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ABSTRACT
Using our new state-of-the-art core-collapse supernova (CCSN) code FORNAX, we explore
the dependence upon spatial resolution of the outcome and character of three-dimensional
(3D) supernova simulations. For the same 19 M� progenitor star, energy and radial binning,
neutrino microphysics, and nuclear equation of state, changing only the number of angular
bins in the θ and φ directions, we witness that our lowest resolution 3D simulation does not
explode. However, when jumping progressively up in resolution by factors of two in each
angular direction on our spherical-polar grid, models then explode, and explode slightly more
vigorously with increasing resolution. This suggests that there can be a qualitative dependence
of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher
spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in
particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations
results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in
a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock
further out, but bootstraps a concomitant increase in the deposited neutrino power. Both
effects together lie at the core of the resolution dependence we observe.
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1 INTRODUCTION

The theoretical viability of a three-dimensional (3D) model of a
core-collapse supernova (CCSN) explosion is contingent upon the
fidelity of its microphysical and numerical representations. The
former involves the nuclear equation of state (Lattimer & Douglas
Swesty 1991; Souza et al. 2009; Steiner, Hempel & Fischer 2013; da
Silva Schneider, Roberts & Ott 2017; Furusawa et al. 2017; Oertel
et al. 2017; Tews et al. 2017; Togashi et al. 2017) and the neutrino
opacities and emissivities (Burrows, Reddy & Thompson 2006).
The latter involves not only the coupled equations to be solved,
but the numerical algorithms to solve them and the discretizations
in space and neutrino momentum space (collectively phase space)
employed. The achievable density in phase space and the associated
zoning are limited by the available computational resources and by
the alacrity with which a particular code can step through time
as the dynamical evolution proceeds. In all these regards, it is
gratifying to report that the last decades have witnessed significant
improvements on all fronts. The ambiguities in the microphysics
now seem modest and managable, though many-body corrections
to the neutrino-matter interaction (Burrows & Sawyer 1998, 1999;
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Roberts, Reddy & Shen 2012; Horowitz et al. 2017; Roberts &
Reddy 2017; Burrows et al. 2018a) and aspects of the nuclear
equation of state are still evolving. Numerical techniques for solving
the coupled equations of radiation or hydrodynamics in the 3D
context have taken great strides, though long-term simulations with
multi-angle transport are still a challenge (Sumiyoshi & Yamada
2012; Nagakura, Sumiyoshi & Yamada 2014; Nagakura et al.
2018). Nevertheless, 3D simulations that incorporate all physical
processes to an acceptable degree of accuracy have recently emerged
(Lentz et al. 2015; Melson et al. 2015; Müller 2015; Kuroda,
Takiwaki & Kotake 2016; Takiwaki, Kotake & Suwa 2016; Müller
et al. 2017; O’Connor & Couch 2018; Summa et al. 2018; Burrows,
Radice & Vartanyan 2019; Glas et al. 2019; Nakamura, Takiwaki &
Kotake 2019; Vartanyan et al. 2019). Importantly, some groups
can now generate many 3D simulations per year and can thereby
perform comprehensive, in-depth investigations of the dependence
of explosion upon physical parameters and numerical set-up. In
contrast to years passed, most default multidimensional models
now explode without artifice. This includes detailed 3D models.

Whether a particular theoretical 3D model explodes is always
in the context of a choice of spatial zoning. Compromises are
made to ensure the simulation renders a significant result within
resource constraints. However, the accuracy with which a simulation
captures Nature is not always clear. This will depend not only upon
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the physics and equations incorporated into the code, but upon
the chosen resolutions. Numerical dissipation and inaccuracies in
a discritization scheme due to the chosen stencil, approximations
to the derivatives and fluxes embedded in the equations, and the
method of time-stepping can compromise the results. In the recent
past, we have explored the dependence of our 2D simulations upon
the number of neutrino energy groups and to date have found
surprisingly little variation. In the future, we plan to communicate
the results of these studies and to update them to include 3D models,
but more should be done in this regard.

However, spatial resolution studies in the context of state-of-the-
art 3D CCSN codes are rare. Previous such studies in the context of
CCSNe mostly focused on the resolution of the turbulence behind
the stalled shock wave and the associated requirements to resolve
the full inertial range (Nordhaus et al. 2010; Couch & O’Connor
2014; Abdikamalov et al. 2015; Radice, Couch & Ott 2015; Radice
et al. 2016). In particular, Radice et al. (2016), in a transparently
straightforward and systematic fashion, scrutinized the kinetic-
energy power spectrum and the approach to the Kolmogorov cas-
cade and explored the effective numerical viscosities as a function
of resolution. They concluded that an inertial range appeared only in
their highest angular resolution (∼0.09◦). However, their study used
a variant of a simple ‘light-bulb’ neutrino heating scheme that did
not include crucial physical effects, such as the feedback between
accretion rate and neutrino luminosity. Couch & Ott (2015) did not
look only at the effect of resolution on the character of turbulence,
but also on explodability, and found a connection between resolution
and susceptibility to explosion. However, they too used a simple
neutrino leakage scheme. Roberts et al. (2016) did perform collapse
simulations with a viable transport algorithm that consistently
coupled with the hydrodynamics. However, they did not include
inelastic scattering and neutrino energy redistribution, nor the
velocity dependence of the transport. They performed calculations
at low and high resolution, and for both a single octant (solid angle
π /2) and the full 4π steradians, for a total of four simulations.
They found that, contrary to our findings, low resolution was
more explodable and that calculating in a single octant slightly
inhibited explosion. The reasons for the difference between what
we report here and that work may lie with our more complete physics
suite, differences in the grids, or differences in the progenitors, but
remains unresolved. Takiwaki, Kotake & Suwa (2012) focused on
exploding models and conducted two 3D simulations of explosion
at different φ resolutions, employing the reduced dimension ‘ray-
by-ray’ transport approach with the IDSA method. They concluded
that, though both models exploded, the higher resolution model
exploded more vigorously. However, the grid was comprised of only
64 θ angular bins and either 32 (their low resolution) or 64 φ angular
bins, and only 300 logarithmically spaced radial zones. The binning
is rather coarse and may not capture important characteristics of the
turbulence. Moreover, these calculations did not include νμ and ντ

