
Inverse Problems

PAPER

Direct and inverse electromagnetic scattering
problems for bi-anisotropic media*

To cite this article: Dinh-Liem Nguyen 2019 Inverse Problems 35 124001

 

View the article online for updates and enhancements.

Recent citations
Kirill Zeyde et al-

Orthogonality Sampling Method for the
Electromagnetic Inverse Scattering
Problem
Isaac Harris and Dinh-Liem Nguyen

-

This content was downloaded from IP address 99.179.121.214 on 07/12/2020 at 05:34

https://doi.org/10.1088/1361-6420/ab382d
http://dx.doi.org/10.1109/APEDE48864.2020.9255579
http://dx.doi.org/10.1109/APEDE48864.2020.9255579
http://dx.doi.org/10.1137/19M129783X
http://dx.doi.org/10.1137/19M129783X
http://dx.doi.org/10.1137/19M129783X
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuK6GquniCdOYuDzDiGRoIWv4evMFLFK1kAuCpK9xNFw72L9RtQZpxwYPDO61cqJT0EVNKed00iBTSU_xb7Q6KwTk9S1AsunUHCZyXWPGkq90e07kZUTIkTBjH-qpkG2EgxYXiPgrtbnHqTgqELcRzlxuKjAUFkzF_eK5NiqCE7fTj7eciWHuXEguXC3wuuRsdarWte9U9YCdUpa8VR9Tl7SAq1JGf_tAen7Gl7u6nWpqu6dqJx&sig=Cg0ArKJSzOf3YoL5cD6u&adurl=http://iopscience.org/books


1

Inverse Problems

Direct and inverse electromagnetic 
scattering problems for bi-anisotropic 
media*

Dinh-Liem Nguyen

Department of Mathematics, Kansas State University, Manhattan, KS 66506,  
United States of America

E-mail: dlnguyen@ksu.edu

Received 23 March 2019, revised 9 July 2019
Accepted for publication 2 August 2019
Published 24 October 2019

Abstract
This paper is concerned with the direct and inverse scattering of time-
harmonic electromagnetic waves from bi-anisotropic media. For the direct 
problem, we establish an integro-differential equation  formulation, its 
Fredholm property, and the uniqueness of a weak solution. Using this integro-
differential formulation we study a fast spectral Galerkin method for the 
numerical solution to the direct problem. Numerical examples are presented 
and convergence of the spectral method is proved via Gårding estimates 
for (strongly singular) integro-differential equations. We solve the inverse 
problem of recovering bi-anisotropic scatterers from far-field data using 
orthogonality sampling methods. These methods aim to construct imaging 
functionals which are robust to noise, computationally cheap, and require data 
for only one or a few incident fields. We provide some theoretical analysis as 
well as numerical simulations for the proposed imaging functionals.

Keywords: bi-anisotropic media, fast numerical solution, orthogonality 
sampling, electromagnetic scattering, inverse electromagnetic scattering, 
integro-differential equation

(Some figures may appear in colour only in the online journal)

1.  Introduction

In this paper we study theoretical analysis and computational algorithms for both direct and 
inverse electromagnetic scattering problems for inhomogeneous bi-anisotropic media. This 
study is motivated by potential applications of electromagnetic scattering from complex 
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media (e.g. bi-anisotropic media, chiral media) in optics and metamaterials, as well as nonde-
structive evaluations [21, 26, 33]. The topic of electromagnetic propagation and scattering in 
complex media has recently received an increasing amount of interest from mathematicians. 
Theoretical analysis for the direct problem in both the time domain and frequency domain 
can be found in [1, 3, 4, 10, 11, 31, 32, 36, 37]. We particularly refer to the book [37] for 
an account of the most recent mathematical results on complex media electromagnetics. As 
can be seen in [37], and to our knowledge, there have been only a limited number of papers 
addressing numerical analysis and computational algorithms for direct and inverse scattering 
problems for electromagnetic complex media. For the direct problem, we refer to [40, 41] for 
finite element methods to solve simplified two-dimensional problems. Numerical analysis of 
the full Maxwell’s equations can be found in [2, 30] for the case of chiral media.

The study for the direct problem in this paper can be considered as an extension of the 
results in [15, 18, 30]. More precisely, we extend the integro-differential formulation and 
its Fredholm property from the case of isotropic magnetic media [18] and the Drude–Born–
Fedorov model for chiral media [15] to the case of bi-anisotropic media. The spectral Galerkin 
method framework for solving the direct problem is extended from the results of [30]. Besides 
the typical complications from full Maxwell’s equations in complex media, the main theor
etical issue in the integro-differential formulation lies in proving the Gårding inequalities for 
strongly singular integro-differential operators involving matrix-valued coefficients. In addi-
tion, we establish a result on the uniqueness of a weak solution to the direct problem, which 
leads to the existence and uniqueness of the solution for the direct problem and the integro-
differential formulation. We note that our results for both direct and inverse problems in this 
paper can be applicable to other simpler cases of inhomogeneous (complex) media such as 
bi-isotropic, chiral, anisotropic or magnetic media.

For the inverse scattering problem, although there are large numbers of studies on recon-
struction algorithms for inverse electromagnetic scattering problems, results for the case of 
electromagnetic complex media are quite limited and mainly focus on theoretical issues. We 
refer to [5, 6, 14, 23, 27, 28, 39] for uniqueness results. Some results on numerical reconstruc-
tions can be found in [7, 8, 14] for simplified two dimensional problems. The shape identifi-
cation problem for inverse scattering for full Maxwell’s equations in chiral media has been 
studied in [15, 29]. These papers studied the factorization method of Kirsch [19] as a tool for 
the imaging of bounded and periodic chiral scatterers.

In this paper we study the orthogonality sampling method (OSM) introduced by Potthast 
in [35] to solve the inverse scattering problem. More precisely, we extend the OSM analyzed 
for the sound-soft acoustic case in [35] to full Maxwell equations  in bi-anisotropic media. 
The integro-differential formulation derived for the direct problem plays an important role in 
this extension. We provide some theoretical analysis for the imaging functionals derived from 
the OSM as well as numerical simulations, demonstrating the efficiency of these imaging 
functionals.

The OSM also belongs to a class of sampling methods including the linear sampling 
method, the factorization method, the probe and singular source method, see [9, 19, 34] and 
the references therein. The main advantage of the OSM compared with these sampling meth-
ods is that it requires scattering data for only one or a few incident waves and its stability can 
be justified easily. However, its mathematical basis is not as complete as those of the sampling 
methods mentioned above. We also refer to [17, 22, 24] for recently developed sampling 
methods, sharing similar features to the OSM.

The paper is organized as follows. The direct problem and its basic setup are presented in 
section 2. In section 3 we establish the integro-differential formulation for the direct problem 
and prove its Fredholm property. Section 4 contains a proof for the uniqueness of a weak 
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solution to the direct problem, which also implies the existence of a weak solution thanks to 
the Fredholm property. A fast spectral method, its convergence analysis as well as numerical 
examples are presented in section 5. The inverse problem and OSMs are studied in section 6. 
Finally, section 7 is dedicated to numerical simulations of OSMs for the inverse problem.

2.  Direct problem formulation

We consider the scattering of time-harmonic electromagnetic waves at a positive frequency ω  
from a bi-anisotropic medium. Let E be the electric field and H be the magnetic field while 
B and D are respectively the magnetic induction and the electric displacement. The fields are 
described by Maxwell’s equations (with no free charge and current density)

curl E − iωB = 0, curl H + iωD = 0, in R3.� (1)

The constitutive relations for bi-anisotropic media are described as [20, 25]

B = µH + ξ
√
ε0µ0 E, D = εE + ξ

√
ε0µ0 H.� (2)

Here ε and µ are respectively the electric permittivity and the magnetic permeability of the 
medium. The parameter ξ is typically described as ξ = χ+ iκ where χ is the chirality param
eter and κ is the non-reciprocity parameter of the medium. These parameters are assumed to 
be matrix-valued bounded functions.

