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Abstract
Mappings of bi-conformal energy form the widest class of homeomorphisms that one
can hope to build a viable extension ofGeometric Function Theorywith connections to
mathematical models of Nonlinear Elasticity. Suchmappings are exactly the ones with
finite conformal energy and integrable inner distortion. It is in this way that our studies
extend the applications of quasiconformal homeomorphisms to the degenerate elliptic
systems of PDEs. The present paper searches a bi-conformal variant of the Riemann
Mapping Theorem, focusing on domains with exemplary singular boundaries that are
not quasiballs. We establish the sharp description of boundary singularities that can
be created and flattened by mappings of bi-conformal energy.
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1 Introduction

There is a broad literature dealing with a question when a pair of domains (X, Y) is
quasiconformally or even bi-Lipschitz equivalent. Gehring and Väisälä [11] raised the
question:Which domains D ⊂ R

n are quasiconformally equivalent with the unit ball
B ⊂ R

n? Such domains D are called quasiballs. The interested reader is referred to the
recent book by Gehring et al. [10]. The Riemann Mapping Theorem gives a complete
answer to this questionwhen n = 2. If D � C is a simply connected domain, then there
exists a conformal mapping h : B

onto−→ D. It is, however, a highly nontrivial question
when a domain D ⊂ R

n is a quasiball when n � 3. Among geometric obstructions
are the inward cusps. Indeed, Gehring and Väisälä [11] proved that a ball with inward
cusp is not a quasiball. A ball with outward cusp, however, is always a quasiball.
We denote an n-dimensional unit balls with exemplary boundary singularities of the
form of cusps by Bu where u : [0,∞)

onto−→ [0,∞) is a strictly increasing function and
which characterizes the singularity at the origin, see Fig. 1 and Sect. 1.6 for the precise
definition.

In this article, we describe boundary singularities that can be created by finite n-
harmonic energy and return to the original shape by the inverse deformations whose
n-harmonic energy is finite as well. This is in accordance with the Hooke’s Law, see
Sect. 1.4. We remind the reader that there exists a Lipschitz homeomorphism to both
directions betweenB andBu . However, it is not always possible to haveW 1,n-Sobolev
bounds to both directions for a single map. We state this as follows.

Theorem 1.1 Let n � 3 and

u(t) = e

exp
( 1
t

)α for 0 � t � 1 , where α > 0. (1.1)

Then there exists a homeomorphism h : B
onto−→ Bu in W 1,n(B, R

n) whose inverse
f = h−1 : Bu

onto−→ B lies in W 1,n(Bu, R
n) if and only if α < n.

Fig. 1 Quasiconformal mapping can flatten the outward cusp but not the inward cusp
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Deformations of Bi-conformal Energy and Cusps

Theorem 1.1 is a special case of our main result (Theorem 1.11). Before formulating
Theorem 1.11 we discuss the studied mapping problem in more details.

We are concerned with orientation-preserving homeomorphisms h : X
onto−→ Y

between bounded domains X, Y ⊂ R
n, n � 2, of Sobolev class W 1,p(X, Y), 1 �

p � ∞.

1.1 Quasiconformal Deformations

Of particular interest are homeomorphisms of finite n-harmonic energy; that is, with
p = n.

EX[h] def==
∫

X

|Dh(x)|n dx < ∞. (1.2)

Hereafter the symbol |Dh(x)| stands for the operator norm of the differential matrix
Dh(x) ∈ R

n×n called the deformation gradient. This integral is invariant under the
conformal change of variables in the reference configuration X (not in the deformed
configuration Y). That is, EX′ [h′] = EX[h], where h′ = h ◦ ϕ for a conformal trans-
formation ϕ : X

′ onto−→ X. This motivates us to call EX[h] the conformal energy of h.
Mappings of conformal energy arise naturally in Geometric Function Theory (GFT)
for many reasons [2,11,13,16,26].

Definition 1.2 A Sobolev homeomorphism h : X
onto−→ Y , that is, of class W 1,1

loc (X, Y) ,
is said to be quasiconformal if there exists a constant 1 � K < ∞ so that for almost
every x ∈ X it holds:

|Dh(x)|n � K Jh(x) , where Jh(x) = det Dh(x).

Every quasiconformal map h : X
onto−→ Y has finite conformal energy provided

|Y| < ∞. Indeed,

EX[h] =
∫

X

|Dh(x)|n dx � K
∫

X

Jh(x)dx = K |Y|. (1.3)

1.2 Mappings of Bi-conformal Energy

The remarkable feature of a quasiconformal mapping is that its inverse f
def== h−1 :

Y
onto−→ X is also quasiconformal. In particular, both h and f have finite conformal

energy. Their sum

EXY[h] def==
∫

X

|Dh(x)|n dx +
∫

Y

|Df (y)|n dy def== EYX[ f ] (1.4)

will be called bi-conformal energy of h .
This leads us to a viable extension ofGFTwith connections tomathematical models

of Nonlinear Elasticity (NE) [1,4,6,22].
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Definition 1.3 A homeomorphism h : X
onto−→ Y in W 1,n(X, R

n), whose inverse f =
h−1 : Y

onto−→ X also belongs to W 1,n(Y, R
n) is called a mapping of bi-conformal

energy.

It is equivalent to saying that the inner distortion function of h is integrable over
X and the inner distortion function of f is integrable over Y . For a precise statement
(Theorem 1.5) we need some definitions.

