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1. Introduction

Throughout this text Y is a bounded Jordan domain and D is the unit disk in the
complex plane C. The classical Jordan-Schoenflies theorem states that every homeo-
morphism ¢: D 2% JY admits a continuous extension h: D — Y which takes D
homeomorphically onto Y. We are seeking for its Sobolev variant.

Question 1.1. Under which condition on Y does an arbitrary boundary homeomor-
phism ¢: 9D 2% 9Y admit a homeomorphic extension h: D 2% Y of Sobolev class
w1ir(D,C)?

The most immediate reason for studying such a variant comes from the variational
approach to Geometric Function Theory [2,13,15,25] and Nonlinear Elasticity [1,3,8].
Both theories share the compilation ideas to determine the infimum of a given stored
energy functional among Sobolev homeomorphisms. When one studies such variational
problems in the pure displacement setting, the first step is to ensure the existence of
admissible homeomorphisms; that is, to answer Question 1.1. To begin, the boundary
homeomorphism ¢ must be the Sobolev trace of some (possibly non-homeomorphic)
mapping in #1?(D, C). Hence the best Sobolev regularity one can hope for is p < 2 in
Question 1.1, see [31]. On the other hand, a Sobolev homeomorphic extension does not
always exist for an arbitrary target domain even for a fairly regular boundary mapping.
Indeed, there exists a Jordan domain Y and a homeomorphism ¢: D 2% JY which
admits a continuous # 2-Sobolev extension to D but does not admit any homeomor-
phic extension to D in #(D,C), see [21,32]. Secondly, the requested % !P-Sobolev
homeomorphism in Question 1.1 exists for all p < 2 if the boundary of Y is rectifiable,
see [21]. However, many important classes of domains studied in Geometric Function
Theory include domains with nonrectifiable boundaries. Quasidisks serve as a standard
example of such domains. A planar domain is a quasidisk if it is the image of an open
disk under a quasiconformal self mapping of C, see Definition 2.1. They have been stud-
ied intensively for many years because of their exceptional function theoretic properties,
relationships with Teichmiiller theory and Kleinian groups and interesting applications
in complex dynamics, see [9] for an elegant survey. In particular, the Koch snowflake
reveals the possible complexity of a quasidisk, see Fig. 1.

Theorem 1.2. Let Y be a quasidisk and ¢: 0D =% Y a homeomorphism. Then there
exists a homeomorphic extension h: D 2% Y of ¢ in #1P(D,C) for all 1 < p < 2.

Our argument generalizes to John disks, see Definition 2.2. A John disk is a simply
connected John domain. Such domains may be regarded as one-sided quasidisks. They
appear in many contexts in analysis [4,5,7,12,11,22,23,30]. John domains were introduced
by F. John [19] in connection with his work on elasticity. Roughly speaking, a domain is
a John domain if it is possible to travel from one point of the domain to another without
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Fig. 1. The Koch snowflake reveals the complexity of a quasidisk.

going too close to the boundary. John domains are allowed to have inward cusps but not
outward cusps.

Theorem 1.3. Let Y be a John disk and ¢: 0D % Y a homeomorphism. Then there
exists a homeomorphic extension h: D Y of ¢ in #'*P(D,C) for all 1 < p < 2.

The key in our proofs is the construction the following self-homeomorphic extension.

Theorem 1.4. Let 1 < p < 2 and pB < 1. Then every circle homeomorphism ¢: 0D =
OD has a locally Lipschitz continuous, homeomorphic extension h: D 2% D for which

Ep slh] :D/%dz < 00. (1.1)

Note that if Sp < 0, then the harmonic extension would simply give the desired
homeomorphism [16,31]. However, when 0 < Sp < 1, the harmonic extension does not
seem to work and a new way to construct Sobolev homeomorphisms is needed. The above
weighted homeomorphic extension theorem gives the requested #1:P-Sobolev homeomor-
phic extension in Question 1.1 for all p < 2 provided Y receives an a-Hélder continuous
quasiconformal mapping from D with a > %, see Theorem 3.2.

Question 1.5. Let Y C C be a simply connected Jordan domain. Under which conditions
on Y does there exist a quasiconformal mapping f: D *% Y in 4%(D,C) with a > 27

Recall that it is characteristic for a quasiconformal mapping to behave locally at every
point like a radial stretching, see [17]. Without going into detail, improving the Holder
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regularity of f at x, automatically means lowering the Holder continuity for the inverse
map at yo = f(z,). We expect that a quasiconformal change of variables in Question 1.5
(with gained Holder continuity) exists if the boundary mapping of the conformal mapping
lies in €°(0D) for some £ > 0. We verify that such a quasiconformal mapping exists if
Y is a quasidisk.

Theorem 1.6. Let Y be a quasidisk. Then there exists a quasiconformal mapping f: D 22
Y in €*(D,C) with some o > L.