Suppose that the bi-anisotropic medium is inhomogeneous and occupies a bounded domain 
Ω while the medium outside of Ω is assumed to be homogeneous. This means that there exists 
positive constants ε0 and µ0 such that ε = ε0I3, µ = µ0I3, and ξ = 0I3 in R3 \ Ω (I3 is the 3 × 
3 identity matrix), see figure 1 for a schematic of the scattering problem. The relative material 
parameters and the wave number are defined by

εr = ε/ε0, µr = µ/µ0, k = ω
√
ε0µ0.

Rescaling the fields by E =
√
ε0 E and H =

√
µ0 H (without changing notation), and then 

substituting (2) in (1) we have

curl E − ik(µrH + ξE) = 0, curl H + ik(εrE + ξH) = 0, in R3.� (3)

Now we eliminate H from (3) to obtain

curl [µ−1
r curl E] + ik[ξµ−1

r curl E − curl (µ−1
r ξE)]− k2(εr − ξµ−1

r ξ)E = 0, in R3.� (4)

Denoting by F+ and F− the traces on ∂Ω from the exterior and interior of Ω, respectively, 
for a vector function F, we assume transmission conditions across the boundary of Ω. More 
precisely,

ν × E+ = ν × E−, ν × curl E+ = ν × (µ−1
r curl E)− − ν × (ikµ−1

r ξE)−, on ∂Ω,� (5)

where ν  is an outward normal vector of Ω. Suppose that the bi-anisotropic medium is illumi-
nated by incident electric and magnetic fields Ein and Hin , respectively, satisfying

curl Hin + iωε0Ein = 0, curl Ein − iωµ0Hin = 0, in R3.

We can reformulate (4) in terms of the scattered electric field u, defined by u := E − Ein. 
Since curl curl Ein − k2Ein = 0, subtracting this equation from (4) we obtain that

curl [µ−1
r curl u] + ik[ξµ−1

r curl u − curl (µ−1
r ξu)]− k2(εr − ξµ−1

r ξ)u

= curl [Qcurl Ein]− ik[ξµ−1
r curl Ein − curl (µ−1

r ξEin)] + k2(P − ξµ−1
r ξ)Ein in R3,

� (6)
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where the contrasts P and Q are defined by

P := εr − I3, Q := I3 − µ−1
r .

Note that we also have corresponding transmission conditions for the scattered field u fol-
lowing from (5). Furthermore, the scattered field u must admit the Silver–Müller radiation 
condition of the form

curl u × x
|x|

− iku = O(|x|−2) as |x| −→ ∞,� (7)

uniformly with respect to x.
We end this section by introducing some basic notations for the paper. Let O ⊂ R3 be a 

domain (connected and open) with a Lipschitz boundary. We denote

L2(O)3 = {v = (v1, v2, v3)
� : vj ∈ L2(O), j = 1, 2, 3},

H(curl ,O) = {v ∈ L2(O)3 : curl v ∈ L2(O)3},

Hloc(curl ,R3) = {v : R3 → C3 : v|B ∈ H(curl , B) for all balls B ⊂ R3}.

Here we indistinctly denote by (·, ·) the inner product of L2(O) or L2(O)3 and by ‖ · ‖ the 
associated norms, and H(curl ,O) is equipped by the usual inner product

(·, ·)H(curl ,O) = (curl ·, curl ·) + (·, ·).

3.  Integro-differential formulation and its Fredholm property

In this section we first derive an integro-differential equation for the scattering problem (6) 
and (7). Second, we show that the integro-differential equation  is of the Fredholm type by 
proving a Gårding inequality for this equation. We need the following important assumption 
for our analysis.

Assumption 1.  Assume that εr,µr,µ−1
r , ξ ∈ L∞(Ω)3×3 are symmetric almost everywhere 

and that ξ is real-valued. Furthermore, assume that there exists positive constants c1, c2 such 
that for any a ∈ C3

Re (µ−1
r a · a) � c1|a|2, Re ((εr − ξµ−1

r ξ)a · a) � c2|a|2, ‖|µ−1
r ξ|2‖L∞ < c1c2.

ξ ≡ 0I3

ε ≡ ε0I3, µ ≡ µ0I3

E − Ein,H − HinEin,Hin ξ(x)
ε(x), µ(x)

Ω

Figure 1.  Schematic of the electromagnetic scattering from an inhomogeneous bi-
anisotropic medium Ω characterized by matrix-valued functions ε(x),µ(x), ξ(x).
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Here | · |2  is the spectral matrix norm. We remark that beside the positivity assumptions 
we also require that ξ must be ‘small’ enough, which is common in electromagnetic complex 
media. Now recall that P = εr − I3, Q = I3 − µ−1

r . We define the operators S  and T  from 
H(curl ,Ω) into L2(Ω)3 as

Su := (P − ξµ−1
r ξ)u − i

k
ξµ−1

r curl u, T u := Qcurl u + ikµ−1
r ξu.

Lemma 2.  The operators S  and T  are bounded linear operators from H(curl ,Ω) into 
L2(Ω)3.

Proof.  It is obvious that these are linear operators. We only prove boundedness for S  since 
the proof is straightforward and similar for T . Indeed, we have

‖Su‖ � ‖(P − ξµ−1
r ξ)u‖+ ‖ i

k
ξµ−1

r curl u‖

� max{‖|P − ξµ−1
r ξ|2‖L∞ , ‖|ξµ−1

r |2‖L∞/k}‖u‖H(curl ,Ω),

which means that S  is bounded from H(curl ,Ω) into L2(Ω)3.� □ 

We can now rewrite (6) as

curl curl u − k2u = k2(Su + f) + curl (T u + g) in R3,

where f = SEin and g = T Ein. This equation has a variational formulation as
∫

R3
(curl u · curl v − k2u · v) dx = k2

∫

Ω

(Su + f) · v dx +

∫

Ω

(T u + g) · curl v dx,

� (8)
for all v ∈ H(curl ,R3) with compact support.

Let Φ be the Green’s function to the scattering problem for the scalar Helmholtz equa-
tion in R3

Φ(x, y) =
eik|x−y|

4π|x − y|
, x �= y.� (9)

For h ∈ L2(Ω)3, the linear operators

Ah(x) = (k2 +∇div)
∫

Ω

Φ(x, ·)h dy,

Bh(x) = curl
∫

Ω

Φ(x, ·)h dy,

are bounded from L2(Ω)3 into Hloc(curl ,R3) (see [18]). Using the method of [18] problem (8) 
can be equivalently formulated as the following integro-differential equation

u(x) = (k2 +∇div)
∫

Ω

Φ(x, ·)[(P − ξµ−1
r ξ)u − i

k
ξµ−1

r curl u + f]dy

+ curl
∫

Ω

Φ(x, ·)[Qcurl u + ikµ−1
r ξu + g]dy,

�
(10)

or

u −ASu − BT u = Af + Bg in R3.� (11)
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This was proved in [18] for the case of scalar functions εr,µr and ξ = 0. The proof for matrix-
valued functions εr,µr and ξ is actually similar and is therefore omitted here. Next we will 
prove a Gårding inequality [38] for the operator on the left-hand side of (11), which is also 
the main result of this section, and is useful for the convergence analysis of our numerical 
spectral method.

We denote by Φ0 the exponentially decaying kernel

Φ0(x, y) =
e−k|x−y|

4π|x − y|
, x �= y.

For h ∈ L2(Ω)3 we define

A0h(x) = (−k2 +∇div)
∫

Ω

Φ0(x, ·)h dy, B0h(x) = curl
∫

Ω

Φ0(x, ·)h dy,

which are bounded linear operators from L2(Ω)3 into H(curl ,R3) [18]. The following lemma 
from [18] is useful to our analysis.

Lemma 3.  For h ∈ L2(Ω)3, A0h and B0h uniquely solve
∫

R3
(curlA0h · curl w + k2A0h · w) dx = −k2

∫

Ω

h · w dx,
∫

R3
(curlB0h · curl w + k2B0h · w) dx =

∫

Ω

h · curl w dx,

for all w ∈ H(curl ,R3).