1.3 Inner Distortion

Consider a Sobolev mapping h ∈ W 1,1
loc (X, R

n) and its co-differential D�h(x) ∈
R
n×n - the matrix determined by Cramer’s rule D�h ◦ Dh = Jh(x) I.

Definition 1.4 The inner distortion of h is the smallest measurable function KI (x) =
KI (x, h) ∈ [1,∞] such that

|D�h(x)|n � KI (x)Jh(x)
n−1 for almost every x ∈ X. (1.5)

The question of finite inner distortion merely asks for the co-differential D�h(x) =
0 at the points where the Jacobian Jh(x) = 0. However, for n � 3, the differential
Dh(x) need not vanish if D�h(x) = 0.

A formal algebraic computation reveals that the pullbackof then-form KI (x, h) dx ∈
∧n

X via the inverse mapping f : Y
onto−→ X equals |Df (y)|n dy ∈ ∧n

Y.
This observation is the key to the fundamental equality between the L 1 -norm of

KI (x, h) and conformal energy of the inverse map f , which is usually derived under
various regularity assumptions [3,7,12,14,24]. We shall state in the following form:

Theorem 1.5 Let h : X → Y be an orientation-preserving homeomorphism in the
Sobolev space W 1,n(X, R

n), n � 2. Then the inner distortion of h is integrable if
and only if the inverse mapping f = h−1 : Y → X has finite conformal energy.
Furthermore, we have

∫

Y

|Df (y)|n dy =
∫

X

KI (x, h) dx . (1.6)

Theorem 1.5 is known among the experts in the field and follows combining a few
results in the literature.Wewill provide a proof for the convenience of the reader in the
appendix. The interested reader is referred to [20] for planar mappings with integrable
distortion (Stoilow factorization). The following corollary is immediate.

Corollary 1.6 A homeomorphism h : X
onto−→ Y of classW 1,n(X, R

n) is quasiconformal
if and only if with KI (·, h) ∈ L ∞(X).

1.4 Hooke’s Law for Materials of Conformal Stored-Energy

In a different direction, the principle of hyper-elasticity is tominimize the given stored-
energy functional subject to deformations h : X

onto−→ Y of domains made of elastic
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materials, see [1,4,6,22]. Here we take on stage the materials of conformal stored-
energy. This means that the bodies can endure only deformations h : X

onto−→ Y whose
gradient Dh is integrable with power n (the dimension of the deformed body). A
deformation of infinite n-harmonic energy would break the internal structure of the
material causing permanent damage. There are examples galore in which one can
return the deformed body to its original shape by a deformation of finite conformal

energy, but not necessarily via the inverse mapping f
def== h−1 : Y

onto−→ X . The inverse
map need not even belong to W 1,n(Y, R

n) . On the other hand the essence of Hooke’s
Law is reversibility. Accordingly, we wish that both h and f = h−1 have finite
conformal energy. We call this model n -harmonic hyper-elasticity. It is from this
point of view that we arrive at the following n -dimensional variant of the conformal
Riemann mapping problem.

1.5 Mapping Problems

Let X, Y ⊂ R
n be bounded domains of the same topological type. For each of the

three problems below find conditions on the pair (X, Y) to ensure that:

(P1) There exists a bi-Lipschitz deformation h : X
onto−→ Y.

(P2) There exists a quasiconformal deformation h : X
onto−→ Y .

(P3) There exists deformation h : X
onto−→ Y of bi-conformal energy.

The implications (P1) 	⇒ (P2) 	⇒ (P3) are straightforward.

1.6 Ball with Inward Cusp

We shall distinguish a horizontal coordinate axis in R
n ,

R
n = R × R

n−1 = {(t, x) : t ∈ R and x = (x1, . . . , xn−1) ∈ R
n−1}

and introduce the notation

ρ = |x | def==
√
x21 + x22 + · · · + x2n−1.

Consider a strictly increasing function u : [0,∞)
onto−→ [0,∞) of class C 1(0,∞) ∩

C [0,∞). We assume that u′ is increasing in (0,∞) and

lim
ρ↘0

u′(ρ) = 0.

To every such function there corresponds an (n−1)-dimensional surface of revolution
Su ∈ R+ × R

n−1

Su
def== {(t, x) ∈ R+ × R

n−1 : |x | = u(t)}, where R+ = [0,∞).

123



T. Iwaniec et al.

Fig. 2 Inward and outward cusp in a ball

We shall refer to Su as a model cusp at the origin. Let us emphasize that the case
lim supρ↘0 u

′(ρ) > 0 is excluded from this definition. We may (and do) rescale u
so that u(1) = 1. The model inward cuspy ball is defined by

Bu
def== B \ {(t, x) ∈ R+ × R

n−1 : |x | � u(t) } ,

see Fig. 1.

1.7 Bi-Lipschitz Deformations

There is no bi-Lipschitz transformation of a cuspy ball (inward or outward as in
Fig. 2) onto a ball without cusp. We say that a cusp cannot be flatten via bi-Lipschitz
deformation.

However, there always exists a Lipschitz homeomorphism of a cuspy ball onto a
round ball and there is a Lipschitz homeomorphism of the round ball onto the cuspy
ball, but these two deformations cannot be inverse to each other. The same pertains
to a degenerate cusp defined by u ≡ 0 , as in Fig. 3. In this degenerate case, if
there would exist a bi-Lipschitz mapping h : B

onto−→ B \ I , it would extend as a
homeomorphism of ∂B onto ∂(B \ I) , n � 3, see [18] for more details. It is clear
that the conflicting topology of the boundaries is an obstruction to the existence of
a bi-Lipschitz deformation. This fact is also valid for deformations of bi-conformal
energy, but it requires additional arguments.

