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CrossMark
Abstract
This paper is concerned with the direct and inverse scattering of time-
harmonic electromagnetic waves from bi-anisotropic media. For the direct
problem, we establish an integro-differential equation formulation, its
Fredholm property, and the uniqueness of a weak solution. Using this integro-
differential formulation we study a fast spectral Galerkin method for the
numerical solution to the direct problem. Numerical examples are presented
and convergence of the spectral method is proved via Garding estimates
for (strongly singular) integro-differential equations. We solve the inverse
problem of recovering bi-anisotropic scatterers from far-field data using
orthogonality sampling methods. These methods aim to construct imaging
functionals which are robust to noise, computationally cheap, and require data
for only one or a few incident fields. We provide some theoretical analysis as
well as numerical simulations for the proposed imaging functionals.

Keywords: bi-anisotropic media, fast numerical solution, orthogonality
sampling, electromagnetic scattering, inverse electromagnetic scattering,
integro-differential equation

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we study theoretical analysis and computational algorithms for both direct and
inverse electromagnetic scattering problems for inhomogeneous bi-anisotropic media. This
study is motivated by potential applications of electromagnetic scattering from complex
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media (e.g. bi-anisotropic media, chiral media) in optics and metamaterials, as well as nonde-
structive evaluations [21, 26, 33]. The topic of electromagnetic propagation and scattering in
complex media has recently received an increasing amount of interest from mathematicians.
Theoretical analysis for the direct problem in both the time domain and frequency domain
can be found in [1, 3, 4, 10, 11, 31, 32, 36, 37]. We particularly refer to the book [37] for
an account of the most recent mathematical results on complex media electromagnetics. As
can be seen in [37], and to our knowledge, there have been only a limited number of papers
addressing numerical analysis and computational algorithms for direct and inverse scattering
problems for electromagnetic complex media. For the direct problem, we refer to [40, 41] for
finite element methods to solve simplified two-dimensional problems. Numerical analysis of
the full Maxwell’s equations can be found in [2, 30] for the case of chiral media.

The study for the direct problem in this paper can be considered as an extension of the
results in [15, 18, 30]. More precisely, we extend the integro-differential formulation and
its Fredholm property from the case of isotropic magnetic media [18] and the Drude—Born—
Fedorov model for chiral media [15] to the case of bi-anisotropic media. The spectral Galerkin
method framework for solving the direct problem is extended from the results of [30]. Besides
the typical complications from full Maxwell’s equations in complex media, the main theor-
etical issue in the integro-differential formulation lies in proving the Garding inequalities for
strongly singular integro-differential operators involving matrix-valued coefficients. In addi-
tion, we establish a result on the uniqueness of a weak solution to the direct problem, which
leads to the existence and uniqueness of the solution for the direct problem and the integro-
differential formulation. We note that our results for both direct and inverse problems in this
paper can be applicable to other simpler cases of inhomogeneous (complex) media such as
bi-isotropic, chiral, anisotropic or magnetic media.

For the inverse scattering problem, although there are large numbers of studies on recon-
struction algorithms for inverse electromagnetic scattering problems, results for the case of
electromagnetic complex media are quite limited and mainly focus on theoretical issues. We
refer to [5, 6, 14, 23, 27, 28, 39] for uniqueness results. Some results on numerical reconstruc-
tions can be found in [7, 8, 14] for simplified two dimensional problems. The shape identifi-
cation problem for inverse scattering for full Maxwell’s equations in chiral media has been
studied in [15, 29]. These papers studied the factorization method of Kirsch [19] as a tool for
the imaging of bounded and periodic chiral scatterers.

In this paper we study the orthogonality sampling method (OSM) introduced by Potthast
in [35] to solve the inverse scattering problem. More precisely, we extend the OSM analyzed
for the sound-soft acoustic case in [35] to full Maxwell equations in bi-anisotropic media.
The integro-differential formulation derived for the direct problem plays an important role in
this extension. We provide some theoretical analysis for the imaging functionals derived from
the OSM as well as numerical simulations, demonstrating the efficiency of these imaging
functionals.

The OSM also belongs to a class of sampling methods including the linear sampling
method, the factorization method, the probe and singular source method, see [9, 19, 34] and
the references therein. The main advantage of the OSM compared with these sampling meth-
ods is that it requires scattering data for only one or a few incident waves and its stability can
be justified easily. However, its mathematical basis is not as complete as those of the sampling
methods mentioned above. We also refer to [17, 22, 24] for recently developed sampling
methods, sharing similar features to the OSM.

The paper is organized as follows. The direct problem and its basic setup are presented in
section 2. In section 3 we establish the integro-differential formulation for the direct problem
and prove its Fredholm property. Section 4 contains a proof for the uniqueness of a weak
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solution to the direct problem, which also implies the existence of a weak solution thanks to
the Fredholm property. A fast spectral method, its convergence analysis as well as numerical
examples are presented in section 5. The inverse problem and OSMs are studied in section 6.
Finally, section 7 is dedicated to numerical simulations of OSMs for the inverse problem.

2. Direct problem formulation

We consider the scattering of time-harmonic electromagnetic waves at a positive frequency w
from a bi-anisotropic medium. Let E be the electric field and H be the magnetic field while
B and D are respectively the magnetic induction and the electric displacement. The fields are
described by Maxwell’s equations (with no free charge and current density)

curlE —iwB =0, curlH+iwD =0, inR>. (1)
The constitutive relations for bi-anisotropic media are described as [20, 25]
B =pH+¢\/comE, D=cE+¢/EuH )

Here € and p are respectively the electric permittivity and the magnetic permeability of the
medium. The parameter £ is typically described as & = x + ik where Y is the chirality param-
eter and « is the non-reciprocity parameter of the medium. These parameters are assumed to
be matrix-valued bounded functions.

Suppose that the bi-anisotropic medium is inhomogeneous and occupies a bounded domain
Q) while the medium outside of (2 is assumed to be homogeneous. This means that there exists
positive constants €9 and p such that € = gol3, p = pols, and £ = 0/3 in R3 \ﬁ (I3 is the 3 x
3 identity matrix), see figure 1 for a schematic of the scattering problem. The relative material
parameters and the wave number are defined by

e =¢/eo, = p/po, k= wy/Eopio.