Let Bρ  be a ball with the center at the origin and radius ρ , and suppose that Ω ⊂ Bρ. We 
need the following inner product in our analysis

(·, ·)k,H(curl ,Bρ) = (curl ·, curl ·) + k2(·, ·).� (12)

Now let hn be smooth functions with compact support in Ω such that hn → h in L2(Ω)3. Then 
we have from lemma 3 that curl curlA0hn + k2A0hn = −k2hn in L2(R3)3. Multiplying both 
sides of this equation by v ∈ H(curl , Bρ), using Green’s theorem and taking the limit n → ∞ 
we have

(A0h, v)k,H(curl ,Bρ) = −k2(h, v)−
∫

∂Bρ

(ν × curlA0h) · (ν × v)× ν ds,� (13)

where ν  is the outward normal vector of Bρ . Similarly for B0 we also have

(B0h, v)k,H(curl ,Bρ) = (h, curl v)−
∫

∂Bρ

(ν × curlB0h) · (ν × v)× ν ds.� (14)

We notice that for y ∈ Ω, Φ0(·, y) is smooth on ∂Bρ. Therefore, the kernel of A0 and B0 is 
smooth on ∂Bρ, and the traces on ∂Bρ in the variational equations above are well defined.

Now we are ready to prove the Gårding inequality.

Theorem 4.  Suppose that assumption 1 holds true. Then there exists a positive constant C 
and a compact operator K on H(curl , Bρ) such that

Re (u −ASu − BT u, u)k,H(curl ,Bρ) � C‖u‖2
k,H(curl ,Bρ)

− Re (Ku, u)k,H(curl ,Bρ),
� (15)

for all u ∈ H(curl , Bρ).
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Proof.  Applying (13) and (14) for h = Su and h = T u, respectively, choosing v = u and 
adding the two resulting equations up we obtain

(A0Su + B0T u, u)k,H(curl ,Bρ)

= −
∫

∂Bρ

(ν × curl (A0Su + B0T u)) · (ν × u)× ν ds

− k2
∫

Ω

((P − ξµ−1
r ξ)u − i

k
ξµ−1

r curl u) · u dx +

∫

Ω

(Qcurl u + ikµ−1
r ξu) · curl u dx.

The smoothness of the kernel Φ0 on ∂Bρ allows us to obtain the compactness of the operator 
K1 : H(curl , Bρ) → H(curl , Bρ) defined by

(K1u, u)k,H(curl ,Bρ) =

∫

∂Bρ

(ν × curl (A0Su + B0T u)) · (ν × u)× ν ds.

Straightforward calculations lead to

(u −A0Su − B0T u − K1u, u)k,H(curl ,Bρ) =

∫

Bρ

µ−1
r curl u · curl u + k2(εr − ξµ−1

r ξ)u · udx

−
∫

Bρ

ik(µ−1
r ξu · curl u + ξµ−1

r curl u · u)dx.

Taking the real part of this equation and using assumption 1 we obtain

Re (u −A0Su − B0T u − K1u, u)k,H(curl ,Bρ) �
∫

Bρ

c1|curl u|2 + k2c2|u|2dx

+ kIm
∫

Bρ

(µ−1
r ξu · curl u + ξµ−1

r curl u · u)dx.

� (16)

Since we assume that ξ is real-valued and that ξ and µr are symmetric, we have

ξµ−1
r curl u · u = µ−1

r ξ u · curl u.

We also have that

c1

2
|curl u|2 + kIm (µ−1

r ξu · curl u) +
k2

2c1
|µ−1

r ξu|2 =

∣∣∣∣
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∣∣∣∣
2

c1

2
|curl u|2 + kIm (µ−1

r ξu · curl u) +
k2

2c1
|µ−1

r ξu|2 =

∣∣∣∣
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∣∣∣∣
2

.

Using these equations in (16) leads to
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Re (u −A0Su − B0T u − K1u, u)k,H(curl ,Bρ) �

∥∥∥∥
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥

2

+

∥∥∥∥
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥

2

+ k2
(

c2‖u‖2 − 1
2c1

‖µ−1
r ξu‖2 − 1

2c1
‖µ−1

r ξu‖2
)

.

� (17)

We can estimate the last term as

c2‖u‖2 − 1
2c1

‖µ−1
r ξu‖2 − 1

2c1
‖µ−1

r ξu‖2 �

(
c2 −

1
c1
‖|µ−1

r ξ|2‖L∞

)
‖u‖2.

� (18)

For the convenience of the presentation we set

γ = c2 −
1
c1
‖|µ−1

r ξ|2‖L∞ > 0.

Now we estimate

k2‖u‖2 +

∥∥∥∥
√

c1

2
curl u

∥∥∥∥
2

�

(
k‖u‖+

∥∥∥∥
√

c1

2
curl u

∥∥∥∥
)2

�

(
k‖u‖+

∥∥∥∥
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥+

∥∥∥∥
ik√
2c1

µ−1
r ξu

∥∥∥∥
)2

� 2

(∥∥∥∥
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥

2

+ k2
(

1 +
‖|µ−1

r ξ|2‖L∞
√

2c1

)2

‖u‖2

)

� 2max

{
1,
(√

2c1 + ‖|µ−1
r ξ|2‖L∞

√
2c1

√
γ

)2
}(∥∥∥∥

√
c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥

2

+ k2γ‖u‖2

)
.

Therefore, we have shown that there exists a constant

C =
min

{
1, c1

2

}

2max

{
1,
(√

2c1+‖|µ−1
r ξ|2‖L∞√

2c1
√
γ

)2
} ,

such that
∥∥∥∥
√

c1

2
curl u − ik√

2c1
µ−1

r ξu
∥∥∥∥

2

+ k2γ‖u‖2 � C‖u‖2
k,H(curl ,Bρ)

.� (19)

From (17)–(19) we obtain that

Re (u −A0Su − B0T u − K1u, u)k,H(curl ,Bρ) � C‖u‖2
k,H(curl ,Bρ)

.

Therefore

Re (u −ASu − BT u, u)k,H(curl ,Bρ) � C‖u‖2
k,H(curl ,Bρ)

+ Re (K1u, u)k,H(curl ,Bρ)

+Re ((A−A0)Su + (B − B0)T u, u)k,H(curl ,Bρ).
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It is known from [18] that the operators A−A0,B − B0 can be written as integral operators 
with weakly singular kernels. Therefore, the operator K2 defined by

(K2u, u)k,H(curl ,Bρ) = ((A−A0)Su + (B − B0)T u, u)k,H(curl ,Bρ),

is compact on H(curl , Bρ). Setting K := K1 + K2 , we obtain the desired Gårding inequality.
� □ 

The following corollary follows immediately from theorem 8.

Corollary 5.  The direct problem or the integro-differential equation  (10) is uniquely 
solvable if and only if the corresponding homogeneous problem only has a trivial solution.

4.  Uniqueness of solution

Thanks to corollary 5 we only have to prove the uniqueness of the solution, which is the main 
goal of this section. To do so we need the assumption on the absorbing material parameters. 
More precisely, we assume for all a ∈ C3 that

Im (εra · a) � β|a|2, Im (µ−1
r a · a) � −α|a|2,� (20)

where α and β are positive constants such that

‖|µ−1
r |2‖2

L∞ < α2 + αβ‖|ξ|2‖−2
L∞ .

We remark that the latter inequality constraint is quite reasonable since the norm ‖|ξ|2‖−2
L∞ is 

supposed to be large following assumption 1.

Theorem 6.  If assumption 1 and (20) hold true, then solution u to the variational problem 
(8) for f = g = 0 must vanish in R3.

Proof.  Assume that u is a solution to problem (8) for f = g = 0. Recall that Ω ⊂ Bρ. Let 
φ ∈ C∞

0 (R3) be a cut-off function satisfying φ = 1 in Bρ  and φ = 0 for |x| � 2ρ. Choosing 
v = φu in (8) leads to
∫

Bρ

(µ−1
r curl u · curl u + ikξµ−1

r curl u · u − ikµ−1
r ξu · curl u − k2(εr − ξµ−1

r ξ)u · u) dx

= −
∫

ρ<|x|<2ρ
(curl u · curl (φu)− k2u · φu)dx

=

∫

|x|=ρ

(curl u × ν) · u ds.

