POSTER: A Novel Memory-Efficient Deep Learning
Training Framework via Error-Bounded Lossy
Compression

Sian Jin
Washington State University
Pullman, WA, USA
sian.jin@wsu.edu

Guanpeng Li
University of ITowa
Iowa City, IA, USA

guanpeng-li@uiowa.edu

Abstract

DNNs are becoming increasingly deeper, wider, and non-
linear due to the growing demands on prediction accuracy
and analysis quality. When training a DNN model, the in-
termediate activation data must be saved in the memory
during forward propagation and then restored for backward
propagation. Traditional memory saving techniques such
as data recomputation and migration either suffers from a
high performance overhead or is constrained by specific in-
terconnect technology and limited bandwidth. In this paper,
we propose a novel memory-driven high performance CNN
training framework that leverages error-bounded lossy com-
pression to significantly reduce the memory requirement for
training in order to allow training larger neural networks.
Specifically, we provide theoretical analysis and then propose
an improved lossy compressor and an adaptive scheme to dy-
namically configure the lossy compression error-bound and
adjust the training batch size to further utilize the saved mem-
ory space for additional speedup. We evaluate our design
against state-of-the-art solutions with four widely-adopted
CNNs and the ImangeNet dataset. Results demonstrate that
our proposed framework can significantly reduce the train-
ing memory consumption by up to 13.5X and 1.8X over the
baseline training and state-of-the-art framework with com-
pression, respectively, with little or no accuracy loss. The full
paper can be referred to at https://arxiv.org/abs/2011.09017.

CCS Concepts: - Computing methodologies — Parallel
algorithms; « Neural networks;

Keywords: Neural Network, GPU Memory, Compression

“Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8294-6/21/02.
https://doi.org/10.1145/3437801.3441597

Shuaiwen Leon Song

shuaiwen.song@sydney.edu.au

Dingwen Tao"
Washington State University
Pullman, WA, USA
dingwen.tao@wsu.edu

University of Sydney
Sydney, NSW, Australia

1 Introduction

Training deep and wide neural networks has become increas-
ingly challenging. While many state-of-the-art deep learning
frameworks such as TensorFlow [1] can provide high com-
putation throughput by leveraging the massive parallelism
on general-purpose accelerators such as GPUs, one of the
most common bottlenecks remains to be the high memory
consumption during the training process, especially consid-
ering the limited on-chip memory available on modern DNN
accelerators.

In recent years, several works have been proposed to re-
duce the memory consumption for DNN training, including
activation data recomputation [2, 6], migration [11, 12], and
compression [3, 5]. Recomputation takes advantage of the
layers with low computational cost, and deallocate the acti-
vation data for those layers and recompute them based on
their prior layer during the back propagation when needed.
This method can reduce some unnecessary memory cost,
but it can only be applied to limited types of layers with low
performance overhead.

Another type of methods are proposed around data mi-
gration [11, 12], which sends the activation data from the
accelerator to the CPU host when generated, and then loads it
back from the host when needed. However, the performance
of data migration heavily depends on the interconnect band-
width available between the host and the accelerator(s), and
the in-node interconnect technology applied.

Last but not least, data compression is another efficient
approach to reduce the memory consumption, especially for
conserving the memory bandwidth [5, 5]. The basic idea us-
ing data compression here is to compress the activation data
when generated, hold the compressed data in the memory,
and decompress it when needed. However, using lossless
compression [3] can only provide a relatively low memory
reduction ratio (i.e., compression ratio), e.g., typically within
2x. Some other studies such as JPEG-ACT [5] leverages the
similarity between activation tensors and images for vision
recognition tasks and apply a modified JPEG compressor to
activation data. But it suffers from uncontrollable compres-
sion error and require a dedicated hardware component.

We note that all the three methods above are orthogo-
nal to each other. Thus, in this paper, we mainly focus on


https://arxiv.org/abs/2011.09017
dingwen.tao@wsu.edu
https://doi.org/10.1145/3437801.3441597

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Next Layer ) Forward
Sparsity
A
Conv Gradient Act. Data

Assessment Assessment

Every 1000 lteraﬁons?
1

"\ Activation Data

Sian Jin, Guanpeng Li, Shuaiwen Leon Song, and Dingwen Tao

-
Every 1000 Iterations ¢

H | SzDe c
: : | compression onv
:Compressed
: Data
Fm—————-

S

Figure 1. Overview of our proposed memory-efficient CNN training framework.

designing an efficient lossy compression based solution for
convolutional layers, to achieve the memory reduction ratio
beyond the state-of-the-art approach on CNN models.

