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Soft Nanomembrane Sensors and Flexible
Hybrid Bioelectronics for Wireless
Quantification of Blepharospasm

Musa Mahmood, Shinjae Kwon
and Woon-Hong Yeo

Abstract—Blepharospasm (BL) is characterized by in-
voluntary closures of the eyelids due to spasms of the
orbicularis oculi muscle. The gold standard for clinical
evaluation of BL involves visual inspection for manual rat-
ing scales. This approach is highly subjective and error
prone. Unfortunately, there are currently no simple quan-
titative systems for accurate and objective diagnostics of
BL. Here, we introduce a soft, flexible hybrid bioelectronic
system that offers highly conformal, gentle lamination on
the skin, while enabling wireless, quantitative detection
of electrophysiological signals. Computational and exper-
imental studies of soft materials and flexible mechanics
provide a set of key fundamental design factors for a low-
profile bioelectronic system. The nanomembrane soft elec-
trodes, mounted around the eyes, are capable of accurately
measuring clinical symptoms, including the frequency of
blinking, the duration of eye closures during spasms, as
well as combinations of blinking and spasms. The use
of a deep-learning, convolutional neural network, with the
bioelectronics offers objective, real-time classification of

Manuscript received November 8, 2019; revised January 9, 2020;
accepted January 22, 2020. Date of publication February 21, 2020;
date of current version October 20, 2020. The work of W-H. Yeo was
supported in part by NSF (#1939094), NextFlex funded by the Depart-
ment of Defense, in part by the Nano-Material Technology Development
Program through the National Research Foundation of Korea funded by
the Ministry of Science, ICT, in part by Future Planning under Grant
2016M3A7B4900044, and in part by the Georgia Research Alliance
based in Atlanta, Georgia. The work of H. A_ Jinnah was supported in
part by the Dystonia Coalition, a consortium that was funded by NCATS
and NINDS under Grant TR0001456 and in part by the Rare Diseases
Clinical Research Network of the NIH. (M. Mahmood and S. Kwon
contributed equally to this work.) (Corresponding author: Woon-Hong
Yeo.)

Musa Mahmood, Shinjae Kwon, and Yun-Soung Kim are with the
George W. Woodruff School of Mechanical Engineering, Institute for
Electronics and Nanotechnology, Georgia Institute of Technology.

Gamze Kilic Berkmen, Laura Scorr, and H. A. Jinnah are with the
Department of Neurology and Human Genetics, School of Medicine,
Emory University.

Woon-Hong Yeo is with the George W. Woodruff School of Mechan-
ical Engineering, Institute for Electronics and Nanotechnology, Geor-
gia Institute of Technology, Atlanta, GA 30332 USA and also with the
Wallace H. Coulter Department of Biomedical Engineering, Neural
Engineering Center, Parker H. Petit Institute for Bioengineering and
Biosciences, Center for Flexible and Wearable Electronics Advanced
Research, Institute for Materials, Institute for Robotics and Intelligent
Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: whyeo@gatech.edu).

This article has supplementary downloadable material available at
http://ieeexplore_ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TBME 2020 2975773

, Gamze Kilic Berkmen, Yun-Soung Kim

, Laura Scorr, H. A. Jinnah,
, Senior Member, IEEE

key pathological features in BL. The wearable bioelectron-
ics outperform the conventional manual clinical rating, as
shown by a pilot study with 13 patients. In vivo demonstra-
tion of the bioelectronics with these patients indicates the
device as an easy-to-use solution for objective quantifica-
tion of BL.

Index Terms—Soft bioelectronics, stretchable elec-
trodes, flexible hybrid electronics, blepharospasm, electro-
physiology, quantitative diagnostics.

I. INTRODUCTION

LEPHAROSPASM (BL), a form of focal dystonia, is
B characterized by involuntary activations and movements
of periocular muscles [1]. The main problem is spasms of the
orbicularis oculi muscle, but other muscle groups may also be
involved [1], [2]. Such spasms manifest in a variety of ways that
include excessive blinking, varying duration of eye closures, and
eye closures that are partial or complete. Additional symptoms
may involve apraxia of eyelid opening, and dystonia in other
body parts, such as the lower face [1]. Often, subjects with BL
are unable to control their blinking, leading to increased blink
rates versus normal subjects [3]. Apraxia is a rare condition that
may coincide with BL symptoms, involving failure of relaxation
of the palpebral portion of the orbicularis oculi [4]. While
some subjects experience brief symptoms, others experience
prolonged symptoms that seriously affect quality of life. Within
the US only, there are over 50,000 cases, with around 2,000 new
diagnoses annually [5]. Despite the prevalence of BL, clinical
evaluation is limited due to the subjective evaluation process and
qualitative rating scales.

Physicians often evaluate patients in person or through
recorded videos to observe muscle and eyelid activity in re-
sponse to stimuli or while the patient is performing various
activities [6]. The Jankovic Rating Scale (JRS) was the first
scale specifically developed for BL [7]. The JRS is mostly
qualitative and attempts to classify the intensity and frequency
of spasms on a 5-point system [7], [8]. More recently the
Blepharospasm Severity Rating Scale (BSRS) was introduced,
to improve reliability and consistency [8]. The major limitation
of both scales is the reliance on a human evaluator to count
BL events and estimate the average duration of symptoms.
This time-consuming and error-prone method leads to con-
flicting results based on individual evaluators [8]. Previously,
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electrophysiology has only been used in pathophysiology studies
for tracking treatment progression with botulinum toxin [9]-
[11], which utilized invasive fine needles to monitor specific
muscles or even single muscle fibers.

