invoke the Poincaré inequality
in the estimates below.

For most of the following discussion, we consider solutions of the Boussinesq
Equations evolving continuously in L2. Thus accounting for the mean zero condition,
we take the phase space to be

H= {U:(g,e) € (LZ(TZ))zzfédxzfedx:O}.

We will at times also consider smoother solutions of (5.32)—(5.33) and hence make
use of the Hilbert spaces H” := H™ (T>2N H form > 1.

Following the discussion in Remark 4.3 as well as the setting of Section 5.1, we
recall that the solution U () = (£(¢),0(t)) = (&(t, Uy, V), 0(t, Up, V)) of (5.32)—
(5.33) with initial condition Uy = (&g, 6y) € H is defined by

Ut) = (E@),0(0) = (€@, U, V),0(t, Uy, V) + (0,0 - V)
where U := (§(t, Uy, o - V), 0(t, Up, o - V)) satisfies (£(0), (0)) = (&, 6p) and

WE+ii-VE—vAE =g @ +0-V) (5.35)
30 +i-VO+o-V)—kA@ +0-V)=h'. (5.36)

We recall that the shifted equation above allows us to consider solutions of (5.32)-
(5.33) when V is merely continuous. Additionally, if V is replaced by a standard
two-sided Brownian motion W on R?/Z! in the equations above, the resulting random
process U = (&, 0) is the same as the one defined by (5.32)—(5.33), again with V
replaced by W, using the It6 calculus. See Remarks 4.3, 5.2 above.

With these preliminaries in hand, we next state the main structural result which
allows us to apply the results of Section 3 and Section 4.

Proposition 5.17 For every Uy = (&9, 6p) € H and V € Q, there exists a unique

U =(0) e L .([0,00); H") N C([0, 00); H)
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such that U(0) = Uy and U = (£,6 — o - V) solves (5.35)—~(5.36) in the usual weak
sense. Moreover,

(i) The mapping ¢ : [0, 00) x H x Q@ — H defined by ¢;(Up, V) = (&£(t, Uy, 0 -
V), 0(t, Uy, o-V)) is a continuous adapted cocycle in the sense of Definition 4.1
which moreover satisfies each of the conditions in Assumption 4.13.

(ii) If Uy € H™ for some m > 1, the corresponding solution U maintains the
regularity

U e L2,.(10, 00); H™ N C([0, 00); H™).

(iii) Form > 0 let Xo(m) denote the subspace of H™ given by

0 0
Xo(m) = span { (sin(k 'x)> , <cos(k ) x)) ke Z} . (5.37)

Then the mapping @ : [0, 00) x H™ x Xo(m) — H™ defined by

o1 Uo = (1, Uo, Vi), (¢, Uo, Vi) + (0,0 - Vi),
where Uy = (&o,60) € H™ and V) (t) = th, is a one-parameter family of
continuous (global) semigroups on H™ in the sense of Definition 3.9.

Proposition 5.17 is proved in Appendix A.1 using standard a priori bounds.

Statement of the Main Results

Our main goal in this section is to prove the following control result concerning
(5.32)—(5.33).

Theorem 5.18 Suppose that Z 2 {(1,0), (0, 1)}. Then we have the following control-
lability results (cf. Definitions 3.3, 4.6 above):

(i) For any continuous, linear projection m : H — H onto a finite dimensional
subspace w(H), ¢ is approximately controllable on H and exactly controllable
onn(H).

(ii) Let m > 0 and §(m) denote the one-parameter family of continuous (global)
semigroups defined by

§(m) == {(P, Xo(m))} (5.38)

where Xo(m) was defined in (5.37). Then for any continuous, linear projection
w: H™ — H™ onto a finite-dimensional subspace w(H™), D(§(m)) is approx-
imately controllable on H™ and exactly controllable on w(H™).

Remark 5.19 We make the assumption that Z D {(1, 0), (0, 1)} for concreteness and
simplicity of presentation. Similar to the the low-mode control problem for the Navier—
Stokes equation presented in the previous example, this assumption can be replaced
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with a general algebraic condition that Z contains elements that generate Z> with the
appropriate integer linear combinations. See Remark 5.3 in [19] and the accompanying
diagrams for a further discussion of this point.

Invoking the results in Section 4, we obtain the following corollary as a simple
consequence of the previous control results and Proposition 5.17.

Corollary 5.20 Let P; denote the Markov transition kernel associated to the cocycle
¢:(Ug, W) defined by (5.32)—(5.33) via Proposition 5.17. Then we have the following:

(1) Forallt > 0and Uy € H, supp(P;(Uy, -)) = H.

(2) There exists a unique invariant measure (. for Py and this measure has full support,
i.e., supp(n) = H.

(3) Suppose that 1 : H — H is a continuous, linear projection onto a finite-
dimensional subspace w(H) and lett > 0, Uy € H. Then the random variable
g (Uo, W) has a density p; with respect to Lebesgue measure on 7w (H) which
is strictly positive almost everywhere.

Remark 5.21 Although we establish the stronger control result above on the spaces
H™, we remain in the L? phase space to deduce properties of random variables
¢ (Uo, W), Uy € L? and ¢ > 0, where W is a standard two-sided, 2| Z|-dimensional
Brownian motion defined on the Wiener space (€2, P). This is allows us to connect
seamlessly with the results in [19] concerning the spectral properties of the Malliavin
covariance matrix M, (Uy, W) corresponding to ¢, (Up, W).

Proof of Corollary 5.20 Conclusion (1) of the result follows immediately by combining
Theorem 5.18 and Proposition 5.17 with Lemma 4.7. Regarding the second item (2),
the existence of an invariant measure u is established with standard energy estimates
and the Krylov-Bogoliubov averaging procedure. For the question of the uniqueness
of i, we rely on Corollary 4.12. Here the asymptotic strong Feller condition (4.16) fol-
lows precisely as in [19, Proposition 2.6]. !! The second requirement of Corollary 4.12,
the approximate controllability condition, is precisely the content of Theorem 5.18.
Finally to establish conclusion (3), we combine Theorem 5.18 and Proposition 5.17
with Theorems 4.20, 4.23 from Section 4. Fixing # > 0 and Uy € L? and applying
Theorem 4.1 of [19] with Remark 4.18 of this paper, we find that the Malliavin matrix
Mg (Up, W) associated with (5.32)-(5.33) is non-degenerate for any 0 < s < t. The
fact that the random variable w¢;(Up, W) is absolutely continuous with respect to
Lebesgue measure follows by combining Theorem 5.18, Proposition 5.17 and The-
orem 4.20. Regarding the claim that the associated density is almost surely positive,
we fix any 0 < s < t so that M (Up, W) is non-degenerate. This then implies the
existence of a fixed deterministic path V € €2 such that the Gramian matrix M, (Up, V)
is non-degenerate and Theorem 4.23 applies. The proof is now complete. O

The remainder of this section is devoted to establishing Theorem 5.18. Before diving
into this proof, we introduce some further notation which eases the presentation below
and allows us to connect to the setup presented in [19].

n Strictly speaking, [19] establishes (4.16) without the inhomogeneous term h9. However, this additional
term does not introduce further complications for establishing the non-degeneracy condition.
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Notation

For U = (£,6) € R?, we define mappings e, T R> — R by 7eU = & and
79U = 6. On the other hand for « € R, we let g, 19 : R — R? be given by

L—a andt—O
505—0 ga—a.

ForU = (£,6), U = (£,0) : T2 - R? sufficiently smooth, we define the following
operators

AU = —vig A — k19 A,
B(U,U) = tc[(K*&)- VE] +19[(K % £) - VO],
GU = —gzgaxe, (5.39)

where recall that /C denotes the Biot-Savart kernel and v, x, g > 0 are the positive
constants defined in (5.32)—(5.33). We let

F(U)=AU+B(U,U)+GU. (5.40)
For the basis elements, we write
U,?(x) =gcosk-x):= Lge,?(x), akl (x) = tpsink - x) := tge,lc(x), 541
and
Y (x) = g cosk - x) 1= g€ (x), Yl(x) =g sin(k - x) = ge{ (x),  (5.42)
where k € Z2 and x € T2. For N > 1, we take
Hy = (¥, o] 11kl =N, j €0, 1}) (5.43)
and take Py to be the projection onto this subspace of H” for m > 0. Combining

these notations, observe that we may rewrite (5.32)—(5.33) in an abbreviated fashion
as

d
EU + F(U) = 19h° + 19(0 - 8, V), U(©) = Up. (5.44)

Proof of the Main Control Result
With these preliminaries in hand we now prove Theorem 5.18. As in the reaction—
diffusion and 2D Navier—Stokes examples, Theorem 5.18 is established via a suitable

sequence of scaling lemmata. In this example, however, the path taken to produce new
directions inductively using the nonlinearity is different than the one taken for the
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reaction—diffusion equation, hence different than the one discussed in the hueristics
section (Section 2).

We proceed by first stating the scaling lemmata without proof. We then combine
them and leverage Corollary 3.15 to prove Theorem 5.18. The section concludes
by proving each of the scaling estimates based on energy bounds and commutator
estimates.

First, we state the pure noise scaling estimate which starts the inductive generation
of controllable directions

Lemma5.22 Fixm > 0, t > 0 and suppose that Ky € H™ and Ky C Xo(m) are
compact sets where recall that Xo(m) is defined in (5.37). Then

lim  sup [[®}} Uo — p/ Uollum = 0. (5.45)
A—00 UpeK,hekKr

where, as usual p denotes the ray semigroup (2.6). Consequently, we have that
(p, Xo(m)) € Sat, (§(m))) with F(m) defined as in (5.38).

For the next scaling estimate, fixing ¢ € R we introduce the following dynamics
defined by the equation

¢
_ gdxe; _ ¢ ¢ ¢
U =« (I(Aé? —b(rrgU,eg)) = Aaaj Gozoj B(otU,aj),
U(0) = Uy, (5.46)
where
b,0) = (Kx§)- Vo, (5.47)

with £ € {0, 1}, j € Zi and the elements e, ¢ are the sinusoidal directions defined
in (5.41). One can readily check that for any Uy € H™, equation (5.46) has a unique
global solution belonging to H™. Furthermore, using cancelations like (5.30) one
infers that the solution of (5.46) is explicitly given by

P Up = U ) = Up + 1 gine) 248
o Uo=U@) =Uo+1a kAl —b(meUp. e}) ) o

Thus, for each ¢ € {0, 1}, j € Z2+ and m > 0, (T, {aa€ : o € R}) defines a one-
parameter family of global semigroups on H"” according to (5.48).

