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We give an new arithmetic algorithm to compute the generalized Discrete Fourier Transform (DFT) over
finite groups G. The new algorithm uses O(|G|®/2*°(1)) operations to compute the generalized DFT over
finite groups of Lie type, including the linear, orthogonal, and symplectic families and their variants, as well
as all finite simple groups of Lie type. Here w is the exponent of matrix multiplication, so the exponent w/2
is optimal if w = 2.

Previously, “exponent one” algorithms were known for supersolvable groups and the symmetric and alter-
nating groups. No exponent one algorithms were known, even under the assumption o = 2, for families of
linear groups of fixed dimension, and indeed the previous best-known algorithm for SLz(IF4) had exponent
4/3 despite being the focus of significant effort. We unconditionally achieve exponent at most 1.19 for this
group and exponent one if w = 2.

Our algorithm also yields an improved exponent for computing the generalized DFT over general finite
groups G, which beats the longstanding previous best upper bound for any w. In particular, assuming o = 2,
we achieve exponent V2, while the previous best was 3/2.
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1 INTRODUCTION

Let G be a finite group, and let Irr(G) denote a complete set of irreducible representations. Given
an element c of the group algebra C[G], a generalized DFT is a linear transform that takes ¢ to

ch' @ p(9)-
geG pelrr(G)

This is the fundamental linear operation that maps the standard basis for the group algebra C[G] to
a “Fourier basis” of irreducible representations of the group G (which is specified in advance). It has
applications in data analysis [19], as a component in other algorithms (including fast operations
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on polynomials and in the Cohn-Umans matrix multiplication algorithms), and as the basis for
quantum algorithms for problems entailing a Hidden Subgroup Problem [17]. As one varies the
underlying group G, the generalized DFT is a rich source of structured linear maps, which one
can hope to compute in nearly-linear time, generalizing the famous Cooley-Tukey FFT for cyclic
groups of order 2%

We typically speak of the complexity of computing this map in the (non-uniform) arithmetic
circuit model and do not concern ourselves with finding the irreducible representations. The trivial
algorithm thus requires O(|G|*) operations. The best-known algorithm that works for general
finite groups G achieves O(|G|!-%) operations,! assuming the exponent of matrix multiplication is
2 (see Section 2). For a number of special cases, “exponent one” algorithms are known: For Abelian
groups, the symmetric and alternating groups [5, 16], and the so-called supersolvable groups [1].
A group that has resisted such exponent one algorithms despite a significant amount of work is
SL;(IF), where the best-known algorithm achieves O(|G|*/?) [10]. This group was described as a
“particularly interesting and thorny special case” by Maslen, Rockmore, and Wolff [14].

In this article, we obtain exponent one for SLy(F;) under the assumption that v = 2 ( is the
exponent of matrix multiplication). Using the current best upper bound w < 2.3729 [11], we obtain
exponent 1.19 for SL,(IF,) unconditionally, which improves the previous 4/3 exponent. Our new
algorithm is quite general and leads to a broad array of new results:

e We achieve exponent w/2 for essentially all linear groups including the general, orthogonal,
and symplectic groups, and their special and projective versions, and for all finite groups
with a split (B, N)-pair; we work out the most common cases explicitly in this article in
Section 5.

e We achieve exponent /2 for all finite simple groups (see Theorem 5.8).

e We achieve an exponent bound for general groups G, which beats the longstanding previ-
ous best upper bound, when using exponent-a matrix multiplication as a black box, for any
a (see Theorem 6.2). To do this, we prove a structural result about arbitrary finite groups
(Theorem 6.1) that relies on the Classification Theorem, which may be of independent in-
terest. In particular, assuming @ = 2, we achieve exponent V2, while the previous best was
3/2.

The main idea. At its core, the seminal Beth-Clausen fast generalized DFT is a recursive algo-
rithm that computes a DFT with respect to G by computing several DFTs with respect to H, a
subgroup of G. Each of the [G : H] many H-DFTs is lifted to G and then summed together. See
Corollary 2.2. A bottleneck in this algorithm comes from the final summation step, which in gen-
eral costs [G : H]|G]|. Since there are groups whose largest subgroup H has index at least |G|V/2,
exponent 3/2 is the best general result possible within this approach. Improvements have generally
come from using specific knowledge of how the induced representations from H up to G break up;
this can sometimes be used to circumvent the bottleneck summation. In the case of supersolvable
groups and the symmetric and alternating groups, this has yielded exponent one algorithms [1, 5,
16]. In the case of solvable groups, one can obtain exponent w/2 [2, 6].

In this article, we devise a more general way to circumvent the bottleneck summation, which
depends on the structure of the group rather than knowledge of the representation theory. Our
new recursive step permits us to decompose G via two subgroups H and K and recurse on H and K.
See Theorem 3.7. One side-effect is an alternative proof of the w/2 exponent for solvable groups
that does not require knowledge of the representation theory of the group (in Section 4). Our

Note that exercise 13.16 in [3] claims that the exponent 1.5 can be reduced to 1.44 but this seems to be an error, as discussed
in Section 2.
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Group G Upper bound | Reference

SL,(Fy) O(qlGl) Theorem 1.1 in [10]
GL, (F,) 0(q"|G) Theorem 4.3 in [15]
PSp,,, (Fq) 5(q5”_3|G|) Theorem 5.14 in [13]
Osn+1(Fy) O(¢°"%|G|) | Theorem 5.14 in [13]
0} (F,),n>4 | 0 °|G|) | Theorem 5.14 in [13]

Fig. 1. Previously best known running times for the generalized DFT over various families of linear groups.
In this table, the O(-) notation hides lower order terms and the dependence on n.

reduction bears some similarity to the double coset algorithm of Reference [18]; a key difference
seems to be the use of fast matrix multiplication at an opportune time in the procedure.

1.1 Past and Related Work

A good description of past work in this area can be found in Section 13.5 of Reference [3]. The first
algorithm generalizing beyond the Abelian case is from Beth in 1984 [2]; this algorithm is described
in Section 2 in a form often credited jointly to Beth and Clausen. This algorithm was the best known
for the general case of an arbitrary finite group prior to this work. Two other milestones are the
O(|G|log |G]) algorithm for supersolvable groups from Baum [1], and the O(|G| log3 |G|) algorithm
for the symmetric group from Clausen [5]. The latter algorithm was improved to O(|G|log? |G])
by Maslen [16] and very recently to linear for the special case of S,,_i-invariant functions on S,
with n > 2k [7]. Wreath products were studied by Rockmore [20], who obtained exponent one
algorithms in certain cases.