Here, we introduce a flexible, hybrid, skin-like bioelectronics
system (referred to as *‘SKINTRONICS’) that wirelessly detects
non-invasive electrophysiological activities of the orbicularis
oculi muscle. SKINTRONICS uses a set of ultrathin, nanomem-
brane electrodes and low-profile wearable circuit to measure
the electrical signals around the eyes. Unlike conventional elec-
trodes that require conductive gels and adhesives, the nanomem-
brane sensors offer a dry, highly comfortable lamination on the
skin by matching mechanical properties with the epidermis. In
addition, the miniaturized, soft wireless device that connects a
setof electrodes provides an active, long-range (> 10 m) wireless
detection of spasms via an Android-based tablet. The portable
monitoring system implements a convolutional neural network
(CNN) for a real-time, automated classification of key patholog-
ical symptoms and BL severity levels from the recorded data.
We demonstrate the clinical feasibility of the SKINTRONICS
with multiple patients, which captures a potential for wireless
quantitative diagnostics of BL.

Il. EXPERIMENTAL SECTION
A. Fabrication of Skintronics

SKINTRONICS has two major components including a flex-
ible circuit and a set of nanomembrane electrodes. First, a thin-
film flexible circuit was patterned on a polydimethylsiloxane
(PDMS)-coated Si wafer by following our prior work [12]-[14].
Details of the fabrication steps are provided in Supporting Note
S1. After removing the completed circuit layers from the carry-
ing wafer, functional chip components (Fig. S1 and Table S1)
were integrated onto the exposed copper pads with a solder paste
(SMDLTLFP10TS5, Chip Quik). Finally, small magnets were
attached to the electrode connection pads and circuit pads by
using a silver conductive paint (Ted Pella). The assembled circuit
was then encapsulated with a low-modulus elastomer mixture
(Ecoflex Gel and Ecoflex 00—30, Smooth-On) to provide enough
adhesion to the skin. Afterwards, a set of nanomembrane gold
electrodes were fabricated via the combination of microfabrica-
tion [15] and material transfer printing [16]. Details of the fabri-
cation steps appear in Supporting Note S2. Fabricated electrodes
were then connected to the circuit via PDMS-insulated con-
ductive film cables (HST-9805210, Elform) and small magnets.
A small, rechargeable Li-polymer battery (capacity: 40 mAh,
Digi-Key) was mounted on the circuit via conductive magnetic
connection to power the SKINTRONICS.

B. Mechanical Study via Finite Element Analysis

Finite element analysis was conducted by using commercial
software (Abaqus, Dassault Systemes) to design a highly flexi-
ble SKINTRONICS, while still offering a comfortable wear to
subjects. The nanomembrane electrode that makes a direct skin
contact (around the eyes) was designed to endure an excessive
stretching and bending, while the electronic circuit that is lam-
inated on a relatively flat, bony area (temple) was designed to

withstand a repetitive bending. The following material proper-
ties were used in the mechanics modeling study (E: Young’s
Modulus and v: Poisson’s Ratio): Ecy = 119 GPa and vg, =
0.34 for copper; Ep; = 2.5 GPa and vp; = 0.34 for polyimide
[17], [18].

C. Experimental Mechanical Study

Biaxial stretching of fabricated electrodes was conducted on a
programmable, cyclic stretcher (experimental setup in Fig. S2).
The sample was held with four clamps that moved simultane-
ously for biaxial, cyclic stretching. A stepper motor, driven by
a programmed circuit, was used to control stretching cycles.
Thin copper wires (100 pm in diameter) were connected to the
electrode to measure electrical resistance using a digital multi-
meter. For a mechanical bending test, electrodes were bent on
the same testing platform with a pair of rigid holders, allowing a
bending from 0 to 180°, with aradius of curvature of 500 pm. The
electrical resistance was also measured during this test to find out
any mechanical failure. Fabricated electronic circuits followed
the same mechanical bending test to investigate the mechanical
stability, while a wireless signal quality was measured to prove
the functionality.

D. Study With Human Subjects

Thirteen symptomatic subjects, 5 males and 8 females, ages
25 to 65 participated in electrophysiological measurement based
on the approved protocol (IRB #00024699) at Emory University.
Subjects were provided an explanation for the study and had
signed a consent form. Electrodes were placed above and below
the eye, with the ground electrode placed on the forehead. The
device was then placed on the temple before a battery was con-
nected. Each subject was asked to follow prompts corresponding
to an evaluation protocol while sitting. This protocol involved
asking each subject to attempt a controlled blinking procedure
of 5 blinks separated by 5 seconds. Afterwards, the subject
was asked to forcibly close the eyes for 5 seconds at least five
times. Then, the subject entered an observational period, where
they looked ahead with minimal movement, attempting to blink
naturally for 2 minutes. The protocol was designed to trigger BL
symptoms so that the most severe symptoms can be observed. To
detect BL symptoms, a clinical observer rated severity with the
BSRS (example in Fig. §3) [8]. All of the studies were recorded
with a digital video camera for additional review, if needed.

E. Data Acquisition via an Android Interface

All of the physiological data were monitored and recorded
by an Android-tablet (Samsung Galaxy Tab) with a custom-
designed application. Alternatively, the trained CNN was imple-
mented to analyze the signal in 8-second segments. This allowed
for displaying a summary of the rating results and relevant
quantitative assessment immediately after the evaluation.

F Analysis of Signal-to-Noise Ratio of the
Recorded Data

Two minutes of time-series data were split into non-
overlapping 8-second segments (15 total). In this recording,
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a subject was asked to blink at regular intervals of one blink
every 4 seconds. Calculation of signal-to-noise ratio (SNR)
involves measurement of peak to peak amplitude from nor-
mal blinks and comparing it to the peak to peak magnitude
of floor noise level using the following equation: SN Rgp =
10log;¢[(Asignat/ Am.,;se)z]. The results were averaged over the
number of windows in the recording and standard error of the
mean was calculated.

