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Information-theoretic characterization of the Sub-regular Hierarchy

Huteng Dai
Rutgers University
huteng.dai@rutgers.edu

Our goal is to link two different formal notions
of complexity: the complexity classes defined by
Formal Language Theory (FLT)—in particular,
the Sub-regular Hierarchy (Rogers etal., 2013;
Lai, 2015; Heinz, 2018)—and Statistical Com-
plexity Theory (Feldman and Crutchfield, 1998;
Crutchfield and Marzen, 2015). The motivation
for exploring this connection is that factors involv-
ing memory resources have been hypothesized to
explain why phonological processes seem to in-
habit the Sub-regular Hierarchy, and Statistical
Complexity Theory gives an information-theoretic
characterization of memory use. It is currently not
known whether statistical complexity and FLT de-
fine equivalent complexity classes, or whether sta-
tistical complexity cross-cuts the usual FLT hierar-
chies. Our work begins to bridge the gap between
FLT and Information Theory by presenting char-
acterizations of certain Sub-regular languages in
terms of statistical complexity.

Statistical complexity theory. Statistical com-
plexity theory deals with stochastic processes:
probabilistic models of infinitely-long sequences.
For a process X generating sequences of sym-
bolsindexed as ... Xy_9, Xy 1, X¢, X¢t1,..., We
define the notation
.. .Xt_Q,Xt_l, and
X, Xig1, -

The statistical complexity of a stochastic pro-
cess is the minimal amount of information about
the past required to faithfully reproduce the fu-
ture. Suppose that we want to simulate a stochastic
process by generating each symbol based on some
memory representation M of the past, and that we
want to find a memory representation M that sim-
ulates the process as well as possible while hav-
ing minimal information content, measured in bits.
This quantity of minimal information is called sta-
tistical complexity. Formally, the statistical com-
plexity S of a process X is the minimum entropy

(“the past”) to mean
(“the future”) to mean
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of a memory representation M that perfectly sim-
ulates the process:

S

min H[M], (1)

M:Dyc [X|X || X | M]=0

where H[M] is the entropy of the random variable
M:

HM] ==Y pu(@)logpu(z), (2

and Dgy[-||-] is conditional Kullback-Leibler di-
vergence (see Cover and Thomas, 2006), which is
zero for identical conditional distributions. There-
fore, Eq. 1 indicates the minimum entropy of any
memory representation M subject to the constraint
that M must allow us to generate a distribution
over future sequences 7 which is identical to the
distribution we would have generated given the
past %

Further insight comes from considering the dif-
ferent factors that contribute to statistical com-
plexity. Using information-theoretic identities, we
break the statistical complexity into two terms:

S = H[M] = I[M : X] + HM|X]

= 11X - X)+ H[M|X),
- T

where I[- : -] is mutual information, the amount
of information in one random variable about an-
other. The term FE is called excess entropy and
quantifies the amount of information in the past
which is useful for predicting the future. The term
(' is called crypticity and quantifies the amount
of information stored in M which does not end up
being useful for predicting the future.

These quantities are easily understood in terms
of memory resources used for incremental lan-
guage production and comprehension. Statisti-
cal complexity measures memory load or storage
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cost; it can be finite even for non-finite-state pro-
cesses, as long as the sum in Eq. 2 converges.
Excess entropy measures integration cost: it says
how many bits of information from the past are
used when processing the future. Crypticity is the
difference between statistical complexity and ex-
cess entropy, and measures the amount of informa-
tion stored in the minimal memory representation
M which does not ultimately end up being used to
predict the future.

In order to study memory efficiency, we use
these quantities to define an efficiency metric, the
E/S ratio, which is excess entropy divided by sta-
tistical complexity. The F /.S ratio tells the propor-
tion of bits stored in memory which end up being
useful for predicting the future.

