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1. Introduction

Throughout this text Y is a bounded Jordan domain and D is the unit disk in the 
complex plane C. The classical Jordan-Schöenflies theorem states that every homeo-
morphism ϕ : ∂D onto−−→ ∂Y admits a continuous extension h : D → Y which takes D
homeomorphically onto Y . We are seeking for its Sobolev variant.

Question 1.1. Under which condition on Y does an arbitrary boundary homeomor-
phism ϕ : ∂D onto−−→ ∂Y admit a homeomorphic extension h : D onto−−→ Y of Sobolev class 
W 1,p(D, C)?

The most immediate reason for studying such a variant comes from the variational 
approach to Geometric Function Theory [2,13,15,25] and Nonlinear Elasticity [1,3,8]. 
Both theories share the compilation ideas to determine the infimum of a given stored 
energy functional among Sobolev homeomorphisms. When one studies such variational 
problems in the pure displacement setting, the first step is to ensure the existence of 
admissible homeomorphisms; that is, to answer Question 1.1. To begin, the boundary 
homeomorphism ϕ must be the Sobolev trace of some (possibly non-homeomorphic) 
mapping in W 1,p(D, C). Hence the best Sobolev regularity one can hope for is p < 2 in 
Question 1.1, see [31]. On the other hand, a Sobolev homeomorphic extension does not 
always exist for an arbitrary target domain even for a fairly regular boundary mapping. 
Indeed, there exists a Jordan domain Y and a homeomorphism ϕ : ∂D onto−−→ ∂Y which 
admits a continuous W 1,2-Sobolev extension to D but does not admit any homeomor-
phic extension to D in W 1,1(D, C), see [21,32]. Secondly, the requested W 1,p-Sobolev 
homeomorphism in Question 1.1 exists for all p < 2 if the boundary of Y is rectifiable, 
see [21]. However, many important classes of domains studied in Geometric Function 
Theory include domains with nonrectifiable boundaries. Quasidisks serve as a standard 
example of such domains. A planar domain is a quasidisk if it is the image of an open 
disk under a quasiconformal self mapping of C, see Definition 2.1. They have been stud-
ied intensively for many years because of their exceptional function theoretic properties, 
relationships with Teichmüller theory and Kleinian groups and interesting applications 
in complex dynamics, see [9] for an elegant survey. In particular, the Koch snowflake 
reveals the possible complexity of a quasidisk, see Fig. 1.

Theorem 1.2. Let Y be a quasidisk and ϕ : ∂D onto−−→ ∂Y a homeomorphism. Then there 
exists a homeomorphic extension h : D onto−−→ Y of ϕ in W 1,p(D, C) for all 1 � p < 2.

Our argument generalizes to John disks, see Definition 2.2. A John disk is a simply 
connected John domain. Such domains may be regarded as one-sided quasidisks. They 
appear in many contexts in analysis [4,5,7,12,11,22,23,30]. John domains were introduced 
by F. John [19] in connection with his work on elasticity. Roughly speaking, a domain is 
a John domain if it is possible to travel from one point of the domain to another without 
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Fig. 1. The Koch snowflake reveals the complexity of a quasidisk.

going too close to the boundary. John domains are allowed to have inward cusps but not 
outward cusps.

Theorem 1.3. Let Y be a John disk and ϕ : ∂D onto−−→ ∂Y a homeomorphism. Then there 
exists a homeomorphic extension h : D onto−−→ Y of ϕ in W 1,p(D, C) for all 1 � p < 2.

The key in our proofs is the construction the following self-homeomorphic extension.

Theorem 1.4. Let 1 � p < 2 and pβ < 1. Then every circle homeomorphism ϕ : ∂D onto−−→
∂D has a locally Lipschitz continuous, homeomorphic extension h : D onto−−→ D for which

Ep,β [h] =
∫
D

|Dh(z)|p
(1 − |h(z)|)pβ

dz < ∞ . (1.1)

Note that if βp � 0, then the harmonic extension would simply give the desired 
homeomorphism [16,31]. However, when 0 < βp < 1, the harmonic extension does not 
seem to work and a new way to construct Sobolev homeomorphisms is needed. The above 
weighted homeomorphic extension theorem gives the requested W 1,p-Sobolev homeomor-
phic extension in Question 1.1 for all p < 2 provided Y receives an α-Hölder continuous 
quasiconformal mapping from D with α > 1

2 , see Theorem 3.2.

Question 1.5. Let Y ⊂ C be a simply connected Jordan domain. Under which conditions 
on Y does there exist a quasiconformal mapping f : D onto−−→ Y in C α(D, C) with α > 1

2?

Recall that it is characteristic for a quasiconformal mapping to behave locally at every 
point like a radial stretching, see [17]. Without going into detail, improving the Hölder 



4 P. Koskela et al. / Journal of Functional Analysis 279 (2020) 108719
regularity of f at x◦ automatically means lowering the Hölder continuity for the inverse 
map at y◦ = f(x◦). We expect that a quasiconformal change of variables in Question 1.5
(with gained Hölder continuity) exists if the boundary mapping of the conformal mapping 
lies in C ε(∂D) for some ε > 0. We verify that such a quasiconformal mapping exists if 
Y is a quasidisk.