Lemma5.23 Letm > 0,t > Oandfix j € 7%, ¢ ¢ {0, 1}. Also, let K1 € H™ and
Ky C {omf : o € R} be compact. Then

. _}"2 )\.2
lim sup lp, 5 of CIJ?/)L prtleo - F;pU0||Hn1 =0. (5.49)
A= UyeKy,pekr
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Remark 5.24 Observe that although F defined by (5.40) is a second-degree poly-
nomial, the second-order terms that appear in the expansion governing W, (t) =

J 2 L"(pd)t/kp)“fleo are zero since B(U,ﬁ, a,i) = O0forany ! € {0,1}, k € Z%r.

See (5.67) below and recall (2.15) in the heuristics section above.

Our next scaling ‘estimate’ is somewhat surprising given that it produces an exact
formula. See [19, Lemma 5.1] and the surrounding computations. Note that particular
composition of I'’s below is motivated by the definition of the Lie bracket between

two vector fields, for it immediately follows from (5.48) that ", o _ F‘m"

Lemma5.25 Let m > 0. Then for any Uy € H™, k, j € 72, L,n € {0, 1} and any
o, B €R,

—Bo

r,“%r, fr“"kr on = U+ PaBllF, o1, [F, o} 1], (5.50)

for everyt > 0 where

£ n 0
[[F, Uj]’ [F, Oy ]] =4 <b(ax€k, Z) _ b(axe]’ ek)> . (551)

We recall that
[G1,G2] = DG2G1 — DG1Gy (5.52)

is the Lie Bracket of C! vector fields G; : H™ — H™. The computation yielding
(5.51) is detailed in [19, Section 5.1].

Lastly, we note the following scaling result, whose proof we omit as it is nearly
identical to the proof of Lemma 5.23. This will allow us to generate all nontrivial rays
in basis vorticity directions.

Lemma5.26 Fixm >0, j,k € Zi_ and £,n € {0,1} andt > 0. Let K| € H™ be
compactand 0 < N < oco. Then we have

7)\2( I_+ )LZ( I_+ my
lim sup ||,0)L71 D“/fj ﬁ‘/f]( (DO 0”//] ﬁ‘//k

1/32P5—1
A= UpeKy, la|+BI<N /

aBllF, ¥ 197
Uo — p, U e

where, cf. (5.52),
[LF, ¥l ] = e [(K x ) - Ve + (K x €]) - Ve
with F defined according to (5.40) and the elements  and e are defined by (5.42).

With the scaling Lemmas 5.22, 5.23, 5.25 and 5.26 in hand we now proceed to
combine these bounds to prove Theorem 5.18
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Proof of Theorem 5.18 Once again, we show that the conditions of Corollary 3.15 apply
for a suitable sequence of subspaces X,. Let m > 0 and observe that Lemma 5.22
implies that (p, Xo(m)) € Sat, ($(m)). Let Yg (m) = Xo(m).Forn > 1 we iteratively
define

Y2 o) = span [ Y m) UILF, 91, [F. 811 < 6.6 € Y/ (m)}}.

Invoking Proposition 5.2 from [19], one may show inductively that, foreachn > 1,7, ,,9
consists of spans of elements of the form af defined according to (5.41). In particular,

Y,? (m) € H™. Combining Lemma 5.23 with Lemma 5.25 and Remark 3.16, we
conclude that

(p, Y, (m)) € Sat, (F(m)), (5.53)

foralln > 1.
Now, according Remark 5.3 and Lemma 6.10 of [19], observe that

span{o/‘? cjeZr te{0,1}) C U Y? (m). (5.54)

n>0
Thus, due to Lemma 5.23, we have that, cf. (5.48),

(T, {ao] : « € R}) € Sat, (F(m)) forevery j € Z7, £ € {0, 1}. (5.55)

Now since {e§ = Jrgaf 1 j € 7% 0 ¢ {0, 1}} is a basis for H™ (T?) for any m > 0,
we combine (5.53) and (5.55) with (5.54) to deduce

(p, apr}) € Sat, (§(m)) whenever j = (ji, j2) € Z3, j1 #0,£ € {0, 1}. (5.56)

See Definition 3.10 above. Note carefully that, due to the presence of the 9, in (5.48),
the ray semigroups in (5.56) omit the directions 1/ff along the y-axis where j; = 0. To
recover these missing directions, we invoke Lemma 5.26 and elementary trigonometric
identities as in, e.g., [25]. Combining this observation with (5.53) and (5.56) and
invoking Remark 3.16, we finally conclude that (p, X,,(m)) € Sat, (F(m)) where

xn(m)=|{¢f;jezi,m5n,£e{o,1}}u{of:jezz,|j|5n,£e{o,1}}}.

Since U,>1X, (m) is a dense subset of H™, we now infer Theorem 5.18 from Corol-
lary 3.15, thus concluding the proof. O

We now turn to proving each scaling estimate.

Proof of Lemma 5.22 We begin by introducing the following shorthand notation

Vi) = E(0), 6:(1) = @} Uo — p" Uo and p(1) = (o° (1), p” (1)) = p;*" U
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Here choice of the initial condition Uy is made precise below.
Arguing as in (2.10) and (5.14), we obtain the following system for V :

_ 1 _ _ _ 1 _
0+ 0 & + 0%) - VE + %) —vAGE + p5)] = 8@, + 0%, (5.57)

| - _ - 1
06) + Z10Cx G+ p5) - VO + p") =k AG + p")] = 4", (5.58)
We begin by establishing 5.22 in the L? topology. Observe that

ld =2 1502, £ 12 512
—-— 0 -V %%
2dt(llé/xll + 110l )+A(v” Exll” + & IVOLIT)

1 _ _
== ((Cx & + p%) - Vp£ &)
+((K* &+ p5) - Vo, 6;)
+ v(VE, V&) + 1 (V6;, Vp¥)
— (80,0 + p%), 1) — (1°, 6)
1
= —K(TlO + T+ T+ T+ T2+ 1), (5.59)

With Agmon’s inequality and the smoothing properties of the Biot-Savart kernel, we
obtain

|T10 + T20| < C|K x (& -|-,OS)||L°<>||,0||H1 IVall < C(”p”i[l [Vl
+ Mol VAl Vall g1) (5.60)
2 2 Vioz 2 . Xiws 2
< Cleliz dVal +1)+§||V§A|| +§||V9A|| (5.61)

where C does not depend on A. For the remaining terms we simply estimate

T3 + T + T9 + T3 < CUVAI? + ol + 15°1%)
v Z 2 K = 2
+ S IVEN? + 162 (5.62)

Here again C is independent of A. Combining the preceding two bounds with (5.59)
yields

d C
Envxn? < —[pIE + DIVAI® + ol + 1A

Hence, from Gronwall’s inequality and recalling the definition of p we infer

1 hO 2
#) (5.63)

V01 < exp (CARIE + 10017 + 1) (nuo = Ooll* +
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where note carefully that C may depend on ¢ (and other universal quantities) but is

independent of A. Arguing in the same fashion as in (5.16) where U is taken to be

suitable Fourier truncation of Uy, now yields the desired bound (5.45) for m = 0.
We next turn to estimates in H™ for m > 1. Here we have

ld - 4. 112 Loz 7112
5 27 Werllem + 162 W5m) + = W& g1 + €10 N ggms)

| ] _
_ —x( SO K G+ 05 - V(of +E)

|Bl<m
— (K (& +0%) - VP&, 0PE)
+ Y (P (K« +0%) - V(o' +60)

|Bl=m

— (K % (& + 0%) - V8£Gy), 876;)
+ (&, ,0$>Hrn+l + k{0, p7) mss

— (88,0 + p%), &) m — (KO, éx)m%)

1
Z_X(T1+T2+T3+T4+TS+T6)'

Regarding the first two terms, Sobolev embedding, interpolation and the one-degree
smoothing of the Biot-Savart kernel implies

Ty + Ta < CUK * Ex + o5 lyma | Vallma | Vall e
+ 1 G+ o) lwmallpllymera | Vall )
< CUl B+ p lm [ Vall ot IValpm + 15
+ o5 L ol g2 |Vl )

| K -
< 06 + 000 + CAVAlGm + 1ol 2 + D (5.64)

Regarding the remaining terms we have

|Ts + Tu + Ts + Tl < CUVallm + ol 3mer + 180 17m)

Vo o 2 K - 2
+ SNt + S 168

Fixing 7' > 0 and combining these inequalities we find

>0

Vil = < (1ValSyn 4 1000z + TN + 1B + 1) (5.65)
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for all t € [0, T], where C is independent of A > 0. Invoking Lemma B.2, we obtain
the bound

VA3 <1Uo — Tollzm Rat, [Uo — Tollzm + 11001 3yms2
+ T sz + 1RO + D)
+ (00l sz + TN sz + RN T + 1)
X Ri(t, 1Uo = Uoll3m + 1001l ms
+ TR sz + 1R + 1D = 1) (5.66)

for every ¢ € [0, T, A T') where we recall that R;, is defined in (B.2).