1.8 Inward Slit in a Ball (the case u ≡ 0)

We will discuss the degenerate cups separately (u ≡ 0). Let us take a look at the pair
(B, B \ I) of a unit ball and the ball with a slit along the line segment

I def== {(t, x) ∈ R × R
n−1 : 0 � t < 1 and |x | = 0},
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Fig. 3 Two domains which are not of the same bi-conformal energy type

see Fig. 3.
We have already mentioned that there exists a Lipschitz homeomorphism h : B

onto−→
B \ I ; in particular, h ∈ W 1,n(B, B \ I) . The question arises whether there exists a
homeomorphism h : B

onto−→ B\ I of finite conformal energy whose inverse f = h−1 :
B \ I onto−→ B also has finite conformal energy. Theorem 1.1 answer to this question is
in the negative.

Theorem 1.7 In dimension n � 3 the domains B and B \ I are not of the same
bi-conformal energy type; that is, there is no homeomorphism h : B

onto−→ B \ I of finite
bi-conformal energy.

On one hand we have:

Example 1.8 There is a homeomorphism f : B \ I onto−→ B of finite conformal energy
such that h = f −1 ∈ W 1, p(B, R

n) for all exponents p < n.

On the other hand, Theorem 1.7 is a special case of the following.

Theorem 1.9 For p > n − 1 � 2 there is no homeomorphism h : B
onto−→ B \ I of finite

conformal energy with inverse h−1 = f ∈ W 1,p(B \ I, R
n).

The lower bound for the Sobolev exponent in this theorem is essentially sharp.
More precisely, we have

Theorem 1.10 For every p < n − 1 there is a homeomorphism h : B
onto−→ B \ I of

finite conformal energy with inverse f = h−1 ∈ W 1,p(B \ I, R
n).

The borderline case p = n − 1 remains open.

1.9 Main Result

Our central question is when the unit ball and the ball with a model inward cusp Su
are of the same bi-conformal energy type. Let h : B

onto−→ Bu be a deformation of
bi-conformal energy. To predict what cusps Su can be created, i.e., to predict that u
is given by (1.1) it is natural to combine the estimates of the modulus of continuity
of h near 0 with those for the inverse deformation f = h−1 : B \ I onto−→ B . From
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this point of view, deformations of bi-conformal energy are very different from qua-
siconformal mappings. The latter behave singular-like radial stretchings/squeezing; a
poor modulus of continuity is always balanced by a better modulus of continuity of
its inverse. Surprisingly, a deformation of bi-conformal energy and its inverse may
exhibit the same optimal modulus of continuity [19], locally at a given point. Recall
that a homeomorphism h : X

onto−→ Y in W 1,n(X, R
n) satisfies the following estimate

of the modulus of continuity:

|h(x1) − h(x2)|n � Cn

(∫

2B
|Dh|n

)
log−1

(
e + diamB

|x1 − x2|
)

, (1.7)

where x1, x2 ∈ B def== B(x◦, R) ⊂ B(x◦, 2R)
def== 2B � X.

Applying the estimates in (1.7) would give us a nonexistence of a deformation of
bi-conformal energy from B onto Bu with u(t) = exp−1(expα(1/t)), where α > n
(applied to both h and f on the boundaries, see Theorem 3.1). This seemingly natural
approach does not lead to a sharp result. Creating andflatting cusp singularities through
mappings of bi-conformal energy is in a whole different scale, as stated in (1.1). Even
more, Theorem 1.1 is a corollary of the following result.

Theorem 1.11 (Main Theorem) Let n � 3 and

u(t) = e

exp
( 1
t

)α for 0 � t � 1 , where α > 0.

For α � n there is no homeomorphism h : B
onto−→ Bu with finite conformal energy

whose inverse h−1 = f ∈ W 1,p(Bu, R
n), p > n − 1. If α < n, then there exists a

homeomorphism h : B
onto−→ Bu with finite conformal energy such that f is Lipschitz.

2 Prerequisites

Our notation is fairly standard. Throughout the paperB denotes the unit ball inR
n . We

write C,C1,C2, ... as generic positive constants. These constants may change even in
a single string of estimates. The dependence of constant on a parameter p is expressed
by the notation C = C(p) = Cp if needed.

We will appeal to the Sobolev embedding on spheres, see [13, Lemma 2.19].

Lemma 2.1 Let h : B → R
n be a continuous mapping in the Sobolev class

W 1,p(B, R
n), for some p > n − 1. Then for almost every 0 < t < 1 and every

x, y ∈ ∂B(0, t) = St , we have

|h(x) − h(y)| � C t1−
n−1
p

(∫

St

|Dh(x)|p dx
) 1

p

.

Here the constant C depends only on n and p.
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It is relatively easy to conclude from this estimate that a W 1,p-homeomorphism
when p > n−1 is differentiable almost everywhere. It also follows that a homeomor-
phism h : X

onto−→ Y in the Sobolev class W 1,n(X, R
n) satisfies Lusin’s condition (N ).

This simply means, by definition, that |h(E)| = 0 whenever |E | = 0.

Lemma 2.2 Let X, Y be domains in R
n and h : X

onto−→ Y be a homeomorphism in the
Sobolev class W 1,n(X, Y). Then h is differentiable almost everywhere and satisfies
Lusin’s condition (N ).