We recall that ξ is assumed to be real-valued and that µr, εr, ξ  are symmetric. Therefore we can 
rewrite the left-hand side of this equation as
∫

Bρ

(µ−1
r curl u · curl u + ikµ−1

r ξu · curl u − ikµ−1
r ξu · curl u + k2µ−1

r ξu · ξu − k2εru · u)dx

=

∫

|x|=ρ

(curl u × ν) · u ds.
�

(21)

Taking the imaginary part of (21) implies that
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Im
∫

|x|=ρ

(curl u × ν) · u ds � −α‖curl u‖2 − α‖kξu‖2 − β‖ku‖2

+k
∫

Bρ

Re (µ−1
r curl u · ξu)dx − k

∫

Bρ

Re (µ−1
r curl u · ξu)dx.

� (22)

For any η > 0 we have

k
∫

Bρ

Re (µ−1
r curl u · ξu)dx =

1
2αη

‖kξu‖2 +
ηα

2
‖µ−1

r curl u‖2

−
∥∥∥∥

1√
2αη

kξu −
√

ηα

2
µ−1

r curl u
∥∥∥∥

2

,

−k
∫

Bρ

Re (µ−1
r curl u · ξu)dx =

1
2αη

‖kξu‖2 +
ηα

2
‖µ−1

r curl u‖2

−
∥∥∥∥

1√
2αη

kξu +

√
ηα

2
µ−1

r curl u
∥∥∥∥

2

.

Substituting these equalities in (22) and using ‖µ−1
r curl u‖2 � ‖|µ−1

r |2‖2
L∞‖curl u‖2 and 

−β‖ku‖2 � −β‖|ξ|2‖−2
L∞‖kξu‖2 we obtain

Im
∫

|x|=ρ

(curl u × ν) · u dx

�
(
‖|µ−1

r |2‖2
L∞ηα− α

)
‖curl u‖2 +

(
1
ηα

− α− β‖|ξ|2‖−2
L∞

)
‖kξu‖2

−
∥∥∥∥

1√
2αη

kξu −
√

ηα

2
µ−1

r curl u
∥∥∥∥

2

−
∥∥∥∥

1√
2αη

kξu +

√
ηα

2
µ−1

r curl u
∥∥∥∥

2

.

� (23)

Using assumption (20) we can choose η such that

1
α2 + αβ‖|ξ|2‖−2

L∞

< η <
1

‖|µ−1
r |2‖2

L∞

,

which implies that the first two terms on the right-hand side of (23) are nonpositive. Therefore, 
we obtain the estimate

Im
∫

|x|=ρ

(curl u × ν) · u dx � 0.

Using this estimate we have
∫

|x|=ρ

∣∣∣∣curl u × x
|x|

− iku
∣∣∣∣
2

ds =
∫

|x|=ρ

(|curl u|2 + k2|u|2)ds − 2kIm
∫

|x|=ρ

(curl u × ν) · u dx

�
∫

|x|=ρ

(|curl u|2 + k2|u|2)ds.

Letting ρ → ∞ and using the radiation condition we obtain
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lim
ρ→∞

∫

|x|=ρ

|u|2ds = lim
ρ→∞

∫

|x|=ρ

|curl u|2ds = 0.

Recall that we have curl curl u − k2u = 0 in R3 \ Bρ , which implies that ∆u + k2u = 0 in 
R3 \ Bρ . Therefore, using Rellich’s lemma (see [12, lemma 2.12]) and the analytic continuation 

one can deduce that u = 0 in R3 \ Ω. This result also implies Im
∫
|x|=ρ

(curl u × ν) · u dx = 0 
which allows us to obtain the following from (23)

ξu = curl u = 0, in Ω.

The latter and (21) implies that u = 0 in Ω since εr − ξµ−1
r ξ  is positive definite by assumption 

1. Therefore, we have shown the solution u = 0 in H(curl ,R3), which completes the proof.
� □ 

5.  Fast numerical solution to the direct problem

Solving the direct problem is equivalent to solving the integro-differential equation

u −ASu − BT u = Af + Bg in Hloc(curl ,R3).� (24)

We will develop a fast spectral Galerkin method to solve (24). This spectral method exploits 
the convolution structure of the integro-differential operators, which enables the use of FFT in 
the numerical implementation. To this end we first need to establish a suitable periodization 
of (24).

Recall that Ω ⊂ Bρ. For R > 2ρ, we consider the cube

ΩR = {x ∈ R3 : |xj| < R, j = 1, 2, 3},

and define the new (smoothed) kernel K in ΩR as follows

K(x) =
{
ψ(x)Φ(x), x ∈ BR

0, x ∈ ΩR \ BR,� (25)

where ψ ∈ C∞
0 (BR) such that ψ(x) = 1 in B2ρ.

After that we extend K, P, Q, ξ, f and g from ΩR to R3 as 2R-periodic functions with respect 
to all variables. The orthonormal basis of L2(ΩR) and Fourier coefficients of f ∈ L2(ΩR) are 
given by

φj(x) =
1√
8R3

exp
(

iπj · x
R

)
, f̂(j) =

∫

ΩR

fφj dx, j ∈ Z3.� (26)

For a periodization of (24) we define Hp(curl ,ΩR) as a subspace in L2(ΩR)
3 containing func-

tions f such that

‖f‖2
Hp(curl ,ΩR)

=
∑
j∈Z3

(
k2 |̂f(j)|2 + |(jπ/R)× f̂(j)|2

)
< ∞.� (27)

Note that a function f ∈ Hp(curl ,ΩR) is 2R-periodic in x1, x2 and x3, and that the norm 
‖f‖Hp(curl ,ΩR) on Hp(curl ,ΩR) is equivalent to the usual norm ‖f‖k,H(curl ,ΩR).

We define periodic integro-differential operators Ap, Bp from L2(ΩR)
3 into Hp(curl ,ΩR) 

by

D-L Nguyen﻿Inverse Problems 35 (2019) 124001



12

Apf(x) = (k2 +∇div)
∫

ΩR

K(x, ·)f dy, Bpf(x) = curl
∫

ΩR

K(x, ·)f dy in ΩR.

These operators are continuous linear operators, see [30]. Let us now consider the periodic 
version of the original integro-differential equation (24)

u −ApSu − BpT u = Apf + Bpg in Hp(curl ,ΩR).� (28)

The next theorem shows that solving the original integro-differential equation  (24) is now 
equivalent to solving the periodic integro-differential equation (28).

Theorem 7.  Suppose that assumption 1 and (20) hold true. The periodic integro- 
differential equation (28) has a unique solution v ∈ Hp(curl ,ΩR) for all f, g ∈ L2(Ω)3. Fur-
thermore, v|Bρ ∈ H(curl , Bρ) solves the original integro-differential equation (24).

Proof.  Let f, g ∈ L2(Ω)3 and we extend them by zero outside of Ω. It is proved in the previous 
sections that the integro-differential equation (24) is uniquely solvable. Let u ∈ H(curl , Bρ) 
be this unique solution. We define v by

v = Ap(Su + f) + Bp(T u + g).� (29)

Then v belongs to Hp(curl ,ΩR) thanks to the fact that Su + f  and T u + g are in L2(Ω)3, and 
that Ap,Bp are bounded linear operators from L2(Ω)3 to Hp(curl ,ΩR). Now we show that 
v|Bρ = u. Recall that for |x − y| < 2ρ, we know from (25) that K(x, y) = Φ(x, y). Therefore, 
for x ∈ Bρ and y ∈ Ω ⊂ Bρ, we have

Ap(Su + f)(x) = (k2 +∇div)
∫

ΩR

K(x, ·)(Su + f) dy

= (k2 +∇div)
∫

Ω

Φ(x, ·)(Su + f) dy

= A(Su + f)(x).

