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We consider the problem of minimizing the weighted Dirichlet energy between
homeomorphisms of planar annuli. A known challenge lies in the case when the
weight A depends on the independent variable z. We prove that for an increasing
radial weight A\(z) the infimal energy within the class of all Sobolev
homeomorphisms is the same as in the class of radially symmetric maps. For a
general radial weight A(z) we establish the same result in the case when the target is
conformally thin compared to the domain. Fixing the admissible homeomorphisms
on the outer boundary we establish the radial symmetry for every such weight.
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1. Introduction

The geometric function theory (GFT) is largely concerned with generalizing the
theory of conformal mappings. In this paper we turn to a variational approach and
study mappings with smallest weighted mean distortion. Our underlying idea is
to extend the theory of extremal quasiconformal mappings to the minima of the
weighted mean average of the distortion function; that is, minimize the weighted
Z'-norm as opposed to the .Z*°-norm in the Teichmiiller theory. There are many
natural reasons for studying such a minimization problem. This quickly leads one
to extremal mappings of mean distortion between annuli, a classical and well-
understood problem for extremal quasiconformal mappings, traditionally referred
to as the Grotsch problem. Indeed, annuli

A=A(r,R)={zeR":r<|z| <R} and A"={zeR":r. <|z|] <R.}

are the first in order of complexity where one observes nontrivial conformal invari-
ants such as moduli. Hereafter 0 <r < R and 0 < r, < R, are called the inner
and outer radii of A and A*, respectively. Precisely, we search mappings with least
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weighted distortion

ML LD () (1)

subject to Sobolev homeomorphims f: A* 2% A with integrable distortion. Recall
that a Sobolev homeomorphism f € V/l’l(A*, C) has finite distortion if there is a

loc
measurable function K(z) > 1, finite a.e., such that

D) < 2K(2)J5(2), Jy(z) = det Df(2). (1.2)

Here and in what follows we use the Hilbert—Schmidt norm of a linear map A,
defined by the rule ||A|? = (A, A) = Tr[A* - A]. We are interested in homeomor-
phisms and their limits, we recall that the Jacobian determinant of a Sobolev
homeomorphism is always locally integrable. The distortion inequality (1.2) merely
asks that the differential D f(z) vanishes at those points z where the Jacobian
Jr(z) = 0. The smallest function K (z) > 1 for which the distortion inequality (1.2)
holds is denoted by K(z),

IDf (I
K= { T TG >0
1 it J(z,f)=0

We obtain quasiconformal mappings f if K € Z°°(A*). The theory of quasi-
conformal mappings is by now well understood, see the monographs [40] by
Reshetnyak, [41] by Rickman and [22] by Iwaniec and Martin. In the last 20 years,
systematic studies of mappings of finite distortion have emerged in GFT [1, 15, 22].
The theory of mappings of finite distortion arose from the need to extend the ideas
and applications of the classical theory of quasiconformal mappings to the degener-
ate elliptic setting. Motivated by mathematical models of nonlinear elasticity [6-8],
the focus has been finding a class of mappings, as close to homeomorphisms as pos-
sible, in which the minimum energy (1.1) is attained. In the case of minimizing the
weighted .Z'-mean distortion this is possible only when we move, equivalently, to
minimize the weighted Dirichlet energy of the inverse map. Indeed, the inverse map
h=f~1:A 2 A* belongs to the Sobolev space #12(A,R?), and we have

/ (A=), |2)|Dh(z)? dz = 2 / A2l () Ky (2) dz, (1.3)
A A*

see [3,14,16] for details. In such a problem the transition to the energy of the
inverse map results in a convex variational integral. Therefore, from now on we
minimize the weighted Dirichlet energy

Ex[h] = /A/\(lh(Z)L |2))|Dh(z)|* dz. (1.4)

The infimum is subjected to orientation preserving Sobolev homeomorphisms
h: A =22 A* in #12(A,C) which are furthermore assumed to preserve the order
of the boundary components. Such a class of Sobolev homeomorphisms is denoted
by H12(A, A¥).
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Radial symmetry of minimizers to the weighted Dirichlet energy 3

Because of rotational symmetry it seems likely that the energy-minimal defor-
mations of (1.4) are radial minimal mappings. However, the difficulty to verify
the rotational symmetry is well recognized in the theory of nonlinear elasticity. A
number of papers in the literature is devoted to understand the expected radial sym-
metric properties [2,5,10,11,13,17,19, 20,23-25,30-35, 38,42-44]. We study
this question for the weighted Dirichlet energy.