Due to Lusin’s condition (N ) we have the following version of change of variables
formula, see, e.g., [16, Theorem 6.3.2] or [13, Corollary A.36].

Lemma 2.3 Let h : X
onto−→ Y be a homeomorphism in the Sobolev class W 1,n(X, R

n).
If η is a nonnegative Borel measurable function on R

n and A is a Borel measurable
set in X, then we have

∫

A
η(h(x))|Jh(x)| dx =

∫

h(A)

η(y) dy. (2.1)

Next, we recall a well-known fact that a function in the Sobolev classW 1,p(X, R),
X ⊂ R

n , has a representative which is locally Hölder continuous with exponent
1 − p/n, provided p > n. More precisely, we have the following oscillation lemma.

Lemma 2.4 Let u ∈ W 1,p(X, R) where X ⊂ R
n and p > n. Then

|u(x) − u(y)| � C r1−
n
p

(∫

Br

|∇u|p
) 1

p

for every x, y ∈ Br = B(z, r) ⊂ X.

We will employ a higher dimension version of the classical Jordan curve theorem
due to Brouwer [5], see also [25, Theorem 6.35].

Lemma 2.5 (Jordan–Brouwer separation theorem) A topological (n − 1)-sphere S
disconnects R

n into a bounded component S◦ and an unbounded component S∞.
Their common boundary is S◦ ∩ S∞ = S.

A homeomorphism h : B
onto−→ Bu of finite conformal energy extends as a continuous

map h : B
onto−→ Bu . This follows from the following result, see [17, Theorem 1.3].

Lemma 2.6 Let X and Y be bounded domains of finite connectivity. Suppose ∂X is
locally quasiconformally flat and ∂Y is a neighborhood retract. Then every home-
omorphism h : X

onto−→ Y in the class h ∈ W 1,n(X, Y) extends to a continuous map
h : X

onto−→ Y.

The assumed boundary regularities are defined as follows.

Definition 2.7 The boundary ∂Y is a neighborhood retract, if there is a neighborhood
U ⊂ R

n of ∂Y and a continuous map χ : U → ∂Y which is an identity on ∂Y.
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Definition 2.8 The boundary ∂X is said to be locally quasiconformally flat if every
point in ∂X has a neighborhood U ⊂ R

n and a homeomorphism g : U ∩ X
onto−→

B ∩ (Rn−1 × R
+) which is quasiconformal on U ∩ X; see [27].

Recall that R
+ = [0,∞). It is also known that a mapping of bi-conformal energy

between domains with locally quasiconformally flat boundaries has a homeomorphic
extension up to the boundary, see [17, Corollary 1.1]. Note that ∂Bu is not locally
quasiconformally flat and this result does not apply in our case.

Nevertheless, Lemma 2.6 tells us that h extends as a continuous mapping h : B →
Bu . Since h(B) is a compact subset of Bu , it follows that h takes B onto Bu . Second, it
is a topological fact that such a continuous extension is a monotone mapping h : B

onto−→
Bu :

Proposition 2.9 [8] Suppose that there is a continuous extension G : B
onto−→ B of a

homeomorphism g : B
onto−→ B. Then G : ∂B

onto−→ ∂B is monotone.

By the definition, monotonicity, the concept of Morrey [23], simply means that for a
continuous h : X → Y the preimage h−1(y◦) of a point y◦ ∈ Y is a connected set in
X. It is worth noting that the converse statement of Proposition 2.9 is also valid when
n = 2, 3. Such an elegant characterization of monotone mappings of a 2-sphere onto
itself was obtained by Floyd and Fort [9].

In the next lemmas we will analyze the boundary behavior of continuous extension
of homeomorphism h : B

onto−→ Bu with finite conformal energy which we will still
denote by h : B

onto−→ Bu . The following claim follows from Lemma 2.6 and Proposi-
tion 2.9.

Lemma 2.10 Suppose a homeomorphism h : B
onto−→ Bu lies in the Sobolev class

W 1,n(B, R
n). Then for every x ∈ ∂Bu the preimage h−1(x) is a nonempty continuum

in ∂B.

Simplifying writing we set o′ def== (1, 0, ..., 0) ∈ ∂B and o
def== (0, 0, ..., 0) ∈ ∂Bu .

Without loss of generality, we may and will assume that h(o′) = o. For every 0 < t <

1, we define

St
def== {x ∈ Bu : |x | = t} and Ct

def== {x ∈ ∂Bu : |x | = t} ,

see Fig. 4. Note that here |·| stands for the standard Euclidean norm in R
n .

Furthermore, let S′
t

def== h−1(St ) and C ′
t

def== S′
t ∩ ∂B. Since h : S′

t
onto−→ St and S′

t is
compact, the extension of h is also surjective and we have h : S′

t
onto−→ St . We state this

fact as a lemma.

Lemma 2.11 Suppose a homeomorphism h : B
onto−→ Bu lies in the Sobolev class

W 1,n(B, R
n). Then we have h(C ′

t ) = Ct .

The next lemma shows that the Sobolev embedding on spheres, Lemma 2.1, also
holds on St . In particular, we will need its variant on Ct , see Fig. 4.

123



Deformations of Bi-conformal Energy and Cusps

Fig. 4 St and Ct

Lemma 2.12 Suppose that a homeomorphism h : B
onto−→ Bu has finite conformal

energy. If the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu, R

n) for some p > n − 1, then for almost every 0 < t < 1 and every
x ′
t , y

′
t ∈ C ′

t we have

|x ′
t − y′

t | � C |xt − yt |1−
n−1
p

(∫

St
|Df |pdx

) 1
p

. (2.2)

Here xt = h(x ′
t ) and yt = h(y′

t ) and C is a positive constant independent of t , xt and
yt .