Theorem 1.6. Let Y be a quasidisk. Then there exists a quasiconformal mapping f : D onto−−→
Y in C α(D, C) with some α > 1

2 .

This mapping is obtained by first constructing a quasisymmetric map from ∂D onto 
∂Y which lies in C α(∂D) with α > 1

2 , and then applying an extension result of P. 
Tukia [27]. To simplify the construction of the quasisymmetric map we rely on a result 
of S. Rohde [26], which states that any quasicircle is bilipschitz equivalent to a snowflake-
type curve. This allows us to assume that ∂Y is a Rohde-type snowflake curve. As we 
have already indicated, Theorem 1.2 follows from our weighted extension result and 
Theorem 1.6. We will deduce Theorem 1.3 to Theorem 1.2.

2. Definitions

Definition 2.1. Let Ω and Ω′ be planar domains. A homeomorphism F : Ω onto−−→ Ω′ is a 
quasiconformal mapping if F ∈ W 1,1

loc (Ω, C) and there exists a constant 1 � K < ∞ such 
that

|DF (x)|2 � K det DF (x) a.e. in Ω .

Hereafter |·| stands for the operator norm of matrices.

Definition 2.2. A simply connected planar domain Y with at least two boundary points 
is a c-John disk if any pair of points y1, y2 ∈ Y can be joined by a rectifiable curve γ ⊂ Y

such that

min
i=1,2

�(γ(yi, y)) � c dist(y, ∂Y ) (2.1)

Hereafter, �(γ(yi, y)) denotes the length of the subcurve of γ between yi and y, and 
dist(y, ∂Y ) is the distance from y to the boundary ∂Y . In the case when the value 
of the constant c plays no role we simply say that Y is a John disk. For equivalent 
characterizations we refer to [24].

3. Proofs of extension results

In this section we outline the proofs of our main results. The main steps are Theo-
rem 1.4 and Theorem 1.6, which are proved in Sections 4 and 5 respectively.



P. Koskela et al. / Journal of Functional Analysis 279 (2020) 108719 5
Step 1. We first show that if Theorem 1.4 holds, then any domain which admits a 
quasiconformal mapping from the unit disk in the Hölder class Cα(D, C) for α > 1

2 is 
suitable for extending a given boundary homeomorphism as a Sobolev homeomorphism 
for p < 2.

Proposition 3.1. Let Y ⊂ C be a Jordan domain and f : D onto−−→ Y a homeomorphism. 
Suppose that f is a quasiconformal mapping on D and f ∈ C α(D, C) for some α > 1

2 . 
Then there exists a homeomorphism F : D onto−−→ Y which is quasiconformal on D and 
there is a constant C > 0 such that

|DF (x)| � C

(1 − |x|)1−α
for almost every x ∈ D . (3.1)

Proof. Let kΩ denote the quasihyperbolic metric in a domain Ω. The Sullivan-Tukia-
Väisälä approximation theorem [29, Corollary 7.12] provides us with a quasiconformal 
mapping F : D onto−−→ Y such that for any ε > 0 we have

kY

(
f(x), F (x)

)
� ε (3.2)

and

C−1 kY

(
F (x), F (y)

)
� kD(x, y) � C kY

(
F (x), F (y)

)
(3.3)

for every x, y ∈ D. The constant C � 1 in (3.3) depends on the original mapping f but is 
independent of x and y. It follows from (3.3) that F is bi-Lipschitz in the quasihyperbolic 
metrics and locally bi-Lipschitz in the Euclidean metrics and

|DF (x)| � C
dist(F (x), ∂Y )

1 − |x| (3.4)

where C � 1 is independent of x. For a proof of (3.4) we argue as follows. Choosing 
x, h ∈ D with h close to zero, we use the fact that F is Lipschitz in the quasihyperbolic 
metrics of D and Y to find that

F (x+h)∫
F (x)

|dω|
dist(ω, ∂Y ) � C

x+h∫
x

|dω|
dist(ω, ∂D) .

Now letting h → 0 gives (3.4).
It also follows from (3.2) that f = F on ∂D. From Lemma 2.1 in [10] we may also 

find that

log
(

|f(x) − F (x)| + 1
)

� kY (f(x), F (x)) (3.5)

d
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where d = min{dist
(
f(x), ∂Y

)
, dist

(
F (x), ∂Y

)
}. Combining this with (3.2) we have

log
(

|f(x) − F (x)|
d

+ 1
)

� ε . (3.6)

Thus for ε > 0 small enough we have

|f(x) − F (x)| � (eε − 1)d <
d

2

and thus

dist
(
F (x), ∂Y

)
� 2 dist(f(x), ∂Y ) � 2C(1 − |x|)α, (3.7)

where the last inequality follows from the assumption f ∈ C α(D, C). Now the asserted 
estimate (3.1) simply follows from (3.4) and (3.7). �
Theorem 3.2. Let Y be a Jordan domain. Suppose that there is a homeomorphism 
f : D onto−−→ Y such that f is quasiconformal on D and f ∈ C α(D, C) for some α > 1

2 . Then 
every homeomorphism ϕ : ∂D onto−−→ ∂Y admits a homeomorphic extension h : D onto−−→ Y of 
Sobolev class W 1,p(D, C) for all 1 � p < 2.