QUESTION 1.1. Does the equality

inf E,[h] = inf Ey[h 1.5
oAl g BxlRl = dnf L EAlA] (1.5)

hold?

In what follows, we denote the subclass of radial homeomorphisms by

RYV2(AAY) = {h € HY2(A,A*): h(z) = H(z|)|z|} .
In general the mappings with the infimum energy in (1.5) need not be homeomor-
phisms. In fact a part of the domain near its boundary may collapse into the inner
boundary of the target annulus A*. In mathematical models of nonlinear elasticity
this is interpreted as interpenetration of matter. Of course, in general enlarging
the set of the admissible mappings may change the nature of the energy-minimal
solutions. This may result in smaller energy than in H2(A, A*), whether or not
the infimum is attained. To avoid such an effect one needs to know that a weak
limit of a minimizing sequence h; € H?(A, A*) can be realized as a strong limit of
homeomorphisms in #12(A, C). This follows from the result in [28] which tells us
that the classes of the weak and strong limits of % !+2-Sobolev homeomorphisms are
the same. We denote such a class of deformations from A into A* by H (A, A%).

It is quite easy to see that mappings in H? (A, A*) extend as continuous monotone
maps of A onto A*. As a converse Iwaniec and Onninen [27] proved a Sobolev
variant of the classical Youngs approximation theorem. According to their result
the class ﬁm(A, A*) equals the class of orientation-preserving monotone mappings
from A onto A* in the Sobolev class #1:2(A, C) that also preserve the order of the
boundary components of annuli. Monotonicity, the concept of Morrey [36] simply
means that the preimage of a point in A* is a continuum in A.

The class of the weak #/1:2-limits of radially symmetric homeomorphisms can
also give pure analytical characterization. This leads us to define

ﬁl’Q(A,A*) _ {h c Wl’Q(A,Rn)Z h(x) — H(|x|)% and H 6%}

where
#={H:[r,R] — [rs,R.]: H(r) =r., HR) = R, and H > 0}.
Now, the identity (1.5) in question 1.1 can be equivalently written as

_min  Ex[h]=_min Ex[A].
2 (A,A%) RY2(A,A7)
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4 A. Koski and J. Onninen

First, let us look at this question in the simplest Dirichlet energy case, A = 1.
The papers [2,25] introduced and heavily relied the concept of Free Lagrangians
and gave a positive answer to question 1.1 in terms of the Dirichlet energy. The
underlying idea was to estimate the integrand of an energy functional from below
in terms of free Lagrangians. Free Lagrangians, special null Lagrangians [4], are
nonlinear differential forms whose integral means depend only on a given homotopy
class of homeomorphisms. The volume form is not only a simple example of free
Lagrangian but also a key player in the proof. In the conformally equivalent case,
it is the only free Lagrangian that is needed. In spite of being a trivial case, it
apprehends the essence of free Lagrangians well. Suppose that A = A* and h €
HY2(A, A*). Showing that the identity map Id(z) = z is a global minimizer follows
immediately from Hadamard’s inequality |Dh(z)|* > 2J5,(2):

Ei[h] = /A|Dh(z)|2dz > Q/AJh(z) dz = 2/A* 1dy = Eq[Id]. (1.6)

Second, having the techniques of free Lagrangians and the estimates for the Dirichlet
energy in hand proving corresponding results for weights A that depend only on |h] is

straightforward. Again, the conformal case captures this phenomenon well. Indeed,
for A(|hl, |z]) = A(Jh]), A = A* and h € HY2(A, A*) we have

Balt] = [ ARDIDHG)E A= > 2 [ A(hD) Ju(z)dz =2 [ Ayl dy = Baf1dL

It is known that the radial minimizers to the weighted Dirichlet energy are the
absolute minimizers provided the weight is independent of |z| [2, 25, 32].

PROPOSITION 1.2. Suppose that A, A* C C and \(|h],|z]) = A(|h]). Then the equal-
ity (1.5) always holds.

