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ABSTRACT
We present a systematic shearing-box investigation of magnetorotational instability (MRI)-
driven turbulence in a weakly collisional plasma by including the effects of an anisotropic
pressure stress, i.e. anisotropic (Braginskii) viscosity. We constrain the pressure anisotropy
(�p) to lie within the stability bounds that would be otherwise imposed by kinetic
microinstabilities. We explore a broad region of parameter space by considering different
Reynolds numbers and magnetic-field configurations, including net vertical flux, net toroidal-
vertical flux, and zero net flux. Remarkably, we find that the level of turbulence and angular-
momentum transport are not greatly affected by large anisotropic viscosities: the Maxwell and
Reynolds stresses do not differ much from the MHD result. Angular-momentum transport in
Braginskii MHD still depends strongly on isotropic dissipation, e.g. the isotropic magnetic
Prandtl number, even when the anisotropic viscosity is orders of magnitude larger than the
isotropic diffusivities. Braginskii viscosity nevertheless changes the flow structure, rearranging
the turbulence to largely counter the parallel rate of strain from the background shear. We also
show that the volume-averaged pressure anisotropy and anisotropic viscous transport decrease
with increasing isotropic Reynolds number (Re); e.g. in simulations with net vertical field,
the ratio of anisotropic to Maxwell stress (αA/αM) decreases from ∼0.5 to ∼0.1 as we move
from Re ∼ 103 to Re ∼ 104, while 〈4π�p/B2〉 → 0. Anisotropic transport may thus become
negligible at high Re. Anisotropic viscosity nevertheless becomes the dominant source of
heating at large Re, accounting for �50 per cent of the plasma heating. We conclude by briefly
discussing the implications of our results for radiatively inefficient accretion flows on to black
holes.
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1 I N T RO D U C T I O N

Magnetohydrodynamic (MHD) turbulence driven by the magne-
torotational instability (MRI; Balbus & Hawley 1991) is widely con-
sidered to be one of the key engines powering angular-momentum
transport in accretion discs. As a result, the growth of the MRI
and the subsequent MHD turbulence it produces have been studied
extensively over the years (see e.g. Hawley, Gammie & Balbus
1995; Balbus & Hawley 1998; Hawley, Balbus & Stone 2001).

One uncertainty in the application of the MRI is that the MHD
fluid approximation is not well justified in a number of astrophys-
ical systems. This includes radiatively inefficient accretion flows
(RIAFs), in which the Coulomb mean free path is larger than the
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typical system size (Mahadevan & Quataert 1997). Departures from
the ideal-MHD framework are therefore required and at first glance
it may seem necessary to model the system as a fully collisionless
plasma in six-dimensional phase space. The goal of this paper is to
better understand the non-linear evolution of the MRI under such
conditions.

While it has recently become possible to run kinetic simu-
lations of the MRI using particle-in-cell codes (Hoshino 2015;
Riquelme, Quataert & Verscharen 2015; Kunz, Stone & Quataert
2016; Inchingolo et al. 2018), such simulations remain far too
expensive (at least in three dimensions) to explore parameter space.
However, a variety of recent theory (Schekochihin et al. 2008;
Kunz, Schekochihin & Stone 2014; Riquelme et al. 2015; Sironi &
Narayan 2015) suggests that ion-Larmor scale kinetic instabilities
such as the mirror and firehose instabilities, which grow readily in
low collisionality, weakly magnetized plasmas, act to increase the
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effective collision rate via wave-particle interactions. This result is
of great utility, as it at least partially motivates modelling the system
as a weakly collisional plasma. The advantage of this framework
is that non-ideal effects are simply introduced as additional terms
in the ideal fluid equations, which is much simpler than evolving a
six-dimensional distribution function of the plasma particles.

The linear growth of the MRI differs from its ideal-MHD coun-
terpart in both a collisionless (Quataert, Dorland & Hammett 2002)
and a weakly collisional (Balbus 2004) plasma. However, despite
some work with simplified fluid models and kinetic simulations,
we lack detailed understanding of how kinetic physics affects the
saturated MRI turbulence. Some insight has been gained by the
work of Squire, Quataert & Kunz (2017a), who focused on the
non-linear growth phase of the MRI in high-β low-collisionality
plasmas. They argued that due to the onset of the aforementioned
microinstabilities, the non-linear growth phase of the kinetic MRI
(KMRI) always returns to MHD-like evolution. Similarly, the
saturation into turbulence appeared to be unaffected by non-ideal
physics. These results provided insight into the physics behind
earlier work on collisionless accretion discs by Sharma et al. (2006),
who found that the properties of KMRI-induced turbulence were not
too different from MHD. This resemblance has also been found in
global general-relativistic simulations (Foucart et al. 2016; Foucart
et al. 2017), which employed an extended-MHD framework with
anisotropic viscosity and conductivity.

In this paper, we carry out a systematic shearing-box study
of MRI-induced turbulence in a low-collisionality plasma with
explicit resistivity and viscosity. To model non-ideal effects, we
use Braginskii’s closure for magnetized, weakly collisional plasmas
(Braginskii 1965), commonly referred to as ‘Braginskii MHD’. As
explained below, the anisotropic viscosity in Braginskii’s closure is
equivalent to including an anisotropic pressure stress in the MHD
equations. The closure is the simplest, well-motivated model to
capture key aspects of kinetic physics on large scales.

There are a number of questions that motivate such a parameter
exploration. Perhaps most importantly, it will clarify the relevance
of non-ideal physics for angular-momentum transport and plasma
heating, including the additional contribution to the total stress
tensor that comes directly from the pressure anisotropy.

While the Maxwell and Reynolds stresses have been studied
extensively in MHD, significantly less is known about the non-
ideal, anisotropic viscous stress. Most simulations to date found that
its contribution to angular-momentum transport is smaller than, but
comparable to, the Maxwell stress. However, given that the pressure
anisotropy is driven by gradients in the velocity field, we may expect
isotropic dissipation to influence the anisotropic transport. It is
therefore instructive to look at the relationship between anisotropic
stress and the dimensionless isotropic Reynolds numbers.

Exploring a range of isotropic viscosities and resistivities is
vital for a second reason. One of the most striking results of
previous work on MRI-generated turbulence is the dependence
on isotropic dissipation. Lesur & Longaretti (2007) and Fromang
et al. (2007) showed that the MRI saturation amplitude is very
sensitive to the choice of viscosity and resistivity, with a particularly
strong dependence on their ratio, the magnetic Prandtl number.
It is plausible to speculate that an additional large anisotropic
viscosity may alter the effective Prandtl number. This claim is
further motivated by the kinetic MRI simulations of Kunz et al.
(2016), who showed that a high-β collisionless plasma behaved in
some ways like a high-magnetic-Prandtl-number fluid. It is therefore
unclear to what extent we should expect to recover the usual Prandtl-
number dependence in Braginskii MHD.

Another important factor to consider is how the very building
blocks of MHD turbulence are modified in low-collisionality plas-
mas and whether this may change the large-scale turbulent state in
low-collisionality accretion discs. Squire, Quataert & Schekochihin
(2016) and Squire et al. (2017b) showed that collisionless and
weakly collisional plasmas cannot support linearly polarized shear-
Alfvén waves above a critical amplitude due to a cancellation
between the Lorentz force and the anisotropic-pressure force. It
is unclear if and how this might affect the large-scale turbulent
properties in accretion discs.

The layout of this paper is as follows. In Section 2, we discuss the
method and set-up for our study of turbulence in Braginskii MHD.
The main focus is on boxes threaded by a net vertical magnetic field,
with the corresponding results described in Section 3. We consider
other initial field configurations in Section 4. Finally, Section 5
summarizes our key results and discusses current limitations and
future directions.

2 M E T H O D

2.1 Equations

We use the pseudo-spectral code SNOOPY (Lesur & Longaretti
2007) to evolve the incompressible MHD equations with anisotropic
pressure in a shearing box:

∇ · U = 0, (1)

DU
Dt

= −2� × U + 2�Sx x̂ − ∇
(

p⊥ + B2

8π

)

+∇·
[
b̂b̂

(
B2

4π
+ �p

)]
+ ν∇2U, (2)

DB
Dt

= B·∇U + η∇2B, (3)

where b̂ = B/B is the unit vector along the magnetic field B and the
density has been set to unity. Because our model is incompressible,
we choose p⊥ at each time-step so as to satisfy ∇ · U = 0. We
include an explicit isotropic viscosity ν and resistivity η. The
velocity fieldU consists of a background shearU0 and perturbations
u: U = U0 + u. We adopt an equilibrium Keplerian background
profile U0 = −Sx ŷ, with S = 3

2 �, and we use the code to compute
the evolution of u and B. We use the 2/3 de-aliasing rule to prevent
spurious modes originating from the nonlinear terms in (1)–(3).

At any time-step, the pressure anisotropy �p entering the mo-
mentum equation (2) is calculated via

�p = p⊥ − p‖ = 3μB b̂b̂ : ∇U, (4)

where p⊥ and p� are the thermal pressures in the directions
perpendicular and parallel to the local magnetic field (Braginskii
1965). Equation (4) can be obtained from the kinetic evolution
equations of the plasma (Chew, Goldberger & Low 1956; Kulsrud
1983; Schekochihin et al. 2010) in the weakly collisional regime
νc/|∇u| 
 1, where νc is the collision rate of the plasma. In
equation (4), we also assume that the effect of heat fluxes on the
pressure anisotropy can be neglected, an assumption that is formally
valid when νc/|∇u| 
 β1/2 (Mikhailovskii & Tsypin 1971), where
β = 8πp/B2 is the ratio of thermal to magnetic pressure (see Squire
et al. 2017a for more discussion of the different regimes).

Upon substitution into equation (2), �p can be shown to behave
as a diffusion operator acting along b̂. Its role is therefore to damp
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the component of the velocity along the local magnetic field that
has gradients along the local magnetic field. Due to its diffusive
contribution, throughout this work we will refer to the coefficient
μB as anisotropic (or Braginskii) viscosity.