Proof. Via Proposition 3.1 we find a quasiconformal map F which takes D onto Y and 
satisfies

|DF (x)| � C

(1 − |x|)1−α
for almost every x ∈ D. (3.8)

Next, we define a homeomorphism ψ = F −1 ◦ ϕ : ∂D onto−−→ ∂D. Let β = 1 − α. Then 
applying the extension result Theorem 1.4 gives a Sobolev homeomorphism H : D onto−−→ D

with H = ψ on ∂D and

Ep,β [H] =
∫
D

|DH(z)|p
(1 − |H(z)|)pβ

dz < ∞ . (3.9)

Defining h = F ◦ H : D onto−−→ Y we have h = ϕ on ∂D and since both F, H are locally 
Lipschitz, h is locally Lipschitz and

∫
D

|Dh(z)|p dz �
∫
D

|DF
(
H(z)

)
|p|DH(z)|p dz .

Combining this with (3.8) we obtain
∫

|Dh(z)|p dz � C

∫ |DH(z)|p
(1 − |H(z)|)pβ

dz
D D
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and the claim h ∈ W 1,p(D, C) follows from (3.9). �
Step 2. Combining the statements of Theorem 3.2 and Theorem 1.6 now proves one 

of our main results, Theorem 1.2. It remains to show how Theorem 1.3 then follows from 
Theorem 1.2.

Proof of Theorem 1.3. Let Y be a John disk. Then by [6], see also [14], Y equipped 
with the internal metric, which we denote by dY , is bilipschitz equivalent to a quasidisk. 
Hence there exists a quasidisk Ω and a bilipschitz map G : (Ω, | · |) → (Y , dY ). Letting L
be the bilipschitz constant of G, we find that

|G(z1) − G(z2)| � dY (G(z1), G(z2)) � L|z1 − z2|.

Thus G is also a Lipschitz mapping in the Euclidean metric. Now, given a boundary 
homeomorphism ϕ : ∂D → ∂Y , we let H : D → Ω denote the homeomorphic extension 
of G−1 ◦ ϕ : ∂D → ∂Ω given by Theorem 1.2. Then the map h := G ◦ H gives a 
homeomorphic extension of ϕ and lies in the Sobolev space W 1,p(D) for all p < 2 since 
H lies in these spaces and G is Lipschitz. This completes the proof. �
4. Proof of Theorem 1.4

Proof. We construct the homeomorphic extension h of ϕ as follows. The given construc-
tion can be traced back to the extension technique of Jerison and Kenig [18]. First, since 
the unit circle is smooth we may use a bilipschitz map locally to assume it is flat. It 
will then be enough to give a construction of a homeomorphism H from the triangle 
T = {(x, y) ∈ R2 : 0 � y � 1, y − 1 � x � 1 − y} onto itself which is equal to a given 
boundary homeomorphism ϕ on the real line part of T, the identity mapping on the rest 
of the boundary and has finite energy

ET
p,β [H] =

∫
T

|DH(z)|p[
dist(H(z))

]pβ
dz < ∞ .

Here dist(H(z)) denotes the distance of H to the real line. We may assume, without loss 
of generality, that the boundary homeomorphism ϕ : [−1, 1] onto−−→ [−1, 1] is increasing.

The reason why this suffices is that we may first cover the boundary of the unit disc by 
some finite number of closed intervals disjoint apart from their endpoints. For example, 
let us cover ∂D by four equal length intervals I1, . . . , I4 and let I ′

j = ϕ(Ij) for each 
j. Then for each of the intervals Ij, we connect both endpoints via a line segment to 
create circular segments T1, . . . , T4 over the intervals I1, . . . , I4 that are mutually disjoint 
apart from some endpoints of the Ij and each set is bilipschitz-equivalent to the triangle 
T via some uniform bilipschitz constant. We do the same to the I ′

j to construct four 
circle segments T ′

1, . . . , T ′
4 which are again mutually disjoint and uniformly bilipschitz-

equivalent to the triangle T , especially here we use the fact that there are only a finite 
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Fig. 2. The sets Tj and T ′
j .

number of the I ′
j to guarantee the fact that the bilipschitz-constant is uniform. The 

bilipschitz mappings used here may always be chosen such that they map the part on 
∂D to the real line. See Fig. 2 for an illustration. Once we have shown a way to construct 
the homeomorphism H as described in the previous paragraph, it is immediate that we 
obtain a map from ∪jTj to ∪T ′

j with the correct boundary behaviour, injectivity and 
energy estimates. It remains to map the square D \ ∪jTj to the quadrilateral D \ ∪T ′

j via 
a bilipschitz map which is easily constructed since the maps from Tj to T ′

j will be shown 
to be bilipschitz on ∂Tj \ ∂D. On this square the energy of H will be finite since the 
derivative is bounded from above and the singularity poses no problem since dist(H(z))
is controlled by dist(z) from below since H is bilipschitz on the square, and pβ < 1.