Preliminaries. We study Sub-regular languages
defined using Probabilistic Deterministic Finite-
state Automata (PDFAs). A PDFA is character-
ized by a set of internal states Q, an alphabet 3,
an emission distribution O of symbols € ¥ con-
ditional on a state € @, a transition function
T : Q x ¥ — Q defining which state the ma-
chine transitions into after emitting a symbol, and
distinguished initial and final states. In a PDFA,
the transition function 7' is deterministic; in a gen-
eral Probabilistic Finite-state Automaton (PFA), it
may be stochastic, in which case we have a transi-
tion distribution rather than a transition function.
Our indexing convention is: at time ¢, the PDFA
is in state g;; it generates symbol x; before transi-
tioning into the next state g.y1. The time indexing
convention is shown in Figure 1.

Y Y
y, Past ?, Future

Figure 1: Time-indexing conventions for a finite-state
machine.

b:1/4

c:1/4

#:1/4 a:1/3
a:1/4
c:1/3
#:1/3

Figure 2: SLy PDFA of —ab, ¥ = {a,b, c}

446

We use the following construction to gener-
ate a stationary ergodic stochastic process from a
PDFA: whenever the PDFA emits an end-of-word
symbol #, it always transitions back into the ini-
tial state. The resulting infinite stream of sym-
bols is amenable to analysis using statistical com-
plexity theory. In the literature on statistical com-
plexity, a PDFA of this form is called a unifilar
Hidden Markov Model (Travers and Crutchfield,
2011, unifilar HMM).

Below, we describe how to calculate S,
FE, and C from the minimal trimmed PDFA
(Heinz and Rogers, 2010) for Strictly k-Local
(SLg) languages.

Statistical complexity. For a unifilar HMM,
the statistical complexity reduces to the entropy
of the stationary distribution over internal states
(Travers and Crutchfield, 2011). To get the sta-
tionary distribution over internal states (), we first
construct a state transition matrix: a stochastic
matrix whose entries represent the probability of
going into state g1 after being in state ¢;. For a
general PFA, the entries of this matrix are given by
marginalizing over the emission distribution O:

p(qet1lq) = Z po(@tlas)pr(ge+1lee, qr),
TLED

where pr is the probability of transitioning into
state qy41 after generating symbol x; from state
q:- In a PDFA, this probability is given by the de-
terministic transition function 7°, so the transition
probability pr reduces to a Kronecker delta func-
tion:

pT(Qt+1|$ta Qt) = 6Qt+1:T($taQt)’

Finally, the stationary distribution over states () is
given by the left eigenvector of the state transition
matrix associated with eigenvalue 1.

In general, the statistical complexity of a pro-
cess depends on the minimal number of states re-
quired to represent the process as a PDFA. For
an SLjy language, statistical complexity is upper
bounded as S < (k — 1) log |X].

Excess entropy. For SLj languages,

E=IX g1, Xeo1 0 Xoy oo, Xyqp—a].
In the case of SLo languages, we compute
FE by constructing a symbol transition ma-

trix, a stochastic matrix whose entries represent



p(T41|2¢), marginalizing over ¢; and ;1. We
also need the stationary distribution over symbols,
derived from the symbol transition matrix by the
same procedure as above.

Crypticity. Crypticity C' = S — E. In gen-
eral, crypticity is bounded above by the uncer-
tainty about the emitting state given a symbol:

C < H[Q:|X4),

with equality iff X is an SLy language.

Sub-regular Hierarchy. We consider two rela-
tional structures, namely the successor (+1) and
precedence (<) relations. Languages with suc-
cessor relation keep track of k-long sub-strings
of the input, such as {aa,ab,ac,ba,...} in an
SLy language. On the other hand, languages
with precedence relation keep track of k-long sub-
sequences, such as {a...a,a...b,...} in an SPy
language. Different sub-regular languages corre-
spond to distinct PDFAs. For each relational struc-
ture, languages with the higher logical power are
considered to be more expressive. For example,
SL languages are a subset of locally testable (LT)
languages. The subset relations are indicated by
lines connecting higher and lower regions in Fig-
ure 3.