In the 1990s, Maslen, Rockmore and coauthors developed the “separation of variables” approach
[13], which relies on non-trivial decompositions along chains of subgroups via Bratteli diagrams
and (again) detailed knowledge of the representation theory of the underlying groups. There is
a rather large body of literature on this approach, and it has been applied to a wide variety of
group algebras and more general algebraic objects. For a fuller description of this approach and
the results obtained, the reader is referred to the surveys [17, 21], and the most recent article in
this line of work [14].

For the present article, important results for comparison are the previous best-known results for
linear groups of various sorts. We gather them in Figure 1. Notice that for each fixed dimension n,
these all represent exponent « algorithms for a > 1. Our methods give exponent w/2 algorithms
for all of these groups, which translates to (the optimal) exponent one if w = 2. Using the current
best upper bounds on w, our methods give concrete improvements in small dimension in all cases;
we explicitly highlight only the case of SL,(IF) in this article.

1.2 Notation and Preliminaries
Throughout this article, we will use the phrase
“G has a generalized DFT using O(|G|**€) operations, for all ¢ > 0,”

where G is a finite group and « > 1 is a real number. We mean by this that there are universal
constants ¢, independent of the group G under consideration, so that for each € > 0, the operation
count is at most ¢.|G|*"¢. Such an algorithm will be referred to as an “exponent «” algorithm.
This comports with the precise definition of the exponent of matrix multiplication, «: That there
are universal constants b, for which n X n matrix multiplication can be performed using at most
ben®*€ operations, for each € > 0. Indeed, we will often report our algorithms’ operation counts
in terms of . In such cases, matrix multiplication is always used as a black box, so, for example, an

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 4. Publication date: November 2019.



4:4 C. C.-Y. Hsu and C. Umans

operation count of O(|G|“/?) should be interpreted to mean: If one uses a fast matrix multiplication
algorithm with exponent & (which may range from 2 to 3), then the operation count is O(|G|%/?).
In particular, in real implementations, one might well use standard matrix multiplication and plug
in 3 for w in the operation count bound.

All logarithms are base 2. We use Irr(G) to denote the complete set of irreducible representations
of G being used for the DFT at hand. In the presentation to follow, we assume the underlying field
is C; however, our algorithms work over any field ]Fpk whose characteristic p does not divide the
order of the group and for which k is sufficiently large for F,« to represent a complete set of
irreducibles.

A basic fact is that ¥ ,err(c) dim(p)? = |G|, which implies that for all p € Irr(G), we have

dim(p) < |G|'/2. An inequality that we use repeatedly is this one:

ProrosiTION 1.1. For any real number a > 2, we have

Z dim(p)® < |G|*/%.
pelrr(G)

PROOF. Set ppmay to be an irrep of largest dimension. We have

D dim(p)® < dim(pma)* 2 Y. dim(p)? = dim(pmax)® |G| < IGI“/%,
pelrr(G) pelrr(G)

where the last inequality used the fact that dim(ppay) < |G|/2. ]

We also need Lev’s Theorem:

1/2

THEOREM 1.2 ([12]). Every finite group G has a proper subgroup H of order at least |G|'/, unless

G is cyclic of prime order.

This is easily seen to be tight by considering the cyclic group of order p?, for p prime.
In a few key places, we utilize the Kronecker product (or tensor product) of two matrices A and
B, and there our convention is to name the indices of A ® B so that

(A®B)[(i.1), (.j)] = Ali. j1B[i". J'].

2 THE SINGLE SUBGROUP REDUCTION

In this section, we describe the recursive generalized DFT attributed to Beth and Clausen (see
Reference [3]). Given a subgroup H of a finite group G, this reduction computes a DFT with respect
to G via DFTs with respect to H. Our presentation makes use of fast matrix multiplication where
possible, and so the running time will be expressed in terms of w. A key definition is that of an
H-adapted basis for the irreps of G. This is a basis in which the restriction of each irrep of G to
H respects the direct sum decomposition into irreps of H. In concrete terms, this implies that for
each irrep p € Irr(G), while for general g € G, p(g) is a dim(p) X dim(p) matrix, for g € H, p(g) is
a block-diagonal matrix with block sizes coming from the set {dim(c) : o € Irr(H)}.

THEOREM 2.1 (SEE REFERENCE [3]). Let G be a finite group and let H be a subgroup. Then we can
compute a DFT with respect to G and an H-adapted basis, at a cost of [G : H] many H-DFTs plus

(G : H]IG| + [G : H]? Z O(dim(c)“**)

oelrr(H)

operations, for all e > 0.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 4. Publication date: November 2019.



A New Algorithm for Fast Generalized DFTs 4:5

Proor. Letgy, gz, ..., g; be asystem of distinct right coset representatives of Hin G,so t = [G :
H]. Let ¢ be an element of C[G]. We can write

t
c= Z g9 = Z(Z c;li)h)gi
i=1

geG heH

for some elements ¢ = (3 ,,cy cﬁli)h) € C[H]. By computing an H-DFT for each i, we obtain the

elements
s; = Z cg) @ o(h).

heH oelir(H)

Let s; be the lift of s; in which we repeat each o € Irr(H) as many times as it occurs in the irreps

of G. We notice that
S @ o= 57 @ o)

geG  pelir(G) i=1 pelr(G)

Moreover, since we are using an H-adapted basis, each of the t matrix multiplications is the product
of a block-diagonal matrix having blocks whose dimensions are those of the irreps of H, with a
block diagonal matrix having blocks whose dimensions are those of the irreps of G. If n, , denotes
the number of occurrences of o € Irr(H) in p € Irr(G), then the cost of performing this structured
matrix multiplication is at most

Z Z ne.,0(dim(c )w“)[fﬁiz—g} = Z O(dim(c)~1*¢) Z n,. p dim(p)

oelrr(H) pelrr(G) oelrr(H) pelrr(G)

= D> 0(dim(e)°7"*) dim(0)[G : H]

oelrr(H)

= Z O(dim(c)®*€)[G : H,

oelrr(H)

where the second-to-last equality used Frobenius reciprocity: n,, , also equals the number of times
p occurs in the induction of ¢ from H up to G, and then 3}, n,, , dim(p) is easily seen to be the
dimension of the induced representation, which is dim(o)[G : H]. We have to do [G : H] many
of these structured multiplications, and then sum them up. The summing costs [G : H]|G| many
operations, since the block-diagonal matrices we are summing have, in general, |G| nonzeros. O

We note that this final sum, which costs |G|[G : H] operations, cannot be accelerated by fast
matrix multiplication, and this appears to have been overlooked in the claim in Referencee [3] that
by using fast matrix multiplication together with Theorem 1.2 one can achieve an upper bound of
O(|G|***) for all finite groups G. Indeed, when |H| = |G|Y/2, which may be in the worst case, the
|G|[G : H] term by itself is at least |G|*/2. Our “double subgroup reduction” can be seen as a means
to avoid having to directly compute this bottleneck sum.