neutrinos nor energy redistribution by inelastic scattering.
Recently, Melson & Janka (2019) did look at the question

of the resolution dependence of explodability, but their most
solid conclusions involved a series of 3D calculations with light-
bulb heating that were not consistent with their hydrodynamics.
The highest angular resolution achieved in those approximate 3D
simulations was 0.5◦, and they used an implementation of a Yin-
Yang grid (Kageyama & Sato 2004; Wongwathanarat, Hammer &
Müller 2010) to avoid the axial coordinate singularity at the poles
of their otherwise spherical-polar (r × θ × φ) coordinate system.
In the inner 42−46 km, these light-bulb simulations were done in
spherical symmetry (1D), thereby suppressing proto-neutron star

(PNS) convection. As expected, in those simulations Melson &
Janka (2019) witnessed progressively better resolved turbulence.
They also witnessed a more vigorous explosion with improving
angular resolution. This is in contrast with the allied results of
Hanke et al. (2012), who suggested with their light-bulb study that
increasing resolution actually inhibited explosion. Melson & Janka
(2019) speculated that the reason for the different trends they found
in 2012 and in 2019 resided in the possible resolution dependence
of the numerical seed perturbations imposed when using spherical-
polar coordinates without the Yin-Yang grid. However, as we show
in this paper, we see no such artefact and witness in our suite
of three 3D full-physics spherical-polar simulations increasing
explodability with increasing angular resolution, all else being
exactly the same. In fact, our lowest resolution model does not
explode, while the two highest resolution models do. This is a
reassuring trend that suggests increasing the resolution even further,
in a way Nature does effortlessly, will not in itself compromise the
conclusions concerning explodability, and that pushing to further
resolve the full Kolmogorov inertial range will not change our
3D simulation results qualitatively. Melson & Janka (2019) did
perform four fully consistent radiation-hydrodynamic calculations.
They studied a 9 M� progenitor that exploded nearly identically in a
low-resolution set-up with 3.5◦ angular bins and with a static-mesh-
refinement (SMR) simulation that achieved an angular resolution
as high as 0.5◦. This model had been shown recently to explode
easily and early (Burrows et al. 2019; Glas et al. 2019). They also
compared the evolution of a 20 M� progenitor at low resolution
(2◦) using a spherical grid, and at higher resolution using their
implementation of SMR and a Ying-Yang grid. However, their
higher resolution SMR run did not explode, while their lower
resolution run did, evincing thereby the opposite trend to their
light-bulb study. They speculated that their implementation of
SMR, through it conserved total thermal plus kinetic energy by
construction, artificially converted an excess of kinetic energy into
thermal energy when matter traversed the refinement boundaries,
at which their implementation was a 2-to-1 (de)refinement. This
would mute the turbulent pressure shown to be central to explosion
(Burrows, Hayes & Fryxell 1995; Murphy, Dolence & Burrows
2013; Radice et al. 2017; Burrows et al. 2019), since the effective
gamma of turbulent energy is higher than that for gas (∼2 versus
∼4/3; Burrows et al. 1995; Radice et al. 2016). However, we use a
dendritic grid that employs our implementation of SMR (described
in detail in Skinner et al. 2019) and do not see this effect. The 3D
calculations we present here incorporate the full suite of necessary
physics, are performed with the state-of-the-art 3D radiation-hydro
code FORNAX (Vartanyan et al. 2018, 2019; Burrows et al. 2019;
Skinner et al. 2019), and are done changing only the angular
resolution, keeping all else exactly the same. Ours is therefore one
of the first resolution studies of the 3D radiation or hydrodynamics
of the neutrino-driven explosion mechanism incorporating all the
physical effects though important and addressing, in the main, the
full computational challenge.

We first describe in Section 2 our FORNAX CCSN code and model
set-up. Then in Section 3, we present our results. This section
includes a discussion of the resolution dependence of the dynamics,
neutrino emissions and heating, turbulence, and turbulent stress.
As stated above, we find that as the angular or spatial resolution
is increased the 3D model is more ‘explodable,’ with the lowest
resolution model not exploding at all. This suggests a stark, at
times qualitative, dependence upon resolution. This also suggests,
but does not prove, that published non-exploding 3D models (e.g.
the 13 M� model in Burrows et al. 2019) might explode at still
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higher resolution. In section Section 4, we summarize our results
and speculate on their import.