Proof Let x ′
t , y

′
t ∈ C ′

t . By Lemma 2.11 there are two sequences {x ′
t,i }∞i=1 and {y′

t,i }∞i=1
in S′

t such that

lim
i→∞ x ′

t,i = x ′
t , lim

i→∞ y′
t,i = y′

t

and

lim
i→∞ xt,i = xt ∈ Ct , lim

i→∞ yt,i = yt ∈ Ct .

Here,

xt,i = h(x ′
t,i ), yt,i = h(y′

t,i ), xt = h(x ′
t ) and yt = h(y′

t ).

By the classical Sobolev embedding on sphere, Lemma 2.1, we have

|x ′
t,i − y′

t,i | � C |xt,i − yt,i |1−
n−1
p

(∫

St
|Df |pdx

) 1
p

.

Passing to the limit, we obtain

|x ′
t − y′

t | � C |xt − yt |1−
n−1
p

(∫

St
|Df |pdx

) 1
p

.
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If f ∈ W 1,p(Bu, R
n), p > n − 1, then there is a decreasing sequence {ti }∞i=1 with

0 < t1 < 1, which converges to 0, and satisfies (2.2) and ��
∫

Sti

|Df |p dx <
1

ti
.

Indeed, if not, then by Fubini’s theorem for some T ∈ (0, 1) we have

∫

Bu

|Df (x)|p dx �
∫ T

0

∫

St
|Df (x)|p dxdt �

∫ T

0

1

t
dt = ∞.

Without loss of generality,wemay also assume that diamC ′
ti is decreasingwith respect

to ti and diamC ′
t1 < 1

4 .

According to Lemmas 2.11 and 2.12 we have that h : C ′
t

onto−→ Ct is a homeomor-
phism. Now, Jordan–Brouwer Separation Theorem, Lemma 2.5, yields the following
result.

Lemma 2.13 Suppose that a homeomorphism h : B
onto−→ Bu has finite conformal

energy and the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu, R

n) for some p > n − 1. Then ∂B \ C ′
t consists of two disjoint connected

open sets whose common boundary is C ′
t .

The boundary mapping h : ∂B
onto−→ ∂Bu is monotone. We can say more about the

preimage of the singular point o.

Lemma 2.14 Suppose that a homeomorphism h : B
onto−→ Bu has finite conformal

energy and the inverse mapping f = h−1 : Bu → B belongs to the Sobolev class
W 1,p(Bu, R

n) for some p > n − 1. Then we have h−1(o) = o′.

Proof According to Lemma 2.13, ∂B\C ′
t consists of two disjoint connected open sets

in ∂B whose common boundary is C ′
t . We denote the one with smaller diameter by

Ut . Now, for 0 < t < τ < t1, we have Ut ⊂ Uτ and we denote U◦
def== limt→0Ut .

Combining this with continuity of h : B
onto−→ Bu , we obtain

h(U◦) = lim
t→0

h(Ut ). (2.3)

By Lemma 2.11 h(C ′
t ) = Ct . Since further C ′

t ⊂ Ut and limt→0 Ct = o we have
o ∈ h(U◦) ⊂ h(Ut ) for every 0 < t < t1. By Lemma 2.10 h−1(o) is connected. Thus
we obtain that h−1(o) ⊂ Ut for every 0 < t < t1. By Lemma 2.12, diamC ′

t will
converge to 0 as t goes to 0. Therefore, also the diameter of Ut approaches 0. Hence
h−1(o) = o′. ��

Our last lemma in this section gives a precise modulus of continuity estimate for a
homeomorphism h : B

onto−→ Bu with finite conformal energy. Recall that such a home-
omorphism has a continuous extension up to the boundary. Furthermore, the boundary
mapping h : ∂B

onto−→ ∂Bu is monotone in the sense of Morrey, see Lemma 2.10.
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Monotone mappings enjoy a property which is commonly known in literature also
as monotonicity. This notion goes back to H. Lebesgue [21] in 1907. To avoid confu-
sion, in the following definition we use the term monotone in the sense of Lebesgue.

Definition 2.15 Let X be an open subset of R
n . A continuous mapping h : X → R

n

is monotone in the sense of Lebesgue if for every compact set K ⊂ X we have

diam h(K ) = diam h(∂K ). (2.4)

Note that for real-valued functions (2.4) can be stated as

min
K

h = min
∂K

h � max
∂K

h = max
K

h.

Remark 2.16 A folding map is a characteristic example of continuous nonmonotone
mapping which is monotone in the sense of Lebesgue.

Lemma 2.17 Let h : B → Bu be a homeomorphism with finite conformal energy.
If h(o′) = o, then there exists an increasing function ε : [0, 1) → [0,∞) with
lim
t→0+ ε(t) = 0 such that for x ′ ∈ B with 0 < |x ′ − o′| < 1 we have

|h(x ′) − h(o′)| � ε(|x ′ − o′|)
log

1
n

(
1

|x ′−o′|
) . (2.5)

Proof Set

St
def== ∂B(o′, t) ∩ B,

and

osc(h,St )
def== max

x ′
t ,y

′
t∈St

|h(x ′
t ) − h(y′

t )|.