2.2 Modelling kinetic microinstabilities

The background shear and MRI-induced magnetic-field growth
naturally lead to a finite pressure anisotropy. However, once �p
becomes comparable to the magnetic pressure, plasma instabilities
are excited that are not fully captured by the set of equations (1)–(3).
The two main microinstabilities that need to be accounted for are
the mirror instability (Barnes 1966; Hasegawa 1969), excited if

�p � B2

8π
(5)

and the firehose instability (Rosenbluth 1956; Chandrasekhar,
Kaufman & Watson 1958; Parker 1958), which is excited when

�p � −B2

4π
. (6)

Wave–particle interactions induced by these instabilities increase
the effective collisionality of the system, which in turn acts to
isotropize the pressure tensor. As a result, the mirror/firehose
instability, excited by a growing/declining pressure anisotropy, acts
to halt further growth/decline. Kinetic simulations have shown that
these instabilities tend to pin the anisotropy near the instability
thresholds (Kunz et al. 2016).

We include this kinetic result by imposing hard-wall limits on
�p. If �p is driven outside of the stability limits given by −B2/4π
< �p < B2/8π, then it is pinned to either �p = −B2/4π or �p =
B2/8π, depending on which boundary is crossed. Otherwise, �p is
determined by equation (4).

By using instantaneous bounds on �p, we essentially assume
that the only effect of microinstabilities is to halt the growth of
�p, with no direct change to other fluid quantities. For the firehose
instability, this limiting behaviour arises due to particle scattering,
while for the mirror instability, there is a long phase where small-
scale magnetic fluctuations grow secularly in time. Although the
limiter model can, in principle, capture the effect of either scattering
or secular growth if we consider u and B in equations (1)–(3)
to be large-scale averages, there may be other poorly understood
effects that are not captured. In addition, the assumption that �p
limiters act instantaneously is incorrect for motions with time-scales
approaching the ion gyro time. Because we find that the cascade
continues almost unaffected to scales well below the Braginskii
viscous scale, this could mean that the smallest-scale motions will
be more strongly affected by �p forces than we assume here. It is
unclear if and how these additional effects could be incorporated
in a fluid model, and a kinetic description is likely necessary
to fully capture all the underlying physics (see Schekochihin
et al. 2008; Kunz et al. 2014; Squire et al. 2017a for more
discussion).

We have also run two simulations without limiters at the firehose
instability threshold. These no-firehose-limiter simulations are par-
tially justified by the fact that the parallel firehose instability is
already present in the Braginskii equations (by contrast, the mirror
instability is not). However, the kinetic simulations in Kunz et al.
(2014) showed that the oblique firehose instability is probably more
important for maintaining �p near the instability threshold. For
this reason, most of our simulations have both firehose and mirror
limiters included.

2.3 Set-up

Throughout this work, we set � = 1. Since we want to explore any
pressure-anisotropy-induced differences, for every Braginskii MHD
simulation, we also carry out a corresponding MHD simulation in
which �p = 0. Given the sensitivity of MRI turbulence to isotropic
dissipation, we test a number isotropic viscosities ν and resistivities
η. We define the associated dimensionless Reynolds number,

Re = SL2
z

ν
; (7)

the magnetic Reynolds number,

ReM = SL2
z

η
; (8)

and their ratio, the magnetic Prandtl number,

Pm = ν

η
. (9)

We also define the analogous Braginskii Reynolds number,

ReB = SL2
z

μB
. (10)

To quantify the turbulent angular-momentum transport, we define
the dimensionless transport coefficient

α = αRe + αM + αA, (11)

where

αRe = 〈vxvy〉 /
(
S2L2

z

)
, (12)

αM = −
〈BxBy

4π

〉 / (
S2L2

z

)
, (13)

αA = −
〈�p

B2
BxBy

〉 / (
S2L2

z

)
(14)

are the contributions from the volume-averaged (〈...〉) Reynolds
stress, Maxwell stress and anisotropic viscous stress, respectively,
normalized by S2L2

z . This is the incompressible version of the
compressible transport parameter, which is usually normalized
using the initial pressure (see e.g. Hawley et al. 1995; Sharma et al.
2006). While αM and αRe are present in both ordinary MHD and
Braginskii MHD, αA requires a pressure anisotropy and is therefore
only non-zero in Braginskii MHD.

To capture the most important parasitic modes that break up the
MRI ‘channel’ modes into turbulence, most of our simulations are
in horizontally elongated boxes of size Lx = 4, Ly = 4, and Lz =
1 (Bodo et al. 2008; Pessah & Goodman 2009; Longaretti & Lesur
2010). However, we did also explore other aspect ratios. We find that
Braginskii MHD results are particularly sensitive to box size, with
dramatically different results in horizontally narrow boxes with net
vertical flux (see Section A1 – Appendix A).

In order to satisfy the Courant condition at large μB, we are
limited to rather modest resolutions by current standards, despite
sub-cycling over the �p term in equation (2) in simulations with
large μB (where we used 5 or 8 as the maximum number of sub-
cycles per main MHD time-step). Most of our full simulations in
4 × 4 × 1 boxes have resolution 256 × 128 × 64. To test very large
μB, we also ran a number of lower resolution simulations. In each
case, the initial magnetic field and background shear are perturbed
with small-amplitude white noise.
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The isotropic viscosities and resistivities are chosen such that the
dissipative scales are properly resolved. This places an upper bound
on the Re and ReM that we can explore in a full Braginskii simu-
lation, given the attainable resolutions. To explore the relationship
between anisotropic stress and the isotropic diffusivities, ideally we
would like to cover a broad range of viscosities and resistivities,
and explore the limit Re → ∞, ReM → ∞ at fixed Pm. However,
the required resolutions are computationally unfeasible with the
numerical methods that we use here.

To test larger Reynolds numbers in higher resolution, we perform
a number of ‘Composite’ MHD–Braginskii MHD simulations. In
these simulations, we first evolve the equations of MHD for a time
t� = 100. The turbulent MHD flow fields are then restarted with
anisotropic viscosity included and evolved further for several �−1.
These composite simulations are motivated by our observation that
anisotropic viscosity transforms MHD flow fields into Braginskii-
like flow fields on time-scales shorter than the orbital time. We have
tested that, by restarting MHD turbulence with anisotropic viscosity,
we are able to recover the typical �p and αA of the corresponding
full Braginskii simulation in a fraction of �−1. We show an example
of this behaviour in Appendix B.

This method offers insight into the statistics of Braginskii MHD
turbulence at large Reynolds numbers, even when the Braginskii
equations are evolved for a rather short amount of time. As a
result, the composite simulations enable us to explore isotropic
Reynolds numbers (Re ∼ 104) and resolutions (768 × 384 × 192
and 384 × 192 × 96) that are otherwise unattainable for a full
Braginskii simulation with large μB.

We also perform a number of simulations in which the viscosity
and resistivity are replaced by hyperdiffusion operators, ν4∇4U
and η4∇4B. We define the associated dimensionless quantities
Re4 = SL4

z/ν4 and ReM,4 = SL4
z/η4. Using hyperdiffusion serves

as an alternative method to probe larger effective Reynolds numbers,
by potentially increasing the size of the inertial range without in-
creasing the resolution. The k4 dependence of hyperdiffusion allows
us to dissipate energy above the grid scale even for very small ν4,
without constraining the turbulence at intermediate wavenumbers,
thus mimicking turbulence at somewhat larger Re than would be
possible with standard diffusion operators (note, however, that the
Re4 defined above is not the effective Reynolds number of our
hyperdiffusion simulations).

While our main focus is on simulation domains with a net
vertical field (Section 3), we also discuss other initial magnetic-
field configurations: net vertical and toroidal field (Section 4.1), as
well as zero net flux (Section 4.2).

3 NET V ERTICAL FIELD

The main part of our study concerns boxes initially threaded by a
purely vertical magnetic field,

〈B〉 = B0 ẑ. (15)

We choose B0 = √
8π/1348 �Lz, so that the fastest-growing MRI

mode in MHD has wavelength λMRI = 0.25Lz.
Table 1 gives a summary of our different choices of Re, ReM,

and ReB. The main result of this section concerns anisotropic stress
and its dependence on the values of Re and ReM. However, we
postpone our discussion of this result until Section 3.2 and first
look at the overall Braginskii MHD evolution, and its similarities
and differences relative to MHD.

3.1 Comparison to MHD

In each of our simulations, the qualitative evolution follows the same
pattern. The initial small-amplitude perturbations are amplified
by the MRI. The amplification continues until the MRI modes
reach large amplitudes and become unstable to parasitic instabilities
(Goodman & Xu 1994). These are secondary instabilities that grow
on the large field and flow gradients in the MRI mode, causing it
to break up into turbulence. Squire et al. (2017a) argued that the
dominant parasitic modes are not too different in Braginskii MHD.
This is broadly consistent with our numerical results summarized
below, although we do often see somewhat larger α in the Braginskii
case during a short initial transient phase. In addition, we find a very
significant box-size dependence in Braginskii MHD (see Section A1
– Appendix A).

Fig. 1 shows the evolution of the simulation with Re = 1500 and
Pm = 2. The dotted lines track the MHD evolution, while the solid
lines correspond to Braginskii MHD with ReB = 0.75. The two
models show similar behaviour and the resultant turbulent energy
densities and angular-momentum transport are close to identical.
The main qualitative differences appear at early times, during the
MRI growth phase. Braginskii viscosity delays the growth along the
initial field direction (〈B2

z 〉 and 〈v2
z 〉) through stronger damping of

the initial white-noise perturbations. In addition, in the Braginskii
MHD simulation the MRI is able to grow to larger amplitudes,
before it eventually saturates.

For all of the cases we simulated, the transport is not greatly
affected by the anisotropic viscosity. This includes our simulations
with both limiters included, as well as our full simulation without
a firehose limiter. The main difference is the presence of the
anisotropic viscous stress. The Maxwell and Reynolds stresses are
very similar in both MHD and Braginskii MHD.