2 MODEL AND METHOD

To explore the dependence of the character and outcome of 3D core
collapse upon the spatial resolution of the computational grid, we
focus in this paper on the 19 M� ZAMS mass progenitor model of
Sukhbold et al. (2016). Three spherical-polar models are simulated
that are equivalent in every way except for the number of angular
zones employed. The low-resolution model (3DL) has 64 zones in θ

and 128 zones in φ, the medium (default) resolution model (3DM)
has 128 zones in θ and 256 zones in φ, and the high-resolution
model (3DH) has 256 zones in θ and 512 zones in φ.1 Therefore,
these simulations follow 0.25, 1.0, and 4.0 times as many zones as
our default resolution runs, such as those published in Vartanyan
et al. (2019) and Burrows et al. (2019). All models encompass the
full 4π steradians and are run with 678 zones in radius out to 20 000
kilometers (km), with a centre radial zone width of 0.5 km, and a
dendritic grid in θ out to ∼10 km (3DL), ∼15 km (3DM), and
∼35 km (3DH), exterior to which the radial zoning is logarithmic.
The φ mesh refinement to tame the vertical axis is conducted on the
entire grid. The dendritic grid employed in FORNAX is equivalent
to static-mesh refinement and is described in detail in Skinner et al.
(2019). We use it to eliminate the otherwise severe Courant (CFL)
time-step limits in the angular directions near the centre and on
the vertical axis of a spherical-polar grid. The result is a code
whose time-step is limited solely by the CFL condition in the radial
zones and is thereby more than ∼5 times faster than conventional
spherical-polar codes that would encompass the entire core. Typical
time-steps after bounce are ∼1 μs. The refinement is 2-to-1 and is
done to very approximately maintain the aspect ratio of the grid
cubes. This allows us to simulate to the very centre and to follow
PNS convection without inhibition. All other supernova codes with
spherical-polar grids perform the inner simulations in 1D (or as
an imposed boundary), even when the outer grid is either 2D or
3D. Moreover, our low-resolution model (3DL) boasts a resolution
similar to (and often better than) the standard resolutions found
in the papers of others employing a spherical-polar grid (Takiwaki
et al. 2012; Takiwaki, Kotake & Suwa 2014; Tamborra et al. 2014;
Müller 2015; Kuroda et al. 2016; Takiwaki et al. 2016; Müller et al.
2017; Summa et al. 2018; Takiwaki & Kotake 2018; Glas et al.
2019). Our highest resolution model (3DH) is one of the highest
resolution calculations ever performed in 3D core-collapse theory
using a spherical-polar grid. Fig. 1 depicts the grid and refinement
structure near and in the space tiled dendritically.

To conserve resources, the infall and bounce phases for all the
multiD runs in this paper were performed in 1D (spherical) and then
mapped to the 3D (or 2D) grid 10 ms after bounce. In the mapping
of the matter field from 1D to multiD, we add a small (dynamically
unimportant) perturbation to the radial velocity with a maximum
amplitude of 100 km s−1 in the region 200 < r< 1000 km, following
the prescription of Müller & Janka (2015) with � = 4 and n = 10.
This seed perturbation method is further described in Radice et al.
(2017).

1When performing 2D simulations for comparison, we use the same
θ resolution employed in the corresponding 3D model. Note that the
2D models were simulated merely for comparison purposes and are not
important for this investigation.

All simulations presented in this paper were performed using
the new FORNAX code. FORNAX is a 1D, 2D, and 3D radiation
or hydrodynamics code that incorporates the full suite of physical
processes thought to be of relevance in core collapse and explosion
and is described in detail in Skinner et al. (2019), Vartanyan et al.
(2018), and Burrows et al. (2018a). To date, results using FORNAX

have been published in numerous papers (Skinner, Burrows &
Dolence 2016; Wallace, Burrows & Dolence 2016; Radice et al.
2017; Burrows et al. 2018a; Morozova et al. 2018; Vartanyan et al.
2018; Burrows et al. 2019; Radice et al. 2019; Vartanyan et al.
2019) addressing many aspects of the CCSN phenomenon. FORNAX

employs a multigroup two-moment transport method with analytical
M1 closures for the second and third moments (Vaytet et al. 2011).
The vector neutrino flux (first-moment) is fully solved and we do not
employ the problematic ‘ray-by-ray + ’ dimensional compromise
in which multiple 1D radial transport solves that ignore transverse
transport take the place of a multidimensional solution. The latter
has been shown to introduce anomalous behaviour when the
dynamics are not approximately spherical (Skinner et al. 2016; Glas
et al. 2019). FORNAX solves the transport equations in the comoving-
frame, includes velocity-dependent frequency advection to order v/c
and the gravitational redshift effect (Shibata et al. 2011), factors in
inelastic neutrino-electron and neutrino-nucleon scattering energy
redistribution using the method found in Thompson, Burrows &
Pinto (2003), Burrows & Thompson (2004), and Burrows et al.
(2006), and employs the neutrino-matter interactions detailed in
Burrows et al. (2006). Weak magnetism and recoil corrections to
neutrino-nucleon scattering and absorption rates are incorporated
using the prescriptions of Horowitz (2002) and the many-body
correction to the axial-vector term in neutrino-nucleon scattering
is included following Horowitz et al. (2017). We distinguish three
neutrino species: electron-type (νe), electron antineutrino type (ν̄e),
and all others collectively denoted ‘νx’s. The twelve energy groups
range logarithmically from 1 to 100 MeV for the ν̄es and νxs
and from 1 to 300 MeV for the νes. Due to the narrower energy
range for the ν̄es and νxs, the density of energy bins for them is
higher than traditionally employed in the literature, particularly in
3D simulations.

Our choice of different energy binning for the different species
arises from the fact that, at the high densities in the inner core,
electron neutrino transport dominates energy transport and the
Fermi level of degenerate electron neutrinos is high enough to
require the energy grouping extend to high enough values for
them. Electron neutrino degeneracy in the core, however, suppresses
electron antineutrino densities severely and so their energy grouping
need extend to only 100 MeV, allow a more highly resolved
energy grid. Since the heavy neutrinos are not degenerate and are
subdominant energy carriers in the core, we employed the same
narrower and more highly resolved energy range for them.