Rescaling the fields by E = /e E and H = /o H (without changing notation), and then
substituting (2) in (1) we have

curl E — ik(pH + €E) = 0, curl H + ik(e,E + €H) =0, inR>. 3)
Now we eliminate H from (3) to obtain
curl [p; 'curl E] + ik[€p 'curl E — curl (41,7 '€E)] — k*(e; — Ep "OE =0, inR%. %)
Denoting by F1 and F_ the traces on 92 from the exterior and interior of €, respectively,
for a vector function F, we assume transmission conditions across the boundary of 2. More
precisely,
vxE, =vxE_, vxculE; =vx (u 'curlE)_ —v x (iku, '€E)_, ondg, 5)
where v is an outward normal vector of €. Suppose that the bi-anisotropic medium is illumi-
nated by incident electric and magnetic fields E;, and Hj,, respectively, satisfying

curl Hi, + iweoEj, = 0, curl By — iwpoHiy =0,  in R,
We can reformulate (4) in terms of the scattered electric field u, defined by u := E — E;;.
Since curl curl Ej,, — K°E;, = 0, subtracting this equation from (4) we obtain that
curl [p; 'eurlu] + ik[€p ' curlu — curl (4, éu)] — K> (e; — Epy 'E)u

i ~ 6
= curl [Qcurl By — ik[€p 'curl By, — curl (p '€Eiy)] + K2 (P — € '€ By, in R, ©
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Figure 1. Schematic of the electromagnetic scattering from an inhomogeneous bi-
anisotropic medium § characterized by matrix-valued functions £(x), p(x), £(x).

where the contrasts P and Q are defined by
Pi=¢—1L, Q:=5L—pu "

Note that we also have corresponding transmission conditions for the scattered field u fol-
lowing from (5). Furthermore, the scattered field u must admit the Silver—Miiller radiation
condition of the form

X
curlu x x iku = O(|x|7%) as |x| — oo, (7
uniformly with respect to x.

We end this section by introducing some basic notations for the paper. Let O C R? be a
domain (connected and open) with a Lipschitz boundary. We denote

LZ(O)3 = {V = ('01,1)2,03)T 10 S L2<O),j = 1,2,3},
H(curl,0) = {v € [*(0)* : curlv € L*(0)*},
Hloc(curl,]R3) ={v: R} >3 v|p € H(curl, B) for all balls B C R3}.

Here we indistinctly denote by (-, -) the inner product of L*(O) or L*(O)? and by | - || the
associated norms, and H(curl, Q) is equipped by the usual inner product

(s )H(eur,0) = (curl -, curl -) + (-, ).

3. Integro-differential formulation and its Fredholm property

In this section we first derive an integro-differential equation for the scattering problem (6)
and (7). Second, we show that the integro-differential equation is of the Fredholm type by
proving a Garding inequality for this equation. We need the following important assumption
for our analysis.

Assumption 1. Assume that e, jir, i7", € € L>(Q)3%3 are symmetric almost everywhere
and that & is real-valued. Furthermore, assume that there exists positive constants cy, ¢ such
that for any a € C3

2

Re(y 'a-a) > cifal’, Re((er—&u'€)a-2a) > cofal’,  |l[p "l < cico
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Here | - |, is the spectral matrix norm. We remark that beside the positivity assumptions
we also require that £ must be ‘small” enough, which is common in electromagnetic complex
media. Now recall that P =¢, — I3, Q =15 — . ! We define the operators S and 7 from
H(curl, Q) into L*(Q)* as

Su:=(P—&u ' u— %Eur_]curlu, Tu := Qcurlu + ikp 'éu.

Lemma 2. The operators S and T are bounded linear operators from H(curl, Q) into
L2 ()3,

Proof. It is obvious that these are linear operators. We only prove boundedness for S since
the proof is straightforward and similar for 7 . Indeed, we have

_— i—
[Sull < [[(P — &y '€)ul| + I17:€n eurlul|
< max{[[[P — & €l 1€ lle /k} 0l geun )

which means that S is bounded from H(curl, ) into L*(Q)>. O
We can now rewrite (6) as
curl curlu — K*u = K*(Su+f) +curl (Tu+g) inR°,

where f = SE;, and g = T E;,. This equation has a variational formulation as

/ (curlu-cuer—kzu-V)dXZkz/(Su—f—f)-de—i—/(Tu—i—g)-cuerdx,
R? Q Q

(®)
for all v € H(curl, R*) with compact support.
Let ® be the Green’s function to the scattering problem for the scalar Helmholtz equa-
tion in R3
eiklx_Y|

O(x,y) = X £y. 9)

dmlx —y|’
For h € L?(2)?, the linear operators

Ah(x) = (K + Vdiv) / ®(x, -)hdy,
Q

Bh(x) = curl / d(x, -)hdy,
Q

are bounded from L2(£2)? into Hj(curl, R?) (see [18]). Using the method of [18] problem (8)
can be equivalently formulated as the following integro-differential equation

u(x) = (K + Vdiv) / O(x, ) [(P— Ep; ' E)u — %Eu;lcurlu + f]dy

Q
+ curl / ®(x, -)[Qcurl u + ikp'éu + gdy, (10)
Q
or
u— ASu— BTu= Af+Bg inR>. (11)
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This was proved in [18] for the case of scalar functions &, i, and & = 0. The proof for matrix-
valued functions &, y1, and & is actually similar and is therefore omitted here. Next we will
prove a Garding inequality [38] for the operator on the left-hand side of (11), which is also
the main result of this section, and is useful for the convergence analysis of our numerical
spectral method.

We denote by ® the exponentially decaying kernel

e_k‘x_Y‘

Do(x,y) = #Y.

dmlx —y|’
For h € L?(2)? we define

Aoh(x) = (—k* + Vdiv)/ Dy(x,-)hdy, Boh(x) = curl / Dy(x, -)hdy,
Q Q

which are bounded linear operators from L?(£2)* into H(curl , R*)[18]. The following lemma
from [18] is useful to our analysis.

Lemma 3. Forh € L?(Q)3, Aoh and Boh uniquely solve
/ (curl Aoh - curl W + &> Aoh - W) dx = —k? / h-wdx,
R3 Q

/ (curl Boh - curl W 4 k2 Boh - W) dx = / h - curl wdx,
R3 Q

forall w € H(curl ,R?).

