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Abstract

DNNs are becoming increasingly deeper, wider, and non-
linear due to the growing demands on prediction accuracy
and analysis quality. When training a DNN model, the in-
termediate activation data must be saved in the memory
during forward propagation and then restored for backward
propagation. Traditional memory saving techniques such
as data recomputation and migration either suffers from a
high performance overhead or is constrained by specific in-
terconnect technology and limited bandwidth. In this paper,
we propose a novel memory-driven high performance CNN
training framework that leverages error-bounded lossy com-
pression to significantly reduce the memory requirement for
training in order to allow training larger neural networks.
Specifically, we provide theoretical analysis and then propose
an improved lossy compressor and an adaptive scheme to dy-
namically configure the lossy compression error-bound and
adjust the training batch size to further utilize the saved mem-
ory space for additional speedup. We evaluate our design
against state-of-the-art solutions with four widely-adopted
CNNs and the ImangeNet dataset. Results demonstrate that
our proposed framework can significantly reduce the train-
ing memory consumption by up to 13.5X and 1.8X over the
baseline training and state-of-the-art framework with com-
pression, respectively, with little or no accuracy loss. The full
paper can be referred to at https://arxiv.org/abs/2011.09017.
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1 Introduction

Training deep and wide neural networks has become increas-
ingly challenging. While many state-of-the-art deep learning
frameworks such as TensorFlow [1] can provide high com-
putation throughput by leveraging the massive parallelism
on general-purpose accelerators such as GPUs, one of the
most common bottlenecks remains to be the high memory
consumption during the training process, especially consid-
ering the limited on-chip memory available on modern DNN
accelerators.

In recent years, several works have been proposed to re-
duce the memory consumption for DNN training, including
activation data recomputation [2, 6], migration [11, 12], and
compression [3, 5]. Recomputation takes advantage of the
layers with low computational cost, and deallocate the acti-
vation data for those layers and recompute them based on
their prior layer during the back propagation when needed.
This method can reduce some unnecessary memory cost,
but it can only be applied to limited types of layers with low
performance overhead.

Another type of methods are proposed around data mi-
gration [11, 12], which sends the activation data from the
accelerator to the CPU host when generated, and then loads it
back from the host when needed. However, the performance
of data migration heavily depends on the interconnect band-
width available between the host and the accelerator(s), and
the in-node interconnect technology applied.

Last but not least, data compression is another efficient
approach to reduce the memory consumption, especially for
conserving the memory bandwidth [5, 5]. The basic idea us-
ing data compression here is to compress the activation data
when generated, hold the compressed data in the memory,
and decompress it when needed. However, using lossless
compression [3] can only provide a relatively low memory
reduction ratio (i.e., compression ratio), e.g., typically within
2x. Some other studies such as JPEG-ACT [5] leverages the
similarity between activation tensors and images for vision
recognition tasks and apply a modified JPEG compressor to
activation data. But it suffers from uncontrollable compres-
sion error and require a dedicated hardware component.

We note that all the three methods above are orthogo-
nal to each other. Thus, in this paper, we mainly focus on
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Figure 1. Overview of our proposed memory-efficient CNN training framework.

designing an efficient lossy compression based solution for
convolutional layers, to achieve the memory reduction ratio
beyond the state-of-the-art approach on CNN models.

2 Design of Proposed Framework

The overview of our proposed memory-driven framework is
shown in Figure 1. We iteratively repeat the process shown
in Figure 1 for each convolutional layer in every iteration.

Parameter Collection. We collect the parameters of cur-
rent training status for the following adjustment of lossy
compression configurations. Our framework mainly collects
two types of parameters: (1) offline parameters in CNN archi-
tecture, and (2) semi-online parameters including activation
data samples, gradient, and momentum. Note we only ex-
tract semi-online parameters every W iterations to reduce
the computation overhead and improve the overall training
performance.

Gradient Assessment. We estimate the limit of the gradi-
ent error that would result in little or no accuracy loss to the
training curve, Based on our theoretical analysis, we need to
determine the acceptable o in the gradient error distribution
that minimizes the impact to the overall training accuracy
curve.