The equations are solved using a directionally unsplit Godunov-
type finite-volume scheme with HLLC fluxes for the hydrodynamics
and HLLE fluxes for the radiation (Skinner et al. 2019; Vartanyan
et al. 2019). The reconstruction is accomplished via a novel
algorithm we developed specifically for FORNAX that uses moments
of the coordinates within each cell and the volume-averaged states
to reconstruct TVD-limited parabolic profiles, while requiring one
less ‘ghost cell’ than the standard PPM approach. The profiles
always respect the cells’ volume averages and, in smooth parts
of the solution away from extrema, yield third-order accurate
states on the faces. We have taken special care in treating the
reconstruction of quantities on the mesh and have formulated our
reconstruction methods to be agnostic to choices of coordinates and
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Figure 1. Octant cutouts portraying the static mesh set-up in the inner 60 km for the three resolutions employed in our study. Note that the number of
refinement levels increases with increasing resolution, but that the dendritic grid in θ does not extend for any model beyond ∼35 km. However, refinement in
φ is performed over the entire grid to avoid an otherwise challenging CFL constraint along the polar axis. All models have the same radial zoning.

mesh equidistance. Corrections for the enhanced gravity of general-
relativity are handled using the now-standard ‘TOV-like’ approach
suggested by Marek et al. (2006). Since in the core-collapse problem
the speed of light and the speed of sound are not that different, the
spatial operators in the transport equations are solved explicitly. This

obviates the need for complicated global iterative solvers, keeps the
radiation solution local, and thereby speeds up the code by factors
of more than three. However, the local source terms, including those
due to inelasticity, are solved fully implicitly. For all models, we
use the SFHo equation of state (EOS; Steiner et al. 2013), which
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4626 H. Nagakura et al.

Figure 2. The mean shock radius (in km) versus time since bounce (in seconds) for our 3D (thick) and 2D (thin) models. We observe that models 3DL and
2DL (blue) do not explode, while models 3DM, 2DM, 3DH, and 2DH do explode. All models use the same 19 M� progenitor from Sukhbold et al. (2016).
Note that before ∼200 ms the mean shock radius is a slightly increasing function of resolution. See the text for a discussion.

is currently consistent with all known nuclear experimental and
astrophysical constraints (Tews et al. 2017).

3 RESULTS

3.1 Overall dynamics

Fig. 2 portrays the time evolution of the mean shock radius after
bounce of models 3DL, 3DM, and 3DH, as well as that of their 2D
counterparts. It demonstrates that whether this 19 M� progenitor
model explodes depends upon the angular resolution chosen, with
the lowest resolution model 3DL not exploding and the two higher
resolution models exploding. We note that before explosion between
∼100 and ∼200 ms the mean shock radii increase with resolution.
We will return to this difference in Section 3.3. The mean shock
radius for the highest resolution model (3DH) launches more
quickly than that for the medium resolution model (3DM). In each
case, the ‘explodability’ of the model is similar in 2D and 3D, with,
however, the 3D models exploding a bit earlier and the 2D models
catching up a bit later. Also, we continue to see that if a model
explodes in 2D it generally explodes in 3D, and vice versa for
duds. These patterns vis à vis 3D versus 2D recapitulate what has
been seen previously (Burrows et al. 2019; Vartanyan et al. 2019).2

2Since the neutrino signatures before explosion in 2D and 3D are similar,
it is not surprising that there are crude similarities in the outcome. In our
estimation, part of the reason this has not been incorporated into the lore
of supernova theory has been that most previous 2D simulations were done
with the ‘ray-by-ray’ approach, which exaggerates the explodability of 2D
models (Burrows et al. 2018b). Hence, in the literature 2D models that
exploded were oftimes not accompanied by 3D models that did at or near

Explosion for this progenitor occurs early just as the turbulence
behind the stalled shock wave achieves some degree of vigour. One
measure of the growth of turbulent activity is provided in Fig. 3,
which documents the increase in the amplitude of the dipolar and
quadrupolar components of the shock radius with time after bounce.
These components have been normalized to the monopole, using the
normalization convention of Burrows, Dolence & Murphy (2012).
Once the linear phase of the turbulent or Rayleigh–Taylor-like
growth becomes non-linear (near time ∼200 ms), both the 3DM
and 3DH models explode. This also approximately coincides with
the accretion of the silicon or oxygen interface for this model.3

However, the low-resolution 3DL model fails to launch, and its
dipolar shock oscillation saturates at a slightly lower value. This
may not be coincidental (see Section 3.3).

Figs 4 and 5 depict stills at 100 and 200 ms after bounce of the
entropy field of the core for models 3DL, 3DM, and 3DH. The
improving resolution from top to bottom is clearly manifest, with
the smaller scales coming into sharper focus as we progress from
model 3DL to model 3DH. The resolution of model 3DL is at or near

the same times. Moreover, 3D runs were expensive, so the 3D models were
not continued out very long. The net appearance was a qualitative difference
in outcome, one exploded while the other did not. If such models would have
eventually exploded at later times, many modellers might have missed this.
This is not to say 2D and 3D shouldn’t be different (and we see this), if only
because the character of the turbulence in 2D is different. Also, including as
we do the effects of many-body suppression of neutrino-nucleon scattering,
thereby making it slightly easier for both 2D and 3D models to explode
(Burrows et al. 2018a).
3We note that the mass accretion history for all models before explosion is
exactly the same.
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Figure 3. Renditions of the dipole (� = 1) and quadrupole (� = 2) components of the shock radius (normalized to the monopole term) versus time after
bounce (in seconds). The linear phase of growth of these non-spherical distortions is followed by a non-linear phase in which the magnitude of the associated
distortion is a slightly increasing function of resolution. Explosion near ∼200 ms (when it occurs) is accompanied by manifest shock asphericities.

the standard resolution employed in the literature. The resolution of
model 3DM has to date been our default resolution (Burrows et al.
2019; Vartanyan et al. 2019). As noted in Section 2, each model
employs a factor of two better resolution in both θ and φ as we step
up from model 3DL, through model 3DM, to model 3DH. With the
slight expansion of the shock radius, the 200 ms stills capture the
onset of the explosion of models 3DM and 3DH.