G. Data Preprocessing

In order to preprocess the data without losing relevant in-
formation, a high-pass filter was used to remove DC off-
set and baseline drift. As shown in Fig. S4, 3"-order high-
pass Butterworth filter was applied at 0.2 Hz, 0.5 Hz, and
1.0 Hz. Classification accuracy was assessed by using a trained
CNN based on manually labeled data from 13 subjects. The
signals from the most conservative filter at 0.2 Hz, pre-
served the information required for classification, resulting in a
classification accuracy of 99.1%. The 0.5 Hz filter performed
with 94.9% accuracy and the 1.0 Hz filter performed the worst
with 87.6% accuracy. Therefore, 0.2 Hz filter was used to achieve
maximum accuracy.

H. Symptom Classification and Quantification

Digitized recordings from 13 subjects were manually labeled
using four classes, including null (no activity), blink (normal or
pathological), forced eye closure (spasm), and hemifacial spasm.
Labels were applied by using a semantic segmentation where
consecutive labels corresponded to consecutive electrophysiol-
ogy data points in the time series. The labeling was based on
simultaneously recorded camera footage of patients to determine
the corresponding signals for each symptom. Classification was
performed with a CNN, designed for semantic segmentation
(network scheme shown in Fig. §5). Two minute recordings at
a sampling rate of 250 Hz were segmented into overlapping
8-second samples, and the corresponding 4-class output labels
were fed into the CNN algorithm. Each sample had 50% over-
lapping with the previous sample to analyze all events twice.
This model calculated loss as the categorical cross-entropy and
used the Adam optimizer with a fixed learning rate of 0.001. The
CNN was trained by using a five-fold cross-validation paradigm,
where data from all subjects were used. Here, non-randomized
data were pooled together, and then split into 5 equal groups,
which was to ensure less biased validation. The overall accuracy
for the cross-validation was 99.1 & 2.8%, with only minor
confusion relating to non-specific muscle contractions causing
confusion in the 4-class model (Fig. $6). Supporting Note S3
provides details of analysis of out labels.

[ll. RESULTS AND DISCUSSION
A. Overview of Skintronics for Quantitative BL Detection

SKINTRONICS that combines a new class of technologies in
nano-microfabrication, hard-soft materials integration, and soft
material packaging enables a new way to quantify pathological
symptoms and severity levels of BL. An overview of the system
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Fig. 1. Overview of SKINTRONICS for BL monitoring. (a) SKINTRON-
ICS, including stretchable nanomembrane electrodes, placed above and
below the eye of interest, with the ‘ground’ electrode on the forehead.
The wireless, flexible circuit is placed on the side of head, near the
temple. A flow chart (right) describes the data acquisition and data flow
process. (b) Highly flexible, conformal SKINTRONICS (left) wrapped
around a finger and close-up view of the device, gently mounted on
temple, enabled by a soft elastomer (right). (¢) MultiHayered structure
of the wireless circuit. (d) Comparison of electrophysiological signals
recorded on a healthy subject (top) and a subject with a BL symptom
of pathological ‘flutter’ blinking (bottom). (e) Close-up view of a skin
conformal nanomembrane electrode with an inset showing a mesh pat-
tern (left) and contraction of forehead muscles showing flexibility and
stretchability of the thin film electrode (right).

and data acquisition method is shown in Fig. 1(a), along with
a flow chart describing key steps between data collection and
BL evaluation. The electrophysiological data is transmitted via
Bluetooth to a mobile device, where the data is analyzed in
real-time to generate a quantitative assessment of symptoms
as determined by machine learning techniques including CNN.
A set of three nanomembrane electrodes is gently mounted on
the skin around the eye and they are connected to a miniatur-
ized soft flexible circuit via flexible film cables. Soft material
packaging technique that embraces the electrodes, circuit, and
cables offers a highly conformal, gentle wearing without the
use of conductive gels and adhesives that typically cause skin
breakdown [19], [20]. Adhesion properties of the membrane
electronics have been thoroughly explored in prior work [19],
[21], [22]. The device’s mechanical flexibility and adhesion is
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demonstrated in Fig. 1(b) via wrapping the circuit around a
finger (left panel) and wearing it on the temple area (right panel).
Encapsulation of the device with a low-modulus silicone elas-
tomer (~32 kPa) protects the sensitive electronics by distributing
applied forces via deformation, which can avoid discomfort
and artificial triggering of BL symptoms. This is the major
advantage of SKINTRONICS by comparing with the invasive
needle- or adhesive-based electrodes that can bias outcomes
by stretching the orbicularis oculi muscle and triggering BL
symptoms [23]. A schematic illustration in Fig. 1(c) captures the
multi-layered structure of the wireless flexible circuit, includ-
ing the ground plane, dielectric layer, metal interconnect, and
integrated functional chip components. The circuit contains a
Bluetooth system-on-chip with an analog front-end (ADS1292,
Texas Instruments) for wireless recording of non-invasive elec-
tromyogram (EMG) signals on the orbicularis oculi muscle. The
device is powered by a rechargeable, lithium-polymer battery
(40 mAh) that can be simply mounted on and detached from the
circuit via pairing of small magnets. Overall battery life of the
device is approximately 5.1 hours from a full charge, which is
longer than a single diagnostic trial. A representative EMG data
(Fig. 1(d)), wirelessly measured by a custom-designed Android
app. captures a clear difference between a healthy subject with
normal blinking activity (top graph) and a patient with a BL
symptom (bottom graph). The abnormal case shows more spon-
taneous fluctuations and frequent blinking. These fluctuations
correspond to flutter blinking and spasm symptoms that affect a
subject’s quality of life. The excessive wrinkles on the very soft
skin around the eyes are typically challenging to measure EMG
signals with a conventional electrode that uses a thick metal
and strong adhesive, which limits natural skin motions [24],
[25]. Here, the newly developed, stretchable electrode with an
open-mesh configuration offers a conformal lamination on the
skin (Fig. 1e). The main contribution of this electrode is in active
accommodation of repeated motions of skin compression and
deformation without mechanical fracture during both spasms
and normal activity.