Similarly we obtain Bp(T u + g)(x) = B(T u + g)(x) for x ∈ Bρ. Therefore, we have that for 
x ∈ Bρ

v(x) = Ap(Su + f)(x) + Bp(T u + g)(x) = A(Su + f)(x) + B(T u + g)(x) = u(x).

The last equality is due to the fact that u solves (24). Now since v|Bρ = u we obtain from (29) 
that

v = Ap(Sv + f) + Bp(T v + g),

which means that v is a solution to the periodic integro-differential equation (28).
Now, for f = g = 0, since (24) has a unique solution, we have u = 0 in H(curl , Bρ). Then 

from (29) v = Ap(Su) + Bp(T u) = 0, which means that (28) also has a unique solution.� □ 

Next we prove that the operator I −ApS − BpT  from (28) satisfies a Gårding inequality 
in Hp(curl ,ΩR). This proof is similar to that of theorem 4.4 in [30]. We present a short proof 
here for the convenience of the readers.

Theorem 8.  Suppose that assumption 1 and (20) hold true. Then there exists a positive 
constant C and a compact operator L on Hp(curl ,ΩR) such that
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Re (u −ApSu − BpT u, u)k,Hp(curl ,ΩR) � C‖u‖2
k,Hp(curl ,ΩR)

− Re (Lu, u)k,Hp(curl ,ΩR),� (30)

for all u ∈ Hp(curl ,ΩR).

Proof.  We can write the left-hand side of (30) as

(u −ApSu − BpT u, u)k,Hp(curl ,ΩR) = (u −ASu − BT u, u)k,H(curl ,B2ρ)� (31)

−(ApSu + BpT u, u)k,H(curl ,ΩR\B2ρ)� (32)

+‖u‖2
k,H(curl ,ΩR\B2ρ)

.� (33)

The Garding inequality of the first term in (31) is already proved in theorem 8. The second 
term can be written as a compact term. We define L1 : Hp(curl ,ΩR) → Hp(curl ,ΩR) as

(L1u, u)k,Hp(curl ,ΩR) = (ApSu + BpT u, u)k,H(curl ,ΩR\B2ρ).

Since the kernel K is a smooth function on Ω× ΩR \ B2ρ, the volume potential mapping 

g to 
∫
ΩR

K(x, y)g(y)dy is a compact operator from L2(Ω)3 to H2(ΩR \ B2ρ)
3. Recall that 

S , T : Hp(curl ,ΩR) → L2(Ω)3 are bounded operators. From these facts it is deduced that ApS  
and BpT  are compact operators from Hp(curl ,ΩR) to H(curl ,ΩR \ B2ρ). Therefore, let un be 
a sequence which converges weakly to zero in Hp(curl ,ΩR). Using standard arguments we 
can prove that L1un converges strongly to zero in Hp(curl ,ΩR), see e.g. [30].� □ 

We now study a spectral Galerkin approximation for the periodic integral equation (28). 
For N ∈ N we consider a finite dimensional subspace of Hp(curl ,ΩR) as

TN := (span{φj : j ∈ Z3
N})3, Z3

N := {j ∈ Z3 : −N/2 < j1,2,3 � N/2},

where φj ∈ L2(ΩR) are the trigonometric basis functions in (26). Note that the union ∪N∈NTN  
is dense in Hp(curl ,ΩR). Now we consider the following finite dimensional problem. Given 
f, g ∈ L2(ΩR)

3, find uN ∈ TN  such that

(uN −ApSuN − BpT uN , vN)Hp(curl ,ΩR) = (Apf + Bpg, vN)Hp(curl ,ΩR)� (34)

for all vN ∈ TN .
Thanks to the Gårding inequality of the periodic equation  (28) we have the following 

standard quasi-optimal convergence result for problem (34), see, e.g. [38, theorem 4.2.9].

Theorem 9.  Suppose that assumption 1 and (20) hold true. Let u ∈ Hp(curl ,ΩR) be the 
unique solution of (28). Then there is N0 ∈ N such that the finite-dimensional problem (34) 
has a unique solution uN  for all N � N0. In this case,

‖uN − u‖Hp(curl ,ΩR) � C inf
vN∈TN

‖vN − u‖Hp(curl ,ΩR),

with a constant C independent of u, uN  and N � N0.

We remark that if the coefficients εr,µr and ξ are L∞-functions, solution u may not be more 
regular than H(curl ). Therefore, it is probably not possible to improve the estimate above in 
theorem 9, see also [2] for a similar situation. We can have more regularity on the solution 
by assuming the global smoothness of εr,µr and ξ. It is important to note that the volume 
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potential with the periodic smooth kernel K is diagonalized by the trigonometric basis {φj}, 
which means

∫

ΩR

K(x, ·)φj dy =
√

8R3 K̂(j)φj(x) for all j ∈ Z3,

where K̂(j) =
∫
ΩR

K(z)φj(z)dz. This leads to the fact that the orthogonal projection 

PN : Hp(curl ,ΩR) → TN  defined by

PN(v) =
∑

j∈Z3
N

v̂(j)φj,

commutes with the periodic (convolution) operators Ap, Bp. Therefore, the finite-dimensional 
problem (34) can be rewritten as follows. Find uN ∈ TN  such that

uN −Ap(PN(SuN))− Bp(PN(T uN)) = Ap(PNf) + Bp(PNg).� (35)

We can discretize this equation in a spectral domain, which means we look for the Fourier 
coefficients of uN . The Fourier coefficients of ApvN  and BpvN  for vN ∈ TN  can be computed 
thanks to the fact that the integrals have a convolution structure and that the Fourier coeffi-
cients of kernel K can be explicitly computed as

K̂(j) =
1√
8R3

∑

n∈Z3
N

Φ̂p(n)ψ̂(j − n), j ∈ Z3,

where Φ̂p(n) are the Fourier coefficients of the periodic kernel without smoothing. They have 
explicit formulas: for π2|n|2 �= R2k2,

Φ̂p(n) =

{ 1
k2
√

8R3 (e
ikR(1 − ikR)− 1) |n| = 0

R2
√

8R3(π2|n|2−R2k2)
(1 − eikR cos(π|n|)− ikR

π|n|e
ikR sin(π|n|)), |n| �= 0.

Otherwise Φ̂p(n) = −iR/(4k
√

R3)(1 − eikR sin(kR)/(kR)). Since ψ is a smooth function, its 
Fourier coefficients decay rapidly, that is, a short truncation in the series in K̂(j) converges 
rapidly to the exact value. These facts are crucially exploited for fast methods (e.g. fast Fourier 
transforms) for solving the discrete version of (35). We refer to [30] for more details about the 
numerical implementation and other aspects of the method.

5.1.  Numerical examples for the direct solver

We present in this section  some numerical examples examining the performance of the 
direct solver for the case of smoothly varying coefficients, discontinuous coefficients, and 
wave numbers k  =  1 and k  =  30. The simulations were carried out on a Quad Core 3.6 GHz 
machine with 32GB RAM. In all examples the tolerance for the GMRES solver for the linear 
system obtained from discretizing (35) is chosen to be 10−8. For r  >  0 let h be a smoothly 
varying function defined by

h(x, r) = r exp
(

1 − r2

r2 − |x|2

)
, x ∈ R3,

and consider the following diagonal matrices
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Aε =




2.4 0 0
0 2.5 0
0 0 2.2


 , Aµ =




2.1 0 0
0 2.3 0
0 0 2.2


 , Aξ =




0.01 0 0
0 0.02 0
0 0 0.05


 .

5.2.  Example 1 (smoothly varying coefficients)

In this example we consider matrix-valued functions εr,µ−1
r , ξ that are smoothly varying func-

tions as

εr =

{
Aεh(x, r) + I3, |x| < r
I3, else

, µ−1
r =

{
Aµh(x, r) + I3, |x| < r
I3, else

, ξ =

{
Aξh(x, r), |x| < r
0, else.