We hence turn our attention in question 1.1 to the case where the weight depends
on |z|. From now on we assume that the weight A has the form A = A(]z]). Such a
weight brings a completely new challenge to the studied question. First, there is no
trivial case being analogous to (1.6). Second, such difficulty is already recognized
in the literature. The paper [29] is devoted to study the radial minimizers of Ej,
A = A(Jz]). Question 1.1 for the weight A = A\(|z|) is explicitly raised in [29, ques-
tion 4.1]. Our next result proves that the radial minimizers are indeed absolute
minimizers when the weight is increasing.

THEOREM 1.3. Assume that \: [r, R] — R is continuous, positive and nondecreas-
ing. Then the weighted Dirichlet energy

Balt] = [ IDhEIEA(E) d: (1.7)

admits a radially symmetric minimizer in the class ﬁl’Q(A,A*). Moreover, there
exists an increasing function my : (0,00) — (0,00) so that this minimizer is a
homeomorphism exactly when Ry /r. = mx(R/r).
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Radial symmetry of minimizers to the weighted Dirichlet energy )

For more general weights A the question whether the minimizer of Ej is attained
for a radial mapping remains open in general. However, if the target annulus is con-
formally thin enough we are able to establish the radial symmetry of the minimizer
with no extra assumptions on the weight.

THEOREM 1.4. Let \: [r, R] — (0,00) be a continuous function. Then there exists a
function gy : (1,00) — (1,00) so that whenever R, /r. < gx(R/T), the equality (1.5)
holds.

Of course, even in the case of the Dirichlet energy, A = 1, the minimizers need
not be harmonic. In general, the Euler-Lagrange equation of Ey is unavailable; one
cannot perform first variations h + ¢ within the class of Sobolev homeomorphisms,
not even in R%2(A, A*). Therefore, narrowing the admissible homeomorphisms in
H12(A, A*) does not change the difficulty of the question in this respect.

1.1. Partially fixed boundary value problem

Finally, we study the minimization of the weighted Dirichlet energy under map-
pings fixed on the outer boundary of A, but allowed to be free on the inner boundary.
For simplifying the notation, we write 9,A = {x € R": |z| = R} and

My (A A") = {h € H?(A,A*): h is continuous up to doA and h(z) = ]Z*l’} :

We prove that keeping the homeomorphisms fixed in the minimizing sequence on
the outer boundary leads the hunted radial symmetry property for an arbitrary
weight.

THEOREM 1.5. Assume that A: [r, R] — (0,00) is continuous. Then we have

it [ IDhPA) dz = iuf /th e (L
ot IR as = it [IDRGPAGD (s)

The proof of theorem 1.5 relies on our recent developments for the partially fixed
boundary value problem in [34].

2. Analysis of the radial minimizer and the definition of the function
my

In the paper [29] the radial minimization problem for the energy (1.7) was com-
pletely characterized. It was shown that when subjected to minimization in the class
of radial maps ﬁl’z(A, A*), the energy (1.7) admits a unique minimizer for every
continuous positive weight A: [r, R] — R. We will henceforth denote this radial
minimizer by hg. Since hg is radial, we may write ho(se’®) = H(s)e? for some non-
decreasing surjection H : [r, R] — [ry, R.]. In [29], it was shown that the function
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6 A. Koski and J. Onninen
H may be recovered from A via the following first-order ODE.

sA(s)H(s) = H(s)®(s) equivalently % = % (2.1)

Here the function @ : [r, R] — R is defined by the equation
M (s) — B2(s) = sA(s)D(s), (2.2)

at least at the points where the solution ® takes nonnegative values. One of the
reasons for why we exclude the negative values of ® is that otherwise (2.1) would
imply that H is decreasing at these points. To make a rigorous definition of the
function ®, we first make the following observation, which is an easy consequence
from (2.2).

OBSERVATION 1. Any solution ® of equation (2.2) is increasing at the points s
where ®(s) < A(s) and decreasing when ®(s) > A(s).

Since A is positive everywhere, this observation implies that any solution of (2.2)
is increasing at points where it takes the value zero. Hence every solution has at
most one zero, and if such a point rg exists then the solution is negative on the
interval [r,79) and positive on (rg, R]. This motivates us to define the function ®
as follows.