3.2 Neutrino emission and heating

Fig. 6 compares the solid-angle-summed total neutrino luminosities
and the mean neutrino energies versus time after bounce for the
different neutrino species and for the three 3D models (thick lines).
We also show for comparison the corresponding values for the 2D
models (thin lines). As noted previously, the 2D model neutrino
emissions fluctuate more than the 3D models, but are otherwise
quite similar. Importantly, before explosion models 3DL, 3DM,
and 3DH behave strikingly similarly and give little hint of the
manifest bifurcation in late-time behaviour. After the explosion
of models 3DM and 3DH, the associated gradual cessation of
accretion translates into a decrease in the accretion component of
their neutrino luminosities. However, the continuing accretion of
model 3DL, due to the fact it does not explode, both increases
its core mass at a more rapid rate (see Fig. 7) and maintains at a
higher level accretion’s contribution to the neutrino luminosities.
This is the origin of the separation in the luminosity and average
neutrino energy curves depicted in Fig. 6 after the explosions of
models 3DM and 3DH. Seadrow et al. (2018) discuss the possible
observational discriminants of explosion versus no-explosion in
underground terrestrial neutrino detectors.

In Fig. 8, however, we start to see slight differences in the
neutrino sector between the models. This figure renders the heating
rate in the gain region (Bethe & Wilson 1985) due to neutrino
absorption as a function of time after bounce for the three 3D
models and the associated heating efficiency. The latter is defined
as the ratio between this heating rate and the sum of the νe and
ν̄e luminosities and is, hence, a measure of the ‘optical depth’ to
neutrino absorption in the gain region. We see that after ∼100 ms
the more resolved models have slightly higher neutrino heating

rates and efficiencies. This parallels the slightly larger mean shock
radii seen in Fig. 2 for the higher resolutions. This trend is in part
an explanation of the resolution dependence in the explodability
we find. As we articulate in Section 3.3, the heightened turbulent
pressures behind the shock in the gain region are likely responsible
for the larger pre-explosion shock radii (Fig. 2) and larger gain
region. In fact, we witness that the mean radius of the stalled
shock before explosion for our highest resolution model (3DH)
is ∼10−20 km greater than that for our lowest resolution model
(3DL), and that this difference correlates with a higher Reynolds
stress behind the shock. Since the neutrino luminosities and neutrino
energies are not much affected by resolution (see Fig. 6), they are
not the explanation for the slight augmentation in the heating rate
with resolution. Rather, the larger rate of neutrino energy deposition
behind the shock in the gain region is a consequence of its larger
geometric size and the associated larger optical depth to absorption,
as the bottom panel of Fig. 8 demonstrates. Therefore, turbulence
not only pushes the shock radius further out, but it bootstraps a
concomitant increase in the deposited neutrino power. Both effects
together lie at the core of the resolution dependence we witness.
We now turn to a discussion of the turbulence and its resolution
dependence.

3.3 Turbulence

Neutrino-driven convection behind the stalled shock wave has been
studied for decades (Herant et al. 1994; Burrows et al. 1995;
Fryer & Warren 2002; Murphy & Burrows 2008; Hanke et al.
2013; Murphy et al. 2013) and has been shown to be an essential
factor in igniting the supernova within the neutrino-driven paradigm
(Burrows et al. 1995; Janka & Müller 1996; Murphy & Burrows
2008; Dolence et al. 2013; Murphy et al. 2013). The Rayleigh–
Taylor-like instability that naturally arises due to neutrino heating
from below and that transitions into non-linear turbulence results
in larger stalled shock radii (Burrows 2013).4 In this regard, the
major relevant aspect of neutrino-driven turbulence seems to be the

4The standing-accretion-shock-instability (Blondin, Mezzacappa & De-
Marino 2003) may also play a role.
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Figure 4. Left: 3D volume renderings of the entropy of the core interior to the shock wave for the three resolutions employed in this investigation at 100 ms
after bounce. The blue veil traces the shock wave. The scale of the box for each model is 2 × 190 km. Right: The same regions shown as 2D slices of the
corresponding 3D models at the same time. The increasing facility with which the smaller structures are resolved as the grid resolution is improved is clearly
brought out. We embed colour bars and axes to clarify this mapping and the plot orientations, respectively.

generation of Reynolds stress associated with its chaotic motions.5

Channelling accretion energy in part into turbulence, instead of
into thermal energy, provides stress or pressure more efficiently
for a given amount of energy, since the effective γ of the turbulent
motions is ∼2, and not the ∼4/3 of gas (Burrows et al. 1995; Murphy
et al. 2013; Radice et al. 2016).

This elevated total post-shock stress pushes the shock wave out by
∼10’s of kilometers relative to spherical models for which overturn

5The increase in the average dwell time in the gain region of a heated
Lagrangian mass element may also be a minor factor (Burrows et al. 1995;
Murphy & Burrows 2008; Takiwaki et al. 2012).

instabilities are suppressed, thereby decreasing the pre-shock ram
pressure experienced and placing matter that resides just behind the
shock shallower in the gravitational potential well. Hence, by going
to multiD and allowing the core to achieve a lower free energy
through the agency of hydrodynamic instability, explosion can be
facilitated in theoretical models. It is thought that Nature may be
doing the same.