The remarkable similarities between the MHD and weakly
collisional solutions draw us to an interesting conclusion: even
with large anisotropic viscosity, the turbulent amplitudes are still
set primarily by the isotropic Reynolds and magnetic Reynolds
numbers. This is illustrated in Fig. 2, where we show the time-
averaged transport coefficients of the MHD (black) and Braginskii
MHD (red) runs at different Pm. For the Braginskii runs, we also
plot the transport due to just the Reynolds and Maxwell stresses as
empty red diamonds. The error bars shown in Fig. 2 are estimates
for the standard deviations of the average transport coefficients,
which use a binning time of t = 10�−1 (due to the short Braginskii
time-steps, our simulations were not evolved long enough for an
error analysis similar to Longaretti & Lesur 2010). Nevertheless,
they illustrate that the αRe+αM of the Braginskii calculation agrees
well with MHD. In Braginskii MHD, we recover the usual Prandtl
number dependence found in MHD, thus showing that turbulence
is still strongly influenced by the isotropic diffusivities, even when
ReB  Re.

The result that angular-momentum transport is not significantly
affected by large anisotropic viscosities is partly due to the
anisotropic-pressure limiters. These limit �p to being comparable
to the local field strength, which implies that the anisotropic
stress cannot become significantly larger than the Maxwell stress.
However, we see here that the box-averaged anisotropic stress
can be substantially smaller than the Maxwell stress (e.g. αA =
0.25αM in the full Braginskii run with Re = 4500 and Pm = 1;
we also find that αA  αM in high-Re composite simulations, as
discussed in Section 3.2), which is less obvious, and surprising in
light of previous results (e.g. Sharma et al. 2006; Kunz et al. 2016,
where αA is comparable to αM). Perhaps even more surprising is
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Table 1. Summary of simulations with net vertical field. Full simulations: each simulation set at a fixed Re, ReM consists of an MHD simulation (top) and
Braginskii MHD simulation(s) (bottom). The transport coefficients α and the mean pressure anisotropies were averaged over t� = 100–200. ‘Braginskii∗∗∗’
indicates a Braginskii MHD simulation without firehose limiter included. Composite MHD–Braginskii MHD simulations: MHD fields are restarted at t� =
100 using Braginskii MHD. For simulations at resolution 384 × 192 × 96, averages were taken over t� = 101–110. For the simulations at higher resolution,
averages are over t� = 101–102. ‘Composite∗∗∗’ indicates a simulation where MHD flow fields were restarted in Braginskii MHD without firehose limiter.

Sim. type Resolution Re ReM Pm ReB αRe αM αA α 4π〈�p〉/〈B2〉 〈4π�p/B2〉 αA/αM

Full MHD (256,128,64) 6000 3000 0.5 – 0.0065 0.031 – 0.037 – – –

Full Braginskii (256,128,64) 6000 3000 0.5 0.75 0.0084 0.031 0.0086 0.048 0.21 0.15 0.28

Full MHD (256,128,64) 750 750 1 – 0.0051 0.020 – 0.025 – – –

Full Braginskii (256,128,64) 750 750 1 0.75 0.0065 0.019 0.0090 0.035 0.41 0.30 0.47

Full MHD (256,128,64) 4500 4500 1 – 0.0062 0.036 – 0.043 – – –

Full Braginskii (256,128,64) 4500 4500 1 0.75 0.0097 0.044 0.011 0.065 0.19 0.12 0.25

Full MHD (256,128,64) 1500 3000 2 – 0.0078 0.046 – 0.054 – – –

Full Braginskii (256,128,64) 1500 3000 2 0.75 0.012 0.049 0.016 0.077 0.28 0.19 0.35

Full Braginskii∗∗∗ (256,128,64) 1500 3000 2 0.75 0.011 0.045 0.016 0.072 − 0.021 − 22.3 0.36

Full MHD (256,128,64) 750 6000 8 – 0.015 0.10 – 0.12 – – –

Full Braginskii (256,128,64) 750 6000 8 0.75 0.022 0.11 0.031 0.17 0.21 0.13 0.27

Full MHD (192,96,48) 1500 750 0.5 – 0.0047 0.015 – 0.019 – – –

Full Braginskii (192,96,48) 1500 750 0.5 0.3 0.0049 0.014 0.0062 0.025 0.39 0.29 0.46

Full MHD (192,96,48) 1500 3000 2 – 0.0082 0.049 – 0.057 – – –

Full Braginskii (192, 96, 48) 1500 3000 2 300 0.0084 0.045 0.0006 0.054 0.012 0.032 0.013

Full Braginskii (192, 96, 48) 1500 3000 2 75 0.0090 0.050 0.0020 0.061 0.037 0.069 0.044

Full Braginskii (192, 96, 48) 1500 3000 2 15 0.0093 0.047 0.0065 0.063 0.12 0.14 0.15

Full Braginskii (192, 96, 48) 1500 3000 2 3 0.011 0.047 0.013 0.071 0.23 0.18 0.29

Full Braginskii (192, 96, 48) 1500 3000 2 0.3 0.0097 0.040 0.013 0.063 0.26 0.17 0.33

Full MHD (128,64,32) 1500 3000 2 – 0.0069 0.036 – 0.043 – – –

Full Braginskii (128,64,32) 1500 3000 2 0.075 0.011 0.047 0.013 0.072 0.21 0.13 0.29

Composite (384,192,96) 750 750 1 0.75 0.0043 0.011 0.0055 0.021 0.42 0.31 0.49

Composite (384, 192, 96) 3000 3000 1 0.75 0.0071 0.026 0.0090 0.042 0.28 0.19 0.35

Composite (384,192,96) 10500 10500 1 0.75 0.011 0.057 0.011 0.078 0.12 0.060 0.19

Composite∗∗∗ (384,192,96) 10500 10500 1 0.75 0.013 0.073 0.0079 0.094 − 0.28 − 17.7 0.11

Composite (576,288,144) 10500 10500 1 0.75 0.014 0.068 0.013 0.095 0.13 0.070 0.19

Composite (768, 384, 192) 21000 21000 1 0.75 0.010 0.081 0.0088 0.10 0.076 0.026 0.11

Composite (768,384,192) 10500 42000 4 0.75 0.020 0.12 0.017 0.15 0.076 0.016 0.14

that we find little dependence of the angular-momentum transport
on anisotropic viscosity even though the effective (�p-limited)
Braginskii viscosities considered here are much larger than the
isotropic diffusivities. This is in contrast to the strong dependence
of angular-momentum transport in a shearing box on isotropic
diffusivities (Fromang et al. 2007; Lesur & Longaretti 2007). In
addition, we show in Section 3.2 that angular-momentum transport
is similar to MHD despite the fact that the flow structure in
Braginskii MHD is quite different from MHD (e.g. Fig. 9).

3.2 Anisotropic transport in Braginskii MHD

In this section, we explore aspects of angular-momentum transport
that are specific to Braginskii MHD. Having demonstrated that
the Maxwell and Reynolds stresses tend to track their values in
the complementary MHD simulations, our main focus is on the
evolution of the anisotropic stress and pressure anisotropy.

In Fig. 3(a), we show the evolution of the Maxwell, Reynolds,
and anisotropic viscous stresses for the simulation with Re = 1500,
Pm = 2, and ReB = 0.75. The overall transport is dominated by the
Maxwell stress, followed by the anisotropic and Reynolds stresses.
This is similar to the results of the kinetic MRI simulations in Kunz
et al. (2016) and the global extended-MHD simulation in Foucart
et al. (2017). In all of our simulations, we find that the Maxwell
stress dominates.

Fig. 3(b) shows the evolution of the box-averaged pressure
anisotropy. In the initial growth phase of the MRI, �p grows

steadily until all cells are pinned at the mirror boundary. In the
turbulent phase, it then shows small oscillations around a roughly
constant value. The background colouring shows the underlying
4π�p/B2 distribution of cells over time. The inset shows this
distribution across the simulation domain at a selected time (t� =
150). Most cells are pinned at the microinstability limits, the
majority being on the mirror side, giving an overall positive pressure
anisotropy.

Fig. 3(c) shows the evolution of heating due to isotropic and
anisotropic diffusion, normalized by the total dissipation,

D = Dη + Dν + DμB , (16)

where Dη is the resistive heating,

Dη = − η

4π

∫
d3x B·∇2B, (17)

Dν is the isotropic viscous heating,

Dν = −ν

∫
d3x u·∇2u, (18)

and DμB is the anisotropic viscous heating,

DμB =
∫

d3x �p b̂b̂ : ∇U . (19)

The pressure anisotropy �p in equation (19) is computed with
mirror and firehose limiters included. In this simulation with Re =
1500, Pm = 2, and ReB = 0.75, resistive heating dominates,
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4018 P. Kempski et al.

Figure 1. Evolution of energy densities and the transport coefficient α in
simulations with Re = 1500 and Pm = 2 with net vertical flux. In the
saturated phase the Braginskii model with ReB = 0.75 (solid lines) closely
matches MHD evolution (dotted lines).

Figure 2. Temporal average of α for different Pm in MHD (black) and
Braginskii MHD with ReB = 0.75 (red). The filled diamonds represent the
total transport coefficient α. The empty red diamonds count the contribution
from αRe + αM in the Braginskii simulation. The error bars are the standard
deviations of the time-averaged α. The Maxwell and Reynolds stresses in
Braginskii MHD show the usual MHD-like Prandtl-number dependence;
the difference between MHD and Braginskii MHD is caused primarily by
anisotropic stress. The Pm = 0.5 and Pm = 2 simulations have ReM = 3000,
the Pm = 1 simulation has ReM = 4500 and Pm = 8 has ReM = 6000. The
points at a fixed Pm have been slightly displaced for visualization purposes.

followed by anisotropic viscous heating and isotropic viscous
heating.

3.2.1 Dependence on ReB

One might expect that anisotropic viscous transport and anisotropic
viscous heating will depend primarily on our choice of anisotropic
viscosity μB. We show the dependence on Braginskii Reynolds
number for simulations with Re = 1500 and Pm = 2 in Fig. 4.
Fig. 4(a) shows that αA/αM increases with increasing anisotropic
viscosity at large ReB, reaching a plateau at small ReB. Fig. 4(b)
shows the dependence of the time-averaged heating fractions on
ReB. DμB/D has a dependence similar to αA/αM, increasing with
increasing μB at large ReB and approaching an approximately
constant value at small ReB. This is qualitatively similar to
the results found by Squire et al. (2018) for strong Alfvénic
turbulence. Note, however, that the final values of αA/αM and
DμB/D, reached at ReB � 1, depend on Re and ReM (see Figs 10
and 11).