Given the radii r, R and an initial value ¢y which may be any real number,
we let ® be a solution of (2.2) on the interval [r, R] with initial data ®(r) = .
The existence and uniqueness of such a solution will follow from the classical ODE
theory as soon as we show that the map

2(0) _ B2
H)\(s) o

is Lipschitz-continuous with respect to the variable ®. Since A(s) and s are bounded
away from zero and infinity, we need only to verify that no solution of (2.2) may
blow up. But this follows easily from observation 1, as the observation implies that
any solution is bounded by the number max(|¢g|, maxs A(s)). Note also that by
uniqueness the graphs of any two solutions to (2.2) do not intersect.

We now define ® by ® = max{0, <i>} From the discussion after observation 1 we
know that either ®(s) = ®(s) everywhere (when g > 0) or there exists a point
7o € (1, R] so that ® = 0 on [r, 7] and ®(s) = ®(s) on [ro, R] (when o < 0).

Given the function ®, one may always solve the separable ODE (2.1) to obtain
the function H. Furthermore, the conformal modulus of the target annulus A* is

related to ® by the equation
H(s)  a(s)
ds = ds. 2.
7= we 2

Hence the target annulus is defined, up to a scale, by the choice of the initial value
©vo. As ¢ goes through every real number, the equation (2.3) and the definition
of ® show that the conformal modulus of the target, Mod A*, takes every value
from 0 to co. Hence every possible target annulus is covered by this consideration.

R
Mod A* :=log(R./7s) = /
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Figure 1. Two examples on the annulus A(0.5,2.5), where the weight A is denoted by a
solid line and three different initial values ¢ are chosen. The three possible instances of
® are shown by the dashed lines, and each of them gives rise to a different target annulus

We note also that increasing the initial value ¢g increases both the function ®
and the conformal modulus of the target A*, i.e., makes the target annulus thicker
(figure 1).

Furthermore, we define the function my as follows. Given the numbers r and R,
we let @y denote the solution of the equation (2.2) with the initial value po = 0.
We then define m) by

R
logmy(R/r) :/ f/\o((z)) ds. (2.4)

T

Since both equation (2.2) and the integral on the right-hand side in the above
equation are independent with respect to scaling in s, the function m) indeed only
depends on the quotient R/r rather than both r and R. The above discussion now
shows that for every target annulus A* with R, /r. > mx(R/r) the initial data ¢ is
nonnegative and hence the map ® is positive on (r, R]. Likewise for every target A*
with R, /r. < mx(R/r) there is some radius ro > r for which ® = 0 on [r, rg]. Com-
paring with (2.1), we find that the radial minimizer hg is a homeomorphism exactly
when R, /r. > mx(R/r) (since H(s) > 0 for s € (r, R]) and for thinner targets A*
the map hg fails to be a homeomorphism on the subset A(r,r9) C A(r, R) which is
collapsed onto the inner boundary of the target (since H(s) = 0 for s € [r,r(]).

3. Free Lagrangians

In 1977, a novel approach towards minimization of polyconvex energy functionals
was developed and published by Ball [4]. The underlying idea was to view the inte-
grand of an energy functional as convex function of null Lagrangians. The term null
Lagrangian pertains to a nonlinear differential expression whose integral over any
open region depends only on the boundary values of the map, see [9,12,18]. Our
homeomorphisms h: A 2% A* are not prescribed on the boundary. There still exist
some nonlinear differential forms, called free Lagrangians [25], defined on a given
homotopy class of homeomorphisms, whose integral means remain independent of
the mapping. These are rather special null Lagrangians.
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8 A. Koski and J. Onninen

Let A = A(r,R) and A* = A(r,, R.) be two circular annuli in C. Recall here
we work with one particular homotopy class H'2(A,A*) of #!?-orientation-
preserving homeomorphisms h: A 2% A* that also preserve the order of the
boundary components; that is, |h(z)| = r. for |z| = r and |h(z)| = R. for |z| = R.

Clearly, the polar coordinates

z=se r<s<R and 0<60<2r (3.1)

)

are best suited for dealing with mappings of planar annuli. For a general Sobolev
mapping h we have the formula

Jn(z) = J(z,h) = = 2. (3.2)

/

Im(hshe) _ \h0||hs\’
S S

We shall make use of the following free Lagrangians.
(i) Pullback of a form in A* via a given mapping h € H12(A, A%);
L(z,h,Dh) = N(|h|)J(z,h), where N € L (r., R.)
Thus, for all h € HY?(A, A*) we have

R.
/ L(z,h,Dh)dz= | N(y)dy=2r [ N(G)GAG (3.3)
A Ax

(ii) A radial free Lagrangian
|1l
||

Thus, for all h € H"?(A, A*) we have

L(z,h,Dh)dz = A(|h]) =—>dz, whereA € £*(r.,R.)