At the expense of a slightly coarser upper bound, we can remove the requirement of an H-
adapted basis, which will simplify our use of Theorem 2.1 in recursive algorithms later.

COROLLARY 2.2. Let G be a finite group and let H be a subgroup. Then we can compute a DFT with
respect to G at a cost of [G : H] many H-DFTs plus O([G : H|?|H|*/%*€) operations for all sufficiently
smalle > 0.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 4. Publication date: November 2019.



4:6 C. C.-Y. Hsu and C. Umans

Proor. Using Proposition 1.1 with & = w + €, the cost from the statement of Theorem 2.1 can
be upper bounded by

[G:HIGI+[G:H Y O(dim(0)“*) < O([G : HI|H|*/**°). (1)
o€lrr(H)

Note that in Theorem 2.1, the DFT is with respect to an H-adapted basis. At a cost of

3 O(dim(p)*) < O(IGI/) (2)
pelrr(G)

operations (again using Proposition 1.1 with @ = @ + €), we can change an arbitrary basis to an
H-adapted basis, to which we apply Theorem 2.1 and then change back to the original basis.
Both expression (1) and expression (2) are upper bounded by O([G : H]?|H|*“/**€), provided o +
2e < 4. |

The single-subgroup reduction works best when the subgroup H is large. Lev’s Theorem
(Theorem 1.2) guarantees a subgroup of size at least |G|'/2. Using this, one obtains the following
recursive algorithm, whose bound, using only that w < 3, matches Theorem 13.48 in the presen-
tation in Reference [3].

THEOREM 2.3. For every finite group G, there is an exponent one +w/4 algorithm computing the
DFT with respect to G.

Proor. Fix G. We apply Corollary 2.2 recursively.

If G is a p-group, then we apply Theorem 4.2 (actually, we only need to do this when G is cyclic
of prime order). If G is the trivial group, then the DFT is trivial as well. Otherwise, according to
Theorem 1.2, there is a subgroup H of size at least |G|'/?, to which we apply Corollary 2.2.

Set = min{e, 0.1}, and give names to some constants:

e Let Bs be the constant hidden in the [G : H]? - O(|H|®/?*%) notation of Corollary 2.2.
e Let B be the constant hidden in the O(|G|log |G|) notation of Theorem 4.2.

Let T'(n) denote an upper bound on the operation count of this recursive algorithm for any group
G of order n. For each fixed € > 0, we will prove by induction on n that, for a universal constant
Ce,

T(n) < Cen'*%*€log? n.

This clearly holds for the base case of a p-group or the trivial group, provided C. > B.
When we apply Corollary 2.2 recursively, the cost is at most

[G:H]-T(H|) + [G: H]z -Bg|H|"’/2+5,

where |H| > |G|'/2. If we set y such that |H| = |G|", and thus 1/2 < y < 1, and apply the induction
hypothesis, then we obtain

T(n) < Cen' V1t Jog%(n/2) + Bsn®171)py(@/2+9)

w5
< Cen't@/**¢(logn)(logn — 1) + Bsn'"%*7,
which is at most Ccn'* %€ log? n as long as C, > Bs. ]
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A New Algorithm for Fast Generalized DFTs 4:7

3 THE DOUBLE SUBGROUP REDUCTION

This section contains our main algorithmic result. Given two subgroups H, K of a finite group G,
we show how to compute a DFT with respect to G, via DFTs with respect to H and K. We first
show how to obtain an intermediate representation in terms of tensor products of the irreps of H
and the irreps of K:

LEMMA 3.1. Let H and K be subgroups of G and let ¢ be an element of C[G] supported on HK. Fix
a way of writing g = hk for each g € HK (this is unique iff H N K = {1}). We can compute

¢ @ o(h) ® (k)
g=hkeHK  oce€lrr(H),r€lrr(K)

by performing |H| many K-DFTs and |K| many H-DFTs.

Proor. Using the chosen way of writing g = hk, we can write

c= Z cgg = Zh-(Zc,ih)k)
g=hkeHK heH keK

for some elements ¢\ = (3;cx cl(ch)k) € C[K]. Specifically, among all h, k pairs such that hk = g,

we take c](ch) equal to ¢, for the chosen h, k pair, and zero for the other pairs. We perform |[H| many
K-DFTs to compute for each h € H:

h
sp = Zc,i) @ (k).
keK 7 elrr(K)

We use the notation s;[7, u, v] to refer to entry (u,v) of component 7 in the direct sum. Then we
perform |K| many H-DFTs to compute for each 7 € Irr(K) and u, v € [dim(7)],

tr,u,v = Z Sh[T,u,U] @ O.(h)
heH oelir(H)

(h)

Note that t; 4, [0, x, y] is the ((x, u), (y,v)) entry of Y ey ke ¢ 0(h) ® 7(k) and then using our

choice of ¢, we find that we have computed:
Yo P ek
g=hkeHK oelrr(H), r €lrr(K)

as promised. O

The following is an important (and known) general observation (see, e.g., Lemma 4.3.1 in Ref-
erence [8]):

LEMMA 3.2. IfA is an ny X ny matrix, B is an ny X n3 matrix, and C is an n3 X nq matrix, then the
product ABC can be computed by multiplying A® CT (which is an nyny X nyns matrix) by B viewed
as an npns-vector.