The plateaus in Fig. 4 at small ReB (high μB) are related to the
fact that, due to the presence of limiters, the effective μB saturates.
Anisotropic transport and heating are most sensitive to the choice
of anisotropic viscosity at small μB, when most fluid cells have �p
within the microinstability limits (equations 5 and 6). But once μB is
sufficiently large such that most cells lie outside of the limiter region,
αA/αM and DμB/D reach a plateau. We illustrate this in Fig. 5(a),
where we show the distributions of 3μB b̂b̂ : ∇U4π/B2 for the
different choices of ReB. This is the pre-limiter �p distribution
divided by (twice) the magnetic energy, before any hard-wall
limits are applied to �p (the distribution with limiters is shown
in the inset of Fig. 3b). The anisotropic stress and anisotropic
heating fraction reach an almost constant value once the pressure
anisotropy distribution lies mostly outside of the dashed vertical
lines denoting the mirror and firehose limits. We find that typically
ReB � 3 is enough to approach the asymptotic value. This can be
explained as follows: the presence of limiters causes the effective
μB to saturate when 3μB b̂b̂ : ∇U0 = −3μBbxbyS ∼ B2/4π, or
equivalently when ReB ∼ 4πS2L2

z/B
2. This gives ReB ∼ a few

for typical turbulent energy densities, which explains the plateaus
in Fig. 4.

Fig. 5(b) shows that while the 3μB b̂b̂ : ∇U4π/B2 distribution
becomes broader, the distribution of b̂b̂ : ∇U4π/〈B2〉 becomes
narrower with increasing μB. In addition, large negative b̂b̂ : ∇U is
more suppressed in simulations without firehose limiter. This can be
explained by the work of Squire et al. (2018), who demonstrated that
anisotropic viscosity acts to minimize field-line stretching b̂b̂ : ∇U
to resist changes in magnetic-field strength and make the flow
‘magneto-immutable’.

3.2.2 Dependence on Re and ReM: composite simulations

Is isotropic dissipation important for the level of anisotropic
transport? It is well known that the Maxwell and Reynolds stresses
show a strong dependence on isotropic viscosity and resistivity.
Given the interdependence of the pressure anisotropy and velocity-
field gradients, it is plausible that αA will also be sensitive to the
choice of isotropic Reynolds numbers. Our fully evolved Braginskii
simulations (Table 1) tentatively suggest that the relative importance
of αA is greater at low Re and ReM. This is best seen from
the two simulations with Pm = 1: αA/αM decreases from 0.47
for Re = 750 to 0.25 for Re = 4500, a change significantly
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MRI turbulence in weakly collisional discs 4019

Figure 3. Braginskii MHD evolution for Re = 1500, Pm = 2, and ReB = 0.75. (a) Evolution of the Maxwell (blue), Reynolds (orange), anisotropic (green),
and total (black) transport coefficients in Braginskii MHD. Panel (b) Evolution of the volume-averaged pressure anisotropy divided by (twice) the magnetic
energy (black solid line). The background shading shows the underlying distribution of 4π�p/B2 over time, showing that the majority of cells lie on the mirror
boundary (the width of the region near the mirror and firehose boundaries is exaggerated for visualization purposes). The inset shows this distribution across
the simulation domain at the time t� = 150. (c) Heating fractions of isotropic and anisotropic diffusivities over time. The heating is dominated by resistive
heating (equation 17), followed by anisotropic (equation 19) and isotropic (equation 18) viscous heating. See Figs 10 and 11 for how these results depend on
Re.

Figure 4. Dependence on Braginskii Reynolds number ReB in simulations
with Re = 1500, Pm = 2 at resolution 192 × 96 × 48. (a) Ratio of anisotropic
to Maxwell stress, αA/αM, as a function of Braginskii Reynolds number. The
black ‘ + ’ is our largest-μB test, performed at lower resolution (128 × 64 ×
32). Error bars are plotted, but not visible, as they are smaller than the
marker size. (b) Temporal averages of heating fractions of isotropic and
anisotropic diffusivities, as a function of ReB. Anisotropic viscous heating
increases with decreasing ReB, until it becomes approximately constant at
large anisotropic viscosities. The simulation with ReB = 0.075 at lower
resolution is not shown, as it is uncertain whether the low resolution permits
an accurate calculation of isotropic dissipation.

larger than the characteristic temporal fluctuations. To explore this
dependence in detail and cover a broad range of viscosities and
resistivities, we first make use of our composite MHD–Braginskii
MHD simulations (see Section 2.3) and then simulations with
hyperdiffusion.

Our composite simulations are summarized in the bottom part
of Table 1. While we focus on simulations with Pm = 1, we also
include a simulation with a larger Prandtl number, for which we used
Re = 10 500, ReM = 42 000. The presented values of 4π〈�p〉/〈B2〉,
〈4π�p/B2〉 and αA/αM are temporal averages, where the averaging
is started at time t� = 101, a time �−1 after anisotropic viscosity
is added to the system.

We show the evolution of the composite simulations in Fig. 6,
using four different Re with fixed Prandtl number Pm = 1. The
Re = 750, 3000, 10 500 simulations were performed at resolution
384 × 192 × 96, while for Re = 21 000 we went up in resolution
to 768 × 384 × 192. We checked that our 384 × 192 × 96
simulations are converged by also running Re = 10 500 at resolution
576 × 288 × 144. Fig. 6(a) shows the evolution of the box-
averaged pressure anisotropy; the anisotropic stress evolution is
given in Fig. 6(b). The evolution of the anisotropic heating fraction
DμB/D is shown in Fig. 6(c). The dashed vertical line indicates the
time when MHD snapshots were restarted using Braginskii MHD
with ReB = 0.75. The MHD �p, αA, and DμB/D are computed
from the MHD flow fields using the same μB that is used for the
Braginskii runs, even though �p is not dynamically present in
MHD.

The rapid changes in �p, αA, DμB/D, and subsequent plateau
are a convincing demonstration that we reach the Braginskii state
very quickly. What is driving the abrupt transition? To understand
this, it is instructive to look at 4π�p/B2 snapshots, before and after
anisotropic viscosity is introduced. The upper panels of Fig. 7 show
this for the Re = ReM = 21 000 simulation. In the MHD snapshot in
Fig. 7(a), the vast majority of cells are pinned at the mirror/firehose
limit. Moreover, there are many ‘opposite’ cells in close proximity
of each other. In these regions anisotropic viscosity operates on a
short time-scale, trying to eliminate the strong gradients. Doing so
produces the smoother distribution of �p depicted in Fig. 7(b) and
causes a rapid change in the volume-averaged �p. The jump is less
pronounced at low Re, because the MHD flow field has already been
smoothed by isotropic dissipation, thus diminishing the dynamical
importance of anisotropic viscosity. In the bottom panels of Fig. 7,
we show how in the process of changing the statistics of �p, Bra-
ginskii viscosity also reduces small-scale gradients in the velocity
field.

The damping of high-k modes in the Braginskii velocity field
leaves an imprint on the power spectrum. We show the kinetic and
magnetic energy spectra of the composite simulation with Re =
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4020 P. Kempski et al.

Figure 5. Distributions for the simulations summarized in Fig. 4. (a) The pre-limiter distributions of 4π�p/B2 for different ReB. The dashed vertical lines
denote the firehose (left) and mirror (right) limits. αA/αM reaches a plateau when the distribution of 3μB b̂b̂ : ∇U4π/B2 (before limiters are applied) becomes
wide compared to the hard-wall limits. (b) At small ReB there is a narrower distribution of b̂b̂ : ∇U4π/〈B2〉. The dotted line is our no-firehose-limiter
simulation with Re = 1500, Pm = 2, and ReB = 0.75, in which large negative b̂b̂ : ∇U is even more suppressed (the distribution for ReB = 0.75 with firehose
limiter included is very similar to the ReB = 0.3 distribution). These results are a consequence of anisotropic viscosity causing the turbulence to resist field-line
stretching, i.e. b̂b̂ : ∇U is minimized.

Figure 6. Evolution of (a) anisotropic pressure, (b) the ratio of anisotropic to Maxwell stress, and (c) the anisotropic viscous heating fraction in the composite
MHD–Braginskii MHD simulations. The MHD turbulent flow field is restarted using Braginskii MHD with ReB = 0.75 at t� = 100 (prior to this time �p,
αA, and DμB /D are calculated using the MHD flow field with ReB = 0.75 even though μB is not dynamically present in the MHD equations). Each colour
represents a different choice of isotropic Reynolds number with fixed Pm = 1. Anisotropic pressure and anisotropic transport decrease with increasing Re.
Meanwhile, anisotropic viscous heating increases with increasing Reynolds numbers, accounting for �50 per cent of the total heating at large Re.

21 000, Pm = 1 in Fig. 8, both for the MHD part and the Braginskii
MHD (ReB = 0.75) part of the run. Fig. 8(a) shows that the kinetic-
energy spectra in both models have spectral slopes close to k−3/2, the
MHD case being slightly shallower. There is also extra suppression
of high-k velocity fluctuations in the Braginskii case, which is
consistent with the snapshot in Fig. 7(d). Fig. 8(b) demonstrates
that the magnetic-energy spectra are hardly modified in Braginskii
MHD.

3.2.3 Dependence on Re and ReM: magneto-immutable turbulence

In Fig. 9(a), we show the pre-limiter anisotropic pressure distribu-
tion, before (MHD, dotted line) and after (solid line) the transition.
Braginskii viscosity drives more cells into the region inside of the
microinstability limits (dashed vertical lines), while damping the
tails of the distribution (note that it is the projection of ∇u on to
the magnetic-field direction, b̂b̂ : ∇u, that is strongly modified by
anisotropic viscosity, b̂b̂ and ∇u alone are only mildly affected).
In addition, Fig. 9(a) clearly shows that at low Re we get a
distribution that is heavily skewed towards positive b̂b̂ : ∇U . At
higher Re, the distribution becomes more symmetric, leading to a

smaller average pressure anisotropy, which explains the results in
Fig. 6.