B. Study of Mechanics and Reliability of SKINTRONICS

Design of a skin conformal and highly comfortable device
requires mechanical stretchability and flexibility. SKINTRON-
ICS has two major components of soft electrodes and wireless
circuit where the electrode makes a direct contact to the highly
stretchable and sensitive location around the eyes, while the
circuit is mounted on a relatively flat surface (temple). Thus,
we conducted a computational mechanics study (finite element
analysis; FEA) to design a highly stretchable electrode to avoid
any unwanted mechanical fracture, while offering a flexible
circuit to provide a comfortable wear. FEA result in Fig. 2(a),
top shows a unit cell of the electrode with an applied 40% biaxial
strain, resulting in maximum principle strains below 1% (frac-
ture limit of Au: 1%) [26]. Experimental stretching of the elec-
trode (Fig. 2(a), bottom) confirms the ability of 40% stretching
and return without damaging the electrode. Additionally, FEA
estimates the effect of mechanical bending of 180° at a 500-pm
radius of curvature (Fig. 2(b), top), which also shows less than
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Fig. 2. Mechanical behavior of the device via computational model-
ing and experimental validation. (a) FEA result (top) of the electrode
subunit, showing 40% stretchability with excellent correspondence to
the experimental case (bottom), with strains maintained under 1%.
(b) FEA data (top) of bending of 180° along with experimental val-
idation (bottom). (c) Result of an electrical resistance measurement
corresponding to 40% stretching and relaxation of electrode, showing
negligible change. (d) Cyclic bending of the device with electrical resis-
tance measurement, also showing negligible change. (e) FEA results at
two locations simulating strain of the interconnects during 180° bending
results in strain below 0.3%. (f) Photos of the data acquisition device
bending at 180° in two separate locations, with (g) loading and unloading
curves plotting electrical resistance at two interconnect locations show-
ing minimal change. (h) RSSI measurements showing consistency with
device at 180° bend versus device in unbent configuration.

2% of maximum principle strains. Experimental bending the
electrode (Fig. 2(b), bottom) validates mechanical reliability
without fracture during multiple bending over small curvatures.
To quantify the structural integrity of the fabricated electrode
upon stretching (40%) and bending (180°), a cyclic loading
test measures the change of electrical resistance (Fig. 2(c)
and 2(d)), which shows a negligible effect on the mechanical
deformation. In addition, FEA study is performed to simulate
180° bending of a flexible circuit, consisting of thin-film metal
interconnects and rigid chip components. Mechanical bending
at two locations with radius of curvature of 1.5 mm shows a
minimized change of maximum principle strain of less than
0.3%, smaller than the fracture limit of 5% [15] (Fig. 2(e)). An
experimental test in Fig. 2(f) validates the mechanical flexibility
of the fabricated electronics on both locations without fracture.
Electrical resistance between interconnects at these locations
are monitored during the cyclic bending to investigate device
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Fig. 3. Data samples and labels for detection of BL symptoms. (a)
Electrophysiological signals (top) of normal blink from asymptomatic
subject, along with inset demonstrating blink action, and labels (bottom)
from CNN classification showing precise semantic segmentation, with
legend inset. (b) Signals (top) of a pathological ‘flutter’ blinking scheme
of blepharospasm subject, along with inset demonstrating multiple con-
secutive blinks, and labels (bottom) from CNMN. (c) Signals of a BL
symptom, forced eye closure, with an inset showing forced eye clo-
sure action, and labels (bottom) showing CNN semantic segmentation.
(d) High frequency signals (top) of hemifacial spasms from a subject,
with inset demonstrating forced eye closure with hemifacial involvement,
and labels (bottom) showing CNN semantic segmentation precisely
labeling each event.

stability (Fig. 2(g)), which shows a minimal fluctuation of
resistance (<0.1 {2). Additionally, a wireless received signal
strength indication (RSSI) is monitored during device bending at
both locations (Fig. 2(h)), which demonstrates that the antenna
power and wireless connection is consistent despite bending
upto 15 m. Overall, the presented set of computational and
experimental studies clearly capture the mechanical reliability
of the SKINTRONICS and stable wireless data acquisition,
showing a potential for a comfortable, long-term wear on the
skin for quantitative BL diagnosis.