Proor. Observe that

(ABC)[iy, 4] ZA [i1, io] Blia, i3]Cli3, i4]
lz 13
and

(A®CT) - B)[(i1,ia)] = Z(A‘X’ CT)[(i1, ia), (iz, i3) 1Bl (i, i3)] = ZA i1, 12]Clis, i4]Bliz, i3]. O

in, 13 iz, 13
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4:8 C. C.-Y. Hsu and C. Umans

This nyng X nynz-matrix-vector multiplication costs O(nynynyns) operations. More importantly,
we have the following:

CoROLLARY 3.3. IfA and C are as in Lemma 3.2, and square (son; = ny and ns = ng), and we have
several ny X ns matrices, By, By, . . ., By, then we can compute AB;C for all i using A ® CT, at a cost

of
O((nzn3)®~"*¢ - max{nyns, £})
operations, for all e > 0.
ProoF. Set N = nyng = nzns. If £ < N, then this can be accomplished with a single N X N ma-
trix multiplication, at a cost of O(N®“*€) operations, by the definition of w. If £ > N, then this

can be accomplished with [£/N] many N X N matrix multiplications, at a cost of O(£ - N®71%€)
operations. O

Now we show how to lift from the intermediate representation to the space of irreducibles
of G. We need some notation. For ¢ € Irr(H), 7 € Irr(K), p € Irr(G), let n,, , be the number of
occurrences of ¢ in the restriction of p to H, and let m., , be the number of occurrences of 7 in the
restriction of p to K.

LEMMA 3.4. There is a linear map

PG HK * I_l C [dim(e) dim(z))* _, ]_[ Cdim(p)?

oelrr(H), 7 €lrr(K) pelrr(G)

that maps @UE]MH)’TE[W(K) o(h) ® t(k) to @penr(c) p(hk) for allh € H,k € K. The map G 1.k
can be computed using

0| (dim(o) dim(z))®~*€ - max { dim(o) dim(r), Z Ng, pMer,p
o€elrr(H), T €lrr(K) peInG

+ ), Odim(p)”*)

pelrr(G)
operations, for all e > 0.

Proor. Let Irr*(H) be the multiset of irreducibles of H in the multiplicities that they occur in
the restrictions to H of Irr(G), and let Irr* (K) be the multiset of irreducibles of K in the multiplic-
ities that they occur in the restrictions to K of Irr(G). Let S be the change of basis matrix taking
Do et (H)0 t0 ®perr(c)p and let T be the change of basis matrix taking @ cpr (k)7 t0 ®perr(G)P-
Then for each h € H, k € K, we have

s| P a(h))slr( P | = P pb).
oelr*(H) 7 €lrr*(K) pelrr(G)

Set M = ST, and consider the expression

& cr(h))M P m). 3)

oelr*(H) relrr*(K)

Note that both M and the above product are block-diagonal matrices with blocks of dimension
dim(p) as p runs through Irr(G). Now, for each p € Irr(G), a given o € Irr(H) occurs ng, , times and
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A New Algorithm for Fast Generalized DFTs 4:9

a given t € Irr(K) occurs m; , times; therefore, we are computing o (h)B;z(k) for p distinct sub-
matrices B; of M, where p = 3 ,c1r1(G) o, pMz, p- By Corollary 3.3, each such a batch can be com-
puted by taking a product of ¢ (h) ® 7(k)T with a matrix whose columns are the B; sub-matrices,
viewed as vectors. This is linear in the entries of o(h) ® 7(k) and costs

0| (dim(o) dim(r))®"*¢ - max { dim(c’) dim(r), Z na,pm,,p})
pelrr(G)

operations. Finally, we need to multiply Equation (3) by S on the left and T™! on the right; both
are block-diagonal matrix multiplications that cost }; ,cpr(g) O(dim(p)“*€) operations.

Note that Equation (3) specifies a matrix multiplication problem with a format and a pattern of
repeated blocks that is independent of h and k (it depends only on G, H, K). The just-described map
is therefore the same for each h, k, and we call it ¢, i, k. Both the applications of Corollary 3.3 and
the pre- and post- multiplication by S and T~" are linear in the entries of elre(H), r etrr(ic) O (R) ®
7(k), as required. O

Now we use elementary facts from representation theory to bound the complexity estimate in
Lemma 3.4 in terms of |H|, |K|, |G]|.

LEmMMA 3.5. For all finite groups G and subgroups H, K, the expression

0| (dim(c) dim(7))®~'*¢ - max { dim(c) dim(r), Z Mg, pMr, p
o€lrr(H), 7 €lrr(K) pelnG

+ > O(dim(p)“*<)

pelrr(G)
is upper bounded by O((|H||K|)®/?*€/2 + |G|@/?+€/2).

Proor. We use only the fact that for each p € Irr(G),

dim(o)n,,, = dim(p), (4)
o€lrr(H)
and similarly
Z dim(r)m,, , = dim(p), (5)
relrr(K)

together with the fact that the sum of the squares of the dimensions of the irreps of a group is the
order of that group (which implies that the maximum dimension is at most the square root of the
order of the group).

We observe that by replacing the “max” with addition,

O((dim(a) dim(7))“ ™€ - max { dim(o) dim(7), Z N, pMz, p )

oelrr(H), 7 €lrr(K) pelrG

< Z O((dim(o) dim(r))® "€ . (dim(a) dim(r) + Z ng,pmr,p))

o€lrr(H), 7 €lrr(K) pelrrG

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 4. Publication date: November 2019.



4:10 C. C.-Y. Hsu and C. Umans

We know that

(dim(o) dim(z))“~1*€ - dim(o) dim(7)
o €lrr(H), 7 €lrr(K)

=( Z dim(o_)w+e) . Z dim(r)””) < (|H||K|)w/2+5/2,
o €lrr(H) r€lrr(K)

where the last inequality applied Proposition 1.1 twice, with & = w + €. Also, we know that

Z (dim(o)dim(f))w—“f-( Z na,pm,,p)

o€lrr(H), 7 €lrr(K) pelrG

= Z ( Z dim(a)“’_1+6n0,p)~( Z dim(r)w—“fm,,p)
)

pelrr(G) \o€lrr(H) relrr(K

< Z (|H|(w—2+e)/2, Z dim(G)nJ,p)'(|K|(w_2+e)/2- Z dim(l’)mf,p)

pelr(G) o€lrr(H) r€elrr(K)

— Z |H|(w—2+e)/2|K|((u—2+e)/2 dlm(p)z — (|H||K|)(w_2+€)/ZIG|,
pelrr(G)

where the second-to-last equality used Equations (4) and (5). If |[H||K| < |G|, then this expression
is at most |G|©/%*¢/2; if |H||K| > |G|, then this expression is at most (|[H||K|)®/?*¢/2. Finally, we
have that the final term in the main expression, . ,cpr(g) O(dim(p)“*€), is at most O(|G|@/#+e€/2),
by Proposition 1.1 with & = w + €, and the lemma follows. |

Our main theorems put everything together:

THEOREM 3.6. Let G be a finite group, let H, K be subgroups, and let x € G be any element. Fix a
way of writing g = hk for each g € HK (this is unique iff HN K = {1}). Let ¢ € C[G] be supported
on HKx. Then we can compute

Cqg - @ p(9)

g=hkxc€HKx pelrr(G)

at the cost of |H| many K-DFTS, |K| many H-DFTs, plus O(|G|®/%*€ + (IH||K|)/#*¢) operations for
alle > 0.