The results in Figs 6 and 9(a) can be explained qualitatively as
follows. At low Re, high wavenumber modes of the flow field are
efficiently damped by isotropic dissipation and so the fluctuating
part of the b̂b̂ : ∇U distribution is narrow. Because the shear
part of b̂b̂ : ∇U is strongly skewed towards positive values (since
〈b̂b̂ : ∇U0〉 = 〈− 3

2 bxby�〉 > 0), the sum of the two is also going
to be biased towards positive values. This leads to a positive and
appreciable �p approaching the mirror threshold.

Increasing Re and ReM means that there are higher wavenumber
modes in the turbulent velocity field. In particular, note that
∇u ∼ k3/4 for a k−3/2 spectrum (see Fig. 8a), so it increases with
increasing resolution. As a result, the fluctuating part of b̂b̂ : ∇U
becomes more important and can drive more cells towards the
firehose limit. Moreover, in Fig. 9(b), we show that the b̂b̂ : ∇u
distribution actually has a negative skew for large-Re turbulence in
Braginskii MHD, so that it cancels to a large extent the positive
b̂b̂ : ∇U0 from the mean shear.

Fig. 9(c) offers insight into the physics behind the negative skew
of the b̂b̂ : ∇u distribution. The 2D histogram shows how in the
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MRI turbulence in weakly collisional discs 4021

Figure 7. Snapshots from the composite simulation with Re = 21 000 and Pm = 1. Top: Snapshots of 〈4π�p/B2〉, before (left) and after (right) the MHD
flow field is restarted using Braginskii MHD with ReB = 0.75 (the MHD �p is calculated using the MHD flow field with ReB = 0.75, even though μB is not
present in the MHD equations). Most cells are pinned at the hard-wall limits, with numerous mirror-firehose neighbouring cells in the MHD snapshot. These
small-scale variations are smoothed by anisotropic pressure in the right-hand panel. Bottom: Smoothing of MHD small-scale velocity variations (left) after
Braginskii viscosity is introduced (right).

Figure 8. Energy spectra for the composite simulation with Re = 21 000
and Pm = 1. The MHD part of the run (t� < 100) is shown using dotted
lines, while the Braginskii MHD part (t� > 101) with ReB = 0.75 is shown
as solid lines. (a) Braginskii MHD has a velocity-field spectral slope close to
−3/2, which is slightly steeper than the corresponding MHD slope. There is
extra damping of high-k velocity fluctuations in the Braginskii case, due to
the diffusive nature of the pressure anisotropy. (b) Magnetic-energy spectra
are not strongly affected by the presence of anisotropic viscosity and look
very similar in MHD and Braginskii MHD.

Re = 21000, ReB = 0.75 simulation the plasma rearranges itself to
produce a b̂b̂ : ∇u that locally balances the shear. The fact that the
turbulence counters the largely positive b̂b̂ : ∇U0 can be attributed
to anisotropic viscosity causing the rearrangement of the flow field
so as to resist changes in B by minimizing b̂b̂ : ∇U (Squire et al.
2018). We interpret the results of Fig. 9 as a consequence of this
magneto-immutability: the turbulence can more effectively cancel
the field-line stretching of the mean shear (b̂b̂ : ∇U0) at large
Re, when the plasma is less constrained by isotropic dissipation.
Anisotropic viscosity does also rearrange the turbulence at low Re
and b̂b̂ : ∇u is able to locally cancel b̂b̂ : ∇U0 to an appreciable
extent (see Fig. 9a for Re = 750), but the effect is more pronounced
at high Re.

As the b̂b̂ : ∇U distribution becomes broader and more sym-
metric with increasing Re, comparable numbers of cells land on
the mirror and firehose sides. As a result, 〈4π�p/B2〉 and αA/αM

decrease in value, as in Fig. 6. αA/αM can nevertheless remain more
positive in comparison, primarily due to 〈−BxBy〉 typically being
larger when averaged over cells at the mirror limit than cells at the
firehose limit. It is not entirely surprising that the Maxwell stress is
different at the two microinstability boundaries. For example, where
the Maxwell stress is negative, the mean shear drives cells towards
the firehose side (as b̂b̂ : ∇U0 < 0), whereas b̂b̂ : ∇U0 is skewed
towards the mirror side where −BxBy > 0. The microinstabilities
also significantly affect the dynamical effects of the Maxwell stress:
at the firehose limit there is effectively no magnetic tension, and
the Maxwell and anisotropic stresses cancel, while at the mirror
boundary the effective magnetic tension is enhanced by a factor
(1 + 4π�p/B2).

The values of 〈4 π�p/B2〉 and α A/αM as a function of isotropic
Reynolds number are plotted in Figs 10(a) and (b), respectively. In
addition to 〈4 π�p/B2〉, Fig. 10(a) also shows the values of 4π〈�
p〉/〈 B2〉 as filled semi-transparent diamonds to demonstrate that the
exact choice of averaging does not affect our conclusions. We show
all our simulations with Pm = 1, which includes both full Braginskii
(black) and composite MHD–Braginskii MHD simulations (red).
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Figure 9. (a) Impact of anisotropic viscosity and isotropic Reynolds num-
bers on the statistics of the pre-limiter 4π�p/B2, i.e. 3μB b̂b̂ : ∇U4π/B2,
in the composite simulations with Re = 750, Re = 21 000 (both with
Pm = 1). The dotted lines are MHD at t� = 100, the solid lines
are Braginskii MHD with ReB = 0.75 at time t� = 102. Braginskii
viscosity suppresses large b̂b̂ : ∇U gradients and drives more cells into
the region between the dashed vertical lines (indicating the mirror and
firehose limits). The distribution is more symmetric at higher isotropic
Reynolds numbers, resulting in a smaller 〈�p〉. (b) Contributions to
3μB b̂b̂ : ∇U4π/B2 from the background shear U0 (dashed lines) and
the turbulent fluctuations u (solid lines) for Re = 750 and Re = 21 000.
Both simulations have Pm = 1 and ReB = 0.75. At large Re, b̂b̂ : ∇u
is less constrained by isotropic dissipation, so that anisotropic viscosity
more effectively counteracts the positive shear contribution. This produces
the more symmetric 3μB b̂b̂ : ∇U4π/B2 distribution at large Re, shown
in the top panel, with suppressed anisotropic transport (Fig. 10). (c) 2D
histogram of shear and turbulent contributions to b̂b̂ : ∇U for the simulation
with Re = 21 000, Pm = 1 and ReB = 0.75. The dashes indicate
the line b̂b̂ : ∇u = −b̂b̂ : ∇U0. The anisotropic viscous stress causes
the turbulent b̂b̂ : ∇u to balance the largely positive b̂b̂ : ∇U0 to resist
field-line stretching and make the flow magneto-immutable (Squire et al.
2018).

The two procedures give consistent results in the shared range of Re,
which supports the plausibility of composite simulation predictions
at large Reynolds numbers (see also Appendix B).

Fig. 10 shows that anisotropic transport and anisotropic pressure
decrease significantly as we go to higher Re and ReM.1 It remains
unclear how they will behave as we let Re, ReM → ∞. Unfortu-
nately, probing larger isotropic Reynolds numbers is beyond our
current computational capabilities.

In spite of 4π〈�p〉/〈B2〉, 〈4π�p/B2〉 → 0 at large Re, anisotropic
pressure is an important source of dissipation. This is because
regions at the firehose and mirror boundaries contribute positively
to the anisotropic viscous heating rate (equation 19), as �p and
b̂b̂ : ∇U have the same sign (see equation 4). In Fig. 11(a), we
show that anisotropic viscosity becomes the dominant source of
dissipation at large Re, even though the volume-averaged pressure
anisotropy is a steadily decreasing function of Re (Fig. 10).

3.2.4 Simulations with hyperdiffusion

By increasing the range of scales over which viscosity and resistivity
are negligible, simulations with isotropic diffusion replaced by
fourth-order hyperviscosity (ν4∇4u) and hyperresistivity (η4∇4B)
provide an alternative, indirect way of probing larger effective
isotropic Reynolds numbers that does not require higher resolutions.
We therefore augment our Pm = 1 simulations with hyperdiffusion
simulations with varying

Re4 = SL4
z/ν4. (20)

All simulations have a hyper-Prandtl number equal to 1, i.e. ν4 =
η4, and we summarize them in Table 2.

We show the 〈4π�p/B2〉 and αA/αM of our simulations with
hyperdiffusion in Fig. 12. At small Re4, 〈4π�p/B2〉 and αA/αM

follow a similar trend to that shown in Fig. 10. For large Re4, we
obtain a plateau-like shape, with 〈4π�p/B2〉 ∼ 0 and αA/αM ∼ 0.1.
The plateau is consistent with the Re = 21000, Pm = 1 simulation,
which suggests that this may already be close to the asymptotic
limit when Re, ReM → ∞.

In Fig. 11(b), we show that anisotropic viscous heating also
increases with decreasing isotropic hyperdiffusivities, accounting
for more than 60 per cent of the total dissipation in our largest-Re4

simulations (hyperviscous and hyperresistive heating are calculated
as ν4

∫
d3x u·∇4u and η4/(4π)

∫
d3x B·∇4B, respectively).

We end this section by pointing the reader to Section A2 –
Appendix A, where we discuss significant increases in αM and
αRe that happen soon after Braginskii viscosity is introduced in
the simulations with Re4 = 1.5 × 108 and Re4 = 7.5 × 108.
While the origin of the enhanced transport remains unknown,
we suspect that it is a numerical effect that is specific to hyper-
diffusion operators (possibly overemphasis of channel modes in
the presence of Braginskii viscosity) because our high-Re second-
order-diffusion simulations did not give any indications of similar
behaviour.

1The trend that αA/αM and 4π〈� p〉/〈B2〉 decrease with increasing Reynolds
numbers also seems to be present in our two simulations without firehose
limiter (see Table 1; note, however, that the two simulations have different
Pm). Quite notably, in spite of a large negative pressure anisotropy in the
simulation with Re = 10 500 and Pm = 1, anisotropic viscous transport
remains positive.
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Figure 10. Anisotropic transport and anisotropic pressure versus Re in simulations with Pm = 1 and ReB = 0.75. (a) 〈4π�p/B2〉 for different isotropic
Re. Also shown as filled semi-transparent diamonds are the corresponding values of 4π〈� p〉/〈 B2〉. (b) Ratio of anisotropic to Maxwell stress versus Re.
Composite (red) and full (black) simulations are in good agreement, showing that both anisotropic transport and anisotropic pressure decrease monotonically
with isotropic Reynolds number.