2 Design of Proposed Framework

The overview of our proposed memory-driven framework is
shown in Figure 1. We iteratively repeat the process shown
in Figure 1 for each convolutional layer in every iteration.

Parameter Collection. We collect the parameters of cur-
rent training status for the following adjustment of lossy
compression configurations. Our framework mainly collects
two types of parameters: (1) offline parameters in CNN archi-
tecture, and (2) semi-online parameters including activation
data samples, gradient, and momentum. Note we only ex-
tract semi-online parameters every W iterations to reduce
the computation overhead and improve the overall training
performance.

Gradient Assessment. We estimate the limit of the gradi-
ent error that would result in little or no accuracy loss to the
training curve, Based on our theoretical analysis, we need to
determine the acceptable o in the gradient error distribution
that minimizes the impact to the overall training accuracy
curve.

Activation Assessment. We dynamically configure the
lossy compression for activation data based on the gradient
assessment in the previous phase and the collected parame-
ters. We simplify our estimator to the following:

eb = (1)

o
alLVNR
where eb is the absolute error bound for activation data, o
describes the acceptable error distribution in the gradient, a
is the empirical coefficient, L is the average value of current
layer’s loss, N is the batch size, and R is the sparsity ratio of
activation data.

Adaptive Compression. In the last phase, we deploy the
lossy compression with our optimized configuration to the
corresponding convolutional layers. We use the GPU ver-
sion of SZ lossy compression [4, 10, 14] (i.e., cuSZ [16]) in
this paper because of its high compression ratio and high
throughput with absolute error bound [15]. In addition, we

propose to modify cuSZ for the case of compressing contin-
uous zeros to avoid generating a series of small values in
decompressed data by SZ, which would reduce the efficiency
of our framework.

3 Experimental Evaluation

Our evaluation are conducted with Caffe [8] and Tensorflow
[1]. Our experiment platform is the TACC Longhorn system,
of which each GPU node is equipped with 4 Nvidia Tesla
V100 GPUs per node. Our evaluation dataset is the ImageNet-
2012 [9]. We use the CNN models for image classification
including AlexNet [9], VGG-16 [13], and ResNet-18/50 [7].
Figure 2 illustrates the result with AlexNet. We can ob-
serve that our framework does not obviously affect the train-
ing accuracy. In the early stage of the training, compression
ratio can be slightly unstable because of the relatively large
change to the model. Note that the compression ratio will
change slightly when the learning rate changes, because the
learning rate only matters when updating the weights.
Table 1 shows the compression ratio of convolutional lay-
ers that our framework can provide. There is almost no accu-
racy loss or only little, with up to 0.31% . This thanks to our
careful control of compression error and thorough theoreti-
cal analysis and modeling of error impact. Our framework
can deliver a promising compression ratio without heavy
efforts of fine-tuning any parameter for different models.
Overall, our proposed framework can provide up to 13.5x
compression ratio with little or no accuracy loss.

25
0.60
2
L -
0.50 03
> =
H 2
= 0.40 L 15 2
= 5]
g 5
<S030 g
P F10 §
= 0.20 S
5
0.10 ——Original ——Compressed S %
Compression Ratio
0.00 0
0 50000 100000 150000 200000 250000 300000 350000

Iterations

Figure 2. Training accuracy curve comparison between the base-
line and our proposed framework (batch size = 256).



Memory-Efficient Deep Learning Training Framework

Table 1. Comparison of accuracy and activation size between base-
line training and our proposed framework.

Neural Network Top-1 Convolutional Compress

Accuracy Act. Size Ratio
baseline 57.41% 407 MB

AlexNet compressed 57.42% 30 MB 13.5%
baseline 68.05% 9.30 GB

VGG-16 compressed 68.02% 0.83 GB 11.1 X
baseline 67.57% 3.42 GB

ResNet-18 compressed 67.43% 0.32 GB 10.7 X
baseline 71.49% 10.28 GB

ResNet-50 compressed 71.18% 0.93 GB 11.0 X

Compared with the lossless compression based solution
[3], which reduces the memory usage by within 2%, our
framework outperforms it by over 9%; compared with the
the current state-of-the-art lossy compression based solution
[5], which uses an image based lossy compressor to provide
up to 7X compression ratios, our framework outperforms it
by 1.5% and 1.8x on ResNet-18 and ResNet-50, respectively.