PROOF. Set c; = cgx and notice that ¢’ is supported on HK. Apply Lemma 3.1 on ¢ to compute

Do P amern.

g=hkeHK  oe€lrr(H),7€lr(K)

Next, apply the linear map ¢, u,x to obtain (by linearity) > ;—pkenk ¢4 @pelrr(G) p(hk), and, fi-
nally, multiply by ®,cnr(G)p(x) on the right, at a cost of ¥ ,crr(c) dim(p)? < O(|G|*/?*€) opera-
tions (by Proposition 1.1 with = w + €). The result is

2 4 D orgr= ), e D r@)

g=hkeHK  pelrr(G) g’ €eHKx pelrr(G)

as promised. O
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By translating HK around, we cover all of G, leading to our main theorem:

THEOREM 3.7 (MAIN). Let G be a finite group and let H,K be subgroups. Then we can compute
the DFT with respect to G at the cost of |H| many K-DFTS, |K| many H-DFTs, plus O(|G|®/**€ +
(|H||K|)®/?*€) operations, all repeated r = O(%) many times, for all € > 0. If G = HK, then

we may taker = 1.

Proor. We argue that there exist x1, x, ..., X, € G so that U;HKx; = G. Then a G-DFT can be
computed by applying Theorem 3.6 r times with these translations. The existence of the x; is a
standard application of the probablistic method: For randomly chosen x;, the probability U; HKx;

fails to contain a given g € G is (1 — |[HK]/|G|)", and the r specified in the theorem statement
makes this quantity strictly less than 1/|G|, so a union bound finishes the argument. O

4 EXPONENT w/2 FOR FINITE SOLVABLE GROUPS
We show how to derive algorithms for all solvable groups via our reduction, matching the exponent
w/2 algorithm of References [2, 6]. An advantage of our approach is that we do not need to rely
on knowledge of the representation theory of G.

We begin with a key definition:

Definition 4.1. A finite group G is supersolvable if there is a sequence of subgroups

{1} =Gy <G <Gy« <G =G,

such that each G; is normal in G, and for all i, G;/G;_; is cyclic of prime order.

A solvable finite group G is one in which the requirement that each G; is normal in G (rather than

just Gi4+1) is removed. An early result in the area of fast generalized DFTs was Baum’s algorithm,
which gives a fast DFT for all supersolvable groups.

THEOREM 4.2 (BAuMm). There is an algorithm that uses O(|G|log|G|) operations to compute the
generalized DFT over G if G is supersolvable.

An important class of supersolvable groups are p-groups. Together with this fact, the result of
the previous section makes it quite easy to obtain an algorithm for all solvable groups. We need
the following classical result of Hall:

THEOREM 4.3 (HALL). Let G be a finite solvable group of order ab, with (a,b) = 1. Then there exists
a subgroup H C G of order a.

From this we obtain the following:

THEOREM 4.4. Let G be a finite solvable group. Then a G-DFT can be computed in O(|G|®/?+€)
operations for all € > 0.

Proor. Take § = €/2. Let As > 1 be the constant hidden in the O(|G|®/%*% + (|H||K])®/?+9)
notation in Theorem 3.7. Let B be the constant in the O(|G|log |G|) expression in the statement
of Theorem 4.2. It suffices to prove that for any finite group G with |G| having k distinct prime
factors, a G-DFT can be computed in

(4A6)logk|G|o)/Z+5B log |G|
operations, because for sufficiently large G, we have
(4A5)°FBlog |G| < (4A5)1°81°81C1Blog |G| < |GI°.

The proof is by induction on the number of distinct prime factors in the order of G. For the base
case of k = 1, G is a p-group, hence supersolvable, and we apply Theorem 4.2.
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Now, suppose |G| = p{" ... pzk, where p1, ..., pi are distinct primes, and then |G| = ab, where
a and b each has no more than k/2 distinct prime factors and (a, b) = 1. Applying Hall’s theorem
(twice) there are subgroups H, K of order a and b, respectively. Since (a,b) = 1, we must have
H N K = {1}, and then G = HK, because |G| = ab.

We can then apply Theorem 3.7 to reduce to the case of computing |H| many K-DFTs and K
many H-DFTs, at a cost of 245|G|*/ 249 operations. But H and K are both solvable, and hence by
the induction hypothesis, these two sets of DFTs cost at most

|H| - (4As)°8k/D|K|@/2+0 B og |K| + |K] - (4A5)18%/2) |H |29 Blog |H|
2
< ——(445)"8¥|G|*/*** Blog |G
4As

|a)/2+5

operations. Together with the 245|G overhead, this is no more than

(4A5)"°8K|G|“/**9Blog |G|

operations, as required. ml

5 EXPONENT w/2 FOR FINITE GROUPS OF LIE TYPE

One of the main payoffs of Theorem 3.7 is exponent w/2 algorithms for finite groups of Lie type.
This is because groups of Lie type have an “LDU-type” decomposition that is well suited to The-
orem 3.7. We describe these decompositions and the resulting DFT algorithms in this section. All
of our “LDU-type” decompositions of groups of Lie type into three subgroups give rise to the
following DFT algorithm:

THEOREM 5.1. Let Hy, Hy, Hs be subgroups of group G, and suppose all three are either p-groups or
Abelian. Moreover, suppose that HiH; is a subgroup of G and that Hy N H, = {1} and H{H, N H3 =
{1}. Then there is a generalized DFT for G that uses at most

|Gl log |G| )

o) (|G|w/2+e
|H:||Ha || Hs|

operations for all € > 0.