Figure 11. (a) Temporal averages of heating fractions versus Re for
simulations with ReB = 0.75, Pm = 1. Heating due to anisotropic viscosity
becomes more significant at large isotropic Reynolds numbers, exceeding
50 per cent of the total dissipation. This is also true in our Re = 10 500,
Pm = 4 simulation, which we show using ‘ + ’ markers. (b) Same as the top
panel, but for our simulations with hyperdiffusion (with Re4 = SL4

z/ν4),
demonstrating that we get qualitatively similar behaviour in simulations
with hyperdiffusion.

4 OT H E R F I E L D C O N F I G U R AT I O N S

4.1 Net toroidal and vertical field

In the previous section, we have seen that transport properties in
MHD and Braginskii MHD are remarkably similar, at least for
the case of net vertical flux. Transport is modified primarily by
the addition of anisotropic stress, but its importance decreases at
large isotropic Re and ReM. Anisotropic viscosity does significantly
influence the heating of the plasma and the statistics of b̂b̂ : ∇U ,
but it does not notably alter the turbulent amplitudes and transport
properties of the flow.

In this section, we look at a mixed vertical-azimuthal field geom-
etry, which exhibits different linear behaviour in Braginskii MHD
and MHD, and so is arguably the most likely to show significant
differences in nonlinear transport properties. More specifically, we
use the field configuration,

〈B〉 = B0( ŷ + ẑ), (21)

where B0 is the same as in Section 3. In this field configuration
with equal toroidal and vertical components, Quataert et al. (2002)
and Balbus (2004) have shown that anisotropic pressure increases
the linear growth rate of the MRI in Keplerian discs from 0.75� to√

3�. Here, we try to address whether there are any differences in
the non-linear dynamics.

We run our vertical-azimuthal-field simulations in boxes of size
Lx = 4, Ly = 4, and Lz = 1, just like for the net-vertical-flux
case described in Section 3. While in this field configuration the
MRI modes are larger in scale, we have found that this box size is
sufficient to capture the fastest growing MRI wavelengths (Fig. 13
supports this) and the fastest growing parasitic modes (similar to
the net-vertical-field case, horizontally narrow 1 × 4 × 1 boxes did
not correctly capture the most important parasitic modes).

First, we focus on how the MRI enters the non-linear growth
phase. Fig. 13 shows the evolution of the MRI in Braginskii MHD
with ReB = 0.75, as it transitions from linear growth to the non-
linear regime. In order for the growth rates to be close to the
ideal values, we are using hyperdiffusion to dissipate energy just
above the grid scale. The initial growth rate of 〈B2

x 〉 is close to the
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Table 2. Summary of Braginskii MHD simulations with net vertical magnetic field and fourth-order isotropic hyperdiffusion. Full simulations were evolved
for a time t� = 100 and the values of 4π〈�p〉/〈B2〉, 〈4π�p/B2〉, and αA/αM are temporal averages over t� = 70–100. In Composite simulations, MHD fields
are restarted at t� = 100 using Braginskii MHD. 4π〈�p〉/〈B2〉, 〈4π�p/B2〉, and αA/αM were averaged over t� = 101–110, except for the Re4 = 7.5 × 108

simulation, for which the average is over t� = 101–102.

Resolution Sim. type Re4 ReM, 4 ν4/η4 ReB 4π〈�p〉/〈B2〉 〈4π�p/B2〉 αA/αM

(256,128,64) Full 7.5 × 105 7.5 × 105 1 0.75 0.30 0.20 0.38
(256,128,64) Composite 7.5 × 106 7.5 × 106 1 0.75 0.19 0.13 0.26
(256,128,64) Full 3 × 107 3 × 107 1 0.75 0.071 0.026 0.13
(384,192,96) Composite 1.5 × 108 1.5 × 108 1 0.75 0.069 0.012 0.13
(576,288,144) Composite 7.5 × 108 7.5 × 108 1 0.75 0.034 -0.0096 0.085

Figure 12. Same as Fig. 10 but with fourth-order hyperdiffusion. As before, we show the values of 4π〈�p〉/〈B2〉 in the left-hand panel as filled semitransparent
diamonds. At small Re4 = SL2

z/ν4, we get a dependence qualitatively similar to second-order diffusion. At large Re4, we obtain a plateau-like shape with
〈4π�p/B2〉 ∼ 0, 4π〈�p〉/〈B2〉 ∼ 0 and αA/αM ∼ 0.1.

Figure 13. Linear and non-linear evolution of the x-component of magnetic
energy in Braginskii MHD with ReB = 0.75 for 〈 By〉 = 〈 Bz〉. In the linear
phase, the growth rate exceeds the MHD growth rate and agrees with the
analytic prediction. In the non-linear phase, when the pressure-anisotropy
limiters become important, it reverts to the MHD growth rate.

theoretical value of 2
√

3�. Once the perturbed magnetic energy
becomes comparable to the energy in the background field, the
presence of anisotropic-pressure limiters becomes significant. This
limits the dynamical importance of the anisotropic stress, which
causes the growth rate to decrease to its MHD value and the fastest
growing mode to migrate to shorter wavelengths. See Squire et al.
(2017a) for more discussion.

In Fig. 14, we show the complete evolution into turbulence for
Re = 750 and Re = 4500, both with Pm = 1. The evolution of α is
shown in Fig. 14(a). The dotted line represents the MHD solution
and the solid line is the ReB = 0.75 evolution. Due to the faster linear
growth phase, Braginskii MHD saturates into turbulence earlier, but
the final turbulent state is again similar to the MHD solution.

We show the evolution of αA/αM in Fig. 14(b). We have chosen the
same Re as in the full Braginskii simulations with net vertical field
(see Fig. 10). The result is qualitatively the same: αA/αM is smaller
at large isotropic Reynolds numbers. Heating due to anisotropic
viscosity (Fig. 14c) none the less increases with increasing Re,
which is consistent with our simulations with net vertical field. The
temporal averages of αA/αM and DμB/D obtained here are also very
similar to the ones in Fig. 10 and Table 1.

In addition to our Pm = 1 simulations, we have also evolved the 〈
By〉 = 〈 Bz〉 field for other choices of Prandtl number. For temporal
averages of transport coefficients, we refer the reader to Table 3.

Just like for the case of net vertical flux, we find that the total
level of angular-momentum transport is not greatly affected by
the presence of anisotropic pressure. The decrease in anisotropic
transport at high Reynolds numbers, accompanied by increased
anisotropic viscous heating, also persists in boxes threaded by equal
vertical and azimuthal fields.

4.2 Zero net flux

In Section 3, we showed that the Prandtl-number dependence of
ordinary MHD is recovered in Braginskii MHD with net vertical
field. We now turn our attention to the zero-net-flux case, where
there is no mean magnetic field threading the box. As is common
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MRI turbulence in weakly collisional discs 4025

Figure 14. Evolution in a box with 〈By〉 = 〈Bz〉 for Re = 750 and Re = 4500
(both with Pm = 1). (a) Evolution of α in Braginskii MHD with ReB = 0.75
(solid) and MHD (dotted). (b) Evolution of αA/αM in Braginskii MHD for
the two Re, again demonstrating that anisotropic transport is less significant
at large Reynolds numbers. (c) Evolution of the anisotropic viscous heating
fraction in the two simulations. DμB /D increases with increasing Re, which
is consistent with our results for net vertical flux alone in Section 3 (Fig. 11).

in previous literature, we start from the initial condition

B(t = 0) = B0 sin
(2πx

Lx

)
ẑ. (22)

Fromang et al. (2007) showed that whether turbulence is sustained
or decaying in zero-net-flux simulations is highly sensitive to
the isotropic Reynolds and Prandtl numbers. Given the viscous
nature of the pressure anisotropy, it is instructive to see if this
behaviour is modified in Braginskii MHD. More specifically, if
anisotropic pressure were to modify the effective Prandtl number,
we should see a clear imprint near the turbulence/no turbulence
boundary.

Most of our zero-net-flux simulations are in boxes of dimensions
1 × 4 × 1, which is similar to Fromang et al. (2007). We also
ran a few simulations in horizontally extended boxes (4 × 4 ×
1), although this does not significantly modify the bulk transport
properties in the case of zero net flux (unlike magnetic-field
geometries with a net vertical component). In both cases, B0 is
chosen such that the initial average magnetic energy is the same as
in the net-vertical-flux case described in Section 3.

Table 4 gives a summary of our zero-net-flux simulations. Once
again, we do not find any systematic new behaviour introduced by
anisotropic viscosity. The time-averaged values of α may differ by
order unity, but there does not seem to be a general trend.

In Fig. 15, we show the turbulence/no turbulence boundary in
Re–Pm space, in MHD and in Braginskii MHD with ReB = 0.75.
This can be compared to Fig. 11 in Fromang et al. (2007), who
show the analogous boundary for compressible MHD. In spite of
the additional large anisotropic viscosity, the turbulence boundary
is apparently unchanged in Braginskii MHD.

Fig. 16 shows the evolution of angular-momentum transport
in some of our zero-net-flux simulations. While the low-Prandtl-
number simulation decays in both MHD and Braginskii MHD, at
high Prandtl number both models can sustain turbulence. The tur-
bulence/no turbulence behaviour does not change when Braginskii
viscosity is present.

5 C O N C L U S I O N S

In this paper, we have examined the importance of anisotropic
pressure for MRI-driven turbulence in a shearing box. This was
achieved through a combination of full incompressible Braginskii
MHD simulations and composite MHD–Braginskii MHD simula-
tions, in which fully turbulent MHD flow fields were restarted with
Braginskii viscosity included, in order to minimize the computa-
tional cost due to the large viscosity (Appendix B validates this
method). We find that bulk transport properties of MRI turbulence
are effectively unchanged by large Braginskii viscosities. This is
at first glance surprising given that the pressure-anisotropy stresses
are at least as important as other forces in the system and modify
the flow structures in the turbulence.