We now split the boundary interval [−1, 1] of T into dyadic intervals Ik,j , where j
denotes the generation of the interval, i.e. |Ik,j | = 2−j . We denote by Ak,j and Bk,j the 
endpoints of such an interval from left to right. For each k, j we also have an image 
interval I ′

k,j which is the interval between ϕ(Ak,j) and ϕ(Bk,j) on the image side. We 
shall now construct, for each dyadic interval, a set Uk,j that will be mapped onto an 
image set U ′

k,j . None of these sets will overlap apart from their boundaries and both 
collections of sets will have union exactly equal to the original triangle T .

For an interval I on the real line, we denote by V (I) the point in the upper half plane 
which, together with the endpoints of I, forms an isosceles triangle with base I and 
right angle at the point V (I), we call this the apex point of I. Let us now fix a dyadic 
interval Ik,j , and we will drop subscripts for the rest of this construction for ease of 
notation so that Ik,j is simply I, its image interval I ′

k,j is simply I ′ and so on. We define 
five points X, Y, z, y, x as follows. The first point X is the apex point V (I) of I. The 
second point Y is the apex point of Ik+1,j , the neighbouring dyadic interval of I from the 
right. The points x and y are the apex points of the two children of I from left to right. 
The point z is the apex point of the first child of Ik+1,j from the left. Connecting the 
points X, Y, x, y, z in that order gives a parallelogram with one extra point y on the side 
between x and z which we call U , and we consider this as a pentagon with one straight 
angle. We now let X ′ denote the apex point of the image interval I ′ of I. Similarly we 
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Fig. 3. The set U and its image set U ′.

define Y ′, x′, y′ and z′. We now connect the points X ′, Y ′, z′, y′, x′ in that order to form 
a pentagon which we denote by U ′. See Fig. 3 for an illustration of the configuration. We 
now wish to construct a piecewise affine map from U to U ′ which is affine on each of the 
five sides of U , mapping each side to the corresponding side of U ′. Such a construction 
is easily done if we map the triangles ΔXyx, ΔXY y and ΔY zy via affine maps to the 
corresponding triangles on the image side. If the dyadic interval I is the last one of its 
generation, meaning that there is no neighbouring dyadic interval on the right of it on 
the interval [−1, 1], then we simply define U as the triangle ΔXyx and U ′ as ΔX ′y′x′. 
It is clear that these sets are disjoint apart from their boundaries and fill the triangle T
completely. If we define our map H in each of the sets U as described above, then it is 
also immediate that H is a homeomorphism from T to itself which is equal to the given 
boundary map ϕ on the real line.

We begin to compute the energy ET
p,β[H] on U . For that, let us start by looking at the 

map H from ΔXyx onto ΔX ′y′x′. To make our argument more general, we compute 
the energy of a general affine map H from ΔXyx to a triangle ΔP1P2P3 in the upper 
half plane. If L denotes the distance of the point X to the real line, then all of the sides 
of ΔXyx are comparable to L and L is comparable to 2−j , where j is the generation of 
I. Let us define the number b as the largest side length in the triangle ΔP1P2P3. Hence 
the norm of the differential of the map H on ΔXyx can be estimated from above by a 
constant times b/L since the angles in ΔXyx are bounded from below by some positive 
constants. Thus

∫
ΔXyx

|DH(z)|p
dist(H(z))pβ

dz � C
bp

Lp

∫
ΔXyx

1
dist(H(z))pβ

dz. (4.1)

It remains to estimate the integral expression on the right-hand side. Clearly we may 
assume that pβ > 0. Suppose without loss of generality that the distance from P1 to the 
real line is larger than or equal than to the distance from P2 and P3 to the real line, and 
call this largest distance ̃b. If we now modify the triangle ΔP1P2P3 by moving both points 
P2 and P3 to the real line, then the integral on the right-hand side of (4.1) increases. 
In this case, the quantity dist(H(z)) is equal to b̃ on one vertex of the triangle ΔXyx

and equal to zero on the opposing side of the triangle. To make the computation a bit 
easier, we cover this triangle with a rectangle R whose both side lengths are comparable 
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Fig. 4. The map H on the rectangle R.

to L, one side of R contains the side of the triangle where dist(H(z)) is zero and the 
opposing side of R contains the vertex where dist(H(z)) is equal to b̃. See Fig. 4 for an 
illustration. Letting the side lengths of R be c1L and c2L, we compute that

∫
R

1
dist(H(z))pβ

dz � C1

c1L∫
0

c2L∫
0

1(
b̃
L y

)pβ
dx dy

= C2
L1+pβ

b̃pβ

c1L∫
0

1
ypβ

dy

= C3

1 − pβ

L2

b̃pβ
.

Here we also used the assumption pβ < 1. Hence for the full energy of H over ΔXyx we 
obtain the estimate

∫
ΔXyx

|DH(z)|p
dist(H(z))pβ

dz � CL2−p bp

b̃pβ
,

where C only depends on p and β.
Let us now suppose that the arbitrary triangle ΔP1P2P3 was ΔX ′y′x′. In the triangle 

ΔX ′y′x′, the maximum distance from each vertex to the real line is comparable to the 
maximum side length because of the way this triangle was constructed via apex points 
of the dyadic intervals. Hence we find that

∫
ΔXyx

|DH(z)|p
dist(H(z))pβ

dz � CL2−p bp−pβ ,

where b again denotes the maximum side length of the triangle ΔX ′y′x′ or equivalently 
the maximum length of the dyadic intervals whose apex points are vertices of this trian-
gle.