Since h : B
onto−→ Bu is continuous and belongs to the Sobolev class W 1,n(B, R

n),
applying a slightly modified version of the Sobolev embedding on sphere, Lemma 2.1
for almost every 0 < t < 1 we have

(osc(h,St ))
n � Ct

∫

St

|Dh(x)|n dx . (2.6)

HereC is a positive constant, independent of t . Fix x ′ ∈ B such that τ
def== |x ′−o′| < 1.

We write

B(o′, t) def== B ∩ B(o′, t) for 0 < t < 1.
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Choose t ∈ [τ,√τ ]. Then

osc(h,B(o′, τ )) � osc(h,B(o′, t)) � osc(h, ∂B(o′, t)) ,

where the latter inequality follows from the fact that h is monotone in the sense of
Lebesgue. Since St = ∂B(o′, t) ∩ B and h is monotone in the sense of Lebesgue, we
have

osc(h, ∂B(o′, t)) = osc(h,St ).

Combining this with (2.6) for almost every t ∈ [τ,√τ ] we have
(
osc(h,B(o′, τ )

)n

t
= C

∫

St

|Dh(x)|n dx .

Integrating this from τ to
√

τ with respect to the variable t , the claimed inequality (2.5)
follows with

ε(τ ) = C ·
(∫

B(o′,√τ)

|Dh(x)|ndx
) 1

n

, τ = |x ′ − o′|. (2.7)

��

3 Homeomorphic Boundary Extension

Lemma 2.6 shows that a homeomorphism h : B
onto−→ Bu of finite conformal energy can

be extended as a continuousmapping fromB ontoBu . In this sectionwewill prove that
a homeomorphism h : B

onto−→ Bu of bi-conformal energy extends as a homeomorphism
up to the boundary.

Theorem 3.1 Let h : B
onto−→ Bu be a homeomorphism of finite bi-conformal energy.

Then h admits a homeomorphic extension to the boundary, again denoted by h : B
onto−→

Bu.

The existence of such an extension is known [17, Corollary 1.1] if the reference and
deformed configurations have locally quasiconformally flat boundaries, see Defini-
tion 2.8. Obviously, ∂Bu is not locally quasiconformally flat.

Proof of Theorem 3.1 By Lemma 2.6 a homeomorphism h : B → Bu with finite con-
formal energy extends as a continuous mapping h : B → Bu . Since h(B) is a compact
subset of Bu , it follows that h : B

onto−→ Bu . Furthermore, by Lemma 2.10 the boundary
map h : ∂B

onto−→ ∂Bu is monotone.
Now, we need to show that the boundary mapping is injective. We again use the

notation o = (0, 0, ..., 0) and o′ = (1, 0, ..., 0) and assume, without loss of generality,
that h(o′) = o. First, h−1(o) = o′ by Lemma 2.14. Second let y ∈ ∂Bu \{o}. Choosing
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0 < ry < |y−o|, thenB(y, ry)∩Bu is locally quasiconformallyflat.ByLemma2.6, the

homeomorphism f : B(y, ry) ∩ Bu
onto−→ f (B(y, ry) ∩ Bu) has a continuous extension

f : B(y, ry) ∩ Bu
onto−→ f (B(y, ry) ∩ Bu). The extension of f is still an inverse of h

in the quasiconformally flat part of the boundary; that is, h−1(y) = f (y) is a single
point. Now we know that h : B

onto−→ Bu is a continuous bijection, and therefore it is a
homeomorphism. ��

4 Construction of Example 1.8

Here we show that there exists a homeomorphism from B \ I onto B with finite
conformal energy, actually Lipschitz continuous, whose inverse lies in W 1,p(B, R

n)

for every p < n. To simplify our construction, we may and do replace B by a bi-
Lipschitz equivalent domain; namely,

Y = {(s, y) ∈ R × R
n−1 : |y| < 1 and − 1 < s < |y|}.

As for the reference configuration we replace B \ I by a cylinder C = (−1, 1)×B
n−1

with the line segment I removed from it. Consider the Lipschitz homeomorphism
h : C \ I onto−→ Y defined by the rule

h(t, x) =
{

(t |x |, x) for t > 0,

(t, x) for t < 0.
(4.1)

Its inverse mapping f : Y
onto−→ C \ I takes the form

f (s, y) =
{(

s
|y| , y

)
for s � 0,

(s, y) for s < 0.
(4.2)

It is easy to see that

|Df (s, y)| � Cn

|y| .

Therefore,

∫

Y

|Df |p < ∞ for every 1 � p < n

as desired.
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5 Proof of Theorem 1.9

5.1 The Nonexistence Part of Theorem 1.9

First, we will prove the nonexistence part of Theorem 1.9.

Theorem 5.1 If p > n − 1, then there is no homeomorphism h : B
onto−→ B \ I with

h ∈ W 1,n(B, B \ I) whose inverse f = h−1 ∈ W 1,p(B \ I, B).

Proof Suppose to the contrary that there is a homeomorphism h : B
onto−→ B \ I in the

Sobolev class W 1,n(B, B \ I) such that f ∈ W 1,p(B \ I, B). Since ∂(B \ I) is a
neighborhood retract, Lemma 2.6 tells us that the homeomorphism h : B

onto−→ B \ I
extends as a continuous mapping h : B

onto−→ B. We denote

St = ∂Bt \ {xt } , where xt
def== (t, 0, . . . , 0) 0 < t < s < 1.