We looked at three initial magnetic-field orientations, including
net vertical flux, equal net toroidal and vertical field, and zero net
flux. All were examined using a number of isotropic Reynolds and
magnetic Reynolds numbers. In our simulations, we augmented the
Braginskii equations (1)–(4) to account for the presence of kinetic
microinstabilities: the mirror and firehose instabilities, which are
excited when the pressure anisotropy becomes comparable to the
magnetic pressure (equations 5 and 6). As these instabilities tend
to pin �p near marginal stability (Kunz et al. 2016), we include
this kinetic result by introducing hard-wall limits on �p in our fluid
simulations at the instability thresholds.

We can divide our results into two main categories. Our first result
concerns the level of angular-momentum transport in Braginskii
MHD. We find that, for the range of isotropic diffusivities tested in
this work, the Maxwell and Reynolds components of the stress
tensor are hardly modified in Braginskii MHD. The presence
of Braginskii viscosity modifies transport primarily through its
additional anisotropic viscous stress component. This anisotropic
viscous stress, however, is consistently smaller than the Maxwell
stress, so that the total angular-momentum transport is only mildly
affected.

One interesting consequence of this is that in Braginskii MHD
transport remains very sensitive to isotropic diffusivities, despite the
fact that the anisotropic viscosity is orders of magnitude larger than
the isotropic viscosity. For the range of Reynolds numbers probed,
the Maxwell and Reynolds stresses exhibit the same magnetic-
Prandtl-number dependence as in ordinary MHD in all of the
tested magnetic-field configurations. This includes the temporal
averages of α in net-flux simulations (see Fig. 2), as well as the
turbulence/no turbulence boundary in the Re–Pm plane for zero-
net-flux simulations (Fig. 15). Remarkably, the angular-momentum
transport in the shearing box, which is sensitive to a number of
parameters (e.g. Pm, box size), appears to be almost unaffected by
even large Braginskii viscosities.
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Table 3. Summary of simulations with net toroidal and vertical magnetic field (〈By〉 = 〈Bz〉). The transport coefficients and mean pressure anisotropies were
averaged over t� = 100–200.

Resolution Re ReM Pm ReB αRe αM αA α 4π〈�p〉/〈B2〉 〈4π�p/B2〉 αA/αM

(256,128,64) 3000 1500 0.5 – 0.0056 0.022 – 0.028 – – –
(256,128,64) 3000 1500 0.5 0.75 0.0064 0.019 0.0076 0.033 0.32 0.24 0.40
(256,128,64) 750 750 1 – 0.0059 0.023 – 0.029 – – –
(256,128,64) 750 750 1 0.75 0.0064 0.020 0.0094 0.036 0.41 0.30 0.47
(256,128,64) 4500 4500 1 – 0.0067 0.033 – 0.040 – – –
(256,128,64) 4500 4500 1 0.75 0.011 0.042 0.011 0.063 0.18 0.11 0.25
(192,96,48) 750 3000 4 – 0.011 0.067 – 0.078 – – –
(192,96,48) 750 3000 4 0.3 0.014 0.063 0.022 0.099 0.28 0.19 0.36

Table 4. Summary of simulations with zero net flux. The transport coefficients and the mean pressure anisotropies were averaged over t� = 100–200. The
last column indicates whether turbulence could be sustained (‘SD’ means that the turbulence is slowly decaying). See Fig. 16 for examples.

Box size Resolution Re ReM Pm ReB αRe αM αA α 〈4π�p/B2〉 αA/αM Turb?

(4,4,1) (256,128,64) 1500 12000 8 – 0.0020 0.015 – 0.017 – – Yes
(4,4,1) (256,128,64) 1500 12000 8 1.5 0.0040 0.020 0.0078 0.032 0.17 0.39 Yes
(4,4,1) (256,128,64) 6000 12000 2 – – – – SD
(4,4,1) (256,128,64) 6000 12000 2 1.5 SD
(1,4,1) (64,128,64) 750 6000 8 – – – – No
(1,4,1) (64,128,64) 750 6000 8 0.75 No
(1,4,1) (64,128,64) 1500 6000 4 – – – – No
(1,4,1) (64,128,64) 1500 6000 4 0.75 No
(1,4,1) (64,128,64) 1500 12000 8 – 0.0012 0.0091 – 0.010 – – Yes
(1,4,1) (64,128,64) 1500 12000 8 0.75 0.0021 0.011 0.0047 0.017 0.21 0.45 Yes
(1,4,1) (64,128,64) 3000 6000 2 – – – – No
(1,4,1) (64,128,64) 3000 6000 2 0.75 No
(1,4,1) (64,128,64) 3000 12000 4 – 0.0008 0.0054 – 0.0061 – – Yes
(1,4,1) (64,128,64) 3000 12000 4 0.75 0.0002 0.0010 0.0005 0.0017 0.24 0.53 Yes

Figure 15. Zero-net-flux turbulence/no turbulence boundary in the Re–
Pm plane in MHD and Braginskii MHD with ReB = 0.75. ‘No’ means
that turbulence eventually decayed; ‘Yes’ indicates a Re, Pm pair where
turbulence could be sustained. See Fig. 16 for examples.

Our systematic demonstration of MHD-like behaviour in Bragin-
skii MHD complements and clarifies some of the findings made by
Sharma et al. (2006), Kunz et al. (2016), Squire et al. (2017a), and
Foucart et al. (2017), who have seen strong similarities to MHD in
their extended-MHD and kinetic simulations. Nevertheless, we do
find that anisotropic viscosity leaves a clear imprint on the structure
of the flow. �p is an important source of dissipation (Fig. 11) and
strongly modifies the velocity component along the local magnetic
field (Fig. 9). Surprisingly, this turns out to not significantly affect
angular-momentum transport.

Figure 16. Evolution of α in a box with zero net flux, in MHD (dotted) and
Braginskii MHD with ReB = 0.75 (solid). We show the evolution for Re =
1500 with two different isotropic Prandtl numbers: Pm = 4 and Pm = 8.
Like in MHD, low-Prandtl-number turbulence decays in Braginskii MHD
and only high-Prandtl-number turbulence can be sustained.

Our second primary result is related to the anisotropic viscous
stress component. We have demonstrated that anisotropic transport
becomes independent of anisotropic viscosity at sufficiently large
anisotropic viscosity μB (see Fig. 4), but is still sensitive to
the amount of isotropic dissipation. This dependence is rather
significant. We recover the typical result found in previous works –
that αA ∼ αM – only at low isotropic Reynolds numbers. We find that
the ratio αA/αM decreases systematically with Re and ReM, down to

MNRAS 486, 4013–4029 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/486/3/4013/5475654 by Princeton U
niversity user on 06 D

ecem
ber 2020



MRI turbulence in weakly collisional discs 4027

∼0.1 for Re = ReM = 21 000. This is driven primarily by a decreas-
ing average pressure anisotropy, as shown in Fig. 10. Simulations
with viscosity and resistivity replaced by hyperdiffusion operators
suggest that αA/αM ∼ 0.1 and 4π〈�p〉/〈B2〉, 〈4π�p/B2〉 ∼ 0 may be
close to the asymptotic limit as Re, ReM → ∞ (see Fig. 12). This
has not been seen in any previous studies, which have consistently
found an anisotropic stress that is comparable to the Maxwell stress
(Sharma et al. 2006; Kunz et al. 2016; Foucart et al. 2017). However,
previous fluid simulations with anisotropic pressure were at lower
resolution and were grid-based rather than spectral, so it is likely
that they correspond to our low-Re simulations. Although high
resolutions were used in the fully kinetic simulations of Kunz
et al. (2016), it is unclear whether the different αA/αM seen in
this case arises from differences between weakly collisional and
collisionless plasmas, or the difficulty of maintaining large-scale
separations between the large-scale MRI-generated motions and
plasma microinstabilities.

Even though 〈4π�p/B2〉 decreases with increasing Re,
anisotropic pressure becomes a more important source of dissipation
at large isotropic Reynolds numbers, accounting for more than
50 per cent of the total heating at our highest Re. We show this
in Fig. 11.

We interpret the decreasing 〈4π�p/B2〉 and αA/αM with increas-
ing Re as being due to the influence of isotropic dissipation on
the statistics of b̂b̂ : ∇U , thus affecting the box-averaged pressure
anisotropy 〈�p〉 via equation (4). Both the background shear U0 and
the perturbed turbulent velocity field u contribute to b̂b̂ : ∇U . The
background shear contribution, b̂b̂ : ∇U0 = − 3

2 bxby�, is largely

positive. Meanwhile, b̂b̂ : ∇u is sensitive to the choice of Reynolds
numbers. At low Re with more isotropic damping, the distribution
of b̂b̂ : ∇u across the simulation domain is narrow, so that the mean
shear leads to a skewed b̂b̂ : ∇U distribution with the vast majority
of cells on the mirror side. This produces a large 〈�p〉 close to
the mirror threshold and αA ∼ αM. In simulations with higher Re,
b̂b̂ : ∇u is broader and more important, as higher wavenumber
modes are present in the turbulent velocity field and ∇u ∼ k3/4 for
a k−3/2 spectral slope (see Fig. 8a). The width of b̂b̂ : ∇u increases
with increasing Re despite the large μB, as the damping of high-
k modes in b̂b̂ : ∇u is significantly inhibited by the anisotropic-
pressure limiters (since the highest-k modes typically correspond
to unlimited �p 
 B2/4π, see Fig. 9a). As a result, the fraction
of cells with a negative �p increases with increasing Re, which
reduces the box-averaged pressure anisotropy. In addition, because
the plasma is less constrained by isotropic dissipation at large
Re, anisotropic viscosity can also more effectively reorganize the
turbulence to balance the positive b̂b̂ : ∇U0 (shown in Fig. 9c). We
interpret this as being related to the idea of magneto-immutability
described in Squire et al. (2018), who show that anisotropic viscosity
acts to minimize field-line stretching b̂b̂ : ∇U to resist changes
in magnetic-field strength. For these reasons, high Re turbulence
produces a more symmetric 3μB b̂b̂ : ∇U/B2 distribution centred
closer to zero, and with comparable number of cells around the
mirror and firehose limits (driven by the mean shear and turbulent
fluctuations, respectively). This causes 〈�p〉 and αA to decrease
with increasing Re. We illustrate this behaviour in Fig. 9, showing
the distributions of 3μB b̂b̂ : ∇U4π/B2 for small and large Re.