Here we choose r  =  1 for k  =  1 and r  =  0.5 for k  =  30. The eigenvalues of Aξ are small 
because ξ is assumed to be ‘small’ in assumption 1. N is the number of discrete points in 
each dimension of the computational domain. Using lemma 10 the far-field pattern u∞(x̂) is 
evaluated at 900 points uniformly distributed on the unit sphere. Time in the tables means the 
computation time for the direct solver. Our computer is out of memory for N  =  150, showing 
that the solver is very efficient for the case of smooth coefficients for bi-anisotropic scattering 
media. Indeed, we can observe a fast convergence in tables 1 and 2 for both smaller and larger 
wave numbers. We also remark that for the case of smooth coefficients, the performance of 
the method can be improved by using a two-grid (or multigrid) method instead of GMRES for 
solving the linear system (see, e.g. [16]).

5.3.  Example 2 (discontinuous coefficients)

Let Br = {|x| < r}. For any 3 × 3 matrix M we define a discontinuous function F as

F(x; M) =




1
2 M + I3 x ∈ (− r

4 , r
4 )

3

Mh(x, r) + I3 Br \ (− r
4 , r

4 )
3

I3, else.

We consider in this example matrix-valued functions εr,µ−1
r , ξ that are functions with discon-

tinuities as

Table 1.  Performance of the direct solver for smoothly varying coefficients and k  =  1.

N max
x̂

{|u∞(x̂)|} Time (s)

32 0.136 834 74 1.7
64 0.136 956 17 16.2
128 0.136 956 10 137.4

Table 2.  Performance of the direct solver for smoothly varying coefficients and k  =  30.

N max
x̂

{|u∞(x̂)|} Time (s)

32 0.375 069 73 4.0
64 0.372 226 26 26.6
128 0.372 221 22 218.2
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εr = F(x; Aε), µ−1
r = F(x; Aµ), ξ =




1
2 Aξ x ∈ (− r

4 , r
4 )

3

Aξh(x, r) Br \ (− r
4 , r

4 )
3

0, else.
� (36)

As in the case of smooth coefficients we choose r  =  1 for k  =  1 and r  =  0.5 for k  =  30. 
Although the convergence can be seen again in tables 3 and 4, the performance of the direct 
solver in this case is not as good as that of the case of smooth coefficients. This is reasonable 
because the order of convergence is lower due to the lack of regularity of the solution that is 
commented on after theorem 9. It is also not clear whether multigrid methods can be applied 
to improve the performance of the solver in this case where we have discontinuous matrix-
valued coefficients.

6.  Orthogonality sampling methods for inverse scattering problems

We consider the inverse scattering problems of recovering the bi-anisotropic medium from 
both the far-field pattern data and the scattered field data. These data are generated by one 
or a few incident fields. We will extend the orthogonality sampling method introduced by 
Potthast in [35] for sound-soft acoustic scattering to our case of electromagnetic scattering 
from bi-anisotropic media. The main advantages of this sampling method are that it is robust 
to noise, computationally cheap and requires data for only one or a few incident fields. We 
first study the case of far-field pattern data. It is well known that the scattered electric field u 
has the asymptotic form

u(x) =
eik|x|

|x|

(
u∞(x̂) + O

(
1
|x|

))
, |x| → ∞,

uniformly in all directions x̂ = x/|x| ∈ S2. The function u∞(x̂) defined on the unit sphere S2 
is called the electric far-field pattern.

We need the following lemma for our analysis.

Lemma 10.  The electric far-field pattern u∞(x̂) satisfies

u∞(x̂) = k2
∫

Ω

e−ikx̂·y

4π
x̂ × (SE(y)× x̂)dy + ik

∫

Ω

e−ikx̂·y

4π
x̂ × T E(y)dy,

Table 3.  Performance of the direct solver for discontinuous coefficients and k  =  1.

N max
x̂

{|u∞(x̂)|} Time (s)

32 0.134 276 39 1.5
64 0.132 864 91 15.64
128 0.132 049 13 136.8

Table 4.  Performance of the direct solver for discontinuous coefficients and k  =  30.

N max
x̂

{|u∞(x̂)|} Time (s)

32 0.374 164 40 3.7
64 0.370 998 17 26.9
128 0.370 658 24 235
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where E = u + Ein is the total electric field in (4).

Proof.  The asymptotic behavior of Φ(x, y) for |x| → ∞ is well known

Φ(x, y) =
eik|x|

|x|

(
e−ikx̂·y

4π
+ O

(
1
|x|

))
.

In addition, for any a ∈ C3, we have from [12, theorem 6.9] that

curl x(Φ(x, y)a) = ik
eik|x|

|x|

(
e−ikx̂·y

4π
x̂ × a + O

(
|a|
|x|

))
,� (37)

curl xcurl x(Φ(x, y)a) = k2 eik|x|

|x|

(
e−ikx̂·y

4π
x̂ × (a × x̂) + O

(
|a|
|x|

))
.� (38)

Since we are interested in u(x) for |x| → ∞, using (37), (38) and the fact k2Φ(x, y) = −∆Φ(x, y) 
for x �= y, and the identity −∆+∇div = curl curl, we obtain that

u(x) = (k2 +∇div)
∫

Ω

Φ(x, y)SE(y) dy + curl
∫

Ω

Φ(x, y)T E(y) dy,

=

∫

Ω

curl xcurl x(Φ(x, y)SE(y)) dy +

∫

Ω

curl x(Φ(x, y)T E(y)) dy,

=
eik|x|

|x|

(
k2

∫

Ω

e−ikx̂·y

4π
x̂ × (SE(y)× x̂) dy + ik

∫

Ω

e−ikx̂·y

4π
x̂ × T E(y) dy + O

(
1
|x|

))
.

The last equation means that the far-field u∞ satisfies the desired property of the lemma.� □ 

6.1.  Imaging with far-field pattern data

We are interested in imaging of the scatterer Ω given the far-field pattern u∞(x̂), for all ẑ ∈ S2, 
generated by one or a few incident plane waves. Let ys be the sampling points in the imaging 
process and p ∈ R3 be some polarization vector. We define the imaging functional Ifar  as

Ifar(ys) :=
∣∣∣∣
∫

S2
u∞(x̂) · (pΦ∞(x̂, ys)) ds(x̂)

∣∣∣∣ .� (39)

Here Φ∞(x̂, y) = e−ikx̂·y/(4π) is the far-field pattern of Φ(x, y). We show in the next lemma 
that this functional Ifar(ys) must be close to zero when sampling points ys are away from Ω, 
and it takes finite values when ys approaches points y of Ω. This behavior thus would allow us 
to be able to recover geometrical information (e.g. location, shape) of the scatterer Ω.

Lemma 11.  The functional Ifar  defined in (39) satisfies

Ifar(ys) =

∣∣∣∣
p

16π2 ·
∫

Ω

U(y − ys, T E(y)) + V(y − ys,SE(y))dy
∣∣∣∣ ,

where U, V : R3 × C3 → C3 are bounded functions with explicit formulae (see in the proof), 
which satisfy the following limits (pointwise in a)
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lim
|z|→0

U(z, a) = 0, lim
|z|→∞

U(z, a) = 0,

lim
|z|→0

V(z, a) = k2(1, 1, 1)�, lim
|z|→∞

V(z, a) = 0.