Let B, be a ball with the center at the origin and radius p, and suppose that Q@ C B,. We
need the following inner product in our analysis

(s Verieurt 5,) = (curl - curl ) + K-, -). (12)

Now let h,, be smooth functions with compact support in € such that h, — h in L?(2)*. Then
we have from lemma 3 that curl curl Aoh,, + k> Aoh,, = —k*h,, in L?(R3)3. Multiplying both
sides of this equation by v € H(curl, B,), using Green’s theorem and taking the limit n — oo
we have

(Aoh, V)i H(eurt B,) = —k*(h,v) — / (v x curl Agh) - (v X V) x vds, (13)
o8,
where v is the outward normal vector of B,,. Similarly for By we also have
(Boh, V)i si(curt 8,) = (h,curlv) — / (v x curl Boh) - (v x V) x vds.  (14)
3B,

We notice that for y € Q, ®¢(-,y) is smooth on 9B,. Therefore, the kernel of Ay and By is
smooth on OB, and the traces on OB, in the variational equations above are well defined.
Now we are ready to prove the Garding inequality.

Theorem 4. Suppose that assumption 1 holds true. Then there exists a positive constant C
and a compact operator K on H(curl, B,) such that

Re (u — ASu — BTu, ) et 5,) = ClUlE rieun 5,y — Re (KWW preunt 58,)5
(15)

forallu € H(curl,B,).
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Proof. Applying (13) and (14) for h = Su and h = Tu, respectively, choosing v = u and
adding the two resulting equations up we obtain

(AoSu + BoTu, ) ri(curl 8,)
_ 7/ (v x curl (AoSu + ByTw)) - (v x &) x vds
o8,

sz/((PfE,u:lﬁ)uf %Eur’lcurlu) ~ﬁdx+/(chrlu+iku:1§u) - curl wdx.
Q Q

The smoothness of the kernel ®; on 9B, allows us to obtain the compactness of the operator
K, : H(curl,B,) — H(curl, B,) defined by

(K1, W) (curt B,) = / (v x curl (ApSu+ ByTu)) - (v x W) x vds.
98,

Straightforward calculations lead to

(u— AoSu — ByTu — Kiu, 0) yeurt 8,) = / ptcurlu - curlu + K (e, — Ep ' €)u - udx
B

P

—/ ik(p, "¢ - curlu 4 € 'eurlu - w)dx.
B

P

Taking the real part of this equation and using assumption 1 we obtain

Re (u — AoSu — BoTu — Kiw, W) pr(cunt 8,) = / cilcurluf® + K%c;|u)?dx
B

o
+ kIm / (7 "éu - curla + €p; 'curl u - w)dx.
B
' (16)
Since we assume that £ is real-valued and that £ and p, are symmetric, we have

Epteurlu-u = p'éu- curlu

‘We also have that
ik ?
vV 2c 1

2 .
C1 2 e k =2 C1 lk I
U lcurluf? + k1 -curlu) + —— =/ Leurlu— ==
3 |curl u] m (p,  &u-curlu) 2 |, " &l ‘ 5 curlu \/271;4 &u

3

k2

Cz—l\curlu|2 + kIm (g 'éu - curlw) + 2—|u:'§u|2 = " / %curlu —
Cq

2

Using these equations in (16) leads to
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2

Cl ik 1
R — ApSu — B — Kju, u = —
e(u— AySu—ByTu 1W, W) H(curl B,) H\/ 2 mur éu

C1 ik
+ —curlu — 7;4

e (cz||u||2—fuur ull — 5w uZ)

(I7)
We can estimate the last term as
1
el = 5l sulP = 5w > (e = Ll el ) ul®
(18)
For the convenience of the presentation we set
1 —1
y=c2— —|llp &2z > 0.
(5]
Now we estimate
c : c :
K {|u]]* + H’/zlcurlu < (k||u|\ + H’/zlcurlu )
I Y e 2
—cur
2, My
” 2 !
(H,/ curlu— o leul| + K2 (1 7”‘/% ;Lz”L ) [u |2>
2
cm1+|||u-1sz|m)2 H ¢ ik 22
< 2max{ 1, L —curlu — ——p &u|| +k>ylu|” | .
{ ( e V3 el Ao
Therefore, we have shown that there exists a constant
minq1, &
. IV
Ve[| €allzoe
2max{l,< NN ) }
such that
c ik ?
1 -1 2 2 2
| Gema = el ol > ClulRns, (19)

From (17)-(19) we obtain that

Re (ll - AUS“ - B()Tll — Kiu, u)k,H(curl,BP) P C”“”%,H(curl By)*

Therefore

Re (ll — ASu — BTU, u)k,H(curl By) > C”“Hl%,H(curl Bo) +Re (Kl u, u)k,H(curl By)
+Re ((A — Ap)Su + (B — Bo) T, 0); p(curt 8,)-

8
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It is known from [18] that the operators A — Ay, B — By can be written as integral operators
with weakly singular kernels. Therefore, the operator K, defined by

(Kau, @) pr(curt 8,) = ((A — Ao)Su+ (B — Bo)Tu, ) g(curl 8,)

is compact on H(curl, B,). Setting K := K| + K5, we obtain the desired Garding inequality.
O

The following corollary follows immediately from theorem 8.

Corollary 5. The direct problem or the integro-differential equation (10) is uniquely
solvable if and only if the corresponding homogeneous problem only has a trivial solution.

4. Uniqueness of solution

Thanks to corollary 5 we only have to prove the uniqueness of the solution, which is the main
goal of this section. To do so we need the assumption on the absorbing material parameters.
More precisely, we assume for all a € C? that

2’ 2’ (20)

Im (e;a-a) > SBla Im (p; 'a-2) < —ala

where a and 3 are positive constants such that

i LlZ < o + aplllgl]lz=.

We remark that the latter inequality constraint is quite reasonable since the norm |[|€]|;2 is
supposed to be large following assumption 1.

Theorem 6. [f assumption 1 and (20) hold true, then solution u to the variational problem
(8) for £ = g = 0 must vanish in R3.

Proof. Assume that u is a solution to problem (8) for f = g = 0. Recall that Q C B,. Let
¢ € C5°(R?) be a cut-off function satisfying ¢ = 11in B, and ¢ = 0 for [x| > 2p. Choosing
v = ¢u in (8) leads to

/ (i 'curlu - curld + ik€p, 'curlu - @ — ikp, "éu - curlu — (g, — &p ' €)u - 1) dx
BP

=— / (curlu - curl (¢pu) — K*u - ¢u)dx
p<[|x|<2p

= / (curlu x v) -uds.
Ix|=p

We recall that £ is assumed to be real-valued and that p,, &;, £ are symmetric. Therefore we can
rewrite the left-hand side of this equation as

/ (p curlu - curl @ + ikp, 'éu - curlu — ik, 'éu - curl W 4 &2 'éu - &0 — KPepu - W)dx
BP
= / (curlu x v) -uds.
[x|=p

Taking the imaginary part of (21) implies that
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Im (curlu x v) - uds < —acurlu® — akéu||* — 3| kul|?
Ix|=p