R 8|h| R.
/ L(z,h,Dh)dz = 27r/ A(|h]) D5 ds = 27r/ A(r)dr (3.4)
A r S T
(iii) A tangential free Lagrangian
L(z,h, Dh) :B(|z|)1m%, where B € Z*(r, R)

Thus, for all h € HY?(A, A*) we have

[ OArgh 3 i
/AL(z,h,Dh)dz—/r B(t) </m|_t - d9> dt—27r/r B(H)dt (35)

(iv) Let C(s,G), r < s < R, r« < G < R, be a nonnegative ¢"!-smooth function.
The following differential expression is a free Lagrangian

W2 h
L(z,h,Dh) = (2C + GCg)J (2, h) + cJT' Im f s = |z| and G = |h|.
For h € H'?(A, A*) we have
/ L(z,h,Dh)dz = 2 [R2C(R, R.) — r1C(r,7.)] (3.6)
A
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Radial symmetry of minimizers to the weighted Dirichlet energy 9

All of these Free-Lagrangians were introduced by Iwaniec and Onninen. The ones
in (i)—(iii) appeared first time in [25] and the last one (iv) in their forthcoming
book [26]. We will provide a proof of (3.6) in the appendix.

Let © C C be a bounded Jordan domain with rectifiable boundary 0f). Then the
familiar geometric form of the isoperimetric inequality reads as

9] < [ (o))

where Q] is the area of Q and ¢(9) is the length of 9Q. We denote the ball
centred at the origin with radius r by B,. First, suppose that f: Br — C lies
in the Sobolev class W12(Bg, C). Partly using the polar coordinates z = se®,
s < Rand 6 € [0,27) we formulate the integral form of the isoperimetric mequahty,
see [37,39]:

/BS J(z, f)dz

Second, suppose that h: A = A* is an orientation-preserving diffeomorphism
which also preserves the order of boundary components. Then applying (3.7) we
obtain

2

1 2m
< o </ | fol d0> for almost every s < R. (3.7)
T \Jo

2

27 - 1 27
/ Tm(Tihg) 6 < — (/ o] d0> forr <5 <R (3.9)
0 27 0

Indeed, fix s € (r, R). To simplify the notation we assume, without loss of generality,
that s = 1. Considering the diffeomorphism h: A 2% A* restricted to the unit
sphere S; = 0B; and then extending this restricted mapping to the ball Bg in the
radial manner, namely,

f:Br—C, f(z)=|zlh(z/l2]).

Note h(z) = f(x) on Sy and f is continuous differentiable on Br. The isoperimetric
inequality (3.7) yields,

1 2 2 1 2w
/Blj(z,f)dz§47T</0 f9|d0) _47T(/0 |h9|d9>

The Jacobian is the most known example of null Lagrangians and by Green’s
theorem we have

2

27 o 1 27 o
/Bl (2, f)dz = 5/0 T (F ) d6 = 5/0 T (Tihg) 6.

Therefore, the claimed version of the isoperimetric inequality (3.8) follows.

4. Proof of theorem 1.3
Proof. Case 1. Assume that R, /r. = mx(R/r).
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10 A. Koski and J. Onninen

The diffeomorphisms from A onto A* are dense in HY2?(A,A*) [21]. There-
fore, we can equivalently replace the admissible homeomorphism in (1.5) by
diffeomorphisms. Precisely,

inf Ey[A] = inf [E,[h
padlf  Ealh] = ok EA[A)

where Diff (A, A*) is for the class of orientation preserving diffeomorphisms from A
onto A* which also preserve the order of the boundary components.