We now complete the proof by using (5.66) in similar fashion to (5.15), (5.16) above
to infer (5.45). Fix any € > 0 and cover K| with a finite number of € balls B (e, VOJ ),
j=1,...,M.For N > 0, define

Ivi= sup (@0 + 1PN Uoll iz + TN sz + 1R + 1)
UopeK,hekr

where recall that Py is the projection onto Hy as in (5.43). Note that this quantity is
finite for every N in view of the standing assumptions on the compact sets K1, K.
Noting the monotonicity of R, and invoking (5.66) we find

Ah I/ 2
sup ”(D[/)LUO_p;UO”Hm
UpeK,hekKr

<4 sup O} UG pf PyUollm +4 sup |IPyUg = Ugllgm
UpeK|,heKr Upek,

<16e+16 max 1PNV = VI I3 (Ri(t,In) + 1) + Iy (R (2, Iy) = 1)
j=l....

which holds on the interval + € [0,7,°(dy) A T). Picking N large enough

.....

limy o0 T;¥(dy) = 00 and lim; . Ry (¢, Jy) = 1 we obtain that

lim sup sup ||d>lx/hAU0 - ,oth U0||2Hm < 48e.
r—o00 UyeKi,heky

for all + € [0, T']. Since this holds for any ¢ > 0 (5.45) now follow for m > 1,
completing the proof. O

Remark 5.27 Note that the bound (5.64) is rather crude and can be significantly sharp-
ened to improve (5.65) and hence the rates of convergence as A — oo in Lemma 5.70.
Similar remarks apply to the bound (5.68) below and hence to rates of convergence
in Lemma 5.23. Since these rates have no immediate bearing on our results, here we
omit the more refined estimates.
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Proof of Lemma 5.23 Fix Uy € K| and ¢ € K;. Recycling some of the notation used
in the proof of the previous scaling result, in this proof we let

Watt) = o, 00, 010 U,
r@ =~y =1{ 0.
Vit) = (). 6u(0) = Wa(1) — T(0).

Arguing as in (2.15) and referring back to (5.46), using the extended phase space
notation we obtain

1
iVA =— _[A(WA + Ap) + B(W, + rd, W, + 1)

dt
+ G(Wy, 4 1) — 16h°]
+Ap+Gp + BT, ¢)
1
— X[A(VA +I)+BWV,+T,V,+1)
+GW, +T) — L@/’lo] — BV, ¢) (5.67)

where, recalling (5.39), we have used that B(¢, W), + A¢) = 0 as mz¢p = 0.
Notice that (5.67) is quite similar in formulation to (5.57)—(5.58). Here B(V), ¢)
the only ‘new’ term. Observe that

{B(Vi, ), Vi)l = {(K % &) - V¢, &) < ClIVal>

Proceeding otherwise as in Lemma 5.22 with estimates analogous to (5.62) and (5.62),
we obtain

d C
Envxnz SCIVAI2 + LTI + DIVAI + T30 + 1A°17)

C ~ -
= A - 0 A 0 1
<C|IVillI* + [0 I+ DIVaIZ + 1T0l13,, + 1821 + 1]

where the constant C may depend on the compact set K, and ¢+ > 0 but is crucially
independent of A > 0. Here recall (5.48) to justify the second bound. Taking X (s) =

eCT [ Va(s)|I* we infer that X < S[(1TolI*> + DX + 1Tol3,, + K> + 1]. We
therefore obtain a bound very 31m11ar to (5.63) but which has a constant prefactor eC!
which is still independent of A. The bound (5.49) now follows for m = 0 by arguing
as in the proof of Lemma 5.9.

Regarding the convergence in H” for m > 1, notice that,

| Y (0P B(Va. ). 8P Vi)l < CIIVa I
|Bl=m
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Otherwise, arguing as in (5.64), we obtain
d 2 2 C 6 5 ond 02
E”V)L”Hm < ClVallgm + n IVallgm + 100N gmsa + 127 1ggm + 1 (5.68)

with C independent of A. Here we take X (s) = || Vi ||12qmec’ so that %X < %(X6 +
100 ||‘If{er2 +||K° ||%,m +1). Thus, from Lemma B.2, we deduce a bound very similar to

(5.66) but with a constant prefactor e©!. The desired convergence (5.49) thus follows
for any m > 1 by arguing mutatis mutandis as in the Proof of Lemma 5.22. O

Proof of Lemma 5.25 The proof is a direct computation. From (5.48) it immediately
follows that

Bo

n ¢
Ffwk Fz 'fUO = U()+l< gaX(an +'B€j) )

K Aae] + ﬂeﬁ) — bz Uy, el + ﬂeﬁ))

r* y
—U8 P pasel o)

where recall b is as in (5.47). Since «, 8 € R and Uy € H™ were arbitrary, we can
use the formula above and cancelations in b like (5.30) to conclude that

—aol' _—Bot _qol ot 2 0
I, k r, T, k T, "Up=Uy+1t°aBg <b(8xez el) _ b(axeﬁ eZ)>
9 j ]’
= U+ 1*apI[F, 0[], [F, of1l, (5.69)
which is the desired identity. O

5.4 3D Incompressible Euler Equation

We next turn to the low mode control problem for the three-dimensional incompressible
Euler equation. In contrast to the previously considered equations, this example is
notable since:

(i) We will see that dissipation is not needed to establish controllability results using
the formalism developed in Section 3.

(i) A major open problem is to determine whether the Euler equations develop sin-
gularities starting from smooth initial conditions. See, e.g., [14]. Our saturation
formalism introduced in Section 2 allows us to show that the addition of a low
mode control to the Euler equations can act to prevent blow up of solutions. See
Theorem 5.32 and Remark 5.33 below.

Before proceeding further, a few preliminary remarks are in order. First, since
we will consider the Euler equations in the absence of boundaries, the results and
techniques presented in this section also apply to the 3D incompressible Navier—
Stokes equations with only minor modifications. We omit details for the simplicity
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and clarity of presentation. Second, it may be noted that our presentation does not focus
on applications to the stochastic counterpart of the Euler equations. Note that while
it is technically feasible to generalize some of the results Section 4 to locally defined
dynamics, we avoid this generalization here given the complexity of the results as they
already stand. To see how such a generalization is possible in the finite-dimensional
setting of SDEs, see [7,24,28].

Regarding existing literature concerning the controllability of the Euler equation,
let us mention [36,37,45] and also [41,44] for related work on the 3D Navier—Stokes
equations. The reference [36] treats the same control problem as below but using the
Agrachev-Sarychev approach in the functional setting of H™ for an arbitrary but fixed
m € N. Below we treat the dynamics on the space C*° = N,,>0H" using the methods
of Section 3. In particular, because m € N can be arbitrary the main result in [36]
implies the main control result for this dynamics (Theorem 5.112 below). For general
background on the mathematical theory of inviscid, incompressible flow, see [33,35].

Mathematical Formulation

The 3D Euler equations are

ou+ um-Vyu+Vp=g+h,
V-u=0, u(0) =ug. (5.70)

The equations (5.70) are posed on the torus T = [0, 27]> with periodic boundary
conditions, and the unknowns are the fluid velocity field u = (uy, us, u3) : T — R3
and the pressure p : T3 — R. The term g + h represents an external volumetric force.
We assume that g is a fixed background forcing and that h is a control which takes values
in a finite dimensional control parameter space X. Specifically we consider examples
where X consists of trigonometric vector fields in order to make our computations
tractable. A precise possible formulation for /4 is given below. See (5.77) and (5.78).

Throughout what follows, we will assume that there is no mean flow on the initial
condition ug or on the external forcing terms g and h; that is,

/ uo(x)dx:/ g(x)dx :/ h(x)dx = 0.
T3 T3 T3

Consequently, this mean-free condition will be preserved by the solution of (5.70).
Regarding the local semigroup formulation of (5.70), we consider C* smooth
solutions as follows. We define the spaces H™ for m > 0 by

H’”:{ueHm(T3)3:v-uzo,/udxzo}. (5.71)
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We recycle previously used notation for the L? norm || - || and inner product (-, -),
as well as the notation used for H” norms || - ||z=. We let
X = {uec“(T3)3:v-u=0,fudx=0}: () H™ (5.72)
m>0

where C(T?) is the collection of smooth, periodic functions. In this example, the
ambient (Frechét) phase space is (X, doo) Where the metric du is given by!?

o
doo (V. ¥) = Y 27" (LA |V = V][ gm).

m=0
Let us next recall some results concerning the local (in time) existence and unique-
ness of smooth solutions of (5.70). For this we fix a ‘death state’® ¢ X .

Proposition 5.28 Fix any g € X and any finite dimensional space Xo C X.
(i) Foranyuy € X and any h € X, there exists a unique 0 < Ty, n < 00 and

u(-) =u(-,up, h) € C([0, Tyy.n), X) (5.73)
solving (5.70) such that if Tyy,n < 00, then

lim sup || Vu(t)|| o = oo. (5.74)

t—)TuO_h
(ii) Take (Tyg h)ugex hex, to be the collection of positive times defined in (i) and

h u(t,up,h)  whent < Ty, n,
dlug = ’
when t > Ty, n-
Then the mapping (t,ug,h) — ®hug 1 [0,00) x X' x Xog — X U{@} is a one-
parameter family of continuous local semigroups on (X, ds) parametrized by
Xo in the sense of Definition 3.9.

The proof of Proposition 5.28 is fairly standard (see [33,35]) and is based on a
priori estimates which we recall below in Appendix A.3.

The Control Parameter Space and Algebraic Conditions

With the basic mathematical setting for (5.70) in hand, we detail the assumptions on
the control parameter space X which will allow us to prove exact control results.
For this purpose, we begin by defining a divergence-free trigonometric basis as

follows. For each k € Z;o, pick Al((o), ﬁl((l) € R3 such that

~(0) & A A 1
% k=al" k=a".a" =0, 1”2 =1a")? = yo (5.75)
T

12 Note that this is equivalent to the usual Fréchet topology on C*° via Sobolev embedding.
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Fork € z;o and I, m € {0, 1}, we define

ZQE) cos(k-x) ifm=0,

NG -m —ik-x
e =2a;'Re(i"e =
ot = 2 ReC "= 1280 ik - x) it = 1.

We denote

Fx :=spanfex ;,, : [,m € {0, 1}}, (5.76)

forany k € Z;O. Notice that Fx = F_k forany k € Zio.

To specify the control space X for (5.70), we consider any subset Z C Zio and
define

Xo = span{ex;, : ke Z,m,l € {0,1}} = span{Fk : k € Z} 5.77)

so that, in particular, the control h has the form

h()=0-a= Y axim®)exim- (5.78)

keZ,
1,mef0,1}

Note that the control parameter « takes values in R*Z!.

Remark 5.29 To simplify our presentation, we restrict to the case when each wave
vector k is ‘fully-controlled’. Note that a very similar restriction on the control config-
uration was imposed above for both the 2D Navier—Stokes equations and Boussinesq
equations studied previously above; see (5.26) and (5.34), respectively.