+k/ Re (u; 'curlu - £@)dx — k/ Re (p 'curl - €u)dx
B B

P 3

(22)

For any > 0 we have

1
k/B Re (p; 'curlu - m)dx = %Hk&uﬂz + %H,ur_lcurluﬂ2

P
1
Tomkgﬁ — 4/ %u;lcurlu
1

—k/B Re (p; 'curld - €u)dx = m”kﬁu”2 + ?H,uf'curlﬁ”2

P
_‘ %g +1//’7 ﬂr Curlll

Substituting these equalities in (22) and using | 'curlul|? < ||| 2]|2 ||curlu]|? and
—Blkul* < =BIl€|2172 |k€ul|* we obtain

2

2

Im / (curlu x v) - wdx
[x|=p

- 1 _
< (M2 llzena = a) [eurlul* + (na —a- BIIIfzIIé) k€ul®

1 / /
_Hmkfu— % flcurlu HFSU+ o “leurla

Using assumption (20) we can choose 7 such that
1 o< 1
-_— ’rl — b
a? + af| |72 s ol

2

(23)

which implies that the first two terms on the right-hand side of (23) are nonpositive. Therefore,
we obtain the estimate

Im (curlu x v) -wdx <0
[x|=p

Using this estimate we have

/|XP

X .
curlu x — —iku

x|

2
ds = / (|curlul* 4 &*|uf?*)ds — 2kIm (curlu x v) -wdx
[x|=p [x|=p

WV

/ (Jcurlu)? + K*|u|*)ds
[x|=p
Letting p — oo and using the radiation condition we obtain

10
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lim lul’ds = lim |curl u|*ds = 0.
Po0 Jixl=p Pmo0 Jixl=p

Recall that we have curlcurlu — k*u = 0 in R? \ B,, which implies that Au + kK’u =0 in
R3 \ Fp. Therefore, using Rellich’s lemma (see [12, lemma 2.12]) and the analytic continuation
one can deduce thatu = 0in R* \ €. This result also implies Im [,

Ix‘:p(curlu xv)-udx=0
which allows us to obtain the following from (23)

fua=curlu=0, inQ.

The latter and (21) implies that u = 0 in Q since &, — £~ '€ is positive definite by assumption
1. Therefore, we have shown the solution u = 0 in H(curl, R?), which completes the proof.

O

5. Fast numerical solution to the direct problem

Solving the direct problem is equivalent to solving the integro-differential equation
u— ASu— BTu= Af + Bg in Hy.(curl,R?). (24)

We will develop a fast spectral Galerkin method to solve (24). This spectral method exploits
the convolution structure of the integro-differential operators, which enables the use of FFT in
the numerical implementation. To this end we first need to establish a suitable periodization
of (24).

Recall that Q C B,,. For R > 2p, we consider the cube

Or ={xeR: || <R,j=12,3},
and define the new (smoothed) kernel X in 2z as follows
d(x), B
K - [POR), xE€Be
0, X € QR \BR,

where 1 € C§°(Bg) such that ¢»(x) = 1in By,

After that we extend X, P, Q, &, and g from Qg to R3 as 2R-periodic functions with respect
to all variables. The orthonormal basis of L?(€2z) and Fourier coefficients of f € L*(Q) are
given by

(25)

.. X . — .
exp(lﬂ-—), f(J):/qusjdx, je 72, (26)

1
(X)) =
For a periodization of (24) we define H,(curl, {}g) as a subspace in L?(2¢)* containing func-
tions f such that

103, oy = D (RGP + [Gm/R) < F) ) < oo. @
jez?
Note that a function f € Hp(curl,QR) is 2R-periodic in xj,x; and x3, and that the norm
(€112, (curt .2%) o0 Hp(curl, Q) is equivalent to the usual norm |[f][¢ g (curt 2,)-
We define periodic integro-differential operators Ay, B, from L?(Qz)? into Hy(curl, Q)
by

1
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Af(x) = (k* + Vdiv) [ K(x,)fdy, Bf(x) = curl K(x,)fdy in Q.
Qr Qg

These operators are continuous linear operators, see [30]. Let us now consider the periodic
version of the original integro-differential equation (24)

u— A,Su— B,Tu= Af+ Byg inHp(curl, Q). (28)

The next theorem shows that solving the original integro-differential equation (24) is now
equivalent to solving the periodic integro-differential equation (28).

Theorem 7. Suppose that assumption 1 and (20) hold true. The periodic integro-
differential equation (28) has a unique solution v € Hy(curl,Qg) for all f,g € L*(Q)3. Fur-
thermore, v|p, € H(curl, B,) solves the original integro-differential equation (24).

Proof. Letf,g € L?(£2)? and we extend them by zero outside of . It is proved in the previous
sections that the integro-differential equation (24) is uniquely solvable. Let u € H(curl, B))
be this unique solution. We define v by

v=A(Su+f)+ By(Tu+g). (29)

Then v belongs to Hy(curl, Q) thanks to the fact that Su + f and Tu + g are in L?(Q)3, and
that Ay, B, are bounded linear operators from L*(£2)® to H,(curl,{g). Now we show that
v|g, = u. Recall that for |x —y| < 2p, we know from (25) that X(x,y) = ®(x,y). Therefore,
forx € B, andy € 2 C B,, we have

Ap(Su+£)(x) = (K + Vdiv) [ K(x,-)(Su+f)dy
Qg

= (K> + Vdiv) / ®(x,-)(Su+f)dy

= A(Su + f)(x).

Similarly we obtain B,(7u + g)(x) = B(7u + g)(x) for x € B,,. Therefore, we have that for
x€B,
v(x) = Ap(Su+1£)(x) + By(Tu + g)(x) = A(Su+1£)(x) + B(Tu + g)(x) = u(x).
The last equality is due to the fact that u solves (24). Now since V| B, = W we obtain from (29)
that

V= A8V 1)+ By(TV +g),
which means that v is a solution to the periodic integro-differential equation (28).

Now, for f = g = 0, since (24) has a unique solution, we have u = 0 in H (curl,Bp). Then
from (29) v = Ay(Su) + B,(7Tu) = 0, which means that (28) also has a unique solution. []

Next we prove that the operator I — A,S — B,T from (28) satisfies a Gérding inequality
in Hp(curl, Qg). This proof is similar to that of theorem 4.4 in [30]. We present a short proof
here for the convenience of the readers.