The calculation in the triangles ΔXY y and ΔY zy is now exactly the same. In each of 
these triangles the side lengths are comparable to the same L as before, and the angles 
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are controlled from below. The energy of H on both of these triangles is again estimated 
from above by the maximum side length of the corresponding target triangle, which is 
always comparable to the maximum distance to the real line in the target triangle. Thus 
we find the same estimate

∫
Δ

|DH(z)|p
dist(H(z))pβ

dz � CL2−p bp−pβ
Δ , (4.2)

where Δ denotes one of the triangles ΔXY y or ΔY zy and bΔ denotes the maximum side 
length of the corresponding target triangle, which is again comparable to the maximum 
length of the involved dyadic intervals. If the original dyadic interval was Ik,j , then 
these maximum lengths of the corresponding target triangles over each of the three 
triangles that make up the corresponding set U are estimated from above by the quantity 
|I ′

k,j | + |I ′
k+1,j |. Applying this to (4.2) gives that

∫
U

|DH(z)|p
dist(H(z))pβ

dz � CL2−p
(
|I ′

k,j |p−pβ + |I ′
k+1,j |p−pβ

)
.

Summing over all of the dyadic intervals, we find that

∫
T

|DH(z)|p
dist(H(z))pβ

dz � C
∞∑

j=0
2−j(2−p)

2j+1∑
k=1

|I ′
k,j |p−pβ .

We aim to show that the double sum on the right-hand side is finite. We consider first 
the case p(1 − β) � 1. In this case

∞∑
j=1

2−j(2−p)
2j+1∑
k=1

|I ′
k,j |p(1−β) �

∞∑
j=1

2−j(2−p)

⎛
⎝2j+1∑

k=1

|I ′
k,j |

⎞
⎠

p(1−β)

=
∞∑

j=1
2−j(2−p) · 2p(1−β) < ∞

since 
∑2j+1

k=1 |I ′
k,j | is just the total length of the target boundary on the real line, which 

we assume to be equal to 2. If p(1 − β) < 1, then by Hölder’s inequality

2j+1∑
k=1

|I ′
k,j |p(1−β) � 2j(1−p(1−β))

⎛
⎝2j+1∑

k=1

|I ′
k,j |

⎞
⎠

p(1−β)

= 2j(1−p(1−β)) · 2p(1−β).

Hence
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Fig. 5. The two choices of how to replace a segment in Sn. The quantities in the picture represent the portion 
of the total length of the segment.

∞∑
j=1

2−j(2−p)
2j+1∑
k=1

|I ′
k,j |p(1−β) � 2p(1−β)

∞∑
j=1

2−j(1−pβ) < ∞.

Thus ET
p,β [H] < ∞, which completes the proof. �

5. Proof of Theorem 1.6

Proof. Let us first invoke a result of Rohde [26] which states that any quasicircle is 
bilipschitz equivalent to a snowflake-type curve. This allows us to assume that Γ is a 
snowflake-type curve. We shall briefly explain the definition of such a snowflake-type 
curve.

To construct a snowflake-type curve S, we fix a parameter p ∈ [1/4, 1/2). Let us then 
construct a sequence of curves (Sn) as follows. Let S0 denote the unit square in the 
plane, and let us call its sides the segments of S0. We now construct the sequence (Sn)
inductively. For each segment s in Sn, there are two choices. We replace the segment with 
a translated and scaled copy one of the two choices in Fig. 5. In any case, the segment s
has been replaced by four smaller segments, which we call the children of s. The curve 
obtained by making this choice for each segment s in Sn will be the curve Sn+1. We 
assume from now on that all of the choices in the construction have been fixed. The 
collection of all segments in all of the curves Sn is denoted by P.

Every possible sequence of choices leads to a different sequence of curves Sn, but in 
any case these curves will converge to a limit curve S. Thus the snowflake-type curves 
are defined as limit curves of these kinds of constructions. In order to define the required 
quasiconformal map to the bounded Jordan domain whose boundary is S, it is enough 
to find a quasisymmetric boundary map g : S0 → S such that g ∈ Cα with α > 1/2. 
This is due to Theorem 2.1 in [20], which is a conveniently formulated version of an 
extension theorem of Tukia, see [28]. To illustrate why this theorem implies our result 
after the construction of g, we let f : C → C be the quasiconformal extension of g as in 
[20]. Here g is defined on R instead of S0, but this is merely a technicality since S0 is 
locally bilipschitz-equivalent to R. Theorem 2.1 in [20] implies that

|Df(x + iy)| � C|y|−1|g(x + y) − g(x − y)| � C|y|α−1.
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Fig. 6. How to construct gn+1 in the two different cases. The quantities in the picture represent the portion 
of the total length of the segment.

The fact that f ∈ Cα now follows by applying this estimate on a line integral between 
any two arbitrary points in C.

We shall now explain the convergence of Sn to S more in detail as we would like to 
fix a parametrization gn : S0 → Sn so that we obtain the desired map g as a limit.