Below we will show that following algebraic condition on Z, identified in [41], is
sufficient to establish controllability properties for (5.70).

Definition 5.30 Letj, k € Zio. We say that j + Kk is an admissible move from j, k if

Jj, k are linearly independent and |j| # [Kk]|. (5.79)

Here | - | denotes the standard Euclidean norm. Let Zy := Z and for n > 1 define Z,
inductively by

Z, ={le Z;O :1 =Kk + j, 1 an admissible move fromk, j € Z,_1} U Z,_1.

We say that Z is a determining set of modes if

Zoo = 20 =Z. (5.80)

n>0
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Remark 5.31 It is possible to give a complete algebraic characterization of con-
figurations Z C Z;O which are determining sets of modes. See Proposition 5.2
in [41] for a detailed discussion of this point. On the other hand, variations on
the conditions given in Definition 5.30 are possible to guarantee the controllabil-
ity of (5.70). In particular, we will show that controllability follows if, for example,
{(1,0,0),(0,1,0), (0,0, D} C 2.

Statement of the Main Result

With these preliminaries in hand, we now state the main result of this section.

Theorem 5.32 Take § = {(®, X¢)} to be the associated one-parameter family of
continuous local semigroups defined by (5.70) and let v : X — X be any continuous,
linear projection operator onto a finite-dimensional subspace w(X) C X. Suppose
that either of the following conditions is satisfied:

(i) Z is a determining set of modes according to Definition 5.30.
(ii) {(1,0,0),(0,1,0), (0,0, D} < Z.

Then D(F) is approximately controllable on X and exactly controllable on w(X) in
the sense of Definition 3.3. Here recall that D(§) is defined in (3.7).

Remark 5.33 A notable consequence of this result is that it implies blow-up can be
averted in equation (5.70) by allowing control over a few low modes. Moreover, this is
still true even in the presence of an arbitrary the fixed background forcing term g € X'.

The proof of Theorem 5.32 is based on three lemmata which we state next. The
first concerns the algebraic structure of the nonlinear terms in (5.70), while the second
and third results provide quantitative bounds on the usual scalings (2.9) and (2.14).

For the first Lemma it is convenient to introduce some notation for nonlinear portion
of (5.70). Given any f, f € X,

B(f,f) = P(f-Vf+f- Vf) (5.81)

where P is the Leray projection operator onto mean-free, divergence-free vector fields.
Equivalently we may write

B, f)=f-VE+f Vf+ Vg (5.82)
where ¢ : T> — R solves
—Ag=V-(f -VE+Tf-VF).
In particular this shows that B(f, f') € X wheneverf, fex. See, for example, [11,51]
for further details.
Note that even though B is a second-degree polynomial nonlinearity, a cancellation

condition similar to the situation described in Section 2.4.2 holds for B. This cancella-
tion allows us to ‘reach’ successively higher frequencies though the scaling analysis.
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Lemma 5.34 The following algebraic relationships between B defined by (5.81) and
Fx given as (5.76) hold.

(i) Foreveryk e Zio we have that
B(e,é) =0 forall e, éc Fx. (5.83)
(ii) Foreveryj,k € Z;O,
span {B(e, €) : e € Fj, & € Fix} C span{Fj_x U Fjix}. (5.84)

Ii j + K is an admissible move from j,k € Z;O, then equality holds in (5.84);
that is,

span {B(e, €) : e € Fj, € € Fx} = span{Fj_x U Fjik}. (5.85)
(iii) Finally,
Fa.1.1) C span {B(B(e, €),€) : e, & ¢ € F1.00) U Fo.1.00U Fo.0.1)}. (5.86)

Turning to quantitative bounds on scalings we have:

Lemma5.35 Let t > 0 and fix compact sets K1 € X and K> C Xo. Then there
exists Ag = Ao(K1, Ko,t) > O sufficiently large such that for all A > Loy we have
that <I>?/h)\u0 € X foralluy € Ky, h € K». In other words, defining Ty, n as in
Proposition 5.28, we have for A > Ag

A inf Tug,on > t. (5.87)
up€K,hek
Moreover
. Ah h _
lim sup doo(CDZ/Auo, prug) = 0. (5.88)

A—00 ugeKi,hek;

Here recall that p is the ray semigroup defined in (2.6). Consequently, (p, Xo) €
Saty (§).

Lemma5.36 Fix t > 0 and let K, Ko C X be compact sets. Then there exists
Ao = Ao(K1, K2, t) > 0 large enough such that for all A > X, CD?/Az plk/zi‘uo € X for
allug € Ky and h € K». Moreover,

. a2 2 —B(h,h
lim sup doo(pl/i h CD?/Az plk/i‘uo, Or ( )uo) =0 (5.89)

A—>00 upeKi,heky

where B is defined in (5.81).
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Proof of the Main Results

Before proving the three lemmata above, we first see why combining them implies
Theorem 5.32.

Proof of Theorem 5.32 As with the main results in the previous examples, the proof
proceeds by establishing the conditions for controllability given in Corollary 3.15.
Under the assumption (i) define subspaces

X, = span( U Fk> (5.90)

keZ,

forevery n > 0, where Z, is as in Definition 5.30. Note that (5.80) implies U,>1 X}, is
a dense subset of X'. As such, by proving inductively that (p, X,,) € Sat, (§) for every
n > 0, the desired controllability result immediately follows from Corollary 3.15.

According to Lemma 5.35, we have that (p, Xg) € Sat,($). Next, utilizing
Lemma 5.34 and the cancellation (5.83) we infer that

2 = 2 ~ ~
lim sup doo(,of/))"» (e+ad) (D?/)ﬁ p{‘/iﬂae)uo, ,ofaB(e’e)uo) =0 (5.91)

A—>00 ypek, |o|<R

for any R > 0, any compact set K C X and any pair e € Fgx,é € Fj,
k,j e Z;O. Thus if (p, X,,—1) € Sat,(§) for some n > 1, we immediately infer
that (o, span{B(e, €)}) € Sat,(§) for any e € F,€ € Fjsuch thatk,j € Z,_;.
Invoking Remark 3.16 with (5.85) and the assumed structure of the sets Z,_1 and Z,,
we infer that (p, X,,) € Sat, (). This completes the proof under assumption (i).

To show the result under assumption (ii), define

Zo=1{(1,0,0),(0,1,0), (0,0, 1), (1, 1, 1)}

and then iteratively define sets Z, precisely as in Definition 5.30 starting from this
particular choice of Zy. Using this definition of the index sets Z,,, we define X,, C X
as in (5.90). As in the previous case, we will show inductively that (p, X,,) € Sat, (J)
for every n > 0. After that, we will show explicitly that Z,, = Z;O, cf. (5.80), thus
completing the proof under assumption (ii).

The implication that (o, X,—1) € Sat, (§) implies (p, X,) € Sat,(F) forn > 1is
demonstrated exactly as in the case of assumption (i). We now show that (p, Xo) €
Sat, (). Define

Z1:={(1,0,0),(0.1,0), (0,0, )} and X_j:=span | J F.
kEZ_|

Invoking Lemma 5.35, we see that (p, X_1) € Sat,(§). Next, the estimate (5.91)

implies that (p, span{B(e, €)}) € Sat,(§) for any pair e,€ € F(1,0,0) U F0,1,0) U
F(0,0,1)- Making note of the containment (5.84) and second use of (5.91) we infer
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(p, span{B(B(e, €), é)}) € Sat, (§) for any e, €, é € F1,0,00U Fo,1,00Y F(0,0,1)- With
(5.86) and Remark 3.16, we now conclude (p, Xo) € Sat, (§).

With the induction for case (ii) now in hand, we have left to show that Z,, = Z;O.
There are many ways to do this explicitly. For example, note that (1, 1, 1) paired with
any of (1,0, 0), (0, 1, 0), (0, 0, 1) satisfies (5.79). Also, we note that if k € Z,, then
—k € Z. Consequently, we obtain

{(1,0,0), (0,1,0),(0,0,1),(1,1,0), (0, 1, 1), (1,0, )} € Z.

Starting from these directions, it is not hard to show that by using a sequence of
admissible moves (in the sense of Definition 5.30) the set Z, includes all three axes;
namely,

{(n,0,0) :n € Zro}U{(0,n,0):n € Z,ro}U{(0,0,n) :n € Lo} C Zu.

Now take an arbitary element (11, na, n3) € Z;O. If ny # ny, we obtain (n1, ny, 0) €
Z~o as the admissible move from (21, 0, 0), (0, ny, 0) € Z4.Otherwiseifn; = ny, we
can obtain successively (n1£1, ny, 0) € Z5 andthen (n1, n2, 0) € Z viaadmissible
moves. Similar if n% #* n% + n% we find that (n1, ny, n3) € Z4 via the admissible
move from (n1, na, 0), (0,0, n3) € Z. Otherwise if n% = n% + n% we simply make
the admissible move to (n1, ny, n3 £ 1) € Z from (n1, n2,0), (0,0,n3£1) € Z.
We then obtain (11, n3, n3) € Z4 from (ny,no, n3 £ 1), 70,0, 1) € Z4. With this
we have thus completed the proof of case (ii) and hence of Theorem 5.32. O

Proof of Lemma 5.34 Consider basis elements ek ;, n,, €j,1,,m, for j, k € Z;O with
li,m; € {0, 1}. First observe that we can extend the definition of these elements
naturally to include any m; € Z, and these new elements are clearly constant multiples
of the original basis elements. We will use this fact below. Now for any /; € {0, 1} and
any m; € Z, a tedious but routine computation yields

ek.1;,m * Vejl,myt€lm - Veki,m

~(l N A (1 NG
_ 2<(al((1) A" + @ _k)a£1)>

Re(im] +m2+lefi(k+j)~X)

A(l s\all Al all
+ 2(_1)m2 <(31(<1) .])aj( 2) _ (aj( 2) . k)al((‘)>

Re(iml+m2+1e_i(k_j)'x).
Recalling that the Leray projection operator P acts as

. -k .
P[Re(ve %) = Re(v — V—k)e“k'x
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forany k € 73 and v € C3, we therefore obtain

B(ek1y,m» €j,1,m;)
_ —Zri{l:ilzRe(iml+’n2+1€_i(k+j)) + 2(_1)n125i(1,jlz

Re(im1+m2+le—i(k—j)~X)) (592)
where
NG
a.” -k
PR VRN NG J .
I = (a, - a.” — —(k +
Kk.j ( K i) § |k+]|2( i)
all) -
l I a.'’-j
+(a(2) k)( Al |kk+ |2( +J))
all2)
il a0 o [ 400 _ 2
SkJ = ( ) aj Ik — |2( )]

(@) A0 ay’j
G0 (84 n)

In particular this shows that if j = k then B(ex ;, m,, €j,1,,m,) = 0. This implies the
first item, (5.83).