Proof.  We have the well-known Funk–Hecke formula as follows (see, e.g. [12])
∫

S2
e−ikx̂·zYn(x̂)ds(x̂) = 4πjn(k|z|)Yn(ẑ), n = 0, 1, 2 . . . ,

where j n are Bessel functions of order n and Yn are spherical harmonics of order n. Let n  =  0 
in the Funk–Hecke formula, and for any a ∈ C3 we have

∫

S2
curl z(e−ikz·̂xa)ds(x̂) = −ik

∫

S2
(x̂ × a) e−ikz·̂xds(x̂)

= U(z, a) := 4πkẑ × a
(
cos(k|z|)

k|z|
− j0(k|z|)

k|z|

)
,

∫

S2
curl zcurl z(e−ikz·̂xa)ds(x̂) = −k2

∫

S2
x̂ × (a × x̂)e−ikz·̂xds(x̂)

=




a1
[
∂2

1,1j0(k|z|)−∆j0(k|z|)
]
+ a2∂

2
2,1j0(k|z|) + a3∂

2
3,1j0(k|z|)

a1∂
2
1,2j0(k|z|) + a2

[
∂2

2,2j0(k|z|)−∆j0(k|z|)
]
+ a3∂

2
3,2j0(k|z|)

a1∂
2
1,3j0(k|z|) + a2∂

2
2,3j0(k|z|) + a3

[
∂2

3,3j0(k|z|)−∆j0(k|z|)
]


 ,

�

(40)

where

∂2
m,nj0(k|z|) =

∂2j0(k|z|)
∂zm∂zn

, m, n = 1, 2, 3.

Using the fact that ∆j0(k|z|) = −k2j0(k|z|) and some calculations lead to

−k2
∫

S2
x̂ × (a × x̂)e−ikz·̂xds(x̂) = V(z, a) =




V1(z, a)
V2(z, a)
V3(z, a)


� (41)

where

Vj(z, a) = k2
(
|z|2 − (a · z)zj

|z|2

)
j0(k|z|)− 3

(
(a · z)zj

|z|4

)
(cos(k|z|)− j0(k|z|)), j = 1, 2, 3.

It is important to note that function Vj(z, a) tends to k2 and U(z, a) tends to zero as |z| tends to 
zero. Indeed, this can be seen by rewriting Vj(z, a) and U(z, a) as

Vj(z, a) = k2j0(k|z|)−
(a · z)zj

|z|2

(
k2j0(k|z|) + 3k2 cos(k|z|)− j0(k|z|)

k2|z|2

)
,

� (42)

U(z, a) = 4πk2(z × a)
(
cos(k|z|)− j0(k|z|)

k2|z|2

)
,� (43)
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and by using the following
∣∣∣∣
(a · z)zj

|z|2

∣∣∣∣ � C(a), lim
|z|→0

j0(k|z|) = 1, lim
|z|→0

cos(k|z|)− j0(k|z|)
k2|z|2

= −1
3

,

where C(a) is a positive constant depending on a. In fact C(a) can be computed explicitly, for 
instance C(a) = max{2|a1|, |a2|/2, |a3|/2} for j   =  1. Furthermore, it can be easily checked 
that functions U and V decay rapidly as |z| tends to infinity. More precisely,

U(z, a) = O
(

1
|z|

)
, V(z, a) = O

(
1
|z|

)
, |z| → ∞.� (44)

Now using lemma 10, (40) and (41) we compute the inner product
∫

S2
u∞(x̂) · (pΦ∞(x̂, ys))ds(x̂) =

∫

S2
k2

∫

Ω

e−ikx̂·y

4π
x̂ × (SE(y)× x̂) dy · (pΦ∞(x̂, ys))ds(x̂)

+

∫

S2
ik
∫

Ω

e−ikx̂·y

4π
x̂ × T E(y) dy · (pΦ∞(x̂, ys))ds(x̂)

=
k2p

16π2 ·
∫

Ω

∫

S2
e−ikx̂·(y−ys)x̂ × (SE(y)× x̂)ds(x̂)dy

+
ikp

16π2 ·
∫

Ω

∫

S2
e−ikx̂·(y−ys)x̂ × T E(y)ds(x̂)dy

= − p
16π2 ·

∫

Ω

U(y − ys, T E(y)) + V(y − ys,SE(y))dy.

This calculation together with the asymptotic behaviors of U and V established above finish 
the proof.� □ 

The next theorem shows the stability of our imaging functional.

Theorem 12 (Stability estimate).  Let |S2| be the surface area of S2 and |p| be the mag-
nitude of p ∈ R3. Define Ifar,δ(x) = (u∞

δ , pΦ∞(·, x))L2(S2)3. The imaging functional Ifar(·) de-
fined in (39) for the far-field pattern u∞ generated by an incident wave Ein satisfies

|Ifar(x)− Ifar,δ(x)| � |p| |S2|‖u∞ − u∞
δ ‖L2(S2)3 , for all x ∈ R3.

Proof.  The proof follows directly from the Cauchy–Schwarz inequality

�

|Ifar(ys)− Ifar,δ(x)| �
∣∣∣∣
∫

S2
(u∞(x̂)− u∞

δ (x̂)) · (pΦ∞(x̂, ys))ds(x̂)
∣∣∣∣

� |p||S2|‖u∞ − u∞
δ ‖L2(S2)3 .

□ 

6.2.  Imaging with scattered field data

We are also interested in the imaging of the scatterer Ω from some boundary data of the scat-
tered field u(x) instead of its far-field pattern. Again these data are generated by one or a few 
incident waves Ein. We will show how to construct the imaging functional. To this end we need 
a technical assumption on the global smoothness of coefficients P, Q and ξ.
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Note that the imaging functional in this case provides an alternative choice for the imaging 
of Ω using the exact formula of the scattered field instead of its far-field pattern. This might 
be useful in the case where measurements are given in terms of the scattered field or one is 
uncertain about whether the far-field approximation is accurate enough. We first have the fol-
lowing lemma, which is important to the derivation of the imaging functional.

Lemma 13.  Assume that coefficients P, Q and ξ are globally smooth functions. The scat-
tered field u satisfies

u(x) =
∫

Ω

Φ(x, ·)
[
k2SE +∇div(SE) + curl (T E)

]
dy, x ∈ R3,

where E is again the total electric field.

Proof.  Since P, Q and ξ are globally smooth functions, elliptic regularity results guarantee 
that SE and T E are also smooth functions with compact support in Ω. Using Green’s theorem 
and the fact that

∂Φ(x, y)
∂xj

= −∂Φ(x, y)
∂yj

, j = 1, 2, 3,

we have

u(x) = (k2 +∇div)
∫

Ω

Φ(x, y)SE(y)dy + curl
∫

Ω

Φ(x, y)T E(y)dy,

=

∫

Ω

Φ(x, y)k2SE(y)dy +

∫

Ω

∇xdivx [Φ(x, y)SE(y)] dy +

∫

Ω

curl x [Φ(x, y)T E(y)] dy

=

∫

Ω

Φ(x, y)
[
k2SE(y) +∇div(SE(y)) + curl (T E(y))

]
dy.

This completes the proof.� □ 

Consider a ball Br of radius r, centered at the origin, suppose that Ω ⊂ Br and that the scat-
tered field data u(x) are given on ∂Br for some radius r that is large enough. This also means 
that we measure at a distance that is far from the scatterer. We now consider the imaging 
functional

I(ys) :=
∣∣∣∣
∫

∂Br

u(x) · pΦ(x, ys) ds(x)
∣∣∣∣ ,� (45)

where ys and p ∈ R3 are again sampling points and the polarization vector, respectively. We 
show in the next lemma that this functional allows us to image the scatterer Ω. For the conve-
nience of the presentation, we set

w = k2SE +∇div(SE) + curl (T E),

which means u(x) =
∫
Ω
Φ(x, ·)wdy.

Lemma 14.  The imaging functional I defined in (45) satisfies

I(ys) =
1

4πk

∣∣∣∣
∫

Ω

j0(k|ys − y|)p · w(y)dy
∣∣∣∣ .
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Proof.  The proof relies on the well-known Helmholtz–Kirchhoff identity

Φ(ys, y)− Φ(ys, y) = 2ik
∫

∂Br

Φ(y, x)Φ(ys, x) ds(x).

This identity can be proved using Green’s theorems and the Sommerfeld radiation condition 
for Φ(x, y). The radiation condition can be used thanks to the assumption on the large radius 
r of Br. We refer to [13, theorem 2.2] for a proof of the Helmholtz–Kirchhoff identity. Indeed, 
using this identity the inner product in the imaging functional I can be computed as

∫

∂Br

u(x) · pΦ(x, ys)ds(x) =
∫

∂Br

∫

Ω

Φ(x, y)Φ(x, ys) p · w(y)dyds(x)

=

∫

Ω

∫

∂Br

Φ(y, x)Φ(ys, x)ds(x)p · w(y)dy

=

∫

Ω

Φ(ys, y)− Φ(ys, y)
2ik

p · w(y)dy

=
1

4πk

∫

Ω

j0(k|ys − y|)p · w(y)dy.