C. Analysis of EMG Signals for Labeling and
Classification of BL Symptoms

To quantitatively measure and distinguish multiple BL fea-
tures, time-domain data were segmented to determine frequency
and duration of symptoms. Fig. 3 summarizes a representative
set of data that capture normal blinking, flutter blinking, forced
eye closure (BL), and hemifacial spasm. Fig. 3(a) shows a
normal blink signal with an inset photo demonstrating normal
eye closure and classification labels (bottom graph) that clearly
captures either null signals or blinking. It should be noted that
blinks in isolation are not necessarily symptomatic of BL, thus

it is required to detect multiple events (Fig. 3(b)) that accurately
presents length and location of each blink event. Unlike normal
blinking, forced eye closure (BL in Fig. 3(c)) shows longer a
plateaued signal (top graph), along with a different label than
blinking (bottom). Hemifacial spasm is a related disorder that
may manifest as BL-like symptoms (Fig. 3(d)), where one side of
the face experiences sudden involuntary muscular contractions
at irregular intervals. This spasm results in high-frequency sig-
nals on the channels and are labeled as such (bottom graph). We
collected EMG data from 13 human subjects to enable accurate
classification of all symptoms. Among them, five subject data
were used to train a CNN (details in Fig. S5). For the CNN
architecture, semantic segmentation was used that incorporated
inception-type convolutional units [27], along with residual con-
nections for purposes of segmentation [28]. The segmentation
process is important because the precise duration of symptoms
are required to understand disease progression. Overall, the
CNN is preferred, compared to the conventional feature extrac-
tion and classification methods due to greater precision in label-
ing boundaries. In addition, CNN method allows for efficient
training on small-labeled datasets with high accuracies. The
trained models can be readily implemented in a mobile device
for a real-time data acquisition. Using 5-fold cross-validation
across a dataset of 13 human subjects, the CNN achieved an
accuracy of 99.1 4 2.8% with the preprocessing method.

D. Validation of the Device Performance

To validate the performance of SKINTRONICS, we measured
the targeted EMG data along with a commercial wireless device
(BioRadio, Great Lakes NeuroTechnologies), mounted on the
skin together (Fig. 4). A subject in Fig. 4(a) has both devices,
which clearly captures the low-profile, unobtrusive arrangement
of SKINTRONICS. The first set of testing (Fig. 4(b)) measures
random blinking at varying frequencies. Overall, two devices
show indistinguishable signal features even though the commer-
cial one (SNR: 25.4 + 4.3 dB) has slightly higher signal than
the SKINTRONICS (SNR: 22.4 + 2.1 dB). However, the rigid
electrode with the adhesive tape on the skin shows delamination
after 1 hour of recording (Fig. 4(c)), which can be explained
by the significant skin flexion during the test. The increased
delamination results in a poor contact with skin, which causes
decreased SNR (drop of 6.2 dB) of the conventional system
(Fig. 4(d)). On the other hand, the SNR of the SKINTRON-
ICS remains consistent. In addition, the SKINTRONICS has
minimized motion artifacts, compared to the BioRadio system
(Fig. 4(e) and 4(f)). The subject intentionally generated head
movements, turning up and down (Fig. 4(e)) and turning left
and right (Fig. 4(f)). Note that the data in this comparison
have been processed by using a 3"-order Butterworth high-pass
filter with a 2-Hz cutoff in order to match the baselines and
adequately compare SNR between two devices. The measured
data show that the SKINTRONICS has a better performance due
to minimal wire movement and electrode dragging effects with a
gel and tape. Overall, the validation study shows a great potential
of SKINTRONICS for a continuous, long-term recording of BL
symptoms with the miniaturized, portable system.
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Fig. 4 Comparison of device performance between SKINTRONICS
and a commercial wireless system. (a) Experimental setup comparing
the device form factor between SKINTRONICS with unobtrusive ar-
rangement and BioRadio data acquisition device and rigid electrodes.
(b) Simultaneous recording of ‘flutter’ blinking symptoms, showing
strong correlation, with similar SNR values. (c¢) Photo of both electrodes
that shows delamination of the conventional electrode after 1 hour of
use. (d) Simultaneous recordings and SNR analysis from both devices
after 1 hour of use, showing a decrease in sensitivity from the con-
ventional electrode system. (e) Graph of noise level of up-down head
movements (inset) with normal activity (no blinks or spasms), with SNR
analysis. (f) Graph of noise level of left-right head swivel movements
(inset) with normal activity, with SNR analysis.

E. Quantitative Digital Scaling of BL and Comparison to
Human Ratings

Classification of BL electrophysiological data was performed
using a CNN. First, the data were preprocessed using a 0.2 Hz
high-pass Butterworth filter, order of 3, and the features are
rescaled between 0 and 1, before being fed into the CNN for
training. A flow chart summarizing this procedure is shown in
Fig. 5(a). The architecture of the CNN is provided in Fig. S3. The
paradigm used here is called semantic segmentation, designed
to output labels for each input data point. These labels are
more useful for quantitative analysis, where the frequency and
duration of symptoms are used to generate severity ratings for
each subject according to the BSRS rating scale. The analysis
of the output labels is detailed in Supporting Information Note
S3. This analysis results in quantitative frequency and duration
information (Table S2), which are more useful to understand
disease progression versus human observation or video record-
ing. The summarized data set in Fig. S6 shows samples of data
exhibiting each symptom, along with correct labeling, and an

Data processing flowchart
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Fig. 5. Digital scaling of BL symptoms from 13 patients. (a) A flowchart
with an overview of data processing and classification scheme of elec-
trophysiological data from SKINTRONICS. Quantitative evaluation of (b)
blink statistics from 13 patients including blink rate and average blink
length, (c) spasm rate and duration, and (d) hemifacial spasm rate and
duration. For each symptom, four colors represent severity levels includ-
ing ‘normal’, ‘mild’, ‘moderate’ and ‘severe’, accounting for frequency
and duration.