Some terminology used here: By two disjoint line segments we mean that they share at 
most one point (we do not pay much mind to whether line segments are open or closed). 
Two quantities are comparable (denoted ≈) if both can be estimated by a constant 
times the other. The dependence of the constant will be only on the parameter p, unless 
explicitly stated otherwise.

Let the exponent α and the number x be defined by the equations

(
1
4

)α

= p and xα = 1
4 . (5.1)

Hence α > 1/2 and x � 1/4. Let us now construct the sequence (gn) inductively. We 
let g0 : S0 → S0 be the identity map. We then construct gn+1 based on gn. For each 
segment s in Sn, let I be the preimage of s under gn which will always be a line segment. 
If the segment s was split according to Choice 1 in Fig. 5, then we split I into four equal 
length line segments and define gn+1 so that it maps each of these line segments to the 
children of s linearly, see Fig. 6. If instead s was split according to Choice 2, then we 
split I as in Fig. 6 into two segments of length x and two segments of length 1/2 − x. 
These will be mapped to the children of s as in Fig. 6. The four intervals that I splits 
into are also called the children of I. Let also R denote the collection of all such line 
segments I which are preimages of some segment in P under the appropriate gn. This 
also induces a natural map g∗ : P → R.

One may verify that the mappings gn converge uniformly to a homeomorphism g :
S0 → S. We now aim to show the Hölder-continuity and quasisymmetry of the map g.
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Let us first explain how to calculate the length �(s) of a line segment s in R or P. 
Denote by F the collection of all finite words that can be formed using the letters A, B
and C. We now define a map τ from R to F inductively as follows. If I is one of the sides 
of S0, then τ(I) is the empty word. If for some I ∈ R we have already defined τ(I) = w

for a word w ∈ F , then τ will be defined on the children of I as follows. If the children 
of I are formed via Choice 1 in Fig. 6, then we define τ(I ′) = wA for every child I ′ of I, 
where wA denotes the word obtained by adding the letter A to the end of w. If instead 
the children are formed based on Choice 2, then τ(I ′) = wB for those children I ′ of I for 
which �(I ′)/�(I) = x and τ(I ′) = wC for those children for which �(I ′)/�(I) = 1/2 − x.

Let now a(w) denote the number of letters A in the word w ∈ F , similarly b(w) the 
number of letters B and c(w) the number of letters C. Then from the construction we 
find the formulas

�(I) =
(

1
4

)a(τ(I))

xb(τ(I))
(

1
2 − x

)c(τ(I))

for all I ∈ R

and

�(s) = pa(τ(g∗(s)))
(

1
4

)b(τ(g∗(s)))+c(τ(g∗(s)))

for all s ∈ P.

Notice that by the relations of x, α and p in (5.1), we have for every s ∈ P that

�(s)
�(g∗(s))α

= ηc(τ(g∗(s))) where η = 1/4
( 1

2 − x)α
< 1. (5.2)

Hence

�(s) � �(g∗(s))α (5.3)

for all such s. We define another function μ on P which sends every segment s to 
the smaller arc of the snowflake-type curve S with the same endpoints as s. From the 
construction of the snowflake-type curve one may see that the diameters of s and μ(s)
are always comparable. Then (5.3) implies that

diam(g(I)) � C�(I)α for all I ∈ R. (5.4)

Let now J be any arc of S0. Take a cover of J with line segments from R with disjoint 
interiors so that the number of line segments in this cover is minimal. Then there cannot 
be more than six line segments in this cover since in any seven consecutive line segments 
there are always four which are exactly the children of another line segment in R (with 
which we could then replace these four). Furthermore, we may choose the line segments 
so that their length is at most a constant depending on p times the total length of J . 
From (5.4) we then find that g must be Hölder-continuous of exponent α.
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We must now show that g is quasisymmetric. Thus we must prove that

1
C

� |g(x + t) − g(x)|
|g(x) − g(x − t)| � C

for some constant C. Due to the nature of the construction, if we define J+ = [x, x + t]
and J− = [x −t, x] then it holds that |g(x +t) −g(x)| is always comparable to diam(g(J+))
and similarly |g(x) −g(x − t)| is comparable to diam(g(J−)). Now note that any arc J in 
S0 may be covered by six or less line segments from R of comparable length with J and 
must also contain at least one line segment from R of comparable length with J , which 
shows that it is enough to prove the following claim to deduce the quasisymmetry of g.

Claim. Let C be a fixed constant. Suppose I1, I2 ∈ R are disjoint intervals such that 
C−1�(I1) � �(I2) � C�(I1) and dist(I1, I2) � C�(I1). Then the lengths of g(I1) and g(I2)
are comparable by a constant only depending on C and p.

Suppose without loss of generality that c(τ(I1)) � c(τ(I2)). By formula (5.2), the 
lengths of g(I1) and g(I2) differ by at most a constant times ηN , where N := c(τ(I1)) −
c(τ(I2)). Hence we are to estimate the number N . Denote by I(1)

1 the parent of I1, I(2)
1

the parent of I
(1)
1 and so on. We consider the line segment I∗ = I

(N−2)
1 . This choice 

implies that

c(τ(I∗)) � c(τ(I2)) + 2, (5.5)

which shows that the words τ(I∗) and τ(I2) differ by at least two letters C. The line 
segments I∗ and I2 must be disjoint since otherwise one would contain the other, which 
would either imply I1 ⊂ I2 or contradict (5.5).