Let h € Diff (A, A*). We write s = |z| € [r, R] and the weighted Dirichlet energy
of h in polar coordinates as follows

27 R
h]:/o /§|h9\2+s)\|hs|2dsd9. (4.1)

Let us also denote by W(Dh) = 2 |hg|? + sA|h,|? the expression under the integral,
which we will now estimate from below. Recall that iy denotes the minimizer among
the radial mappings from A onto A*, which is a homeomorphism in this case. At
this point we already remark that in all of the forthcoming estimates equality will
hold for h = hg, and hy will also be the only map for which there is equality in
every estimate. Let us start by defining the expression

c
H )
where c is a constant to be determined. Then our claim is that

Claim 1. If R./r. > mx(R/r), then the constant ¢ > 0 may be chosen so that
both 7 > 0 and 7 > 0. Furthermore, the expressions \/s — 7 and s\ — ¢/H are also
nonnegative and we have the identity

() (i)

After this claim is proven, our estimates for the expression W proceed as follows

2
W = 7|he|® + <A —%) |ho|? + (s)\— c.) |hs|? +CM
S H H
h 2
27"|h92+2\/(/\—7"> (s)\—)|h9|h |—|—c| |
s H

[hs|*

T=o—

= 7|hg|* + 27|hg||hs| + ¢

Here we applied to the elementary inequality 2ab < a? + b? for real numbers a, b
and the identity (4.2). By a simple application of Cauchy—Schwartz, we obtain that

[MEL s (#Fmas)” L (4.3

H 7 [Fras

Here the equality is attained exactly for h = hg, and we see that the right-hand
side does not depend on the choice of the map h. Next, we apply the isoperimetric
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Radial symmetry of minimizers to the weighted Dirichlet energy 11

inequality (3.8) and the Cauchy—Schwartz inequality to find that

2 27
T'/ |ho|? d6 > T'/ Im (hhy) d6. (4.4)
0 0

Applying (4.4), we find that

2 R 2 R
/ / T‘|h9|2+27|h9||hs|dsd9>/ / #1m (Rhg) + 27 hg||hs| ds 0. (4.5)
0 r 0 r

We are now in a position to apply the free Lagrangian (iv) from §3 with C(s,G) =

7(s) to the right-hand side of (4.5). The related equation (3.6) allows us to find the
bound

2m R
- - h
/ / #Tm (hhg) + 27|ho||hs| ds df > / #1Im <h9) +2rdydz
0 r A S
= 7(R)2wR? — 7(r)27r2, (4.6)

which is independent of h. Combining the estimates (4.3)—(4.6), we find the required
lower bound for Ey[h].

Ex[h] = 7(R)27R? — 7(r)27r2 + 2mc(Ry — 74)

2 2
_ 2 o 2 T . R* .
=21 R;®(R) — 2mr;®(r) + 27c <H(r*) H(R*)) +2me(Ry — 1y)

=21 R2®(R) — 27mr2®(r)
= Ey[ho].

Let us now prove claim 1. We start by verifying the identity (4.2). Here we make
use of the equations (2.1) and (2.2).
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12 A. Koski and J. Onninen

Let us now choose the constant ¢ > 0. We must choose this constant in such a way
that both of the inequalities
c . cH
b — E 2 0 and @ + ﬁ 2 0
hold on every point of the interval [r, R]. Since ® = (A2 — ®2)/(s\) and H/H =
®/(s\), we may transform these two inequalities into the following

H®>c> g (@*— %) (4.7)

Let us now make a couple of observations. O
OBSERVATION 2. The function s — H(s)®(s) is nondecreasing.

Proof. By computation,

d . . P2 N2 — P2 \H
ds(H@):H¢+H<I>:H<S/\+SA>:>0. (4.8)

This observation shows that to satisfy the inequalities in (4.7) we may as well choose
¢ = H(r)®(r), as then the first inequality is always satisfied. O

OBSERVATION 3. Suppose that A is increasing. If at some point sy it holds that
D(s9) < A(sp), then @(s) < A(s) for every s > sq.

Proof. The first sentence follows directly from (2.2). For the second part, observe
that if it would hold that ®(s1) > A(s1) for some s; > sg, then by continuity there
would exist a point s € [sg, s1) so that ®(s2) = A(s2) and ®(s) > A(s) for all s €
[s2,s1]. Since A is nondecreasing, we have ®(s1) > A(s1) = A(s2) = P(s2). By the
mean value theorem we must have that ®(s3) > 0 for some point s3 € [so, 51], but
this is a contradiction with observation 1 since ®(s) > A(s) on this interval. Since ®
is defined as a solution of the ODE (2.2), this observation shows that there are only
the two following possible scenarios. Either ®(r) < A(r), in which case ®(s) < A(s)
everywhere. In this case the right-hand side in (4.7) is nonpositive so any constant
¢ €[0,®(r)H (r)] will do.