Theorem 8. Suppose that assumption 1 and (20) hold true. Then there exists a positive
constant C and a compact operator L on Hy(curl, Qg) such that

12
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Re (ll - APSU - BpTu’ u)k,H],(curl Qr) = C”u”z,Hp(curl Qr) T Re (Lll, u)k,Hp(CurLQR)’ (30)
for allw € Hy(curl, Q).

Proof. We can write the left-hand side of (30) as

(u— ApSu = ByTu, ) g, (curl ) = (W — ASU = BTW W) sieur B,,)  (31)
—(APSU + BpTu, u)k,H(curl Qr\B2p) (32)

i prunt 20\82, ) (33)

The Garding inequality of the first term in (31) is already proved in theorem 8. The second
term can be written as a compact term. We define L, : Hp(curl, Qg) — Hp(curl, Q) as

(L1, @)y g, (curt ) = (ApSu+ By T 0, ) (curt 24\Bs,)-

Since the kernel X is a smooth function on 2 x Qg \ B,,, the volume potential mapping
g to [, K(x.y)g(y)dy is a compact operator from L*(Q)* to H*(Qg \ Bz,)’. Recall that
S, T : Hy(curl, Qg) — L?(2)3 are bounded operators. From these facts it is deduced that A,S
and B, T are compact operators from Hp(curl,Qg) to H(curl, Qg \ B;,). Therefore, let u, be
a sequence which converges weakly to zero in Hp(curl, Q). Using standard arguments we
can prove that Lju, converges strongly to zero in H, (curl, Qg), see e.g. [30]. |

We now study a spectral Galerkin approximation for the periodic integral equation (28).
For N € N we consider a finite dimensional subspace of H,(curl, Qg) as

Ty = (span{¢; : j € Z?\,})3, Z?V ={je 73 —N/2 < j123 < N/2},

where ¢; € LZ(QR) are the trigonometric basis functions in (26). Note that the union UyenTy
is dense in Hp(curl, Q2g). Now we consider the following finite dimensional problem. Given
f,g € L?(2k)*, find uy € Ty such that

(uN - ApSUN - BpTuN’ VN)Hp(curl Qr) = (Apf+ Bpgs VN)H[,(curl Q) (34)

for all vy € Thy.
Thanks to the Garding inequality of the periodic equation (28) we have the following
standard quasi-optimal convergence result for problem (34), see, e.g. [38, theorem 4.2.9].

Theorem 9. Suppose that assumption 1 and (20) hold true. Let u € Hp(curl, Qg) be the
unique solution of (28). Then there is Ny € N such that the finite-dimensional problem (34)
has a unique solution uy for all N > Ny. In this case,

=
||uN - u”Hp(curl,QR) < C inf ||VN - u”Hp(curl,QR)’
vy ETy

with a constant C independent of u, uy and N > Nj.

We remark that if the coefficients &, 11, and £ are L°°-functions, solution u may not be more
regular than H(curl ). Therefore, it is probably not possible to improve the estimate above in
theorem 9, see also [2] for a similar situation. We can have more regularity on the solution
by assuming the global smoothness of ¢, i, and &. It is important to note that the volume
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potential with the periodic smooth kernel X is diagonalized by the trigonometric basis {¢;},
which means

K(x,-)¢jdy = V8RS K(j)¢j(x) forall j € Z2,
Qg

where X (i) = Jo, X(2)j(z)dz. This leads to the fact that the orthogonal projection
Pwn : Hp(curl, Q) — Ty defined by

Pr(v) =D Vs,

Jezy,

commutes with the periodic (convolution) operators Ay, B;. Therefore, the finite-dimensional
problem (34) can be rewritten as follows. Find uy € Ty such that

uy — Ay (P (Suw)) = By (Pn(Tuw)) = Ap(Paf) + Bp(Prg). (35)

We can discretize this equation in a spectral domain, which means we look for the Fourier
coefficients of uy. The Fourier coefficients of .A,vy and Byvy for vy € Ty can be computed
thanks to the fact that the integrals have a convolution structure and that the Fourier coeffi-
cients of kernel K can be explicitly computed as

~

Rl = = 3 Bmili-w. ez

nez;,

where (f)p(n) are the Fourier coefficients of the periodic kernel without smoothing. They have
explicit formulas: for 7%|n|? # R?k?,

5.0 kZ\/lﬁ(eikR(l —ikR) — 1) Inj =0
n) = 2 . . . .
P m(l — elkR COS(7T|n|) — %elld{ Sln(ﬂ'ln‘)), |n| # 0.

Otherwise (f)p(n) = —iR/(4kvV/R3)(1 — e*R sin(kR)/(kR)). Since 1 is a smooth function, its
Fourier coefficients decay rapidly, that is, a short truncation in the series in UAC(J) converges
rapidly to the exact value. These facts are crucially exploited for fast methods (e.g. fast Fourier
transforms) for solving the discrete version of (35). We refer to [30] for more details about the
numerical implementation and other aspects of the method.

5.1. Numerical examples for the direct solver

We present in this section some numerical examples examining the performance of the
direct solver for the case of smoothly varying coefficients, discontinuous coefficients, and
wave numbers k = 1 and k = 30. The simulations were carried out on a Quad Core 3.6 GHz
machine with 32GB RAM. In all examples the tolerance for the GMRES solver for the linear
system obtained from discretizing (35) is chosen to be 1078, For r > 0 let h be a smoothly
varying function defined by

2
h(x,r) = l—5—— ], xeR’,
(x,7) rexp( 2 |x|2> X

and consider the following diagonal matrices

14
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Table 1. Performance of the direct solver for smoothly varying coefficients and k = 1.

N m%x{|u°°(3(\)|} Time (s)
32 0.13683474 1.7

64 0.13695617 16.2
128 0.136956 10 137.4

Table 2. Performance of the direct solver for smoothly varying coefficients and k = 30.

N max{[u>(x)[} Time (s)
32 0.37506973 4.0
64 0.37222626 26.6
128 0.37222122 218.2
24 0 0 21 0 0 000l 0 0
Ac=|0 25 0 |, A,=|0 23 0 |, Ac=| 0 002 0
0 0 22 0 0 22 0 0 005

5.2. Example 1 (smoothly varying coefficients)

In this example we consider matrix-valued functions &, !, £ that are smoothly varying func-
tions as

. {Aeh(x, N+hL xX<ro {Aﬂh(x, L X <ro {Agh(x, r), |x|<r

T L, else T T\ L, else > 0, else.
Here we choose r =1 for k=1 and r= 0.5 for k = 30. The eigenvalues of A, are small
because ¢ is assumed to be ‘small’ in assumption 1. N is the number of discrete points in
each dimension of the computational domain. Using lemma 10 the far-field pattern u® (X) is
evaluated at 900 points uniformly distributed on the unit sphere. Time in the tables means the
computation time for the direct solver. Our computer is out of memory for N = 150, showing
that the solver is very efficient for the case of smooth coefficients for bi-anisotropic scattering
media. Indeed, we can observe a fast convergence in tables 1 and 2 for both smaller and larger
wave numbers. We also remark that for the case of smooth coefficients, the performance of
the method can be improved by using a two-grid (or multigrid) method instead of GMRES for
solving the linear system (see, e.g. [16]).