Suppose first that the word τ(I2) has at least as many letters as τ(I∗), meaning that 
I2 is of the same or later generation than I∗. In this case let I∗

2 be the line segment in R
which contains I2 and such that τ(I∗) and τ(I∗

2 ) have the same length. Since τ(I∗
2 ) has 

fewer letters than τ(I2), we have c(τ(I∗)) � c(τ(I∗
2 )) + 2 by (5.5). Hence there must be 

a line segment I∗
3 in R between I∗ and I∗

2 of the same generation. We may assume this 
line segment is a neighbour of I∗. Now we must have that �(I∗

3 ) � dist(I1, I2) � C�(I1). 
Furthermore,

�(I∗
3 ) ≈ �(I∗) � �(I1)

(1/2 − x)N−2 ,

since taking the parent of a line segment increases the length by at least a factor of 
(1/2 − x)−1. This gives a bound for N in terms of C and p, which is enough.

Suppose now that the word τ(I2) has less letters than τ(I∗). Let I∗
2 be the line segment 

in R which is contained in I2, of the same generation as I∗, and closest to I∗ (hence 
sharing an endpoint with I2). Then by construction we have c(τ(I∗

2 )) = c(τ(I2)) �
c(τ(I∗)) − 2. The rest of the proof follows the same line of arguments as the previous 
case (starting from the definition of I∗

3 ). This proves the claim. �



16 P. Koskela et al. / Journal of Functional Analysis 279 (2020) 108719
References

[1] S.S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol. 107, Springer-
Verlag, New York, 1995.

[2] K. Astala, T. Iwaniec, G. Martin, Elliptic Partial Differential Equations and Quasiconformal Map-
pings in the Plane, Princeton University Press, 2009.

[3] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. 
Anal. 63 (4) (1976/77) 337–403.

[4] O.J. Broch, Quadrilaterals and John disks, Comput. Methods Funct. Theory 4 (2) (2004) 419–434.
[5] O.J. Broch, Extension of internally bilipschitz maps in John disks, Ann. Acad. Sci. Fenn., Math. 

31 (1) (2006) 13–30.
[6] O.J. Broch, John disks are local bilipschitz images of quasidisks, Hiroshima Math. J. 38 (2) (2008) 

193–201.
[7] S. Chen, S. Ponnusamy, John disks and K-quasiconformal harmonic mappings, J. Geom. Anal. 

27 (2) (2017) 1468–1488.
[8] P.G. Ciarlet, Mathematical Elasticity Vol. I. Three-Dimensional Elasticity, Studies in Mathematics 

and Its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988.
[9] F.W. Gehring, Characteristic Properties of Quasidisks, Séminaire de Mathématiques Supérieures 

(Seminar on Higher Mathematics), vol. 84, Presses de l’Université de Montréal, Montreal, Que., 
1982.

[10] F.W. Gehring, B.P. Palka, Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976) 
172–199.

[11] F.W. Gehring, K. Hag, O. Martio, Quasihyperbolic geodesics in John domain, Math. Scand. 65 (1) 
(1989) 75–92.

[12] M. Ghamsari, R. Näkki, J. Väisälä, J. John disks and extension of maps, Monatshefte Math. 
117 (1–2) (1994) 63–94.

[13] S. Hencl, P. Koskela, Lectures on Mappings of Finite Distortion, Lecture Notes in Mathematics, 
vol. 2096, Springer, Cham, 2014.

[14] D. Herron, D. Meyer, Quasicircles and bounded turning circles modulo bi-Lipschitz maps, Rev. Mat. 
Iberoam. 28 (3) (2012) 603–630.

[15] T. Iwaniec, G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Mathematical 
Monographs, Oxford University Press, 2001.

[16] T. Iwaniec, G. Martin, C. Sbordone, Lp-integrability & weak type L2-estimates for the gradient of 
harmonic mappings of D, Discrete Contin. Dyn. Syst., Ser. B 11 (1) (2009) 145–152.

[17] T. Iwaniec, J. Onninen, Z. Zhu, Deformations of bi-conformal energy and a new characterization of 
quasiconformality, Arch. Ration. Mech. Anal. 236 (3) (2020) 1709–1737.

[18] D.S. Jerison, C.E. Kenig, Hardy spaces, A∞, and singular integrals on chord-arc domains, Math. 
Scand. 50 (1982) 221–247.

[19] F. John, Rotation and strain, Commun. Pure Appl. Math. 14 (1961) 391–413.
[20] P. Koskela, The degree of regularity of a quasiconformal mapping, Proc. Am. Math. Soc. 122 (3) 

(1994) 769–772.
[21] A. Koski, J. Onninen, Sobolev homeomorphic extensions, J. Eur. Math. Soc. (2020), in press, arXiv :

1812 .02811.
[22] O. Martio, J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Ser. A 1 Math. 

4 (2) (1979) 383–401.
[23] C.T. McMullen, Kleinian groups and John domains, Topology 37 (3) (1998) 485–496.
[24] R. Näkki, J. Väisälä, John disks, Expo. Math. 9 (1991) 9–43.
[25] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, American Mathematical Society, 

Providence, RI, 1989.
[26] S. Rohde, Quasicircles modulo bilipschitz maps, Rev. Mat. Iberoam. 17 (3) (2001) 643–659.
[27] P. Tukia, The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn., Ser. A 1 Math. 