In the second case, ®(r) > A(r). In this case ® starts out as decreasing, and may
hit A at some point s € (r, R]. If such a sq exists then ®(s) < A(s) for all s € [sg, R]
and the right inequality in (4.7) holds on this part of the interval [r, R]. In any case,
it is enough to show that the right inequality in (4.7) holds on an interval [r, s¢) on
which @ is decreasing. But this is an easy consequence of the following. O
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Radial symmetry of minimizers to the weighted Dirichlet energy 13

OBSERVATION 4. At the points where ® is decreasing, the expression H/®(®? — \?)
is also decreasing.

Proof. We make a direct computation. Here we also reuse the computation (4.8).

d (H (q)g_v)) AH d HX?

ds \ & S ds @
_AH  HXN H2M\\ N dHN?
s ) ) P2
_ H2M) N SHN?
9 P2

XN H [ 200 @
e e e

CXNH 4 (@
B2 ds \ N2 )
Since ® is decreasing and ) is nondecreasing, the expression ®/\? is decreasing.
Thus the last expression above is negative, and we have proved the claim. Via
observation 4, we now find that for s on the interval [r, sg) we have
H{(s)
D(s)

H{(r)
o(r)

This proves the inequality (4.8) for the choice of ¢ = H(r)®(r).

Returning to the statement of claim 1, we must still verify the nonnegativity of the
expressions A\/s — 7 and sA — ¢/ H. But this easily follows from the nonnegativity
of 7, H and H as well as the identity

H c H 72
T=—|SA\——= | =——F1—-
H ( H ) HM\s—7
which was essentially verified in the proof of (4.2).

Case 2. Assume that R, /r. < mx(R/r).

Recall that in this case there exists a radius rg € (r, R) so that H(s) = r, for
all s € [r,7q]. For the corresponding radial minimizer ho: A — A* the part of the
domain annulus near its inner boundary collapses into the inner boundary of A*.
Moreover, the function ® is identically zero on [r, o] and solves the equation (2.2)
only on (79, R]. This suggests that we should estimate the integral (4.1) into two

separate parts.
On the interval [r, rg], we apply the estimates

27 T0 )\ 0 )\ 2 i
/ / f|h9|2+s>\|hs|2dsd9>/ f/ |ho(se™)[? A ds
0 T S T 5 .Jo
2

0 A1 27 "
> M X2
//T o (/0 |ho(se )d9> ds

(<I>2(s) - )\2(8)) < (<I>2(7“) - /\2(7")) < H(r)®(r) =c.
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14 A. Koski and J. Onninen

where the last inequality is due to the fact that the length of the image curve of se*?
with 6 € [0,27) under h is at least 27r,. In particular, equality here holds exactly
for h = hg since hy sends the annulus A(r,rg) to the circle of radius r..

On the interval (rg, R] we apply the same estimates as in case 1. However, in
this case we may simply choose the constant ¢ appearing in case 1 to be zero, as
the fact that ®(rg) = 0 implies that ®(s) < A(s) everywhere. Hence we have that
7 = ®. This results in the estimate

27 R A
/ / Aol? + sAlha| ds do
0 0 S

27 R
>/ / & Im (hhg) + 2®|hg||hs| ds df
0 T0
27 _ ) ) _ ) )
> / B(R) Tm [R(Re™)ho(Re™®)] — @ (ro) Im [f(roe® g (roe™®)] d6
0

27

= ®(R) / Im [A(Re™)ho(Re™)] o
0

= 27 RI®(R)

Combined, we have that

S

To
E,\[h] > 27 R2B(R) + 27172 / ) 45 = By [ho]. O
T

5. Proof of theorem 1.4

Proof. The proof of this theorem follows the same lines of arguments as the proof
of theorem 1.3. The only parts in the proof of theorem 1.3 where the fact that A is
nondecreasing was used were

(1) To guarantee that if ®(sg) < A(sp) then ®(s) < A(s) for all s > sp.

(2) To deal with the estimates for the constant ¢ at the points s where ®(s) >
A(s).