Our framework introduces relatively small overhead to
the training process while can greatly reduce the memory
utilization and allow larger and wider neural networks to
be trained with limited GPU memory. Moreover, the saved
memory can also be further utilized for larger batch size,
which improves the overall performance. Another potential
way to improve the performance from increasing the batch
size is faster convergence speed to well trained status [17].
More batch size can lead to a more precise direction for
the gradient instead of just rely on methods such as the
momentum to reduce the impact of gradient uncertainty.

Overall, our proposed framework introduces about 17%
overhead the training process while keeping the same train-
ing batch size. Moreover, our framework can further utilize
the saved memory to increase the batch size and improve
the training performance to offset this performance over-
head. For example, our framework can achieve as low as 7%
overhead on VGG-16 by increasing the batch size from 32 to
256 with the similar memory consumption. In comparison,
the state-of-the-art migration solution such as Layrub on
average achieves a memory reduction of 2.4 but with a high
training performance overhead of 24.1% [11].

Acknowledgments

This research is supported by the National Science Foundation under Grants
OAC-2034169 and OAC-2003624. The authors acknowledge the Texas Ad-
vanced Computing Center (TACC) for providing HPC resources that have
contributed to the research results reported within this paper.

References
[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. 2016. Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems. arXiv preprint arXiv:1603.04467 (2016).

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

[2] Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
Training deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174 (2016).

Esha Choukse, Michael B Sullivan, Mike O’Connor, Mattan Erez, Jeff

Pool, David Nellans, and Stephen W Keckler. 2020. Buddy compression:

Enabling larger memory for deep learning and HPC workloads on gpus.

In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture. 926-939.

Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC

data compression with SZ. In 2016 IEEE International Parallel and

Distributed Processing Symposium. 730-739.

R David Evans, Lufei Liu, and Tor M Aamodt. 2020. JPEG-ACT: Ac-

celerating Deep Learning via Transform-based Lossy Compression.

In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture. 860-873.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse.

2017. The reversible residual network: Backpropagation without stor-

ing activations. In Advances in neural information processing systems.

2214-2224.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition. 770-778.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional architecture for fast feature embedding. In Pro-

ceedings of the 22nd ACM international conference on Multimedia. 675—

678.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet

classification with deep convolutional neural networks. In Advances

in neural information processing systems. 1097-1105.

[10] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hangi
Guo, Zizhong Chen, and Franck Cappello. 2018. Error-controlled
lossy compression optimized for high compression ratios of scientific
datasets. In 2018 IEEE International Conference on Big Data. 438—447.

[11] Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, and Yang Ma. 2018. Layrub:
layer-centric GPU memory reuse and data migration in extreme-scale
deep learning systems. In Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. 405-406.

[12] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfigar, and
Stephen W Keckler. 2016. vDNN: Virtualized deep neural networks for
scalable, memory-efficient neural network design. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, 18.

[13] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

E

[t}

[4

[l

(5

—

[6

—

7

—

8

—

[9

—

lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[14] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. 2017.
Significantly improving lossy compression for scientific data sets based
on multidimensional prediction and error-controlled quantization. In
2017 IEEE International Parallel and Distributed Processing Symposium.
1129-1139.

[15] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cap-
pello. 2019. Optimizing lossy compression rate-distortion from au-
tomatic online selection between sz and zfp. IEEE Transactions on
Parallel and Distributed Systems 30, 8 (2019), 1857-1871.

[16] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp,
Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao,
and Franck Cappello. 2020. cuSZ: An Efficient GPU-Based Error-
Bounded Lossy Compression Framework for Scientific Data. In Pro-
ceedings of the ACM International Conference on Parallel Architectures
and Compilation Techniques. 3-15.

[17] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling sgd batch
size to 32k for imagenet training. arXiv preprint arXiv:1708.03888 6
(2017).



	Abstract
	1 Introduction
	2 Design of Proposed Framework
	3 Experimental Evaluation
	References