Hydrodynamic turbulence per se in core-collapse and proto-
neutron stars has received some theoretical attention, with the
perennial focus being on the degree of convergence of the flow
and the resolution necessary to capture the inertial range (Couch &
O’Connor 2014; Abdikamalov et al. 2015; Radice et al. 2015,
2016; Melson & Janka 2019). The consensus has been that spatial
resolutions beyond what is currently computationally feasible are
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Figure 5. The same as Fig. 4, but at 200 ms after bounce. Here, the spatial scale is 2 × 270 km.

necessary to achieve the latter,6 but that the character of the flow on
larger scales and the energy flux from large to small scales of the
Kolmogorov cascade can stabilize at the actual physical value with
current codes and computers. This has been demonstrated in the past
by the observation that at larger and intermediate scales on the grid
the energy density spectrum has stopped changing as the resolution
has increased and stabilizes at the classic five-thirds law (see e.g.

6It has been suggested (Burrows & Lattimer 1988) that neutrino viscosity
itself could truncate the inertial range in some parts of the core with
low Reynolds numbers, perhaps ∼100’s to ∼1000’s, and that the relevant
dissipative scale is much larger than that determined by the microscopic
viscosity of matter. Codes such as FORNAX that incorporate radiation stress
and full velocity-dependent transport in a multiD context naturally contain
this physics and can be used to explore this phenomenon. We leave to future
work an investigation of this interesting possibility.

Dolence et al. 2013; Abdikamalov et al. 2015; Radice et al. 2016).
So, without addressing the technical question of the resolution of
turbulence in the full inertial range, we nevertheless explore with
confidence in this paper the dependence upon resolution of state-
of-the-art CCSN simulations and their outcomes.

Due to the fact that in the CCSN problem matter advects
through the turbulent region and that this region is not a closed
box, the inauguration of instability and its progress depends upon
perturbations advected through the shock, the advection speed,
and the size of the gain region (Foglizzo, Scheck & Janka
2006; Foglizzo et al. 2015). Nevertheless, a qualitative analysis
of the character of the turbulence can proceed using the standard
metrics.

The turbulent kinetic energy spectrum E(κ or �) (versus the
wavenumber, κ , or the spherical-harmonic index, �) helps us to
assess the nature of turbulence behind the shock in the CCSN
context. In the Kolmogorov scheme, as generalized by Pao (Pao
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Figure 6. Left: The total neutrino luminosity (in units of 1052 ergs s−1) for the three neutrino species (the last for each of the νμ, ν̄μ, ντ , and ν̄τ species
separately) versus time after bounce (in seconds) for the three resolutions (L, M, and H) chosen for this study. The thin lines are for the 2D models and the
thick lines are for the 3D models. Right: The same as the left, but for the corresponding mean neutrino energies (in MeV). Note that the 2D models show more
temporal variation than the 3D models, due in part to the artificial axial sloshing motions seen in generic 2D simulations. Such motions are rarely seen in 3D
simulations and are in part artefacts of the 2D constraint. As the figures demonstrate, the neutrino emission characteristics in 2D and 3D are quite similar.

1965), E(κ), the spectrum of the specific turbulent kinetic energy,
is generally written as

E(κ) = αε2/3κ−5/3e− 3
2 α(ηκ)

4
3
, (1)

where η is the dissipative scale, ε is the Kolmogorov dissipation
rate, κ is the spatial wavenumber of the specific kinetic energy
spectrum, and α is an empirical dimensionless constant near ∼1.6.
The exponential term is an approximate way Pao (1965) derived to
truncate the otherwise −5/3 power-law cascade at the dissipative
scale with a constant viscosity model that mimics real viscosity. If it
is assumed that ‘numerical viscosity’ behaves in this fashion, fitting
equation (1) to the numerical kinetic energy spectrum E(κ) would
provide both the effective dissipative scale (‘η’) and the effective
numerical viscosity. The validity of this approach is contingent
upon the specific code and is unlikely to be true in detail. It is
nevertheless a useful way to conceptualize the effective magnitude
of both numerical viscosity and the numerical dissipative scale. The

Reynolds number (Re) of the turbulence is approximately ( L
η

)4/3,
where the L is approximately the size of the convective zone (here,
the width of the gain region). If η were the physical scale at which
physical viscosity truncates the inertial range, it could be quite small
and Re would be quite large. However, in a numerical simulation
η is likely some small multiple of the smallest linear grid scale
and the effective Re is small (Radice et al. 2015, 2016). Back-of-
the-envelope Kolmogorov arguments would then yield an effective
viscosity ν ∼ ε1/3η4/3. This could also be derived by dividing the
numerical Reynolds number Re into the product of turbulent speed
on the largest or driving scales and L. However, in this paper we
are mainly interested in the empirical trends of these quantities and
the supernova dynamics with grid angular resolution and provide
equation (1) merely for guidance and context.

When using a spherical-polar grid, calculating E(κ) in terms of
the spherical-harmonic � at a given radius R is more convenient and
there is a simple one-to-one mapping between � and κ (κ2 = �(�
+ 1)/R2). Therefore, we use the formalism of Abdikamalov et al.
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Figure 7. The evolution of the PNS baryon mass (in M�) with time after bounce (in seconds) for the three 3D models of this study. Note that the accumulations
of mass in the PNS for models 3DM and 3DH separate from that for model 3DL as a result of the latter’s failure to explode.

(2015). Moreover, we calculate the spectrum of the kinetic energy
density, E(�), as opposed to the spectrum of the specific kinetic
energy (equation 1). The integral under the corresponding linear–
linear curve provides the overall average of the kinetic-energy
density.