5.3. Example 2 (discontinuous coefficients)

Let B, = {|x| < r}. For any 3 x 3 matrix M we define a discontinuous function F as

IM+1 xe (-4 5)
F(x;M) = {Mh(x,r)+15 B,\ (-4 %)
Iz, else.

We consider in this example matrix-valued functions &, f~ L ¢ that are functions with discon-
tinuities as
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Table 3. Performance of the direct solver for discontinuous coefficients and & = 1.

N max{[u>(x)[} Time (s)
32 0.13427639 15
64 0.13286491 15.64
128 0.132049 13 136.8

Table 4. Performance of the direct solver for discontinuous coefficients and £ = 30.

N m%x{|u°°(§)|} Time (s)
3 0.374 16440 3.7
64 0.370998 17 26.9
128 0.37065824 235
e xe (550
e =F(xA), ' =F(xAL), €= {Ah(xr) B\ (=157  (36)
0, else.

As in the case of smooth coefficients we choose r=1 for k=1 and r =0.5 for k = 30.
Although the convergence can be seen again in tables 3 and 4, the performance of the direct
solver in this case is not as good as that of the case of smooth coefficients. This is reasonable
because the order of convergence is lower due to the lack of regularity of the solution that is
commented on after theorem 9. It is also not clear whether multigrid methods can be applied
to improve the performance of the solver in this case where we have discontinuous matrix-
valued coefficients.

6. Orthogonality sampling methods for inverse scattering problems

We consider the inverse scattering problems of recovering the bi-anisotropic medium from
both the far-field pattern data and the scattered field data. These data are generated by one
or a few incident fields. We will extend the orthogonality sampling method introduced by
Potthast in [35] for sound-soft acoustic scattering to our case of electromagnetic scattering
from bi-anisotropic media. The main advantages of this sampling method are that it is robust
to noise, computationally cheap and requires data for only one or a few incident fields. We
first study the case of far-field pattern data. It is well known that the scattered electric field u
has the asymptotic form

X) = ‘T;'l <u°°(§) ‘o (|?1<|>> X = oo,

uniformly in all directions X = x/|x| € S% The function u™(x) defined on the unit sphere S*
is called the electric far-field pattern.
We need the following lemma for our analysis.

Lemma 10. The electric far-field pattern ™ (X) satisfies

—ikX-y

uoo@):kZ/ . ﬁx(SE(y)xsz)dka/
q 4w

[e) 7

e—il&\‘y

X x TE(y)dy,
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where E = u + Ey, is the total electric field in (4).

Proof. The asymptotic behavior of ®(x,y) for [x| — oo is well known

eik|x\ e—iki\‘y 1
o0 =57 (5 o))

In addition, for any a € C3, we have from [12, theorem 6.9] that

elklx| e—iki‘y/\ ‘al
curl (P (x,y)a) = ikW < 1 Xxxa +0 <x|)> , 37)
ik|x| —ikX-y
curl yeurl x(®(x,y)a) = kze|x| (e4ﬂ§ X (axX)+0 (E:)) . (38)

Since we are interested inu(x) for|x| — oo, using (37),(38) and the factk’®(x, y) = —Ad(x,y)
for X # y, and the identity —A + Vdiv = curl curl, we obtain that

u(x) = (K + Vdiv) /

B (x, y)SE(y) dy + curl / B(x,y)TE(y)dy,
Q Q

= / curl yeurl «(®(x, y)SE(y)) dy +/ curl x(®(x,y)TE(y)) dy,
Q Q
eik|x\ efiki-y efiki-y 1
(kz/ ix(SE(y)xi)dy—i—ik/ 1 ixTE(y)dy—i—O(—)).
Q

Y 4 o 41 x|

The last equation means that the far-field u®° satisfies the desired property of the lemma. []

6.1. Imaging with far-field pattern data

We are interested in imaging of the scatterer € given the far-field pattern u> (X), for all z € S?,
generated by one or a few incident plane waves. Let y, be the sampling points in the imaging
process and p € R3 be some polarization vector. We define the imaging functional Iy, as

luly) = | [ 0@ 07 Gy 5@ 3

Here &> (X,y) = e Y /(4r) is the far-field pattern of ®(x,y). We show in the next lemma
that this functional Ip,(y,) must be close to zero when sampling points y, are away from (2,
and it takes finite values when y, approaches points y of €. This behavior thus would allow us
to be able to recover geometrical information (e.g. location, shape) of the scatterer 2.

Lemma 11. The functional Iy, defined in (39) satisfies

|Y
1672

() = ] [ U~ ¥ ) + Vi -y SEW)y],

where U,V : R3 x C3 — C3 are bounded functions with explicit formulae (see in the proof),
which satisfy the following limits (pointwise in a)
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lim U(z,a) =0, lim U(z,a) =0,

|z|—0 |z] =00
lim V(z,a) = &*(1,1,1)7,  lim V(z,a) =0.
|z]—0 |z] =00

Proof. We have the well-known Funk-Hecke formula as follows (see, e.g. [12])

/ e %Y, (R)ds(X) = 4mju(klz))Ya(Z), n=0,12...,
S2?

where j, are Bessel functions of order n and Y,, are spherical harmonics of order n. Let n = 0
in the Funk—Hecke formula, and for any a € C? we have

/ curl (e~ % %a)ds (%) = —ik / (% x a) e~ ¥ dy(R)
S? S?

Ak cos(klz]) _ Jjo(k|z])
=U(z,a) :=4nkz x a < K2 0k|z| ) ; (40)

/ curl jeurl , (e~ **%a)ds(X) = —kz/ X % (a x X)e” ¥ %ds(x)
$? s2

ar [0F jo(Klz]) — Djo(K[z])] + @203 yjo(klz]) + asd5 yjo(klz)
= | @08 yjo(klz]) + ax [0 jo (Klzl) — Ajo(klz])] + a3d3jo(Klzl) | .
a0 3o (klz]) + @203 3jo (K[2]) + a3 [03 3jo(K]z]) — Ajo(k|z])]

where

0jo(klz|)

8% jo(klz)) = ,om,
hnndo (k|2]) 9.0, "

=1,2,3.