5 (1980) 49–72.
[28] P. Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, 

Ann. Acad. Sci. Fenn., Ser. A 1 Math. 6 (1) (1981) 89–94.
[29] P. Tukia, J. Väisälä J, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. 

Fenn., Ser. A 1 Math. 6 (2) (1981) 303–342.

http://refhub.elsevier.com/S0022-1236(20)30262-7/bibA446973F8767A701339E3BE03E9E3455s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibA446973F8767A701339E3BE03E9E3455s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibCAAEF76DBED32CA7879AAD263799DD81s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibCAAEF76DBED32CA7879AAD263799DD81s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib8C013ABE8FF8BE57CCD4F1CDF76063EEs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib8C013ABE8FF8BE57CCD4F1CDF76063EEs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib8D37869EBC7AF08A31DF14FE3F48BEE2s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib1860008E85DA14C559015B1E44099B57s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib1860008E85DA14C559015B1E44099B57s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2EBB2D11CB5B14DEC5C0EFE507328C3Bs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2EBB2D11CB5B14DEC5C0EFE507328C3Bs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibB78CC6909042016DAAA04D83BAC97E90s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibB78CC6909042016DAAA04D83BAC97E90s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib749CFFE49534E04FC777471F81DDB5E3s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib749CFFE49534E04FC777471F81DDB5E3s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAC9AEAA4B79C7952FA4EFDEB65CB3A02s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAC9AEAA4B79C7952FA4EFDEB65CB3A02s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAC9AEAA4B79C7952FA4EFDEB65CB3A02s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2AE52B2C797C0DAE0767631CA158CC5Es1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2AE52B2C797C0DAE0767631CA158CC5Es1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAE26C6CDB747449DDAF67AEA39BF6D31s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAE26C6CDB747449DDAF67AEA39BF6D31s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib46BE44DE49315AA55103BB8B97A81B45s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib46BE44DE49315AA55103BB8B97A81B45s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib36A12A753997A4032C351F4C6A12C416s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib36A12A753997A4032C351F4C6A12C416s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib1D7801DF261BACBC4CB67EAB67D89366s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib1D7801DF261BACBC4CB67EAB67D89366s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibE2C1A1FD66344661DCEF4FA9AAFBCE00s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibE2C1A1FD66344661DCEF4FA9AAFBCE00s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibA5A07FC9A13CE78733715E8DE14C18F8s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibA5A07FC9A13CE78733715E8DE14C18F8s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib288A9E881060E44A58F91694D5BBAAFFs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib288A9E881060E44A58F91694D5BBAAFFs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib61409AA1FD47D4A5332DE23CBF59A36Fs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibDEE6E7433FCEC51FBEB6C311CD88009Bs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibDEE6E7433FCEC51FBEB6C311CD88009Bs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibC20B589FF0A519C82B63FE008CDC33B4s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibC20B589FF0A519C82B63FE008CDC33B4s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibAC81ADAAD0B2A7D6077EDD5C319A6048s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib5343F615EE8AEA842A0C5220A4DF8D1Cs1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibEA6178886BDD11A50CB972C450749A93s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibEA6178886BDD11A50CB972C450749A93s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bibFE9B4DE9D44EBD41147896CC54CFDD41s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib080502C4FA636AC639BF42B6D2BA01D7s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib080502C4FA636AC639BF42B6D2BA01D7s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib421B97A08BA11132E51D80A6526013D0s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib421B97A08BA11132E51D80A6526013D0s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib271DDF829AFEECE44D8732757FBA1A66s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib271DDF829AFEECE44D8732757FBA1A66s1


P. Koskela et al. / Journal of Functional Analysis 279 (2020) 108719 17
[30] J. Väisälä, Unions of John domains, Proc. Am. Math. Soc. 128 (4) (2000) 1135–1140.
[31] G.C. Verchota, Harmonic homeomorphisms of the closed disc to itself need be in W 1,p, p < 2, but 

not W 1,2, Proc. Am. Math. Soc. 135 (3) (2007) 891–894.
[32] Y.R.-Y. Zhang, Schoenflies solutions with conformal boundary values may fail to be Sobolev, Ann. 

Acad. Sci. Fenn., Ser. A 1 Math. 44 (2019) 791–796.

http://refhub.elsevier.com/S0022-1236(20)30262-7/bib296F6ADD78D1C46DCBF74AD8EB8814A2s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib421BCAB9679295D92772DACC7996F425s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib421BCAB9679295D92772DACC7996F425s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2F230F09D82BF693D165F1DEE83AEB76s1
http://refhub.elsevier.com/S0022-1236(20)30262-7/bib2F230F09D82BF693D165F1DEE83AEB76s1

	Sobolev homeomorphic extensions onto John domains
	1 Introduction
	2 Definitions
	3 Proofs of extension results
	4 Proof of Theorem 1.4
	5 Proof of Theorem 1.6
	References