Fig. 9 renders this spectrum for the transverse (θ and φ) kinetic
energy density at three different times after bounce for the three
models, 3DL (blue), 3DM (green), and 3DH (red). The dashed line
depicts a − 5

3 slope. We recall from Fig. 2 that models 3DM and
3DH explode near ∼200 ms. As Fig. 9 shows, there is a modest
difference between the calculated spectra for model 3DL and those
of the other two, particularly at early times. The inertial range at
the early times for model 3DL is captured not at all, but at later
times it is captured over less than a factor of 10 in �. Models 3DM
and 3DH are more similar at all times and each follows the − 5

3
law over a wider range, with model 3DH doing so over a bit more
than an order of magnitude. This is better than that obtained by
Abdikamalov et al. (2015) and Summa et al. (2016), and better than
all but the highest resolution leakage or light-bulb models in Radice
et al. (2015), Radice et al. (2016), and Melson & Janka (2019). Note
that we apply static mesh refinement (the dendritic grid) in θ only
interior to the turbulent gain region, while it is applied in φ near
the pole all along the z-axis. For model 3DH, by eye the turnover
at higher �s that reflects the transition to the numerical dissipative
regime occurs near � = 70−80. The turnover �s for the 3DL and
3DM models are ∼40 and ∼60, respectively. The R

η
for the 3DH

model, derived from a formal fit to equation (1) for model 3DH,
ranges from 50 to 58. This translates for that higher resolution model
into a delta in angle of ∼2–3◦.7 In the gain region of model 3DH,
this encompasses ∼4 angular zones. Hence, it is not unexpected that
our numerical inertial range would not extend much further in �.

The implication of the trend with resolution in turnover in �,
seen in Fig. 9, is that the numerical viscosity is higher and the
numerical Reynolds number is lower for lower resolution. As Fig. 9

7Recall that our best �θ is 0.7◦.

implies, the ratio of the turnover �s and, hence of the turnover
ηs and dissipative scales, for models 3DL and 3DH is 2−4. This
translates into an increase in the effective numerical viscosity (if it
scales as ∼ε1/3η4/3) of a factor of 2.5−6 in going from model 3DH
to 3DL. Even if the exact scaling is not as given by Pao’s formula
(equation 1), this general argument clearly suggests there is greater
‘drag’ on the turbulent flow for lower angular resolution. We see the
manifestations of this in the figures below. Importantly, however,
we find that the general level in the inertial range of the turbulence
spectra for models 3DM and 3DH is the same, suggesting that the
Kolmogorov dissipation rate ε is also the same for these models and
that the cascade flux through κ space has stabilized at a physical
value. Moreover, the higher � values at which model 3DH turns over
are one indication that the transverse turbulent energy density for it
is larger. Fig. 10 depicts the associated clear trend with resolution of
the total transverse kinetic energy in the gain region. Note that we
observe the same trend with resolution in 2D as in 3D, i.e. higher
resolution results in more turbulent kinetic energy. Furthermore,
the time-averaged summed turbulent kinetic energy is not much
different between 2D and 3D, given the same lateral resolution.
This is consistent with our claim that explodability is not much
different between 2D and 3D.8

8With regards to Fig. 10, the greater time variability in 2D is likely due to
the artificial axial sloshing in 2D. As a result, the turbulent kinetic energy in
2D frequently exceeds that in 3D (see e.g. � 250ms in the high-resolution
models). We also note that Fig. 10 indicates that the turbulent kinetic energy
of the highest resolution model in 2D is lower than that in 3D after shock
revival. Note that we compute the turbulent energy in the region where the
outer boundary is set to the minimum shock radius. At later times in 2D, this
tends to be smaller than in 3D due, again, to the artificial axial sloshing. This
results in lower turbulent kinetic energy than in 3D. Finally, it is important to
mention that our conclusions are not perfectly consonant with some previous
work (e.g. Couch & Ott 2015; Müller 2016), in which it is claimed that the
strength of turbulence in 2D is larger than that in 3D. Currently, we have not
identified the primary cause of this difference, which will only be revealed
by making detailed group-to-group comparisons.
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Figure 8. Top: The neutrino heating rate in the gain region (in units of 1051 ergs s−1) versus time after bounce (in seconds) for models 3DL (blue), 3DM
(green), and 3DH (red). Heating due to inelastic neutrino-electron and neutrino-nucleon scattering, though included in the simulations, is not included in this
rate. Bottom: Same as at the top, but for the corresponding heating efficiency. The latter is defined as the ratio of the heating rate to the sum of the total νe

and ν̄e luminosities. A 5 ms boxcar average has been applied. Note that after ∼100 ms and before ∼200 ms the heating rate in the gain region increases with
resolution. See the text for a discussion.

The anisotropic Reynolds stress tensor (Rij) is

Rij =< ρv′
iv

′
j > , (2)

where v′
i is the ith component of the turbulent velocity after

subtraction of the mean flow (taken here to be radial) and ρ is
the mass density. <···> is the angle average. For radial support,
the radial component of the Reynolds stress (Rrr) is the most
important and is generally larger than the corresponding value for
the transverse θθ and φφ components (Murphy et al. 2013). Rij/P,
where P is the gas pressure, is a metric of the relative contribution of
the Reynolds stress to the total stress or pressure, and, to within the
γ of the gas, is the average of the square of the Mach number (M) of

the turbulence. These metrics are useful gauges of the importance
of turbulence in the mean flow dynamics (Müller & Janka 2015;
Summa et al. 2016).