Using the fact that Ajo(k|z|) = —k%jo(k|z|) and some calculations lead to

V1 (Z, a)
—kz/ X % (a x X)e *¥ds(X) = V(z.a) = | Va(z.2) 41)
s V3(z, a)

where

2 —_ . . . .
v = (M%) el 3 (9 ) foostla) — ki) j=1.2.3

It is important to note that function V;(z, a) tends to k* and U(z, a) tends to zero as || tends to
zero. Indeed, this can be seen by rewriting V;(z, a) and U(z, a) as

viaa) = Ein(kie) ~ 222 (e + 3 KD ),

(42)

U(z a) = 47k*(z x a) <C°S<"'ZIQ|;|§0<"'Z'>> , (43)
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and by using the following

o - cos(klz]) —jo(klz) _ 1
< Cla), Jlimjo(kll) = 1, lim SEEECC SO = o

(a-z)z
|z|?

where C(a) is a positive constant depending on a. In fact C(a) can be computed explicitly, for
instance C(a) = max{2|ai|, |a2|/2,|as|/2} for j = 1. Furthermore, it can be easily checked
that functions U and V decay rapidly as |z| tends to infinity. More precisely,

U(z,a) =0 ( ! ) , V(z,a)=0 (|lz|> , |z| = . (44)

2|

Now using lemma 10, (40) and (41) we compute the inner product

—ikX-
[ @ 0P RYD® = [ 8 [ SR (B) <R dy- (pFERY))s(E)

—ikX-y
4 / ik / R X TE(y) dy - (pB= (X y,))ds(®)
S? Q 471'

K? i - RN
= 16:2 ./Q/sz e M O¥IR x (SE(y) x X)ds(X)dy

ik U ~ ~
i 4 / / e IROTWR x TE(y)ds(X)dy
167'('2 OJs?

- 16p772 ' /QU(Y — ¥, TE(y)) + V(y —y;, SE(y))dy.

+

This calculation together with the asymptotic behaviors of U and V established above finish
the proof. O

The next theorem shows the stability of our imaging functional.

Theorem 12 (Stability estimate). Lez [S?| be the surface area of S* and |p| be the mag-
nitude of p € R?. Define Ity 5(x) = (u3®, p®>° (-, X)) 252y The imaging functional Ig(-) de-
fined in (39) for the far-field pattern u® generated by an incident wave Ei, satisfies

[Tar (X) — Tpar.s (X)| < |p] |Sz|Hu°° —ug’ |22, forallx € R3.

Proof. The proof follows directly from the Cauchy-Schwarz inequality

|Ifar<YS) - Ifar,&(x)l <

=6 ) - pFT Ry

< [plIS?[ [0 — w5 |p2s2ye.

6.2. Imaging with scattered field data

We are also interested in the imaging of the scatterer 2 from some boundary data of the scat-
tered field u(x) instead of its far-field pattern. Again these data are generated by one or a few
incident waves Ej,. We will show how to construct the imaging functional. To this end we need
a technical assumption on the global smoothness of coefficients P, Q and &.
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Note that the imaging functional in this case provides an alternative choice for the imaging
of 2 using the exact formula of the scattered field instead of its far-field pattern. This might
be useful in the case where measurements are given in terms of the scattered field or one is
uncertain about whether the far-field approximation is accurate enough. We first have the fol-
lowing lemma, which is important to the derivation of the imaging functional.

Lemma 13. Assume that coefficients P, Q and & are globally smooth functions. The scat-
tered field u satisfies

u(x) = /Q ®(x, ") [(*SE + Vdiv(SE) + curl (TE)| dy, x€R’,

where E is again the total electric field.

Proof. Since P, Q and ¢ are globally smooth functions, elliptic regularity results guarantee
that SE and TE are also smooth functions with compact support in 2. Using Green’s theorem
and the fact that

0%(x,y) _ 02(x.y)

Ox j 3}1 /i

) j:1’2’3’

we have
u(x) = (k2+Vdiv)/ O(x,y)SE(y)dy + curl / O(x,y)TE(y)dy,
Q Q
= / ©(x, y)K*SE(y)dy + / Vxdivy [©(x, y)SE(y)] dy + / curl  [®(x,y) TE(y)] dy
Q Q Q

= /Q ®(x,y) [F*SE(y) + Vdiv(SE(y)) + curl (TE(y))] dy.

This completes the proof. O

Consider a ball B, of radius r, centered at the origin, suppose that Q C B, and that the scat-
tered field data u(x) are given on 9B, for some radius r that is large enough. This also means
that we measure at a distance that is far from the scatterer. We now consider the imaging
functional

1(y,) = /8 u(x) POy ds(x) 45)

where y, and p € R? are again sampling points and the polarization vector, respectively. We
show in the next lemma that this functional allows us to image the scatterer {2. For the conve-
nience of the presentation, we set

w = k*SE + Vdiv(SE) + curl (TE),
which means u(x) = [, ®(x, -)wdy.
Lemma 14. The imaging functional I defined in (45) satisfies

1030 = 5 | [ty = e wis)ay.
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Proof. The proof relies on the well-known Helmholtz—Kirchhoff identity

B(y,.y) - By.y) = 2ik /8 B ()

This identity can be proved using Green’s theorems and the Sommerfeld radiation condition
for ®(x,y). The radiation condition can be used thanks to the assumption on the large radius
r of B,. We refer to [13, theorem 2.2] for a proof of the Helmholtz—Kirchhoff identity. Indeed,
using this identity the inner product in the imaging functional / can be computed as

/3 () PR, () = /3 § / B(x,y)3(.¥5) p - w(y)dyds(x)

_ / / B(y, X)B(y,, X)ds(x)p - w(y)dy
Q JOB, -

:/ 2(ys.y) — 2(¥s,y)
Q

T p - w(y)dy

=17 QJO(k|Ys —yl)p - w(y)dy.

This completes the proof. [

The imaging functional I in this case is also as stable as that of the far-field pattern case.
Since we assume that the radius r of B, is large enough, it is sufficient to have the stability
of I in the ball B, for some r’ < r. The proof again just follows from the Cauchy-Schwarz
inequality.