PROOF. We apply Theorem 3.7 to the pair H;H, and Hs at a cost of O(|G|“/%*€) operations plus
|H1H,| many H3-DFTs and |H;| many H; H,-DFTs. This is all repeated,

B ( Gl log |G )
r=0——2"-1|,
EAGAEA

many times. The H3-DFTs cost O(|Hs| log |Hs|) operations, because Hj is Abelian or a p-group (via
Theorem 4.2). We apply Theorem 3.7 once more to Hy, H, at a cost of O(|H;H,|“/?*€) operations
plus |H;| many H,-DFTs and |H,| many H;-DFTs. Each H;-DFT costs O(|H;|log |H;|) operations,
because H; is Abelian or a p-group, and the same is true for each H,-DFT. Altogether, the cost is

r-[0UGI“/#*€)  +  |HiH,| - O(IHs| log |Hs))
+  |Hs|- (O(IHyHy|*"**€) + |Hy| - O(|Hz| log |Hy|) + Hy - O(|Hy log Hi ) ) |
operations, which is as claimed. m|

From Carter [4], we have that all finite simple groups of Lie type (except the Tits group) have a
split (B, N )-pair, which implies the following structure:

G = UyewBwU,,,
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Name Family [W| 1G]
Chevalley | A¢(q) (€ +1)! q@)(l’z)
Be(q) 20e! q°
Ce(q) 20e! g2
D¢(q) 207101 )
Exceptional | Eg¢(q) 0(1) q°®
Chevalley | E7(q) 0o(1) ¢
Es(q) 0(1) ¢®®
Fi(q) 0(1) el
G2(q) 0(1) q°W
Steinberg 2Ag(qz) 21¢1211¢ 1211 qe({fz)
De(q°) 201 = 1)1 | g®)
2Es(q%) 0(1) °0
*Da(q’) 0(1) g°0
Suzuki 2By(q), g = 2°"*1 | 0O(1) PRI
Ree ’Fy(q), g = 31 | 0(1) D
2Gy(q), g = 32"*1 | 0(1) g°w

Fig. 2. Families of finite groups G of Lie type, together with the size of their associated Weyl group W. These
include all simple finite groups other than cyclic groups, the alternating groups, the 26 sporadic groups, and
the Tits group. See References [12, 22] for sources.

where B and N are subgroups, W is the Weyl group (i.e. W = B/(BN N)), B = UT with T a maximal
torus (hence Abelian), and U, T are complements in B. The notation w denotes a lift of w from W
to N. The U,, are subgroups of U, and U is a p-group. This decomposition is “with uniqueness of
expression,” which implies that |[BwU,,| = |B||U,,| for each w.

From this description, we easily have the very general result:

THEOREM 5.2. Let G be a finite group with a split (B, N )-pair, with associated Weyl group W. Then
there is a fast DFT over G that uses O(|G|®/?*€|W|) operations for all € > 0.

Proor. Fix the w maximizing the size of the double coset BwU,,, and note that IBU‘? | =
|BwU,,| > |G|/|W| (where UY is the conjugate subgroup wU,,w ). As noted, this size is |B||U,,|,
and hence BN Uf = {1}. Also from the description above, B = UT with U N T = {1}; T is Abelian,
and U, UY are p-groups. We are then in the position to apply Theorem 5.1, which yields the claimed
operation count. O

As one can see from Figure 2, for families of finite simple groups of Lie type, the Weyl group
always has order that is |G|°(!), so this algorithm has exponent w/2, which is best-possible if w = 2.
Next, we explicitly work out the more common cases of the general linear, orthogonal, and sym-
plectic families, and their variants. The overhead coming from the parameter r in Theorem 3.7 in
each case is somewhat smaller than the worst-case bound of O(|W|log |G|) coming from (the very
general) Theorem 5.2; instead, it approaches O(log |G|) as the underlying field size g approaches
infinity.

5.1 The Groups GL,(F,) and SL, (IF4)
The easiest example for applying Theorem 5.1 is the general linear group.

THEOREM 5.3. For eachn and prime power g, there is a generalized DFT for the group G = GL,(IF;)
that uses O(|G|®/2*€) operations for all € > 0.
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4:14 C. C.-Y. Hsu and C. Umans

Proor. The three subgroups H;, Hy, H3 are the set of lower-triangular matrices with ones on
the diagonal, the set of diagonal matrices, and the set of upper-triangular matrices with ones on
the diagonal, which have sizes q(”z‘")/ 2,(g—1)", and q(”z‘”)/ 2, respectively. In the notation of

Theorem 5.1, we have
Gllog |G "
r=O(| [Hog | ')so( 9 ) (n* log g),
|Hy||Hz||Hs| q-1

which can be absorbed into the |G|€ term. |

For SL,(IF4) the only difference is that the diagonal matrices must have determinant one, so the
size of that subgroup is (¢ — 1)""! instead of (q — 1)"; the group itself is also smaller by a factor of
q — 1. We obtain in exactly the same way as for Theorem 5.3:

THEOREM 5.4. For each n and prime power g, there is a generalized DFT for G = SL,(IF,) that uses
O(|G|®/?*€) operations for all € > 0.

Since the two-dimensional case has attracted a lot of attention, we record that result separately
for concreteness as follows:

THEOREM 5.5. For each prime power q, there is a generalized DFT for G = SLy(IF) that uses
O(|G|*/?*€) operations for all € > 0.

Proor. Let H; be the set of lower triangular matrices with ones on the diagonal, H, be the
set of diagonal matrices with determinant 1, and Hs; be the set of upper triangular matrices with
ones on the diagonal. These are all subgroups, each pairwise intersection is {1}, and we have H;H;
is a subgroup. All three subgroups are Abelian, with orders g,q — 1, and g, respectively. Since
|G| = ¢* — g, we have in this case that |H,H,||Hs3| = |G| and hence H;H,Hs; = G. We can perform
the DFT by applying Theorem 3.7 to H;H, and H; and then to H; and H,. The overall cost is

O(GI***)  +  |HiHy| - O(|Hs|log |Hs])
+  |Hs| - (O(H Hy|”/#*€) + |Hy| - O(|Hy|log |Hz) + Hy - O(|Hy log Hy)) ,

which simplifies to the claimed operation count. |

5.2 The Symplectic Groups Sp,,, (F;)

A symplectic group of dimension 2n over I, is the subgroup of invertible matrices that preserve
a symplectic form; all symplectic forms are equivalent under a change of basis, so concretely we
may take Sp,,(IF,) to be the set of all matrices A € GL3,(IFy) such that

_ _(0 T
ATQA =, WhereQ—(_] 0),

and J is the n X n matrix with ones on the antidiagonal.

THEOREM 5.6. For eachn and prime power q, there is a generalized DFT for G = Sp,, (IF) that uses
O(|G|®/?*€) operations for all € > 0.