TABLE |
COMPARISON OF SEVERITY LEVELS BETWEEN DIGITAL ASSESSMENT FROM
SKINTRONICS AND MANUAL CLINICAL EVALUATION [8]

Average

7 Frequency of
Subject EyeSpasms [l}.uaor:; {;Enygf ]'f(r}re(r:ll;n[:]}{noljs L;‘ ng Bye
1D Spasms pasms

Manual Digital Manual Digital Manual Digital Manual Digital
51 1 1 ] 0 2 2 0 0
82 0 1 0 0 1 2 0 0
53 1 1 0 0 2 3 0 0
54 1 1 0 0 2 2 0 0
S5 1 1 0 0 3 3 0 0
56 ] 1 ] 0 1 2 0 0
s7 0 1 0 0 3 3 0 0
S8 1,2 1 3 0 2 2 1 0
59 1,2 1 1 0 2 3 0 0
S10 1 1 0 1 2 3 0 1
Sl 1 1 0 0 3 3 0 0
S12 1 1 0 0 2 2 0 0
S13 1 1 0 0 2 2 0 0

overall confusion matrix indicating the high precision of this
system. The quantitative analysis is then mapped to BSRS rating
scale using the relevant sections that use quantitative data and
compared with human ratings. These results are summarized
in Table I, showing a strong correspondence to the human
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ratings. We believe that the digital scaling from the machine
analysis offers more accurate, objective measure, while manual
rating has a possible human error shown as discrepancy in the
result. The quantitative analysis is represented in Fig. 5(b—d)
that capture symptom severity levels in terms of frequency
(events per minute) and duration (in seconds). The three major
recorded symptoms among 13 subjects, including pathological
flutter blinking (Fig. 5(b)), forced eye closure (Fig. 5(c)), and
hemifacial spasm, detected in only one subject (Fig. 5(d)). These
quantitative results show the variation in symptoms with greater
nuance than is possible with a multi-point rating system used
by a human rating. Overall, the result of digital scaling of EMG
data clearly shows the advantage of SKINTRONICS in objective
diagnostics of BL symptoms and severity levels without any
human error and time-consuming manual assessment. This study
will be further extended to allow an on-site, real-time evaluation
and diagnosis of BL symptoms. During the patient study, we
found that a single-channel EMG system is likely to pick up
interference from other muscles that are not specifically targeted.
Thus, our future work aims to tackle the isolation of specific
muscle involvement with a greater number of test subjects for
more precise diagnosis of BL.

IV. CONCLUSION

We have demonstrated the feasibility of wearable SKIN-
TRONICS for wireless quantitative assessment of BL. The
skin-friendly system enables a high-quality, real-time recording
of electrophysiological signals from the contoured and dimpled
skin with enhanced SNR compared to a commercial system due
to minimized motion artifacts. This all-in-one wearable solution
will allow physicians to quickly generate quantitative data for
accurate BL assessments and disease progression by elimi-
nating subjective and manual diagnosis. When consider four
symptoms, including null (no activity), blink, force spasm, and
hemifacial spasm, the overall accuracy for the cross-validation
is 99.1 £+ 2.8%, with only minor confusion relating to non-
specific muscle contractions. Collectively, the proposed system
shows significant potential as a clinical diagnostic tool with
improved ergonomics and comfortable, long-term wearability.
Future work will focus on a new testing setup with multi-channel
electrophysiological recording, which would determine spasm-
related origin, resulting in 100% classification accuracy.
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Section S1. Fabrication steps of a flexible circuit.

There are two major processes, including many steps as shown below:

a) Microfabrication of the thin-film circuit boards

1.

2
3.
4

e

10.

11.

12.

13.

14.

16.

17.
18.

19.
20.

21.

Spincoat PDMS on a cleaned silicon wafer at 4000 rpm for 30 sec.

Cure the PDMS-coated wafer on a 150 °C hot plate for 5 min.

Perform oxygen plasma treatment to render the PDMS hydrophilic.

Spincoat polyimide at 2000 rpm for 1 min and bake in a vacuum oven at 250 °C for 3 hr
including ramping steps.

Sputter 500 nm copper for the first metal layer.

Spincoat photoresist (PR, Microposit SC1813, MicroChem) at 3000 rpm for 30 sec and
bake it on a 100 °C hot plate for 3 min.

Expose UV with the first metal pattern (ground) using a mask aligner (MA6, Karl Suss).
Develop the exposed photoresist with developer (MF-319, MicroChem).

Etch exposed copper with copper etchant (APS-100, diluted 1:1 with DI water, Transene)
and strip photoresist.

Spincoat polyimide at 1000 rpm for 1 min and soft bake on a hot plate at 100°C for 10
min.

Spincoat polyimide at 1000 rpm for 1 min and soft bake on a hot plate at 100°C for 5 min.
Hard bake in a vacuum oven at 250 °C for 3 hr including ramping steps.

Spincoat photoresist (AZP4620, Integrated Micro Materials) at 900 rpm for 30 sec and
bake it on a 90 °C hot plate for 5 min.

Expose UV with the first via pattern using a mask aligner (MAG6).

. Develop the exposed photoresist with developer (AZ-400K, diluted with four parts of DI

water, Integrated Micro Materials).

Oxygen plasma etch exposed PI using reactive ion etching (Plasma-Therm) and strip
photoresist.

Sputter 1.5 pm copper for the second metal layer.

Spincoat photoresist (AZP4620) at 2000 rpm for 30 sec and bake it on a 90 °C hot plate
for 4 min.

Expose UV on the second metal pattern using a mask aligner (MAG6).

Develop the exposed photoresist with developer (AZ-400K, diluted with four parts of DI
water).

Etch exposed copper with copper etchant (APS-100, diluted 1:1 with DI water) and strip

photoresist.



22.
23.
24.

27.

28.

Spincoat polyimide at 2000 rpm for 1 min and soft bake on a hot plate at 100°C for 5 min.
Hard bake in a vacuum oven at 250 °C for 3 hr including ramping steps.
Spincoat photoresist (AZP4620) at 2000 rpm for 30 sec and bake it on a 90 °C hot plate

for 4 min.