SLy LT, LTT, SP, PT,
Statistical complexity 0.97 1.53 1.94 0.99 1.53

Excess entropy 0.09 >0.61 >0.83 >0.18 >0.30
Crypticity 0.75 <091 <1.10 <0.80 <1.22
E/Sratio 0.11 >040 >043 >0.18 >0.20

Table 1: Information quantities for PDFAs shown in
figures. SL, = Figure 2; LT, = Figure 4; LTT, = Fig-
ure 5, SP, = Figure 6; PT, = Figure 7. Quantities
marked with < or > are bounds based on Markov ap-
proximations.

are more expressive have higher memory storage
requirements. FE/S ratios characterize the sub-
set relation in the Sub-regular Hierarchy, for both
successor and precedence relations: the higher re-
gions in the hierarchy have higher amount of £ /S
ratio, as illustrated in Figure 3.

a:1/4
b:1/3 b:1/4
Cl/3 a1/3 01/4
a:1/3
A b:1/3
—> q

1/3 \_/
#:1/4
Figure 4: LTy PDFA of Some-ab, ¥ = {a,b,c}

. :1/3 b:1/3 1/4
Logical power “ . e .
N c:1/3 C‘ :1/4
Monadic a:1/3
Second Order Regular #:1/4
S /2 N : @ a:1/3
- .
/ B SF () c:1/3
First Order LTT (0.43) i 1/3
__________________ ‘__________ S, b:1/3
Propositional LT (0.40)  PT(0.20) c:1/3
.................. IRREEEEEEE EEEREEEE Figure 5: LTT; PDFA of One-ab, ¥ = {a, b, ¢}
Conjunctions of
Negative Literals SL©.ID SP(0.18) _ Relational
" < structures b:1/4
. . . . c:1/4 a:1/3
Figure 3: Sub-regular Hierarchy, with E/S ratios cal- 4:1/4 c:i1/3
culated from the examples in the text. a:1/4
@0
Table 1 shows calculated statistical complex-
ity, excess entropy, and crypticity for the minimal #:1/3

trimmed PDFAs of example languages in the Sub-
regular Hierarchy, including Strictly Local (SL),
Locally Testable (LT), Locally Threshold Testable
(LTT), Strictly Piecewise (SP), Piecewise Testable
(PD).

The information quantities align with the hy-
pothesis in FLT literature: the languages which
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Figure 6: SP; PDFA of —a...b, ¥ = {a,b,c}

The information-theoretic characterization illu-
minates the comparison across relational struc-
tures. For example, SL and SP languages cor-
respond to different types of phonotactics: SL



a:1/4

b:1/3 a:1/3 b:1/4
c:1/3 c:1/3 c:1/4
_}@ a: 1/3 % b: 1/3
#:1/4

Figure 7: PTy PDFA of Some-a...b, ¥ = {a,b,c}

only describes local phonotactics, while SP corre-
sponds to patterns of long-distance agreement. In
the examples we have examined, SL and SP have
similar information quantities when they share
the same k-factor. We conjecture that SL; and
SP;, languages have similar memory efficiency be-
cause they are both described by Conjunction of
Negative Literals (McNaughton and Papert, 1971,
CNL; the combination of — and A).

Conclusion. We have investigated whether there
is a coherent relationship between complexity
metrics calculated using Statistical Complexity
Theory on one hand, and the Sub-regular hierar-
chy of languages on the other hand. Our prelim-
inary results, based on example languages repre-
senting a number of Sub-regular classes, suggest
that increasing logical power corresponds to in-
creasing information-theoretic memory storage re-
quirements. Our current study is limited in that
we have only calculated complexity metrics for se-
lected examples of each language class. Future
work will work to establish general formal rela-
tionships between language classes and statistical
complexity.

Regardless of whether statistical complexity
turns out to map cleanly onto FLT hierarchies,
we believe it provides a promising framework
for characterizing bounds on complexity of hu-
man languages and phonotactics in particular. The
theory of statistical complexity provides a clear
way to quantify and reason about memory stor-
age cost and memory integration cost in a highly
general information-theoretic setting. Therefore
it is entirely reasonable to expect that there may
be bounds on the complexity of linguistic sub-
systems, defined using the language of statistical
complexity.

In this connection, we note that statistical com-
plexity depends on a number of factors that are
not usually relevant in FLT, such as the transi-
tion probabilities and number of states in a PDFA.
Although these factors are not relevant in FLT,
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they may nonetheless be relevant for characteriz-
ing constraints on the phonology and phonotactics
of human languages. By characterizing complex-
ity using Statistical Complexity Theory, we can
take these factors into account in a principled way.
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