We also use (5.92) to address part (ii) of the result. Since by definition of the Leray
projection

o kD=0, s (k—j) =0,

I1, lz a)

l . . . .
l1l2 can be written as linear combinations of elements ak 4

we infer that ry i and s

and a akfj, respectlvely. As such we have that
span {B(e, &) : e € Fj, e € Fx} C span{Fj_x U Fjx}. (5.93)
Next notice that
B(@icym €,1,0) + Blek i m—1, €, 1) = =41y *Re(" e ) (5.94)
and similarly

Lol —i(keij
B(ek,1ym: €,15,0) = B(ek 1 m—1,€j1,,1) = —4s,;"Re(i" e ik=)y,
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Thus, taking linear combinations we find that the sets

; _ A A -
Ficyj 1:{ (Ak-])( |k+ |2( +,]))+(A k)( |k+ |2( +,])) Re(imefl(kf])»c)

:me{O,l},Ak,AjeR3WithAk-k=0=Aj~j}

- i Aj - Ag - j 1 ) x
Fij = { (Ak - ) (A ko |2(k D) — Aj k(A + ﬁ(k —J)) |Re(i" e~ ®7)
€ {0, 1}, Ak, Aj € R? withAk-k=0=Aj-j} (5.95)

are both subsets of span{B(e,€) : e € Fj,€é € Fx}. Thus to obtain the opposite
inclusion in (5.93) and complete the proof it is sufficient to show ﬁk+j = Fiyj and
Fi —j = Fx—j. For this purpose we simply exhibit suitable choices of elements Ag, A;j €
R3,  orthogonal to, respectively, k, j so that the R>-valued pre-factors of the elements
in FkJrJ and Fk_J span the planes orthogonal to k + j and k — j respectively. Take Ay
and A;j non-zero vectors which are orthogonal to k, k x j and j, k x j respectively.
Thus

. - Aj-k . - Ax-j
Ak -DA] — 21—k +))+ A k) (Ax — : k+'}
[( kDA = s kD) + Al (Al = s k)
is a pre-factor of an element in Fkﬂ-. Also, taking A € R3 with Ag - k = 0 abitrary
and A; =k x j, we see that

(Ak - Dk xj) (5.96)

is a pre-factor of an element in I:"kﬂ-. Clearly, the previous two vectors are orthog-
onal. To show that these vectors can be chosen non-zero, we invoke the algebraic
assumptions (5.79) on Kk, j. For the second vector, we may obviously choose Ak so
that Ag - j # 0. Regarding the first vector, doting with j we obtain

. . 2k-j+2|j|2>
A KA1 - 2420
(Aj - k)(Ak J)< TPEuE
Since this expression can only be zero when one of A; - k, A - j is zero or [j| = [K|.

According to (5.79) neither occur and we infer the second vector must be non-zero. A
very similar argiment also shows that ﬁk_j = Fx—j so that now (5.85) follows.

For the final item, (5.86), arguing precisely as in (5.94), (5.95) and choosing the
first vector in (5.96) we find that

span {(0, 0, DRe(i" e~ 1107y € {0, 1}} C span {B(e, &) : e € F(1,0,0), & € F0,1,0)}-
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Next, another laborious but routine computation similar to (5.94) reveals that the span
of elements of the form

B(€(0.0.1).0.m» (0,0, DRe(e "1 1-0%)) 1 B(ew o.1).1.m—1, (0,0, DRe(ie 1:1.0-y)

form, [ € {0, 1} contains F(1,1,1y. This implies (5.86) now completing the proof. O

We conclude this section by establishing the two scaling estimates, Lemmas 5.35
and 5.36. For these estimates we will make use of the ODE comparison stated in
Proposition B.1.

Proof of Lemma 5.35 Fix any K|, K, € X compact. Foranyuy € K| andh € K, we
set

w, (1) = dbw)\uo — ,o?uo and p(7) = pfuo. 5.97)

which are well defined elements for 7 in the interval [0, ATy, 3n) Where Ty, an is the
time of existence of ®*Muyg; see Proposition 5.28. Arguing as in (2.10) we find

1 1
atwk‘i‘X(10+WA)’V(K)+WA)+VPA=Xg V.w,=0=V.p (598)

Here note that the pressure term p; : T3 — R is a smooth function which maintains
the divergence-free condition (5.98).

Fixing any m > 3, we estimate w;_in the H™ norm as follows. Using that w; is
divergence-free we have

d 2
Wl = 37~ (0w =07 (o + W) - V(o +wi) +9))

|Bl<m

2
= Z X(Bﬁwx, (p+w) - Valw, — P ((p +w) - Vwy)

|Bl<m

+ (Wi, g—(o+wyr)-Vp)gm

1
1= X(Tl + 1). (5.99)

Using standard Sobolev embeddings and interpolation (see, for example, [33]), we
estimate the first term as follows:

IT1] < C(lp+wWallam IVWillLee + [IV(p + W)l Loo [[Wall gm) [[Wa || gm
< CUIWll3m + Wl 3m ol Em) < CUWl3m + 1o 13m)- (5.100)
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To estimate 7>, using that H™ is an algebra for m > 2, we obtain

IT2| <llwllam(gllam + 1G04+ W) - Vollam)

<lIwlianighan + Upllam + Iwillmm )l ol gm+)

3/2
<CUIWI3m + Iglim + 1013men)-

Fixing T > 0O arbitrary and combining these estimates with (5.99), we conclude

d C 3/2
Enwn%{m < ;(uwni,m gl + ol mer + T3 1R13,00) (5.101)

forallt € [0, T AATy,,1n). Here we note carefully that the constant C does not depend
on) > 0,uyp,heX.

With (5.101) and the criteria (5.74) we now establish the desired result (5.87) and
(5.88) by invoking the comparison lemma (Lemma B.2). According to (5.74) and
Agmond’s inequality

limsup ||wy(s)||gm = o0,
S—>)»Tu0,xh

for every m > 3. Thus, noting that w; (0) = 0, Remark B.3 implies for all ¢ € [0, T']
and

3/2
%= CT (gl + ol s + T3 1R13,0)
we have ATy, ;n > T as well as the comparison
3/2
W (O3 < (lglim + (00l + T2 RIE,00)

3/2
(Ru(t. g3 + 1o l13er + T3 13,00 — D).

Here note that R is defined in (B.2). Now, for m > 3 take

. 3/2 3 3 3
Mm = sup (”g”[-[/m + ||u0||Hm+l + T ”h”Hm+1)~
upeK,hek,

Since K1, K are compact subsets of X', M,, is a finite for any m. Thus for A > CT M,
we obtain that infy ek, hek, ATuy.2an = T and

sup ([ @4 w0 — pPuollFm < My (Ry (M) — 1) (5.102)
upeK.hek,

for every T € [0, T']. Noting that lim sup, _, ., M,, (R, (¢, M,,) — 1) = 0 completes
the proof. O
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Proof of Lemma 5.36 Fixing ug, h € X we once again introduce the abbreviated nota-
tions

~B(h.h) B(h.h)
. uo, "o

_32 2 _
w. (1) = 5 " DY ot luo, Wa(D) =w(T) = p p(1) = p;

defined on a interval of existence [0, AZTUOHL},); cf. Proposition 5.28. Arguing as in
(2.15) and referring back to (5.82) we have

1
diwi = —— (W + Ah) - V(w, +2h) +g) + h- Vh+ Vp,

1 1
= —ﬁ((wx +p0)- V(Wi +p)+g) — X((Wx +p)-Vh
+h-V(w, +p)) + Vp;. (5.103)

with V- wy, = 0 = V - p. Here, as in the previous lemma, p;, : T> — R enforces the
divergence-free condition.

We now make estimates for the H” norm of w,_for m > 3. Taking derivatives of
(5.103), then L? inner products and summing over multi-indies || < m we find that

1
=5 D (Wit p) - VoPwi = 0P [(wi + p) - VWi + p) + gl. 87 w;)
|Bl=<m
1
+5 Z (h-VdPw, —8P[h-V(wy + p) + (Wi + p) - Vh], Pw))

[Bl<m

1 1
=="T+ -T>. 5.104
A2 1+ A 2 ( )

Note that we have used the fact that w,_is divergence free to obtain the commutator
terms. With commutator estimates similar to (5.100) above we find that for any m > 3

|T1]

A

2
= Cwn + pllam Wi llgm + W + pllam | ol gmer W)l 5 =+ 1181 Em WAl 72m)

3/2
< CUWl3m + 10130 + lighim + 1.

Likewise we have

2
2| < Ch] gt Wil gm + [l gt (|01 g+t W2l 2

3/2 3/2
< C(IWallm + (ol + DIRIY ).

Note that as above in the previous lemma the constant C depends only on m universal
quantities and is independent of A > 0.

Combining these bound with (5.104) yields

d c 32 32 32
oIl < Wl + 1o + gl + (ol 2ms + DI, +1).
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which is valid on [0, AZTuO+,\h) where we again emphasize that the constant C does
not depend on A > 0 or up, h € X. Repeating the arguments from the analogous
bound (5.101) in the proof of the previous Lemma, yields the desired result. O

Acknowledgements This work was initiated when the three authors were research members at the Math-
ematical Science Research Institute (MSRI) under the “New Challenges in PDE: Deterministic Dynamics
and Randomness in High Infinite Dimensional Systems” program held in the Fall 2015. We are also grateful
for the hospitality and travel support provided by the mathematics departments at lowa State University and
Tulane University which hosted a number of research visits that facilitated the completion of this work. We
would like to warmly thank Juraj Féldes, Susan Friedlander and Vlad Vicol for numerous helpful discussions
and encouraging feedback on this work. Our efforts were supported in part through grants DMS-1313272
(NEGH), DMS-1612898 (DPH) and DMS-1613337 (JCM) from the National Science Foundation.