Here Bt = B(0, t). Fubini’s theorem implies that for almost every t ∈ (0, 1), f
∣∣
St

∈
W 1,p(St , R

n). Since p > n − 1 and n � 3, the possible singularity of f at xt
is removable. For such t , applying Lemma 2.4, f

∣∣
St

extends as a homeomorphism

f : St onto−→ f (St ). Write x ′
t = f (xt ) ∈ ∂B. Now, Jordan–Brouwer Separation Theorem

(Lemma 2.5) tells us thatRn\ f (St ) consists of two disjoint connected open sets whose
common boundary is f (St ). Let us denote the bounded one by Ut . Note that Ut ⊂ B

and Ut ∩ ∂B = {x ′
t }. Since for almost every t < s ∈ (0, 1) we have Bt \ I ⊂ Bs \ I

then Ut = h−1(Bt \ I) ⊂ h−1(Bs \ I) = Us .
Now comes an elementary topological fact: given two domains U ⊂ V ⊂ B such

that U ∩ ∂B = {xν} and V ∩ ∂B = {xμ}, then xν = xμ (Fig. 5).
Now, we have x ′

s = x ′
t . This, however, is impossible since h(x ′

s) = (s, 0, . . . , 0)
and h(x ′

t ) = (t, 0, . . . , 0).
��

5.2 The Existence Part of Theorem 1.9

Here we verify the existence part of Theorem 1.9. Namely,

Theorem 5.2 There exists a Lipschitz homeomorphism h : B → B \ I whose inverse
f ∈ W 1,p(B \ I, B) for every 1 � p < n − 1.

Proof We shall view R
n as

R
n = R × R

n−1 = {(t, x) : t ∈ R , x ∈ R
n−1}.

To simplify our construction, we may and do replace B by a bi-Lipschitz equivalent
domain; namely X = X− ∪ X+, where

X− = {(t, x) : − 1 < t < 0 and |x | < 1}
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Fig. 5 The domains X and Y

and

X+ = {(t, x) : 0 � t < 1 and
t

2
< |x | < 1}.

As for the reference configuration we consider Y = Y+ ∪ Y− where Y− is the
open unit cylinder

Y− = {(s, y) : − 1 < s < 0 and |y| < 1}

and

Y+ = {(s, y) : 0 � s < 1 and 0 < |y| < 1}.

We define a Lipschitz map h : X
onto−→ Y by the rule

h(t, x) =
{

(t, x) in X−,(
t,

[
2|x |
2−t − t

2−t

]
x
|x |

)
in X+.

Then the inverse map f = h−1 : Y
onto−→ X takes the form

f (s, y) =
{

(s, y) in Y−,(
s,

[ 2−s
2 |y| + s

2

] y
|y|

)
in Y+

.

It is the identity map on Y− while on Y+ we write it as

f (s, y) =
(
s,

2 − s

2
y

)
+

(
0,

sy

2|y|
)

,

where the first term is C∞-smooth. It is now easy to verify the estimate

|Df (s, y)| � C ·
(
1 + s

|y|
)

,
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where |s| < 1 and y ∈ R
n−1, 0 < |y| < 1. Hence

∫

Y+
|Df |p < ∞ for every 1 � p < n − 1

as desired. ��

6 Proof of Theorem 1.11

6.1 The Nonexistence Part of Theorem 1.11

Herewe give a proof of the nonexistence part of Theorem 1.11.We recall the statement
for the convenience of the reader.

Theorem 6.1 Let α � n and p > n − 1 be fixed and u(t) = e

exp
(
1
t

)α . Then there

does not exist a homeomorphism h : B → Bu with h ∈ W 1,n(B, Bu) and h−1 ∈
W 1,p(Bu, B).

Proof Fix α � n and p > n − 1. Suppose to the contrary that there exists a
homeomorphism h : B

onto−→ Bu with finite conformal energy such that its inverse f
is in W 1,p(Bu, R

n). According to Lemma 2.6, h extends as a continuous mapping
h : B

onto−→ Bu . Furthermore, by Lemma 2.10 the boundary mapping h : ∂B
onto−→ ∂Bu is

monotone.
We follow the notation introduced in Sect. 2 and set o = (0, 0, . . . , 0) and o′ =

(1, 0, . . . , 0). We may and do assume that h(o′) = o. Moreover, for every 0 < t < 1,

St = {x ∈ Bu : |x | = t} and Ct = {x ∈ ∂Bu : |x | = t}

and

S′
t = h−1(St ) and C ′

t = S′
t ∩ ∂B.

Lemma 2.13 tells us that C ′
t divides ∂B into two disjoint components. We denote the

component which contains o′ by U ′
t . Accordingly, we also have

∂U ′
t = C ′

t . (6.1)

Since
∫

Bu

|Df (x)|pdx < ∞,

there exists a decreasing sequence {ti }, which converges to 0 and satisfies

∫

Sti

|Df (x)|pdx <
1

ti
. (6.2)
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Indeed, by Fubini’s theorem we have

∫ 1

0

∫

St
|Df (x)|p dx < ∞.

Hence,

lim inf
t→0

t
∫

St
|Df (x)|p = 0.