. Expose UV with the solder pad exposure pattern using a mask aligner (MAG6).
26.

Develop the exposed photoresist with developer (AZ-400K, diluted with four parts of DI
water).

Oxygen plasma etch exposed PI using reactive ion etching (Plasma-Therm) and strip
photoresist.

Completed circuits are peeled-off from the PDMS wafer.

b) Assembly of a flexible circuit board using reflow soldering

1.
2.

Openings of the stainless steel stencil is aligned to the exposed copper pads.

Solder paste is dispensed onto the stencil is dragged across the stencil with a flat plastic
plate.

Chip components are placed on the board.

Using a programmable hot plate, the components are reflow soldered by ramping the hot
plate from 100 °C to 170 °C at an increment of 10 °C with a 1 min dwell period at each
temperature.

Magnetic power connectors are soldered on the board.

Soldered board is rinsed with acetone and isopropyl alcohol and dried with a stream of
nitrogen.

Magnets are attached on the contact pads with small amount of silver paint.

The board is detached from the glass slide and is attached to a thin layer of elastomer.



Section S2. Fabrication of skin-conformal nanomembrane electrodes.

Detailed procedures involved in thin-film electrode fabrication are as follows:

a) Microfabrication process

1.

2
3.
4

e

10.
11.

Spincoat PDMS on a cleaned silicon wafer at 4000 rpm for 30 sec.

Cure the PDMS-coated wafer on a 150 °C hot plate for 5 min.

Perform oxygen plasma treatment to render the PDMS hydrophilic.

Spincoat polyimide (PI, HD MicroSystems) at 2000 rpm for 1 min and bake in a vacuum
oven at 250 °C for 3 hr including ramping steps.

Sputter 5/200 nm of Cr/Au on top of PL

Spincoat photoresist (PR, Microposit SC1813, MicroChem) at 3000 rpm for 30 sec and
bake it on a 100 °C hot plate for 3 min.

Expose UV on the PR using a mask aligner (MA6, Karl Suss).

Develop the exposed photoresist with developer (MF-319, MicroChem).

Etch exposed Au with Au etchant (GE-8110, Transene).

Etch exposed Cr with Cr etchant (Chrome Mask Etchant 9030, Transene).

Oxygen plasma etch exposed PI using reactive ion etching (Plasma-Therm) and strip

photoresist.

b) Assembly with a thin film cable

1.

ook Wb

Tape PVA film (polyvinyl alcohol, Haining Sprutop Chemical Tech, China) on a flat glass
slide.

Spincoat Ecoflex Gel at 1000 RPM for 1 min, and cure it on a hot plate at 50°C for 10 min.
Treat the Ecoflex/PV A substrate with oxygen plasma.

Pick up the electrode from wafer with water-soluble tape.

Transfer the electrode on the Ecoflex/PV A substrate, and gently wash off the water-soluble
tape under flowing DI water.

One end of conductive film cable (HST-9805210, Elform) is attached on the contact pad
of the electrode with small amount of silver paint.

Magnet is attached on the other end of the conductive film cable with small amount of
silver paint.

Insulate the exposed area of conductive film cable with PDMS.



Section S3. Analysis of output labels toward symptom quantification.

Towards quantifying and establishing ratings for the CNN-labeled and segmented data, the labels are
maximized (see Figure S4), and anomalous labels are set to null.

For example, on the rare occasion that a sequence is labeled symptomatic for shorter than 0.1 seconds, the
labeling is assumed to be incorrect and is removed. Then the following metrics are extracted from the labels:
average blink duration in seconds, blink rate (minute™), average eye spasm duration (seconds), eye spasm
rate (minute!), average hemifacial spasm duration (seconds), and hemifacial spasm rate (minute™).

These metrics can then be used to correspond with rating scales like the Blepharospasm Severity Rating

Scale (reference scale shown in Figure S3) (1).
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Figure S1. Circuit design. Top-view illustration of SKINTRONICS data acquisition circuitry, with

highlighted functional blocks. A detailed list of the surface mount components can be found in Table S2.

Dimensions of the circuit are 32.3 x 20.5mm.
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Figure S2. Mechanical testing setup. The left panel shows the setup with a multimeter and laptop for
control for the biaxial stretcher. The right panel shows a close-up of the electrode in a biaxial stretch, with

the wires attached for electrical resistance measurement.



A1: EYE SPASMS Types of Spasms (select one choice from each of the 3 options)

A spasm is defined as a complete or partial eyelid | Brief (<3 sec) spasms Long (>3 sec) Long (>3 sec) spasms
narrowing with accompanying evidence of with complete rim spasms with partial with complete rim
activation of additional facial muscles beyond the closure rim closure closure
pre-tarsal orbicularis oculi muscles. Activity of

these additional muscles is expressed by None 0 None 0 None 0

additional movements of other regions of the face
during eye closures, such as downward movement
of the eyebrow or upward movement of the lower At leastone | 1 At leastone | 2 Atleastone | 3
eye region, often leading to a squinting
appearance. Spasms may be short or long, partial
or complete, tonic or dynamic.