Theorem 15 (Stability estimate). Define I5(x) = (us, p®(-,X))2(95,) The imaging
Sunctional I(-) defined in (45) for the scattered field data u(x), x € OB,, generated by an
incident wave Ey, satisfies

11(x) = 15(%)] < [B] l10(- )l 12(om, w10 = W 20, for all x € By,

7. Numerical examples for the inverse problem

For the numerical examples in this section the scattering data are generated by the numer-
ical solver studied in section 5. First, using the solver we obtain the numerical solution to
the finite-dimensional problem (35) whose restriction on € is the numerical scattered field
u. Second, the far-field pattern data u™ (X) are calculated using the formula in lemma 10. We
consider the far-field pattern data collected at 2500 points uniformly distributed on S%. Except
the case of figure 5(d), these data, including all three components of the far-field, are gener-
ated by one incident plane wave propagating along the z-direction. We only present results for
the imaging functional Iy, for the far-field pattern data. The case of functional / with scattered
field data provides similar results. We consider numerical examples for which the scattering
objects are defined as in the following. First consider the matrices

1.5 0 O 1.1 0 O 0.005 0 0
Ac=|0 14 0 |, A,=[0 12 0 |, Ag= 0 0.004 0 ,
0 0 13 0O 0 13 0 0 0.003

and the smooth function
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(d) (e ®

Figure 2. Reconstruction results for different wave numbers for a scattering ball with
smoothly varying coefficients defined in (46). Noiseless data associated with one

incident plane wave direction (0,0, l)T are used for the pictures. (a) Exact profile. (b)
k= 3. (c) k= 10. (d) Top view of (a). (e) Top view of (b). (f) Top view of (c).

r 3
h(X,a,r)zreXp(l—rz_b(_aP>, x € R°.
Let B(a,r) be the ball centered at a with radius r. In the first two examples (figures 2 and 3)
the anisotropic scatterers are characterized by smooth coefficients given by

Ach(x,a,r)+ 5, x€B(a,r) _; [Ah(x,ar)+h, x€B(a,r)
L, else M T L, else

T

s

_ [Ach(x,a,r), x€B(ar)
£= 0, else
(46)

where
a=(0,02,00", r=03.

In the third example (figure 4), the coefficients for the three scattering balls are given by
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Figure 3. Reconstruction results for the scattering ball in figure 2(a) from noisy data
associated with one incident plane wave direction (0, 0, 1)T. (a) 30% noise, k = 10. (b)
60% noise, k = 10. (c) 80% noise, k = 10. (d) Top view of (a). (¢) Top view of (b). (f)
Top view of (c).

Ach(x,a,r) +1;, x€B(a,n) Ah(x,a,r) +1;, x€B(a,n)
o Ah(x,b,rn)+ 1L, x€B(b,r) 1 JAh(X,b,rn) +1;, x€B(b,r)
" )Ach(x.e,r3)+ 5, x€B(e,r3)’ U7 JAuh(x,e,r3) + 15, x€B(e,r3)’

JER else I, else
A¢h(x,a,r), x€B(a,r)

Ach(x,b,ry), x € B(b,r,)

A¢h(x,¢,r3), x€B(e,r3)’

0, else

(47)

where

a=(02,0,00", b=(-04,0,00", c¢=(0.6,-0.7,0)7,

ry = 03, I = 0.2, r3 = 0.25.
The scattering object in the last example (figure 5) is characterized by discontinuous coef-
ficients defined by

o A.+ 1L, xe o [Au+ L, xeQ
Y L, else ° Hr L, else

5

48
§ . Ag, x € () “48)
10, else
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0

(d)

Figure 4. Reconstruction results for three different scattering balls (defined in (47))
from noisy data associated with one incident plane wave direction (0, 0, 1)T. (a) Exact
profile. (b) 30% noise, k = 10. (¢) 60% noise, k = 10. (d) Top view of (a). (¢) Top view
of (b). (f) Top view of (c).

where

Q= {x] +x3 <04%,

x| 073U {od + 43 <042, x| 0.7} U {xf + 3 <042,

XZ| < 07}

Figure 2 shows the dependence of the reconstruction on the wave number k for noiseless
data. For k = 10 the wavelength is approximately 0.6 which is also the diameter of the scat-
terer. The result in this case is therefore better than that of the case k = 3. We can see that for
k = 10 the geometry (particularly the location) of the scatterer is well reconstructed in this
case. With the same scattering object as in the first experiment presented in figure 2, we show
in the second numerical experiment (see figure 3) that the imaging functional is robust with
respect to noise in the far-field data. The noise we consider here is an additive noise. More
precisely, the scattering data are added by a complex-valued noise matrix containing ran-
dom numbers that are uniformly distributed on (—1, 1). The numerical reconstructions (even
with multiple numbers of experiments) are still quite reasonable with different levels of noise
(30%, 60% and 80%). This robustness can be justified by the stability estimates for the imag-
ing functional in our theory.

Figure 4 indicates that the imaging functional is also able to image multiple scattering balls
from noisy data. The geometry of the scattering balls is again well reconstructed even with
the presence of high amounts of additive noise in the data (30% and 60%). The resolution for
the reconstructed images in this case is also quite good for wave number £ = 10. We note that
unlike in the case of only one scattering ball (figure 3) the reconstructions for three scattering
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-1 -05 0 05 1 15

(e) ® (2 (h)

Figure 5. Reconstruction results from noisy data (30% noise) for an extended scattering
object defined in (48). One incident plane wave direction (0, 0, 1)T is used in pictures (b)
and (c), while six incident plane wave directions (£1,0,0) T, (0,4+1,0)",(0,0,%1)7
are used for picture (d). (a) Exact profile. (b) k= 3. (c) k =7. (d) k =7, six incident
waves. (e) Top view of (a). (f) Top view of (b). (g) Top view of (c). (h) Top view of (d).

balls in this case are no longer reasonable with higher amounts of noise in the data. However,
the imaging functional proposed does not seem to work well for extended scatterers although
it may be able to locate these scatterers using lower frequencies, see figures 5(b) and (c). In
other words, although the reconstructions are still quite robust to noise, the imaging functional
may not be able to recover the shape of these extended scatterers; see also [35] for a similar
situation in the scalar case of the OSM. We can improve the shape reconstruction by using
multiple directions of incident plane waves, see figure 5(d). Following the suggestions in [35]
one can integrate the imaging functional with respect to the directions of the incident plane.
More precisely, here we use six incident directions (+1,0,0)7, (0,£1,0)T,(0,0,41) T for
the incident plane waves and add the corresponding imaging functionals together. However,
we do not yet have a theoretical justification for this use of multiple incident directions. For
the scalar case, we refer to [24] to justify using multiple incident directions for an imaging
functional that shares similar features to that of the OSM.
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