This completes the proof.� □ 

The imaging functional I in this case is also as stable as that of the far-field pattern case. 
Since we assume that the radius r of Br is large enough, it is sufficient to have the stability 
of I in the ball Br′ for some r′ < r . The proof again just follows from the Cauchy–Schwarz 
inequality.

Theorem 15 (Stability estimate).  Define Iδ(x) = (uδ , pΦ(·, x))L2(∂Br)3. The imaging 
functional I(·) defined in (45) for the scattered field data u(x), x ∈ ∂Br, generated by an 
incident wave Ein satisfies

|I(x)− Iδ(x)| � |p| ||Φ(·, ·)||L2(∂Br×Br′ )
‖u − uδ‖L2(∂Br)3 , for all x ∈ Br′ .

7.  Numerical examples for the inverse problem

For the numerical examples in this section the scattering data are generated by the numer
ical solver studied in section 5. First, using the solver we obtain the numerical solution to 
the finite-dimensional problem (35) whose restriction on Ω is the numerical scattered field 
u. Second, the far-field pattern data u∞(x̂) are calculated using the formula in lemma 10. We 
consider the far-field pattern data collected at 2500 points uniformly distributed on S2. Except 
the case of figure 5(d), these data, including all three components of the far-field, are gener-
ated by one incident plane wave propagating along the z-direction. We only present results for 
the imaging functional Ifar  for the far-field pattern data. The case of functional I with scattered 
field data provides similar results. We consider numerical examples for which the scattering 
objects are defined as in the following. First consider the matrices

Aε =




1.5 0 0
0 1.4 0
0 0 1.3


 , Aµ =




1.1 0 0
0 1.2 0
0 0 1.3


 , Aξ =




0.005 0 0
0 0.004 0
0 0 0.003


 ,

and the smooth function
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h(x, a, r) = r exp
(

1 − r2

r2 − |x − a|2

)
, x ∈ R3.

Let B(a, r) be the ball centered at a with radius r. In the first two examples (figures 2 and 3) 
the anisotropic scatterers are characterized by smooth coefficients given by

εr =

{
Aεh(x, a, r) + I3, x ∈ B(a, r)
I3, else

, µ−1
r =

{
Aµh(x, a, r) + I3, x ∈ B(a, r)
I3, else

,

ξ =

{
Aξh(x, a, r), x ∈ B(a, r)
0, else

,

� (46)
where

a = (0, 0.2, 0)�, r = 0.3.

In the third example (figure 4), the coefficients for the three scattering balls are given by

(a) (b) (c)

(d) (e) (f)

Figure 2.  Reconstruction results for different wave numbers for a scattering ball with 
smoothly varying coefficients defined in (46). Noiseless data associated with one 
incident plane wave direction (0, 0, 1)� are used for the pictures. (a) Exact profile. (b) 
k  =  3. (c) k  =  10. (d) Top view of (a). (e) Top view of (b). (f) Top view of (c).
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εr =





Aεh(x, a, r1) + I3, x ∈ B(a, r1)

Aεh(x, b, r2) + I3, x ∈ B(b, r2)

Aεh(x, c, r3) + I3, x ∈ B(c, r3)

I3, else

, µ−1
r =





Aµh(x, a, r1) + I3, x ∈ B(a, r1)

Aµh(x, b, r2) + I3, x ∈ B(b, r2)

Aµh(x, c, r3) + I3, x ∈ B(c, r3)

I3, else

,

ξ =




Aξh(x, a, r1), x ∈ B(a, r1)

Aξh(x, b, r2), x ∈ B(b, r2)

Aξh(x, c, r3), x ∈ B(c, r3)

0, else

,

� (47)

where

a = (0.2, 0, 0)�, b = (−0.4, 0, 0)�, c = (0.6,−0.7, 0)�,
r1 = 0.3, r2 = 0.2, r3 = 0.25.

The scattering object in the last example (figure 5) is characterized by discontinuous coef-
ficients defined by

εr =

{
Aε + I3, x ∈ Ω

I3, else
, µ−1

r =

{
Aµ + I3, x ∈ Ω

I3, else
,

ξ =

{
Aξ, x ∈ Ω

0, else
,

� (48)

(a) (b) (c)

(d) (e) (f)

Figure 3.  Reconstruction results for the scattering ball in figure 2(a) from noisy data 
associated with one incident plane wave direction (0, 0, 1)�. (a) 30% noise, k  =  10. (b) 
60% noise, k  =  10. (c) 80% noise, k  =  10. (d) Top view of (a). (e) Top view of (b). (f) 
Top view of (c).
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where

Ω = {x2
1 + x2

2 � 0.42, |x3| � 0.7} ∪ {x2
2 + x2

3 � 0.42, |x1| � 0.7} ∪ {x2
1 + x2

3 � 0.42, |x2| � 0.7}.

Figure 2 shows the dependence of the reconstruction on the wave number k for noiseless 
data. For k  =  10 the wavelength is approximately 0.6 which is also the diameter of the scat-
terer. The result in this case is therefore better than that of the case k  =  3. We can see that for 
k  =  10 the geometry (particularly the location) of the scatterer is well reconstructed in this 
case. With the same scattering object as in the first experiment presented in figure 2, we show 
in the second numerical experiment (see figure 3) that the imaging functional is robust with 
respect to noise in the far-field data. The noise we consider here is an additive noise. More 
precisely, the scattering data are added by a complex-valued noise matrix containing ran-
dom numbers that are uniformly distributed on (−1, 1). The numerical reconstructions (even 
with multiple numbers of experiments) are still quite reasonable with different levels of noise 
(30%, 60% and 80%). This robustness can be justified by the stability estimates for the imag-
ing functional in our theory.

Figure 4 indicates that the imaging functional is also able to image multiple scattering balls 
from noisy data. The geometry of the scattering balls is again well reconstructed even with 
the presence of high amounts of additive noise in the data (30% and 60%). The resolution for 
the reconstructed images in this case is also quite good for wave number k  =  10. We note that 
unlike in the case of only one scattering ball (figure 3) the reconstructions for three scattering 

(a) (b) (c)

(d) (e) (f)

Figure 4.  Reconstruction results for three different scattering balls (defined in (47)) 
from noisy data associated with one incident plane wave direction (0, 0, 1)�. (a) Exact 
profile. (b) 30% noise, k  =  10. (c) 60% noise, k  =  10. (d) Top view of (a). (e) Top view 
of (b). (f) Top view of (c).
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balls in this case are no longer reasonable with higher amounts of noise in the data. However, 
the imaging functional proposed does not seem to work well for extended scatterers although 
it may be able to locate these scatterers using lower frequencies, see figures 5(b) and (c). In 
other words, although the reconstructions are still quite robust to noise, the imaging functional 
may not be able to recover the shape of these extended scatterers; see also [35] for a similar 
situation in the scalar case of the OSM. We can improve the shape reconstruction by using 
multiple directions of incident plane waves, see figure 5(d). Following the suggestions in [35] 
one can integrate the imaging functional with respect to the directions of the incident plane. 
More precisely, here we use six incident directions (±1, 0, 0)�, (0,±1, 0)�, (0, 0,±1)� for 
the incident plane waves and add the corresponding imaging functionals together. However, 
we do not yet have a theoretical justification for this use of multiple incident directions. For 
the scalar case, we refer to [24] to justify using multiple incident directions for an imaging 
functional that shares similar features to that of the OSM.
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object defined in (48). One incident plane wave direction (0, 0, 1)� is used in pictures (b) 
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waves. (e) Top view of (a). (f) Top view of (b). (g) Top view of (c). (h) Top view of (d).
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