A4: AVERAGE DURATION OF LONG EYE SPASMS Duration

If the participant has long eye spasms (>3 sec in duration), please estimate the average duration of No long spasms 0

these spasms. This estimate should come from the 2-minute recording at the end of the video

protocol, when the patient is at rest with eyes open. | 3 - 4 seconds | 1
4.1 -5 seconds 2
> & seconds 3

B1: FREQUENCY OF NORMAL BLINKS PLUS BRIEF EYE SPASMS Frequency

Please estimate the frequency of normal blinks combined with brief spasms per minute. For this No blinks or spasms 0

estimate, blinks and brief spasms are combined. This estimate should come from the 2-minute )

recording at the end of the video protocol, when the patient is at rest with eyes open. 1 - 18 (per min) 1
19 - 32 (per min) 2
> 32 (per min) 3

B2: FREQUENCY OF LONG EYE SPASMS WITH COMPLETE RIM CLOSURE Frequency

If the participant has long eye spasms (>3 sec in duration), please record the number of these No long spasms 0

spasms per minute. This estimate should come from the 2-minute recording at the end of the video -

protocol, when the patient is at rest with eyes open. The total number of these spasms should be 1 -3 (per min) 1

divided by 2 to get the frequency/minute. 3.1 -7 (per min) )
> 7 (per min) 3

Figure S3. BL severity rating scale used at clinics. Selected relevant sections of rating scale developed
by Defazio et al.(/), including rating scale for eye spasms and blinks.
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Figure S4. BL data preprocessing. Comparison of signals after high-pass Butterworth filtering at different

cutoff frequencies. At 0.2 Hz, the spasm symptoms are least distorted and result in the highest accuracies

when classified with the convolutional neural network.
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Figure S5. Convolutional neural network architecture. A) High-level network schema of the

classification model for 4-class semantic segmentation. B) The first block of the network down samples the
signals, and up scales to 512 x 32. This is followed by four C) convolutional blocks, which further down
sample the signal. E) Deconvolutional units upscale the signal, followed by F) upsampling blocks, and
finally, the D) output layer.
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Figure S6. Validation of CNN segmentation. An example in A) shows a successful segmentation of an
8-second window with two forced eye-closures and one blink in a BL patient. B) More complex example
showing a patient with pathological blinking, along with subtle hemifacial spasm, which are accurately

marked. C) Overall accuracy (99.1%) of the 4-class semantic segmentation scheme.
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Figure S7. Limitations of CNN Semantic approach and alternative methods. Detection of hemifacial
spasms is difficult due to determining the origin of high-frequency muscle activity. In the above sample,
there exists a baseline noise, which may be from facial muscles but is not certain. Additionally, these
symptoms can overlap with other symptoms (blinks, eye spasms), and the semantic segmentation CNN is

not designed to assign multiple labels.



Table S1. List of chip components for a flexible circuit. The table summarizes the component symbol,

matching the symbols used in Fig. S1, description, value and part number.

Component Description Value Part number
Ul 3.3 voltage regulator N/A TPS63001
U2 Analog front-end N/A ADS1292
U3 Bluetooth PSoC N/A NRF52832-QFAA-R
U4 Current limit active-low load switch N/A TPS22941
L1 0402 inductor 2.2 uH N/A
L3 0402 inductor 15 nH N/A
14 0603 inductor 10 pH N/A
L5 0402 inductor 10 nH N/A
L6 0402 inductor 2.7 nH N/A
g 11 4CC1 :) 5 0402 ceramic capacitor 10 pF N/A
C2 0402 ceramic capacitor 22 uF N/A
C3,C5 0402 ceramic capacitor 4.7 nF N/A
Cc4 0402 ceramic capacitor 1.0 nF N/A
Co, C7,
C12, C22, 0402 ceramic capacitor 0.1 pF N/A
C26, C33
Cséf; 1 0402 ceramic capacitor 1.0 pF N/A
C9 0402 tantalum capacitor 1.0 uF N/A
C21 0402 ceramic capacitor 4.7 uF N/A
C23 0603 ceramic capacitor 10 pF N/A
((3322?; %2259 0402 ceramic capacitor 12 pF N/A
C31 0402 capacitor 0.4 pF N/A
Ll lllé Lo 0402 resistor 30kQ N/A
RS, RRZ R7, 0402 resistor 1 MQ N/A
Al 2.45 GHz RF chip antenna N/A 2450AT18A100
F1 2.45 GHz low pass filter N/A 2450FM07A0029
X1 32 MHz crystal N/A ECS-320-8-37CKM
X2 32.768 kHz crystal N/A ECS-.327-9-12-TR
J1 Ground connection N/A N/A
J2 Battery positive connector N/A N/A
J3 ADC bias connector N/A N/A
J4 ADC channel 1 positive input N/A N/A
J5 ADC channel 1 negative input N/A N/A
J6 Microcontroller I/O pin N/A N/A
J7 Microcontroller CLK pin N/A N/A




Table S2. Quantitative assessment of BL electrophysiological data recorded with SKINTRONICS.

Subject| Avg.Blink | Avg. Eye Spasm | Avg. Facial Spasm Blinks fminl Eye Facial

ID# Length (s) Length (s) Length (s) Spasms/min| Spasms/min
S1 0.3240.01 0.74+0.07 0 21.25 6.47 0
S2 0.37+0.01 0.54+0.09 0 29.64 2.39 0
S3 0.4440.01 0.18+0.10 0 59.23 1.85 0
S4 0.594+0.03 0.64+0.34 0 31.97 3.09 0
S5 0.36+0.02 0.46+0.10 0 44.5 4 0
S6 0.36+0.03 0.29+0.10 0 31.36 6.72 0
S7 0.314+0.01 0.4040.11 0 71.57 1.08 0
S8 0.314+0.01 0.31+0.02 0 30.03 1.88 0
S9 0.314+0.01 0.96+0.32 0.16+0.02 37.5 2.25 28.5
S10 0.46+0.05 0.57+0.08 0 33.68 36.81 0
S11 0.36+0.01 0.32+0.05 0 65.3 15.76 0
S12 0.46+0.02 0.56+0.21 0 34.99 3.24 0
S13 0.434+0.01 0.26+0.24 0 23.71 0.95 0
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