This mapping is obtained by first constructing a quasisymmetric map from 9D onto
OY which lies in €*(0D) with o > 2

29
Tukia [27]. To simplify the construction of the quasisymmetric map we rely on a result

and then applying an extension result of P.

of S. Rohde [26], which states that any quasicircle is bilipschitz equivalent to a snowflake-
type curve. This allows us to assume that dY is a Rohde-type snowflake curve. As we
have already indicated, Theorem 1.2 follows from our weighted extension result and
Theorem 1.6. We will deduce Theorem 1.3 to Theorem 1.2.

2. Definitions

Definition 2.1. Let  and Q' be planar domains. A homeomorphism F: 2% Q' is a
quasiconformal mapping if F' € 7/1;&1 (Q, C) and there exists a constant 1 < K < oo such
that

|DF((I}>|2 < K det DF(z) a.e.in Q.
Hereafter |-| stands for the operator norm of matrices.

Definition 2.2. A simply connected planar domain Y with at least two boundary points
is a c-John disk if any pair of points y1,y2 € Y can be joined by a rectifiable curve v C Y
such that

min £(7(yi,y)) < ¢ dist(y, IY) (2.1)

)

Hereafter, £(v(y;,y)) denotes the length of the subcurve of v between y; and y, and
dist(y,dY) is the distance from y to the boundary OY. In the case when the value
of the constant ¢ plays no role we simply say that Y is a John disk. For equivalent
characterizations we refer to [24].

3. Proofs of extension results

In this section we outline the proofs of our main results. The main steps are Theo-
rem 1.4 and Theorem 1.6, which are proved in Sections 4 and 5 respectively.
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Step 1. We first show that if Theorem 1.4 holds, then any domain which admits a
quasiconformal mapping from the unit disk in the Hélder class C*(D,C) for o > % is
suitable for extending a given boundary homeomorphism as a Sobolev homeomorphism
for p < 2.

Proposition 3.1. Let Y C C be a Jordan domain and f: D 2 Y a homeomorphism.
Suppose that f is a quasiconformal mapping on D and f € €%(D,C) for some a > %
Then there exists a homeomorphism F: D 2% Y which is quasiconformal on D and
there is a constant C > 0 such that

C

IDF@)| < o

for almost every x € D . (3.1)
Proof. Let kg denote the quasihyperbolic metric in a domain 2. The Sullivan-Tukia-
Viisald approximation theorem [29, Corollary 7.12] provides us with a quasiconformal

onto

mapping F': D 22 Y such that for any ¢ > 0 we have
ky (f(x), F(x)) < e (3.2)
and
C™ ky (F(2), F(y)) < kp(z,y) < Cky (F(2), F(y)) (3.3)

for every x,y € D. The constant C' > 1 in (3.3) depends on the original mapping f but is
independent of = and y. It follows from (3.3) that F is bi-Lipschitz in the quasihyperbolic
metrics and locally bi-Lipschitz in the Euclidean metrics and

dist(F(z), dY)

DF(z)| <
IDF()| < 0 =H T

(3.4)

where C' > 1 is independent of x. For a proof of (3.4) we argue as follows. Choosing
x,h € D with h close to zero, we use the fact that F' is Lipschitz in the quasihyperbolic
metrics of D and Y to find that

F(x+h) | z4h )
w w
— < C | ———.
/ dist(w, 9Y) / dist(w, OD)

Now letting h — 0 gives (3.4).
It also follows from (3.2) that f = F on dD. From Lemma 2.1 in [10] we may also
find that

o (162 7

1) < h (). Fo) (3.5)
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where d = min{dist (f(z),dY), dist (F(z),dY)}. Combining this with (3.2) we have

log (M + 1) <e. (3.6)

Thus for € > 0 small enough we have
Fl&)  Fl)| < (¢ - D < 3
and thus
dist (F(z),0Y) < 2 dist(f(z),dY) < 2C(1 — |z])*, (3.7)

where the last inequality follows from the assumption f € €*(D,C). Now the asserted
estimate (3.1) simply follows from (3.4) and (3.7). O

Theorem 3.2. Let Y be a Jordan domain. Suppose that there is a homeomorphism
f:D 2% Y such that f is quasiconformal on D and f € €“(D,C) for some a > s. Then
every homeomorphism @: 0D 2% Y admits a homeomorphic extension h: D 2% ot Y of
Sobolev class #W1P(D,C) for all1 < p < 2.

Proof. Via Proposition 3.1 we find a quasiconformal map F' which takes D onto Y and
satisfies

S
(1= fa])t=

Next, we define a homeomorphism 1 = F~1 o : 9D 2 9D. Let 8 = 1 — a. Then

onto

applying the extension result Theorem 1.4 gives a Sobolev homeomorphism H: D 22 D
with H = ¢ on 0D and

|DF(z)] < for almost every z € D. (3.8)

£, 5[H] = / % dz < 5o (3.9)

Defining h = F o H: D % Y we have h = ¢ on dD and since both F, H are locally
Lipschitz, h is locally Lipschitz and

/\Dh(z)|p dz < /|DF(H(2))|p|DH(z)|p dz.