Although 〈4 π�p/B2〉 → 0 at large Re, the fractional heating
due to anisotropic viscosity increases at large Re (Fig. 11). This
is because there is positive heating at both the firehose and mirror
boundaries [since �p and b̂b̂ : ∇U in equation (19) have the same
sign]. Note also that 〈|� p|〉 ∼ 〈 B2/4π〉 and 〈|b̂b̂ : ∇U |〉 both
increase with increasing Re.

While our simulations offered some insight, we must none the
less still speculate about what happens when Re, ReM → ∞.
Can αA and 〈�p〉 become negative? Or do they perhaps both
tend to 0? Both cases would have interesting consequences, the
latter implying that αBraginskii ≈ αRe + αM → αMHD, provided the
Braginskii Maxwell and Reynolds stresses continue to track the
MHD result (which is not entirely certain, see e.g. Section A2
– Appendix A). Our simulations with hyperdiffusion tentatively
suggest that 4π〈�p〉/〈B2〉, 〈4π�p/B2〉 ∼ 0, and αA/αM ∼ 0↔0.1
are potential candidates for the asymptotic values. Nevertheless,
exploring the asymptotic limit of large Reynolds numbers in detail
is beyond the scope of this paper and a potential direction for future
studies. This, however, would most likely require a more efficient
Braginskii viscosity implementation than the one used in this work.
Another interesting extension to this work would be to examine the
compressible Braginskii MHD equations, including the effects of
anisotropic conduction.

It is unclear if and how our results apply to a fully kinetic
calculation. We have attempted to model some of the relevant mi-
crophysics by applying hard-wall limits on the pressure anisotropy.
This subgrid model is intended to mimic how the mirror and firehose
instabilities affect the pressure anisotropy. But it is unclear whether
the limiters are a sufficient and/or accurate representation of the
key microphysics. One can also speculate about the relevance
of isotropic diffusivities in a collisionless system. Our results
suggest that even collisionless-plasma-turbulence may be sensitive
to isotropic dissipation. This, then, raises the question of what sets
the isotropic diffusivities in a collisionless plasma, where transport
properties generally depend on the Larmor radii of the plasma
particles and kinetic microinstabilities that can readily modify
the collisionality of the system. To understand this, fully kinetic
particle-in-cell simulations are needed. However, such simulations
are computationally expensive, and it is unclear whether the sim-
ulations can reach a sufficient dynamic range between the outer
scale (e.g. disc rotation frequency) and microscopic plasma scales
(e.g. the ion cyclotron frequency) to capture the fully developed
turbulence that suppresses the pressure anisotropy and anisotropic
transport in our simulations.

5.1 Implications for RIAFs

To conclude we briefly discuss some of the possible implications
of our results for RIAFs, bearing in mind the caveat that it is
not yet fully clear how our weakly collisional results apply to
collisionless plasmas. Our results support previous work concluding
that low-collisionality accretion discs may be reasonably modelled
using fluid approximations (e.g. Foucart et al. 2017). Indeed, in
some ways our results strengthen this conclusion by showing that
the transport in a weakly collisional plasma is more similar to
MHD when MRI-driven turbulence is well resolved. The primary
difference relative to MHD in our simulations is that anisotropic
viscous heating is a major (�50 per cent at high Re; see Fig. 11)
source of heating and must be accounted for when modeling the
plasma thermodynamics. Electron heating by anisotropic viscosity
(e.g. Sharma et al. 2007) is thus a key ingredient for models
that separately evolve the electron thermodynamics in order to
model the radiation from RIAFs (e.g. Ressler et al. 2017; Chael
et al. 2018). However, previous estimates of electron versus pro-
ton heating by anisotropic viscosity (e.g. Sharma et al. 2007)
assumed that the electron (proton) pressure anisotropy was near
the electron whistler (mirror) threshold. This was motivated by
the fact that the mean shear drives �p > 0 (Fig. 9b). However,
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we have shown that the turbulent fluctuations largely counteract
the mean shear (Fig. 9b) and thus viscous heating has significant
contributions from both �p > 0 and �p < 0. This should be taken
into account in future estimates of anisotropic viscous heating in
RIAFs.
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A P P E N D I X A : E N H A N C E D T R A N S P O RT I N
BRAGI NSKI I MHD

A1 Dependence on box aspect ratio

The most notable departure from MHD behaviour came about when
testing different box aspect ratios for domains with a net vertical
field. In addition to our standard 4 × 4 × 1 boxes, we also looked
at narrower domains with aspect ratios 1 × 4 × 1 and 1 × π ×
1. Consistent with Bodo et al. (2008), Pessah & Goodman (2009)
and Longaretti & Lesur (2010), we have also found that MHD
simulations in boxes with Lx: Lz= 1 and net vertical field show
stronger fluctuations with recurring bursts. This has been attributed
to such boxes not capturing the fastest growing parasitic modes and
overemphasizing the role of channel modes.

While we discovered no surprising behaviour in MHD,
anisotropic viscosity produced some surprising results. Ly = 4
still showed fairly comparable turbulence in MHD and Braginskii
MHD, but this was no longer the case for Ly = π. As the
box becomes narrow enough, e.g. 1 × π × 1, the presence of
anisotropic viscosity strongly enhances transport, with α increasing
monotonically with μB. Both the turbulent energy densities and
transport can increase by orders of magnitude for large μB. A
natural interpretation is that a high anisotropic viscosity causes
some parasitic modes to migrate to longer wavelengths. These are
not captured by our narrow boxes, thus allowing MRI modes to drive
turbulence at a larger amplitude. For boxes with 4 × 4 × 1, this is
no longer the case. Another plausible explanation is that anisotropic
viscosity decreases the growth rate of short-wavelength modes
and so wider boxes are needed to accommodate long-wavelength
modes.

A2 Braginskii MHD with isotropic hyperdiffusion

Our composite MHD–Braginskii MHD simulations with small
hyperdiffusion (Re4 = 1.5 × 108 and Re4 = 7.5 × 108) show
significant increases in the Maxwell and Reynolds stresses almost
immediately after Braginskii viscosity is introduced (αA/αM ∼
0.1 stays at a roughly constant level nevertheless, as in Fig. 12).
For example, in the simulation with Re4 = 1.5 × 108, in which
the Braginskii MHD part could be evolved for longer (t� =
100–130), αM increases by a factor of a few. There are signs of
burst-like behaviour, suggesting that it may be related to impeded
disruption of channel modes in simulations with hyperdiffusion and
Braginskii viscosity. Unfortunately, the large anisotropic viscosity
and high resolutions at which this behaviour occurs prohibit us
from thoroughly testing the origin of the increased transport.
Thus, it is unclear to what extent this is a physical effect and
not simply a numerical artefact associated with our use of hyper-
diffusion operators. This result should therefore be treated with
caution, especially since we did not see any clear indications of
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Figure B1. Test of composite MHD–Braginskii MHD simulations for the
case Re = 6000, Pm = 0.5, and ReB = 0.75. The black line represents the full
Braginskii simulation, the crimson line is the composite simulation in which
the MHD flow field is restarted with ReB = 0.75 at t� = 200. (a) Evolution
of 〈4π�p/B2〉. (b) Evolution of αA/αM (prior to t� = 200, �p and αA are
calculated using the MHD flow field with ReB = 0.75, even though μB is
not present in the MHD equations). (c) Distributions of 3μB b̂b̂ : ∇U4π/B2.
The black line is the distribution of the full Braginskii simulation averaged
over t� = 100–200. The dotted crimson line is the MHD distribution at
time t� = 200 and the solid crimson line is the distribution in the composite
simulation at t� = 201, after anisotropic viscosity was introduced. After
the MHD flow field is restarted with anisotropic viscosity, the statistics of
3μB b̂b̂ : ∇U4π/B2 and the evolution of 〈4π�p/B2〉 and αA/αM agree very
well with the full Braginskii simulation.

strongly modified αM or αRe in our high-Re, second-order-diffusion
simulations.

APPENDIX B: TEST CASE FOR RESTARTING
MHD FLOW FI ELD WI TH BRAGI NSKI I
VISCOSITY

In Section 3.2, we use composite MHD–Braginskii MHD simula-
tions to explore the behaviour of anisotropic pressure and stress in
the large Reynolds number regime at high resolution. We claimed
that by restarting MHD flow fields with anisotropic viscosity, we
are able to recover the appropriate Braginskii 〈� p〉 in a fraction of
an orbital period. This allowed us to determine the anisotropic stress
at high Reynolds numbers, which would otherwise be numerically
prohibitive with our current methods. Here, we justify our ‘restart’
method by looking at one of our fully evolved Braginskii MHD
simulations.

We focus on the case Re = 6000, Pm = 0.5, and ReB = 0.75.
It was evolved for a time t� = 200 in both MHD and Braginskii
MHD. In Fig. B1, we show the evolution of 〈4 π�p/B2〉 and α A/αM

for the two models. Once again, the pressure anisotropy computed
from the MHD flow fields uses the same μB as the corresponding
Braginskii simulation. The plots show that the calculated �p is
quite different in Braginskii and ordinary MHD, the difference
being more significant than the uncertainty related to temporal
fluctuations.

The MHD-generated flow field is then restarted with anisotropic
viscosity at time t� = 200. This induces an almost immediate jump
in �p and αA, which can be seen to reach values comparable to the
full Braginskii simulation. Afterwards, the two simulations show
qualitatively identical evolutions of anisotropic stress and pressure.

Fig. B1(c) shows how the restarting affects the pre-limiter �p
distribution. The dashed crimson line is the MHD distribution,
immediately before the anisotropic viscosity is introduced at t� =
200. The black line is the average distribution of the full Braginskii
simulation. The solid crimson curve is the distribution generated
by anisotropic viscosity by the time t� = 201, so just one �−1

after the MHD field is restarted. The solid crimson and black curves
are in very good agreement with one another, supporting our claim
that anisotropic viscosity does not need much time to generate its
desired b̂b̂ : ∇U distribution. This is not surprising given that the
viscous time for μB in the vertical direction is ∼ReB�−1 ∼ �−1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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