Appendix A: Supplemental PDE Bounds
A.1. A Priori Estimates

Here we present a collection of a priori estimates which assure that the solution maps
in each equation have the necessary cocycle and semigroup structures. We begin with
the a priori estimates for the reaction—diffusion equations (5.1).

A.1.1. Reaction-Diffusion

Recall that for V € Q, we define solutions u = u(t, ug, V) with u(0) = ug of (5.1)
by u(t, ug, V) = v(t,ug,o - V) + o - V where v satisfies the shifted equation (5.6).
In order to make the estimates more legible, for k > 0, T > 0 we introduce the sup
norms

[Vikr = sup [[V(-, Dllwkooo.277)-
t€l0,T]

Proposition 5.1 follows immediately once we establish:
Proposition A.1 We have the following estimates.

(a) Letug € L2, T >0,V € Qand v(-) = v(-,ug, o - V). Then there exists a
constant C1 > Odepending onlyonT , uol|, |o-V |2, 1 suchthat foranyt € [0, T]

t t
||v(r>||2+2fc/0 ||axv(s)||2ds+v/0 lv(s)I*" ds < Cy. (A.1)

(b) Letuy,up € L2, T > 0, Vi,Vh € Qandsetw(t) =v(t,uy,o-Vy)—v(t,ux, o-
Vo), wo = uy — vy and V.= Vi — V,. Then there exists a constant C, > 0
depending only on T, ||u;||, |0 - Vi|2,7 such that for any t € [0, T]

t
llw()]|* +2K/0 8, w(s)[2ds < Ca(llwoll* + |35z (o - V)3 + 1o - VIr).
(A.2)
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Proof of Proposition A.1 To obtain the first estimate (A.1), observe that there exists a
constant K = K (|o - V|r) > 0 such that

1d
EEIIU(I)II2 < =0 v + ko[ (o - VI + (v, f0+0 - V)

v
< —«||3xv (% + 27k () |[3xx (0 - V)T + K — Ellv(t)I|2”~ (A.3)
Hence we have that
——||v(t <K t K
2dtllv()ll < Ki[lv@®lI” + K2

for some constants K; > 0and K = K»(|o - V|2,7) > 0. Gronwall’s inequality then
implies the existence of a constant K3 depending only on 7', ||ug||, |o - V|2,1 such that
forallt € [0, T']

lv)|* < K3. (A4)

Integrating (A.3) with respect to time and using the estimate (A.4) we arrive at the
bound (A.1).
Turning our attention to the second estimate (A.2), note that for # € [0, T']

1d _
EEIIw(t)II2 < —lldcw @) + 27k lwO||d2x (0 - V)7

+x(w, flor+o-V)) = f(va+0-V2)). (A.5)

To estimate the last term above, recall the explicit form form of the Mean Value
Theorem applied to the polynomial f: For a, b € R we have

1
fb) = fl@y=®-a)f'E =@ —a)/o f'la+Bb—a)dp (A.6)

for some & = &(a, b) lying between a, b. Hence since f’ < K for some constant
K > 0 only depending on f we find that

(w, f1 + V1) = 2+ V2)) = (w, f'Ew) + (w, fE)o - V)

_ 2
< K|w|*+ o - Vlo,T/0 lwl| f'(E)ldx. (AT)
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Integrating (A.5) with respect to time using the bound (A.7) and applying Young’s
inequality we obtain the estimate

l t
5||w(r)||2+K/0 18w (s)|1* ds

t
< flwoll* + KI/ lw(s)|*ds + Kalo - VI3 7
0
+ o - Vio.rlwll e qo.2e1x10. Il f ENl Lr 0.271x0.11)

where p = 2n/(2n —2), for some constants K1, K» > 0. Applying the estimate (A.1)
to the last term above using the explicit form for f'(§) = f/(§(vi+o0- Vi, va+0-V3)),
we determine the existence of a constant K3 depending only on T, ||u;||, |o - Vil2.T
such that

l t
5||w(r)||2+K/0 8, w(s)||*> ds < [|wol|*
t
+ KI/ lw(s)II* ds + Kalo - VI3 + K3lo - Vo7 (A.8)
0

From this, using Gronwall’s inquality we arrive at the claimed estimate (A.2) when
combined with (A.8). O

A.2. Boussinesq Equations

We now provide the needed a priori estimates for the Boussinesq equations (5.32)—
(5.33). We begin by establishing the L? estimates below in Proposition A.2 for the
shifted equation (5.35)—(5.36) so that the ¢ defined in the statement of Proposition 5.17
is a continuous adapted cocycle. For k > 0 and T > 0, we again use compact notation
for sup norms, which in this context will read

|V|k,T = Sup {||V(,t)||Wkoo(T2)}
tel0,T]

Proposition A.2 We have the following:
(1) FixT > 0,6(0),E0) € L?> and V € Q. Then for all t € [0, T] we have that

~ ~ ! ~ ~
161 + 1§17 +/0 VIVE®)|® +«lIVO(s)l ds < C (A.9)

where C > 0 is a constant depending only on ||§(O)||, ||5(0)||, T,k,g,|0 -
Va7, [1h°.

(2) Let (£1, 61, V1) and (&, 6>, V») solve (5.35)—~(5.36) with & (0), 6;(0) € L? and
Vi € Q. Thenifé :51 —§2,9_ :51 —52, T>0V=V —V, we have for
te€[0,T]
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IEOI* + 16117 < CIEO* + 16> + |0 - VIi,T) (A.10)

for some constant C > O where C depends only on & O], 116; )|, T, &, g, lo-
Vila.r. I1h°].

Proof We begin by establishing the bound (A.9). Let T > 0 and ¢ € [0, T]. First
observe that

1d - ~ ~ -
EEIIEII2 +V[IVE|? < gliEll0:01 + 4n>¢gliElllo - Viir

2 K 2 K 2
< Cil&ll +§||8x9” +§|G'V|1,T

for some constant C; > 0 depending only on g, x. Also note that

1d - ~ o ~ ~
EEIIG’II2 +.IVOI* < Callbllilllo - Vi +xllflllo - Vg2 + 1611°]

< CU01* + 1EIP1o - VI 7 + 1R + 1o - Viar)

for some constant C3 = C3(x) > 0. Summing the previous two inequalities we obtain
ld -5 52 Voorn2 L Kioai2 52 212
EE(IISII + 101 )+§|IV§II +§||V9|I <cqel-+1E1mH+b (A1l

for some constants C = C(x, g, |0 -V|1,7) > 0and D = D(k, 1291, |o - Vlia.7) > 0.
Applying Gronwall’s inequality we obtain

IEOI>+10@0))* < C

forallt € [0, T]where C > 0Oisaconstantdepending only on IEO), 16O, T, «, g,
1RO, |o -V |2,7. Plugging this back into the righthand side of (A.11) gives the desired
bound (A.9).

Moving onto the second estimate (A.10), first note that since (5 LU - fo y=0

1d - _ o _ _ o
EEHéII2 +VIIVEI® < glENN0xO1 + glIENNDx (o - V)| — (€, (i — iia) - V),

ld - _ _ . ~ s
§E||9||2+KIIV9||2§(Q,MZ-V(Og—i-o-Vg)—ul V@ +0- VD)

+xllllo - Vil
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To combine the estimates as we did above, we now bound the terms remaining in inner
product form as follows:

— (€, (@1 — @iz) - V&) = (i1 — i12) - VE, &)
< C1|IVEllliy — iioll 4 11Eoll 4

< Co|| VEIIIEINNIVE211E) /2

< gnv@?n2 + CIEIPIVEIIIEN,

for some constant C’ > 0 depending on v, and in a similar fashion

(0,02 V(02 +0 - Vo) =ity - V(01 +0 - V1)

= —((iy —i11) - VO, 0 +0 - Vo) + (0,11 - V(o - V))

< IV + CIEPIV@ + o - VOl +0 - Val
+C"IONENIV (@ - V)lr

for some constant C” > 0 depending only on « and some constant C”” > 0. Thus
by summing the first two inequalities, applying the inequalities above and weighting
appropriately using Young’s inequality we obtain

1d - _ v _ K _ _ _ - _
EZ(HHP + 1617 + Euvsnz + Euven2 < CFUEN* + 16171 + DIE II*lo - VIT 7
for some constants C, D > 0 depending only on «, v, g and

F=1+IVa? +1&I1°P +IV@ +o0 - VI + 1162 + 0 - Va2

Gronwall’s inequality then implies that for ¢ € [0, T']

IEON> + 101> < <||§(0)||2 +116(0)]?

t t
+ Dlo - Vll,T/O ||§1(S)||2dS) exp </0 Cf(S)dS>-

Applying the first inequality (A.9) to estimate fot ||§ 1(s)]1? ds and fé f(s)ds,weobtain
the desired inequality. O

We next turn our attention to the a priori estimates needed to validate Assump-
tion 4.13. Here it will be convenient to express the system (5.32)—(5.33) using the
abstract evolution equation notation for the solution U = (£(¢), 6(1)):

au
E~|—AU+GU+B(U,U)=L9h0+L9(O'-8;V), (A.12)
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which we recall was introduced above equation (5.44). Following Remark 4.16, our
principal interest will be in establishing estimates for the linear equation

p+Ap+Gp+ BWU, p)+ B(p,U)=0, p(s) = po (A.13)

where pg € H and U solves (A.12). To do so, we will make use of the following
inequalities for u, v, w € H

u, B, w))| < CIVul?[ull V(K 02K * o 2[Vw]  (A.14)
< CilIVullllull + C2lv|I* | Vw]|* (A.15)

where C, C1, C» > 0 are constants. The first inequality (A.14) is L*-L*-L? bound
followed by an application of the Gagliardo-Nirenberg interpolation inequality. The
second (A.15) is simply Young’s inequality applied to the righthand side of (A.14).