Proor. Let L, U, D be the lower-triangular (with ones on the diagonal), upper-triangular (with
ones on the diagonal), and diagonal subgroups of GL,, (IF;), respectively. We view our group G as
a subgroup of GL;,(IF4) as well. It is well known that the order of G is

qn2 l—l(qu -1) < q2n2+n.
i=1

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 4. Publication date: November 2019.



A New Algorithm for Fast Generalized DFTs 4:15

Now apply Theorem 5.1 with H; = LN G,H, = DN G, and H3 = U N G. We note that H; and
Hj are p-groups and H, is Abelian (as before). Also, H;H, is a subgroup, and H; N Hy = {1} and
H1H2 an = {1}

It remains to bound the sizes of H;, Hy, Hs. To lower bound the size of Hs, consider the following
subgroups of GLz, (Fy),

LMY nxn
{(OI,,)'ME]F‘I }

{(13 g) : A, B upper triangular n X n matrices with ones on the diagonal} .

H

K

One can verify that H N G is the subgroup in which M is a persymmetric matrix (symmetric about
the anti-diagonal), and thus this subgroup has order ¢""*1/2_ Similarly, one can verify that K N G
is the subgroup in which A is an arbitrary upper-triangular matrix with ones on the diagonal and
B = J(AT)~!]. Thus this subgroup has order ¢""~V/2, We have

(HNG)(KNG) C H

and so [Hs| > gn(m+D/2+n(n=1)/2 — gn* A symmetric argument shows that |Hj | has the same order.
It is also easy to verify that |Hz| = (g — 1)™. In the notation of Theorem 5.1, we have

|G| log |G| ) ( q )n )
r=0\mimnmr) S%\e1 n® + n)log q),
(|H1||Hz||H3| g—1) (" +mleq

which can be absorbed into the |G|€ term. O

5.3 The Orthogonal Groups O, (F,)

An orthogonal group of dimension n over I, is a subgroup of invertible matrices that preserve
a nondegenerate symmetric quadratic form. There are several inequivalent quadratic forms and
thus several non-isomorphic orthogonal groups. For simplicity, we work out only one case (the
“plus type” orthogonal group of even dimension, in odd characteristic). A similar analysis can be
easily carried out for the other non-isomorphic orthogonal groups. In our case, concretely, we may
take O, (IF) to be the set of all matrices A € GL,(IF4) such that

ATQA = Q, where Q = (3 g),

and J is the n/2 X n/2 matrix with ones on the antidiagonal.

THEOREM 5.7. For each even n and odd prime power q, there is a generalized DFT for G = O, (IF4)
specified via the above quadratic form that uses O(|G|®/**€) operations for all € > 0.

Proor. Let L,U, D be the lower-triangular (with ones on the diagonal), upper-triangular (with
ones on the diagonal), and diagonal subgroups of GL,(IF,), respectively. We view our group G as
a subgroup of GL,(IF) as well. It is well known that the order of G is at most Zq("z_")/z.

Now apply Theorem 5.1 with H; = LN G,H; = DN G, and H3 = U N G. We note that H; and
Hj are p-groups and H; is Abelian (as before). Also, H1H, is a subgroup, and H; N H, = {1} and
H]Hg N H3 = {1}
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It remains to bound the sizes of H;, Hy, H3. To lower bound the size of Hs, first consider the
following subgroups of GL,(IF),

_ In/2 M . n/2xn/2
H = {( 0 In/2) :M e Fyg

K= {(%\%) : A, B upper tri. with ones on the diagonal} .

One can verify that H N G is the subgroup in which M is a “skew-persymmetric” matrix (skew-
symmetric about the anti-diagonal), and thus this subgroup has order ¢(("/2*~(n/2)/2 Similarly,
one can verify that K N G is the subgroup in which A is an arbitrary upper-triangular matrix with
ones on the diagonal and B = J(AT)~]. Thus this subgroup has order ¢((*")*~("/2)/2 We have

(HNG)(KNG) C Hs,

and so |H3| > q(”/ 2=(n/2) A symmetric argument shows that |H;| has the same order. It is also
easy to verify that |H,| = (g — 1)"/2. In the notation of Theorem 5.1, we have

|G| log |G| g \"
' O(|H1||H2||H3| <O\;=7) (0 -mlogg/2).

which can be absorbed into the |G|¢ term. |

We note that in all of the cases just considered in Sections 5.1, 5.2, 5.3, one obtains the same
results for the special or projective (or both) variants by following essentially the same argument.
To obtain results for the projective cases, we observe that quotient-ing all of the groups in our
decomposition by the center can only change the operation count by a factor of some constant
multiple of the size of the center, which in these cases is itself a constant.

Finally, we note that Theorem 5.2 and the surrounding discussion imply

THEOREM 5.8. Let G be a finite simple group. Then there is a fast DFT over G that uses O(|G|©/?*€)
operations for all € > 0.

Proor. As noted in the discussion before and after Theorem 5.2, all finite simple groups of Lie
type (except the Tits group) have a split (B, N)-pair, and Weyl group of order |G|°)), so Theorem 5.2
yields exponent w/2 algorithms for these families. By the Classification Theorem, the only other
infinite families of finite simple groups are the alternating group and the Abelian groups, both
of which have exponent one algorithms. The sporadic groups and the Tits group are a finite set
of exceptions that can be handled by choosing the constant in the big-oh notation sufficiently
large. ]

6 A NEW EXPONENT UPPER BOUND FOR ALL FINITE GROUPS

In this section, we prove a structural result for all finite groups that allows us to make use of the
reduction in Theorem 3.7. Just as Lev’s theorem regarding a large single subgroup allows one to
use the single subgroup reduction of Section 2 to obtain a non-trival upper bound for all finite
groups, the following theorem gives a pair of subgroups for use in the reduction of Theorem 3.7.

THEOREM 6.1. There exists a monotone increasing function f(x) < 26VI08X108l08x for 4 yniversal
constant ¢ > 1, for which the following holds: Every finite group G that is not a p-group has proper
subgroups H, K satisfying |HK| > |G|/ f(|Gl).