The left-hand panel of Fig. 11 portrays the radial profile of the
radial stress divided by the gas pressure, Rrr/P, for the various 3D
models and for post-shock times of 100, 150, and 200 ms. Its right-
hand panel portrays the associated average of the square of the
turbulent Mach number (<M2>). The radius is normalized to the
minimum shock radius for the given snapshot and the given model.
Fig. 12 provides the same quantities for Rθθ and the associated
<M2>. To calculate Rrr, we subtract out the solid-angle-averaged
radial speed at the given radius in the gain region. We do not need
to subtract a mean in calculating Rθθ .
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Figure 9. The power spectrum of the turbulent kinetic energy density in
the transverse direction versus spherical harmonic index � at three different
times post-bounce and for the three models 3DL, 3DM, and 3DH with low,
medium, and high resolution, respectively, as defined in the text. The region
sampled and averaged is between the shock and the isodensity surface at
1011 g cm−3. Superposed is a line tracing a − 5

3 slope. The upturn at the
highest values of � is a numerical artefact as we approach the grid scale
at the highest values of �. Also, included are Pao-hypothesis fits (black;
equation 1) to the spectra of the highest resolution model 3DH. See the text
for a discussion.

As demonstrated with Figs 11 and 12, the contribution of the
turbulent stress to the total stress behind the shock in the gain region
is generally larger for better resolved models. As the earlier turn-off
in � found in Fig. 9 suggests, numerical viscosity is largest for the
least resolved model. As Figs 11 and 12 suggest, this translates
into weaker turbulence for the least resolved models and stronger
turbulence as angular resolution improves. As stated in Section 3.2,
the greater turbulent stress pushes the stalled shock radius further
out, which in turn results in greater neutrino power deposition in
the gain region. Together, and as indicated in Fig. 2, these effects
make a better resolved model more explodable. However, what
resolution is required to achieve a converged solution has yet
to be determined. Nevertheless, that increasing resolution better
supports explosion is both a boost to the theoretical viability of the
neutrino mechanism and a cautionary tale − along with the micro-
physics, spatial resolution should be a more central focus of CCSN
theory.

4 CONCLUSIONS

We have endeavoured with this paper to explore the dependence
upon spatial resolution of the dynamics and explodability of 3D
core-collapse supernova simulations. To this end, we enlisted our
state-of-the-art CCSN code FORNAX to determine what differences
would emerge when changing only the number of angular bins in
the θ and φ directions, all else kept exactly the same. We used
the same 19 M� progenitor, the same energy and radial binning,
and the same microphysics and EOS. What we discovered was
that our lowest resolution simulation (model 3DL) did not explode,
while when jumping progressively up in resolution by factors of
two in each angular direction on our spherical-polar grid models
then exploded, and exploded a tad more vigorously with increasing
resolution. This suggests that there can be a qualitative dependence
upon spatial resolution of the outcome of CCSN simulations,
but importantly that increasing the resolution (and presumably
the accuracy of the calculations) may bring the models closer to
Nature. We have not, however, proven the latter assertion, but had
increases in the resolution inhibited explosion the viability of the
neutrino mechanism of core-collapse supernova explosions, at least
as addressed with modern codes and implementations, might have
been in doubt. Rather, we find that for a given code and algorithm,
and for a given suite of microphysics, there may be a resolution
below which a model that ‘should’ explode will not. This may
also suggest that striving for higher spatial resolution in 3D CCSN
simulations may be as important as refining the comprehensive suite
of neutrino-matter interactions and identifying a viable EOS. This
conclusion may explain, at least in part, why some sophisticated
published 3D models did not explode − the resolution for those
implementations might not have been adequate. We stress that
the required resolutions will be code and methodology dependent.
This may also be the reason our published 3D 13 M� did not
explode (Burrows et al. 2019), a possibility we are currently
exploring.

What we find is that the critical aspect of higher spatial resolution
is the adequate capturing of the physics of neutrino-driven turbu-
lence, in particular its Reynolds stress. The latter is an important
factor in buoying the position of the stalled shock wave and
later launching the supernova explosion. The mean radius of the
stalled shock before explosion for our highest resolution model was
10−20 km greater than that for our lowest resolution model, and
this difference correlated with a higher Reynolds stress behind the
shock and a higher neutrino heating rate in the gain region. These
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Figure 12. The same as Fig. 11, but for Rθθ and the average Mach number squared for only the θ and φ components of the velocity. Rφφ is comparable to Rθθ .

differences are comparable to differences associated with those
found when incorporating inelastic energy transfers, adding many-
body corrections to neutrino-nucleon scattering rates, or embedding
modest progenitor perturbations or rotation (Burrows et al. 2018a;
Vartanyan et al. 2018).

Supernova theory is entering an exciting stage, wherein many
sophisticated 3D models can now be executed in routine fashion
and at a respectable cadence to investigate the full range of topics
associated with core-collapse supernova explosions. These topics
include, among others, explosion energies, residual neutron star
masses, pulsar kicks, massive star nucleosynthesis, black hole for-
mation, and the morphology of supernova explosions and remnants.
However, there are still limitations to current codes and studies.
Multi-angle, 3D, long-duration simulations are still not within
reach on current machines. A fully consistent implementation of
general relativity with relativistic transfer or transport has yet to be
fielded. There remain issues of a quantitative character concerning
the neutrino-matter interaction rates. The equation of state of hot,
lepton-rich nuclear matter is a perennial concern, though laboratory
and neutron-star constraints have been improving. And finally, the
massive star progenitor models inherited by CCSN modellers are
still in flux. Even the detailed mapping between progenitor mass
and density, temperature, composition or perturbation structure at

the moment of collapse is not settled, and we do not know the final
rotation rate of the evolved cores of massive stars. Despite all these
concerns, there has been significant progress towards realizing the
goal of a definitive understanding of the mechanism and nature
of supernova explosions. With the advent of modern 3D codes,
advances in physical understanding, and the emergence of capable
supercomputers, supernova theory seems well poised to embark
upon its next productive phase.
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