Proposition A.3 We have the following:

(1) Fix T > 0, po € H and let p = (p1, p2) solve (A.13) with p(0) = pg and
corresponding U with U(0) = Uy € H. Then there exists a constant C > 0
depending only on |Uoll, T, k,v, 8,0 - Vo1, ||h0|| such that for all 0 < s <
t<T

t
||p<r>||2+/ VI[Vo1 ()12 + «lIVo2(v)||* dv < C. (A.16)

(2) Fix T > 0 and let Uy, Uy solve (A.12) with corresponding initial data
U1(0), U2(0) € H and corresponding Vi, Vo € Q. Here we assume that Uy and
U, solve (A.12) with the same h° € L2. Let py, p» solve (A.13) with correspond-
ing data p1(s), p2(s) € H and corresponding Uy, Uy. Set pg = p1(s) — pa(s),
and U = Uy — Us. Then there exists a constant C > 0 depending only on
T, Ui O, x,v, g lo - Vilczr, IA°| such that forall0 <s <t <T

15N < CUpoll* + 1T O + |o - Ve 7). (A17)
Proof We begin by establishing (1). Observe that
ld 2 2 2
5 2 1POI + VIV O + 6V o201 + (p, Gp) + (p, Blp, U)) =0
and

K
(o, Go)| = gl{p1, dxp2)| < 5"V"2"2 +Clpl?
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for some constant C > 0 depending only on g, k. Applying the inequality (A.15), we
also find that

{0, B(p, U))| < CilIVplllpll + C2llpIPIVU|1?

VAK
< T”V"“z +CU+ VU llpl?

for some constant C > 0. Putting these estimates together produces the bound

1d 2,V 2 K 2 2 2
=—lo®OI"+ = lIVoiOI*+ < IVoDII* = CA+ VU ell”.  (A13)
2dt 4 4
Since we also have that
ld 2 2 2
——|lp(t <CQ vU ,
2dtllp()ll <CA+IVUINIel

applying Gronwall’s inequality and then Proposition A.2 implies

t
lpI* < llpoll* exp </ 201+ IIVU(v)Ilzdv> =C

N

forall 0 < s <t < T where C > 0 is a constant depending only on
WOoll, T,k,v, 8,10 - Va1, |A°]|. Using the information on the righthand side of
equation (A.18), integrating with respect to time, and then applying Proposition A.2
again we arrive at the estimate in (1).

To see (2), note that

1d _ _ _ -
0=5 P12 +vIVAI? + &IVl + (5, GP)
+(p, B(p1, U1) — B(p2, U2)) + (p, B(U1, p1) — B(U2, p2)).
We can again bound (p, Gp) as follows:

_ _ K _ _
1, Gp)| < 5||sz||2 +Clpl?

for some constant C > 0 depending only on g, k. Using bilinearity and (A.15), also
observe that

1B, B(p1, Ur) — B(pa, U2))| < 1(p, B(p, UN)| + {p, B(pa, U))]|
< CiIVAIIAN + C2IBIPIVULI? + Callp2 P IV T |2

and

(5, B(Uy, p1) — B(Ua, p2))| = {p, B(U, p))|
< C4lIVAIIAI+ CsIT N2V pal?
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for some constants C; > 0. Combining these estimates and applying Young’s inequal-
ity to the terms C1||Vo|lllo]l and C4||V |||l o]l we find that

ld _ , Vv . __ 5 K __ 5

——|lp(t -V -V

5 NP1+ ZIVAIP + IVl

< CA+IVULIIHNIAIR + C3lp2 P IVT 1> + CsIU 1V pa . (A.19)
By Proposition A.2, we note that

1017 < CUTO? + 1o - VI3 ) (A.20)

where C > 0 is a constant depending only on 7', ||U; (0) ||, «, g, |o - Vi|c2 75 A9 By
the first part of this proposition, we also have that

o2 < €’ (A21)

where C’ > 0 is a constant depending only on |[U2(0)|, T, k, v, k,g,|o -
Valez2 7, |l h |I. Applying the inequalities (A.20)—(A.21) to the righthand side of (A.19)
and then applying Gronwall’s inequality produces the estimate

t _ t
6% < <||/30||2+C/ ||VU(v)||2) exp (Cf 1+||vul<v>||2dv)

t t
+CUTO + o - Vll,r)/ 1o, (v>||2dv) exp <C/ 1+ VU, <v>||2dv>
(A22)

where C > 0 is a constant depending only on T, [|U; (0)||, «, v, g, lo - Vi|c2 . 1A°].
Applying Proposition A.2 again, we arrive at the claimed bound in (2). O

All parts of Assumption 4.13 follow from the above proposition except (v) which
concerns the non-degeneracy of the L?-adjoint of the Jacobi flow. This, however, can
be established by following a nearly identical process to the one used in the case of
the two-dimensional Navier—Stokes equations as in Proposition 2.2 of [34]. There,
non-degeneracy follows by uniqueness of the associated backwards PDE satisfied by
the adjoint.

Finally, we establish the higher-order Sobolev a priori estimates for the Boussinesq
equations (5.32)—(5.33) when forced by a smoother V; that is, we now consider the
equations

E+u-VE—VAE = gd0, £(0) =& (A.23)
30 +u-VO—kAO = f, 0(0) =6 (A.24)

where f is a generic constant element in the relevant Sobolev space. Note that the
only difference between equations (5.32)—(5.33) and the equations above is that the
forcing term h° 4+ o - 3,V has replaced by f.
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Proposition A.4 We have the following:

(i) Suppose that &y, 0y, f € L? and let (&, 0) be the corresponding solution of
(A.23)-(A.24). Then

sl[%p](ns(r)n + 101 < Cigoll + 6ol + £l £1) (A.25)
rel(0,r
and
t
fo (IVEN? + IVEIPdr < CI&l* + 16011* + 211 £11%) (A.26)

where the constant C depends only k, v, g and universal quantities.
(ii) Suppose that &y, 6y, f € H™ for any m > 1. Then

t
sup (I 1 gm + 10 | m) +[ &N gmsr + 1101 gm+1)dr
rel0,t] 0
2 2 2 2
<Cexp (C(IIEOII + 116oll” + = 2|l +t)) (T+ Iollzm + 1Ol am + £l f | m)-
(A.27)

(iii) Fix any m > 0 and suppose Uy = (6o, 6o), Uy = (€0, 60) € H™(T%? and
f. f € H™(T?). Let (£,0), (£, 0) be the solutions of (A.23)—~(A.24) the corre-
sponding to this data. Then

stlop](nf;(r) —E@) |l + 110() — ()| gm)
rel0,r

= C (160 = ollem + 160 — follm + 117 = Fllam) . (A28)

where C is a constant depending only on k, v, g, ||Up||gm, 100l g, | fllgm,
| fll gm, t and universal quantities.

Proof We begin with the basic L? estimates for (A.23)—(A.24). Multiplying the first
equation by &, the second equation by 6 and integrating over the domain yields

1d 2 2 'S 2,V 2
—— VE|? = (g0,0, £) < S—110]1> + = | V&%,
2dtlléll + v VE[I" = (g0« E)_zvll I +2|| &l
and
Ld 1012+« IVOI? = (£, 8) < I £
- — K = (f, < .
2dt

The fact that the velocity u is divergence free justifies dropping the non-linear con-
tributions in the above. Suitably weighting and then adding these two inequalities we
find
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d 2 82 2 2 82 2 82
— IEN"+ — 110117 ) + vIVEN"+ =IVel~ < = fIIlIP]l. (A.29)
dt 2vk v VK

The first item, (A.25), follows immediately. Moreover

t
/0<||vsn2+||ve||2>dr <C <||so||2+||eo||2+ sup ||9(r)ll't||fll>

rel0,z]

= (H6ol1> + 0] + Coll + ol + e £ e )

implying (A.26).

Given any multi-index « and taking the associated spatial derivatives of (5.32)—
(5.33) we obtain
0;0%6 + 0% (u - V&) —vAI“E = g0, 3%0, 0,00+ 3% (u-VO) — kA0 =93“f.

Multiplying, integrating and summing over || < m yields

1d

5 27 V6 + VI = D (20:0%0 — 8% - VE), 9%8) (A.30)
lee|<m

1d 2 2 o o o

5 7 10z + kN6 = D (0% = 9%(u - V6), 0%0) (A31)
lee| <m

Taking advantage of the fact that u is divergence free and applying standard interpo-
lation/commutator estimates produces for any m > 1

D 0% (- VE), 0°))|

loe|<m

= > [0%(u- V&) —u- Vs, 9°)|

loe] <m
<C > U0%ullLe IVEN + [Vull 4 10%E | o) 1]
loe] <m
3/2 1/2 v
< CIVENE I mIE N ey < gnsn%,,m + CIVEI1E 1 Fm. (A32)

Similarly

D 10w - Vo), 996)|

lee|<m
= Y 8- VO) —u- V0, 00)]
lee| <m
<C Z (10%ull L= VO]l + [IVull L4 [[0%0] L) 01| gy
ler]<m
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1/2

1/2 3/2 1/2
< C(E ||s||Hm+1 IVOIIO1am + 1612 IVEN 21013 1011,

Hm+1)
6||.§||Hm+1+ N0 s + CUE N + (IVOI2 + IVE) 101 0). (A33)

Finally

Z (80500, 3%&)| < \/_—gIIGIIHm + - IISIIHmH (A.34)

loe|<m

Combining (A.30), (A.31) with the estimates (A.32)—(A.34) we now obtain

d V3¢ V3g?
o (1 + ||§||Hm + 2—||9||Hm) + V||§||Hm+1 + —||9||Hm+1

< Cllnllpm 10 e + C A+ IVOI* + IVEIYH NG + ENFm).  (A35)

Thus,takingXI=(1+||§|I%1m+ 1612 )2 Y = gl fg 161170/

we have,

2UK

d
7 X T CY =Claflgm + €0+ IVO1* + IVEIH)X.