Proor. If G is simple, then by the Classification Theorem, we have several cases:
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e G is cyclic of prime order. This case cannot arise since G is not a p-group.

e G is the alternating group A,. Then we choose H = A,,_; and K = {1}, and we have |HK| >
|Gl|/n, so as long as f(x) > logx, the theorem holds.

e G is a finite group of Lie Type. Then G has a (B, N) pair (the Tits Group is an exception;
it does not have a (B, N) pair, but it is a single finite group so it can be treated along with
the sporadic groups in the next case). Let W = N/(B N N) be the Weyl group, and from the
axioms of a (B, N) pair, we have that the double cosets BwB with w € W cover G (the w
denotes aliftto N C G). Thus there is some double coset BwB of size at least |G|/|W|. Taking
H to be the conjugate subgroup wBw ! and K = B, we see that |HK| = |BwB| > |G|/|W|.
Now we verify that we can choose f as specified in the theorem statement, so that for each
of the families in Figure 2, f(|G|) > [W].

e G is one of the sporadic groups. Let C be the largest order of a sporadic group. Then by
choosing f(x) > C, the theorem holds for H = K = {1} in this case.

If G is not simple, then let N be a maximal normal subgroup of G, so that G/N is simple. We
have two cases:

e G/N isap-group. Since G is not a p-group, we have that |G| = mp* for m > 1and (m, p) = 1.
Let P be a p-Sylow subgroup of G. Then |P| = p¥, and |[N| = mp*’ for some k’ < k. Then
NP = G and both N and P are proper subgroups.

e G/N is a simple group that is not a p-group. Then apply the previous case analysis for
simple groups to obtain H/N, K/N, proper subgroups of G/N for which |(H/N)(K/N)| >
|IG/N|/f(IG/N]). But then H, K are proper subgroups of G and

[HK| = [(H/N)(K/N)IIN| = |G/NIINI/f(IG/NI) = IGI/f(IG/NI) = |GI/f(IGI),
where the last inequality used the monotonicity of f. O

Now we can use this theorem in a recursive algorithm that switches between the single subgroup
reduction and the double subgroup reduction, as follows:

@2tV ~40+36 2+\/a>z —4w+36

THEOREM 6.2. For every finite group G, there is an exponen algorithm computing

the DFT with respect to G when @ < 1+\F , or exponent 1 when @ > 1+\F . In particular, when
= 2, the exponent is V2.

To visualize these bounds, refer to Figure 3.

Proor. We describe our general strategy before formally analyzing the complexity. For each
possible value of w, we pick a threshold § as a function of w. This threshold will be used to switch
between the single subgroup and the double subgroup reductions.

Fix G. Consider the following recursive algorithm. If G is a p-group, then we apply Theorem 4.2.
If G is the trivial group, then the DFT is trivial as well. Otherwise, let H,K be the subgroups
guaranteed by Theorem 6.1. If |H|, |K| are both at most |G|#, then we apply Theorem 3.7 (the
double subgroup reduction). Otherwise one of H, K has size at least |G|# (without loss of generality,
assume it’s H) and we apply Corollary 2.2 (the single subgroup reduction).

Let us now analyze the operation count in terms of §. After this analysis, we will pick the optimal
B as a function of w to minimize the operation count.

For this purpose, set § = minf{e, 0.1, % }, and give names to some constants:

e Let As be the constant hidden in the O(|G|®/2*% + (|H||K|)®/?*%) notation of Theorem 3.7.
e Let Bs be the constant hidden in the [G : H]? - O(|H|®/?*%) notation of Corollary 2.2.
o Let B be the constant hidden in the O(|G|log |Gl) notation of Theorem 4.2.
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1.6
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Fig. 3. Upper bound in Theorem 6.2 as a function of w. The previous best bound is from Theorem 2.3. As-
suming that some dependence on fast matrix multiplication is necessary, w/2 is a reasonable conjecture for
the optimal dependence. Exponent one is of course a trivial lower bound.

Let T(n) denote an upper bound on the running time of this recursive algorithm for any group

G of order n. For each fixed € > 0, we will prove by induction on n that, for a universal constant
Ce,

T(n) < Cen®*€log®n, (6)

where « is determined by f and w. This clearly holds for the base case of a p-group or the trivial

group, provided Cc > Band a > 1.

By selecting a sufficiently large universal constant C., we may assume that |G| is at least some

fixed constant size, say, Cé/ 2 (since for smaller G the trivial algorithm will fall within the claimed

time bound of Equation (6)). Hence, we may assume that 2¢VIog [Glloglog IG . O (]og |G|) term in the
notation of Theorem 3.7 is bounded above by |G|€/1°,
In the case where we apply Theorem 3.7, the cost is at most

(IH| - T(K)) + K| - T(HI) + As (HIK])“/#*%) - |G,
where |H|, |K| < |G|#. Applying the induction hypothesis, we obtain
T(n) < 2C€(nﬁnﬁ(“+5) log?(n”) +A5n2ﬁ(“’/2+5)) - n€/10
< (2C B2 + Ag) - nmex(BrBarpe.0p+2pd)t i g0 p
which can be bounded above by C.n%*€ log® n as long as the following constraints are satisfied:

o B<¥~0707;
o o> max(%,wﬂ);

o Cc> =2
In the case where we apply Corollary 2.2, the cost is at most

[G: H]-T(H|) +[G : H)* - Bs|H|*/**°,
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where |H| > |G| and hence [G : H] < |G|'"/. If we set y such that |H| = |G|",and thus f <y < 1,
and apply the induction hypothesis, then we obtain
T(n) < Cen''n" @9 log?(n/2) + Bsn*(17V) py (@/2+9)
< Cena+€(10g n)(log n— 1) + B5n2—(2—w/2)/3+5’

which is at most C.n*€ log® n as long as the following constraints are satisfied:

e a>2-(2-w/2)p;
e C. > Bs.

To recap, the above induction proof holds when

a=max(m,wﬂ,2—(2—§)ﬂ), and f < ? ~ 0.707.

Now we solve for the f minimizing «, as a function of w.
When w > %ﬁ ~ 2.562, the optimal is

. 4 4w
B = Lo = .
4+ w0 4+ w

When o < 1++E ~ 2.562, the optimal is

_10-0-Vo?-40+36 . ©-2+ Vol -4w+36

F= 204 — ) &= 4

7 CONCLUSIONS

There are two significant open problems that naturally follow from the results in this article. First,
can one obtain exponent w/2 algorithms for all finite groups? This might be possible by proving a
more sophisticated version of Theorem 6.1, which, for example, manages to upper bound |H N K].
Also of interest would be a proof of Theorem 6.1 that does not need the Classification Theorem.

A second question is whether the dependence on w can be removed. Alternatively, can one show
that a running time that depends on w is necessary by showing that an exponent one DFT for a
certain family of groups would imply w = 2?
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