Hence if we are somehow able to guarantee that ®(s) < A(s) for every point
s € [r, R], then the proof of theorem 1.3 adapts to any positive continuous weight.
However, if we recall the discussion in § 2, this is always possible to do by choosing
a small enough initial value ¢q. Letting @2 denote the largest map ® for which the
inequality ®(s) < A(s) holds for every s € [r, R], we may define the function g, by
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Radial symmetry of minimizers to the weighted Dirichlet energy 15

the formula

R
log gx(R/7) :/ (f)\z((j)) ds. (5.1)

r

This definition guarantees that for any target A* with R, /r. < gx(R/r) the associ-
ated function @ satisfies ®(s) < Po(s) < A(s) for every s € [r, R], which proves the
fact that Ey[h] has a radial minimizer by the discussion above.

The fact that A is continuous and positive on [r, R] implies that A is bounded from
below by a positive constant, which in turn guarantees that the map ®, defined
above is not identically zero. This also shows that gy (z) > 1 for every z > 1. O

6. Proof of theorem 1.5

The proof of this theorem is based on the proof of theorem 1.3 in [34]. We begin
by applying Hélder’s inequality in the form
(Jy,|Dhol[DR|Ad)*

Ju |Dho2Xdz 7

/ IDh2Adz >
A

where hg denotes the radial minimizer as defined in § 2. Since equality holds here
for h = hy, it will be sufficient to estimate the quantity [, [Dho||Dh|Adz on the
right-hand side. Let g(s) be a function to be determined, 0 < g(s) < 1. Writing
|Dh| in polar coordinates and applying an elementary inequality gives

> VoIhl + VI g el

We wish to find g such that equality holds in this estimate for h = hg. A short
calculation gives

Dh] =y a2 +| ™

o) _sHE) ) o 2
V1= g(s) H(s) A(s) D2(s) + M\2(s)’

We hence obtain the estimate

2r  rR
/\DhOHDh\)\dz 2/ / p1(8)|hs| + p2(s)|he| dsdb
A 0 T

where one may compute that the coefficients simplify to
A(s)H (s)
. .

pr(s) = B(s)H(s) and p(s) =

From the computation (4.8) we may see that these coefficients satisfy the equality
p1(8) = p2(s). The rest of the proof is exactly the same as in [34], following from
the part of the proof of theorem 1.3 after a similar equality was established. The
key assumption, i.e., that the mapping h is fixed on the outer boundary, is utilized
in this part of the proof just before lemma 3.1.
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16 A. Koski and J. Onninen
Appendix A. Proof of (3.6)

Consider the mapping
H(z) = A(lz], [h(2)]) - h(z) 7 <|2| < R
where A(s, G) = 1/C(s,G). We have
/AJ(,Z,H) dz = 7 [C(R,R.)R2 — C(r,r.)r?].
Thus, we are reduced to showing that

L(z,h,Dh) = 2.J(z, H)

2
h
= (2C + GCg)J (2, h) + cs% Im f s=|zland G =|h|. (A.1)
To see this we note that
H,Hy

J(z,H) =Im ST

Here we have

Hg = Ahs + Ash + Ag|h|sh.
Therefore,

H, = Ahg + Ash + Aglhlsh.
On the other hand,

Hy = Ahg + As - (s)oh + Ag|hloh = Ahg + Ag|h|gh.
Therefore,
H Hy = A?hshg + AAchg|hloh + A Ahhyg
+ AsAc|hlo|h|® + Ag Alh|shoh + AZ|R|s|hla|h]?
and
Im H Hy = Im [A*hshg + AAg (hs|hloh + |h|shoh) + +As Ahhg)

Consider the expression

—hgh+ hhg.  hsh+ hhy . -

hs|h|oh + |h|sheh = hg hoh
slhloh + |R[she ST 2] 0
hshg hshgh? + hehgh?
= h|2
3 M2+ 20|
= |h|hshg + real terms
Hence
h

Im H,Hy = A2 Tm hshg + AAGG Im hohg + A,AG? Tm f
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Radial symmetry of minimizers to the weighted Dirichlet energy 17

We divide this by s to conclude that

J(z, H) = (A + AAGG)J (2, h) + ASAG21 Im %
S
Note that
A2+ AAGG =C + %GCG and AA, = %c

and the claimed identity (A.1) follows.
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