With this bound and (A.26) we now infer infer (A.27). ~
We turn next to establish the continuous dependence estimates Let £ = & — &,

{=60—0,¢=f— f. Then (&, ¢) satisfy

0§ +u-VE+ (K x*E) -VE—vAE = goy(,
WC+ii Ve + (K *E) VO — kAL = . (A.36)

Start with the L2 based estimates

d
Ellffll2 +VIIVEI® =(gd:¢ — (K &) - V&, )

82 2,V 2
STIICII +ZIIV§II +IIVENIK * &l L [IE
2

g v

ann +4||vs||2+cnvsn||V§||”2||s||3/2

82 v 2 4/3 2

Tncn + 5 IVER +ClI Vel Bl (A.37)
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where we used Agmond’s inequality for the penultimate estimate. Similarly

d
Enznz +klIVEI? = (p — (K %€) - V8, ¢)
< Clllicl + Ivelg 2 1ven2iel
<Cligllicl + gnvsnz + CIVaIPlcI>. (A.38)

Combining the estimates (A.37), (A.38) we obtain the bound
d
d—t<||as||2 + 111 < Cligl* + A+ IVOI1* + IVEIDlIC I (A39)

We turn to make the continuous dependence estimates in higher Sobolev norms.
Applying 9% for any multi-index o and summing over all || < m for any m > 1, we
find that

d -
T IE I + V€N = D (0% (g0xs — it - VE — (K % &) - V&), 0%) := 11,

la|<m
(A.40)
d -
Enzn%,m el = Y (39 — i - VT — (K %£) - V), 0°¢) = L.
lo|<m
(A41)
Regarding I; we have
V ~
11 = CE Nz + S 1€ W + CHENTm Y 19220
ler] <m
+ ClUENam (1VEl s D 10K % &)l + €l gmsr |K 5 & L)
la|<m
V ~
< Cl¢IFm + Ensnimﬂ + CUE N gmr1 + IE N gmrDNE N 7gm (A.42)

For I

L] < 1@l 1 am + CUEEm > 8% L

loe|<m

+ CIE N (VO s Y 199K % E)llpa + 101 gmsr 11K &l o0)

o] <m

< gl iclam + CIEN gmer 1E Wzm + CUO pgmsr Gz |E N prm . (A43)
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Combining these estimates we conclude that

d
E(Msn%,m +11E 13m)
< plam ¢ lmm + CL+ &N gmst + 1E N gmsr + 101 ) UE N Fm + 1E 15m).

]

A.3. Euler Equations

Proposition 5.28 follows immediately once we establish the following result.

Proposition A.5 Fix any g € X and any finite-dimensional subspace Xo C X.

(i) For any ug € X and any h € Xy, there exists a uniqgue 0 < Ty, n < oo and
u(-) =u(-, ug, h) € C([0, Tyy,n); X) solving (5.70) such that if Tyy,n < 00 then

lim sup || Vu(t)|| Lo = oo.
tTTuo,h

(ii) For anyug € X and any h € Xy, let

n —
Tuo,h -

inf{t > 0 : |[u(®)|yg3 = n} and Ty, h = sup rl':o -

neN ’
Then tyyn > 0 and tyyn < Tuy,n- Moreover forallm > 3,t < rl’l‘o_h andn € N
we have the estimate

t
a1 3m < llagll gme€ @D 4 / CeC D)o 4 Rl ym ds
0

for some constant C depending only on m.

(iii) Let u;(0),u(0) € X, h;,hy € Xg and ui(t,u1(0),hy) and w(t) =
u(z,uz(0),hy). Let n, T > 0. Then forall t < t&'l Oy A ‘Clrllz(o),hz there exists
a constant C depending only on m and a constant D > 0 depending only on
m, T, [wa(0)[| g, [0y (O) | w1, 1€ + hallgom, |18 + Wy ll gt such that

t
ai (1) — ()1 3m < a1 (0) — wa(0)[|3me? + Cp / P9 |y — hy||3m ds.
0

Proof of Proposition A.5 For the proof of (i), see [33,35]. To see (ii), first note that for
h € X and ug € &, the fact that 74y n > 0 and tyy,n < Ty,,n follow from (i) and
the Gagliardo-Nirenberg inequality. To obtain the claimed estimate, let f = g+ h and
observe that for all multi-indices 8 with |8| < m, m > 3, we have the estimate

%%naﬁumnz = (3Pu(r), 3°f) — (3%u(r), 3’ B(u(r), u(r)))
< la@®)|lgm |l gm — (9Pu(r), 3% B(u(r), u(t)) — B(u(r), 3u(r)))
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where in the inequality we used the fact that (0Pu(r), Bu(r), 9Pu(r))) = 0 asu(z) is
divergence-free. To estimate the contribution from the nonlinear term, we first observe
that by interpolation and Agmon’s inequality

18 B(u(t), u(r)) — Bu(r), 3Pu() || < cpllu()| .o la(®)| gm
< e, @) [l g3 ) || gm

as m > 3, where ¢, ¢}, are constants depending only on m. Putting these estimates
together, we find that

/

5 7 197uOI" = @ 1]l + c O g3 1w g

Summing over all multi-indices 8 with |8] < m and using Young’s inequality produces
1 d 2 2 2
—EIIU(I)IIHm =< Ifllgm + (L + lu@)ll g2) a1 zm

m

for some constant C,, depending only on m. Supposing that t < Tl};l(),h’ Gronwall’s
inequality then implies the claimed estimate in (ii).

To prove (ii), let w(¢) = uy(¢) —ua(¢). Then for m > 3 and any multi-index 8 with
|B] < m we have the estimate

1d
- aﬁ 2 = aﬂ t 8’3 h; — h
5 7 1Pw@I? = @7 w(@), 8 (hy — ho))
+(@Pw(1), P Bua (1), wa (1)) — 87 B(uy (1), u; (1))
< W)l gm|lhy = hy |l gm 4+ (9P w(r),
3P By (1), wa()) — 8# B(uy (1), u; (1))
= [|W(@) | g [y — ho | g
— (8Pw(), 0P B(w(1), u1 (1)) + 9P B(ua (1), w(1))
— B(ua(1), 3P w(t)))
where again we used the fact that u; is divergence-free as (8/3 w(1), B(ua(t), 3P w(t)))
= 0. Note by interpolation
(3P w(r), 3% B(w(r), ui (1)) + 8P B(ua(r), w(r)) — B(ua(r), 3P w(1)))|
< em (WO 3 a1 (O st + IWE 1 3m [02 () || ).
for some constant ¢, depending only on m. Thus combining this inequality with

the previous, summing over all multi-indices B with || < m and applying Young’s
inequality produces the following bound

1d
Eanw(t)n%,m < Ihy = holFm + WO I (@ [l gmsr + a2 gm + 1)
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for some constant C > 0 depending only on m. Now forany T > 0 if r < ‘L'l’lll ©).hy
732(0) n AT by the estimate in (ii) and Gronwall’s inequality there exists a constant
D > Odependingonly onm, T', [[uz(0) | g, [y (O)[| g1, g+l g, [g+hy || g+
such that

t
WO 3 < IWO) [ Fme® +C /0 P9 by — hy|| 3 ds.
This finishes the proof of the estimate in (iii). |

Appendix B: Comparison Theorem

For the estimates in Section 5, we make repeated use of the following comparison
principal.

Proposition B.1 Let f : R — R be locally Lipschitz continuous. Fix0 < T < oo and
suppose that ¢ : [0, T) — [0, 00) is continuous and satisfies

t
¢ (1) =¢(S)+/ f(@u))du

forall 0 < s <t < T. On the other hand suppose that for some 0 < § < oo,
Y1 [0, S) — [0, 00) is continuous with ¥ (0) = ¢ (0),

lim sup ¥ () = oo

t—S§

and

t
V() < ¥s) + / FO @) du

forall0 <s <t <TAS.Then S >T and y(t) < ¢(t) forall0 <t <T.

In particular, we will leverage this proposition for the estimates above in the form
of the following corollary.

CorollaryB.2 Let T > 0. Suppose that for every . > 0, there exists a T). € (0, 00]
and a C! -function x,_: [0, T)) — [0, 00) satisfying

d
Eh OGP k) on[0.T ATy and  limsupx,(t) = oo,  (B.1)
dt t—T;
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where co, ko > 0 and p > 1 are constants independent of > > 0. For y, A > 0 and
t > 0, define

1

- 2c0(p — Dy~ T
T = s i Ruey) ( -
(B.2)
Then for all 0 < t < T;¥(x,(0) 4+ ko) A T we have
X.(1) < x2(0)R;. (2, x5.(0) + ko) + ko (R (2, x2.(0) + k0) — 1) (B.3)

Remark B.3 Observe that if x;(0) = xo > 0 is independent of A > 0, then the
comparison (B.3) holds for all # € [0, T] and all A > 2¢oT (p — 1)(x0 + k0)? .

Let us first prove Corollary B.2 using Proposition B.1 and then establish the Propo-
sition thereafter.

Proof of Corollary B.2 Under the given conditions on x; notice that

d(x), + ko) -

2¢o
- P
7 = (x) + ko)

Now consider y solving

dy 2¢o p
o T y(0) = yo

When yg > 0, this equation has the unique solution
1

2¢co(p — 1) yp1>_”"

y(, yo0) = Yo (1 —t Iy 0

defined on the interval [0, o 2 ). Thus, by comparing y (-, x; (0)+xq) to x,+xo,
co(p

—y !
we obtain the desired result by invoking Proposition B.1. O

Proof of Proposition B.1 We first show that y remains below ¢ on their common inter-
val of definition. Let R < T' A S and define

Tp := tei[ng){iﬁ(t) > @)} AR. (B.4)
Let us show that Ty = R. If not, then there exist times Ty < T} < T» < R such that
V(1) = ¢(T1) and ¥ (1) > ¢ (1) forevery I < 1 < T».
Take

K={p@) : t e[, LUy () : 1t €[T1, T2]}.
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By the continuity of ¢ and ¥, K is compact and since f is locally Lipshitz, there
exists a constant Cx > 0 such that

|f(u) — f(v)| < Cklu —v| forall u,ve K.

Now, for 71 <t < T»,

t t
0<d(r) =) =< /T J@W@) = flo(r))dr < CK/T V(r) —¢(r)du.
1 1

Invoking Gronwall’s inequality, we have that ¥ (¢) = ¢(¢t) = 0 forr € [T, T»], a
contridiction.

To show that T > § we again argue by contridiction and suppose on the contrary
that § < T'. Take

S, = inf t .
dnf () > n)

Then, by what we have already established, ¢ (S;) > ¥ (S,) = n. This in turn would
imply that sup, (o g} ¢ (f) = 00, violating the continuity of ¢ and yielding the desired
contridiction. The proof is complete. O
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