Now, by Lemma 2.11, we have h(C ′
t ) = Ct . Combining this with Lemma 2.12 we

obtain

diamC ′
ti � C · (

2 u(ti )
)1− n−1

p

(∫

Sti

|Df (x)|pdx
) 1

p

� C · (
u(ti )

)1− n−1
p

(
1

ti

) 1
p

. (6.3)

Here u(t) = e

exp
(
1
t

)α . Especially, this shows that diam (C ′
ti ) → 0 as i → ∞ and,

therefore, U ′
ti lies on the half sphere ∂B+. We now appeal to the geometric fact if

x, a ∈ U ′
ti , then |x − a| � diam ∂U ′

ti . Now, for large enough i , by (6.1) we fix
x ′
ti ∈ C ′

ti and then

|x ′
ti − o′| � diamC ′

ti . (6.4)

According to Lemma 2.17 and (6.4) we obtain

ti � |h(x ′
ti ) − o| � ε(ti ) log

− 1
n

1

|x ′
ti − o′| � ε(ti ) log

− 1
n

1

diamC ′
ti

, (6.5)

where ε(t) is a positive function defined in (2.7) which converges to 0 as t goes to 0.
The estimates (6.3) and (6.5) imply

C · u(ti ) �

⎛

⎜
⎝

t
1
p
i

exp
(

ε(ti )
ti

)n

⎞

⎟
⎠

p
p+1−n

. (6.6)

Since α � n we have exp(1/tn) � exp(1/tα) for 0 < t � 1 and therefore

C · e
exp

(
t−n

) �

⎛

⎜
⎝

t
1
p
i

exp
(

ε(ti )
ti

)n

⎞

⎟
⎠

p
p+1−n

.
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This means that there are constants C1,C2 > 0 satisfying

ε(ti ) � C1 · tni log
(
C2 t

β
i exp(t−n

i )
)

, β = 1

p − n + 1
.

Letting i → ∞, the right-hand side converses toC1 and ε(ti ) → 0. This contradiction
completes the proof.

��

6.2 The Existence Part of Theorem 1.11

Theorem 6.2 Let u(t) = e
exp(1/t)α for some 0 < α < n. Then there exists a homeo-

morphism h : B → Bu with finite conformal energy whose inverse f = h−1 : Bu → B

is Lipschitz regular.

Proof Fix 0 < α < n and the corresponding cusp domain Bu with u(t) = e
exp(t−1)

α .

As in the proof of Theorem 5.2 we write

R
n = R × R

n−1 = {(t, x) : t ∈ R , x ∈ R
n−1}

and replace B by a bi-Lipschitz equivalent domain, X = X− ∪ X+, where

X− = {(t, x) : − 1 < t � 0 and |x | < 1}

and

X+ = {(t, x) : 0 < t < 1 and t < |x | < 1}.

We replace the cusp domain Bu by the following bi-Lipschitz equivalent domain
Y = Y− ∪ Y+, where

Y− = {(s, y) : − 1 < s � 0 and |y| < 1}

and

Y+ = {(s, y) : 0 < s < 1 and u(s) < |y| < 1}.

We define h : X
onto−→ Y by

h(t, x) =
{

(t, x) in X−,(
u−1(|x |)

|x | t, x
)

in X+.
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Note that the inverse function u−1(η) = log− 1
α

(
e
η

)
. Then the inverse mapping f =

h−1 : Y
onto−→ X takes the form

f (s, y) =
{

(s, y) in Y−,( |y|
u−1(|y|) s, y

)
in Y+.

Now, f is a Lipschitz regular mapping. Furthermore, we have

|Dh(t, x)| � C

|x | log 1
α

(
e

|x |
) .

Therefore,

∫

X

|Dh|n < ∞

as claimed. ��
Acknowledgements We thank the referee for the valuable comments which were a great help in improving
the manuscript.

7 Appendix: Proof of Theorem 1.5

Proof First, we assume that KI (·, h) ∈ L 1(X). Then, Theorem 9.1 in [3] states that a
homeomorphism h ∈ W 1,n(X, R

n) satisfies the claimed identity (1.6) if h has a finite
(outer) distortion; that is, there is a function 1 � KO (x) < ∞ such that

|Dh(x)|n � KO (x) Jh(x) for almost every x ∈ X. (7.1)

The proof, however, only uses a consequence of (7.1) the finite inner inequality (1.5)
which is stated in [3, (9.10)].

Second, we assume that h ∈ W 1,n(X, R
n) and f = h−1 ∈ W 1,n(Y, R

n). Then

KI (x, h) = |Df
(
h(x)

)|n Jh(x) a.e. x ∈ X. (7.2)

Indeed, by Lemma 2.2 both h and f are differentiable almost everywhere. Now, the
identity ( f ◦ h)(x) = x , after differentiation, implies that

Df (h(x))Dh(x) = I a.e. in X. (7.3)

Since both h and f satisfy Lusin’s condition (N ); that is, preserve sets of zeromeasure,
see Lemma 2.2. This shows that Jh(x) > 0 and J f (y) > 0 almost everywhere again
we used the fact that h satisfies Lusin’s condition (N ). Now, the formula (7.2) is a direct
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consequence of the definition of the inner distortion, Cramer’s rule Dh(x)D�h(x) =
Jh(x)I and (7.3). Indeed,

KI (x, h) = |D�h(x)|n
|Jh(x)|n−1 = |(Dh(x))−1|n Jh(x) = |Df

(
h(x)

)|n Jh(x).

Now the change of variables formula (2.1) gives

∫

X

KI (x, h) dx =
∫

Y

|Df (y)|n dy.

��
Proof of Corollary 1.6 By [16, §6.4] for every x ∈ X with Jh(x) > 0, we have

K
1

n−1
I (x, h) � KO (x, h) � Kn−1

I
(x, h) . (7.4)

Here KO (x, h) stands for the smallest function satisfying (7.1). Now, Corollary 1.6
follows immediately from (7.4). ��
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