Activation Assessment. We dynamically configure the
lossy compression for activation data based on the gradient
assessment in the previous phase and the collected parame-
ters. We simplify our estimator to the following:

eb = (1)

o
alLVNR
where eb is the absolute error bound for activation data, o
describes the acceptable error distribution in the gradient, a
is the empirical coefficient, L is the average value of current
layer’s loss, N is the batch size, and R is the sparsity ratio of
activation data.

Adaptive Compression. In the last phase, we deploy the
lossy compression with our optimized configuration to the
corresponding convolutional layers. We use the GPU ver-
sion of SZ lossy compression [4, 10, 14] (i.e., cuSZ [16]) in
this paper because of its high compression ratio and high
throughput with absolute error bound [15]. In addition, we

propose to modify cuSZ for the case of compressing contin-
uous zeros to avoid generating a series of small values in
decompressed data by SZ, which would reduce the efficiency
of our framework.

3 Experimental Evaluation

Our evaluation are conducted with Caffe [8] and Tensorflow
[1]. Our experiment platform is the TACC Longhorn system,
of which each GPU node is equipped with 4 Nvidia Tesla
V100 GPUs per node. Our evaluation dataset is the ImageNet-
2012 [9]. We use the CNN models for image classification
including AlexNet [9], VGG-16 [13], and ResNet-18/50 [7].
Figure 2 illustrates the result with AlexNet. We can ob-
serve that our framework does not obviously affect the train-
ing accuracy. In the early stage of the training, compression
ratio can be slightly unstable because of the relatively large
change to the model. Note that the compression ratio will
change slightly when the learning rate changes, because the
learning rate only matters when updating the weights.
Table 1 shows the compression ratio of convolutional lay-
ers that our framework can provide. There is almost no accu-
racy loss or only little, with up to 0.31% . This thanks to our
careful control of compression error and thorough theoreti-
cal analysis and modeling of error impact. Our framework
can deliver a promising compression ratio without heavy
efforts of fine-tuning any parameter for different models.
Overall, our proposed framework can provide up to 13.5x
compression ratio with little or no accuracy loss.
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Figure 2. Training accuracy curve comparison between the base-
line and our proposed framework (batch size = 256).
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Table 1. Comparison of accuracy and activation size between base-
line training and our proposed framework.

Neural Network Top-1 Convolutional Compress

Accuracy Act. Size Ratio
baseline 57.41% 407 MB

AlexNet compressed 57.42% 30 MB 13.5%
baseline 68.05% 9.30 GB

VGG-16 compressed 68.02% 0.83 GB 11.1 X
baseline 67.57% 3.42 GB

ResNet-18 compressed 67.43% 0.32 GB 10.7 X
baseline 71.49% 10.28 GB

ResNet-50 compressed 71.18% 0.93 GB 11.0 X

Compared with the lossless compression based solution
[3], which reduces the memory usage by within 2%, our
framework outperforms it by over 9%; compared with the
the current state-of-the-art lossy compression based solution
[5], which uses an image based lossy compressor to provide
up to 7X compression ratios, our framework outperforms it
by 1.5% and 1.8x on ResNet-18 and ResNet-50, respectively.

Our framework introduces relatively small overhead to
the training process while can greatly reduce the memory
utilization and allow larger and wider neural networks to
be trained with limited GPU memory. Moreover, the saved
memory can also be further utilized for larger batch size,
which improves the overall performance. Another potential
way to improve the performance from increasing the batch
size is faster convergence speed to well trained status [17].
More batch size can lead to a more precise direction for
the gradient instead of just rely on methods such as the
momentum to reduce the impact of gradient uncertainty.

Overall, our proposed framework introduces about 17%
overhead the training process while keeping the same train-
ing batch size. Moreover, our framework can further utilize
the saved memory to increase the batch size and improve
the training performance to offset this performance over-
head. For example, our framework can achieve as low as 7%
overhead on VGG-16 by increasing the batch size from 32 to
256 with the similar memory consumption. In comparison,
the state-of-the-art migration solution such as Layrub on
average achieves a memory reduction of 2.4 but with a high
training performance overhead of 24.1% [11].
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