D D

Combining this with (3.8) we obtain

_IDHE)P
p <
/|Dh(z)| dz\C/ T HG) dz
D
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and the claim h € #1?(D,C) follows from (3.9). O

Step 2. Combining the statements of Theorem 3.2 and Theorem 1.6 now proves one
of our main results, Theorem 1.2. It remains to show how Theorem 1.3 then follows from
Theorem 1.2.

Proof of Theorem 1.3. Let Y be a John disk. Then by [6], see also [14], Y equipped
with the internal metric, which we denote by dy, is bilipschitz equivalent to a quasidisk.
Hence there exists a quasidisk © and a bilipschitz map G : (Q2,|-|) — (Y, dy). Letting L
be the bilipschitz constant of G, we find that

|G(21) — G(22)| < dy(G(21), G(22)) < L|z1 — 22|

Thus G is also a Lipschitz mapping in the Euclidean metric. Now, given a boundary
homeomorphism ¢ : D — 9Y, we let H : D — Q denote the homeomorphic extension
of Gop : D — 0N given by Theorem 1.2. Then the map h := G o H gives a
homeomorphic extension of ¢ and lies in the Sobolev space W1?(D) for all p < 2 since
H lies in these spaces and G is Lipschitz. This completes the proof. O

4. Proof of Theorem 1.4

Proof. We construct the homeomorphic extension h of ¢ as follows. The given construc-
tion can be traced back to the extension technique of Jerison and Kenig [18]. First, since
the unit circle is smooth we may use a bilipschitz map locally to assume it is flat. It
will then be enough to give a construction of a homeomorphism H from the triangle
T={(r,y) €ER?:0<y<1,y—1< 2 <1-—y} onto itself which is equal to a given
boundary homeomorphism ¢ on the real line part of T, the identity mapping on the rest
of the boundary and has finite energy

ngﬁ[H] = / —.|DH(2)|1’ o5 dz < oo.
7 [dist(H (2))]
Here dist(H (z)) denotes the distance of H to the real line. We may assume, without loss
of generality, that the boundary homeomorphism ¢: [—1, 1] 2= [—1,1] is increasing.
The reason why this suffices is that we may first cover the boundary of the unit disc by
some finite number of closed intervals disjoint apart from their endpoints. For example,
let us cover D by four equal length intervals Iy,...,I; and let I; = ¢(I;) for each
J- Then for each of the intervals I;, we connect both endpoints via a line segment to
create circular segments 71, ..., Ty over the intervals I, ..., I that are mutually disjoint
apart from some endpoints of the I; and each set is bilipschitz-equivalent to the triangle
T via some uniform bilipschitz constant. We do the same to the I ]' to construct four
circle segments T7,...,T; which are again mutually disjoint and uniformly bilipschitz-
equivalent to the triangle T, especially here we use the fact that there are only a finite
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n TN

T3

T,

Fig. 2. The sets T; and TJ'

number of the I ]’ to guarantee the fact that the bilipschitz-constant is uniform. The
bilipschitz mappings used here may always be chosen such that they map the part on
JD to the real line. See Fig. 2 for an illustration. Once we have shown a way to construct
the homeomorphism H as described in the previous paragraph, it is immediate that we
obtain a map from U;T; to UT] with the correct boundary behaviour, injectivity and
energy estimates. It remains to map the square D \ U; 7} to the quadrilateral D\ UTJ’» via
a bilipschitz map which is easily constructed since the maps from Tj to TJ( will be shown
to be bilipschitz on 0T} \ dD. On this square the energy of H will be finite since the
derivative is bounded from above and the singularity poses no problem since dist(H(z))
is controlled by dist(z) from below since H is bilipschitz on the square, and pj < 1.

We now split the boundary interval [—1,1] of T into dyadic intervals I ;, where j
denotes the generation of the interval, i.e. |Iy ;| = 277. We denote by Ay ; and By, ; the
endpoints of such an interval from left to right. For each k,j we also have an image
interval I} ; which is the interval between (A ;) and p(Bg,;) on the image side. We
shall now construct, for each dyadic interval, a set Uy ; that will be mapped onto an
image set U,;’j. None of these sets will overlap apart from their boundaries and both
collections of sets will have union exactly equal to the original triangle 7'

For an interval I on the real line, we denote by V(I) the point in the upper half plane
which, together with the endpoints of I, forms an isosceles triangle with base I and
right angle at the point V(I), we call this the apex point of I. Let us now fix a dyadic
interval Iy ;, and we will drop subscripts for the rest of this construction for ease of
notation so that Iy, ; is simply I, its image interval Illw' is simply I’ and so on. We define
five points X,Y, z,y,x as follows. The first point X is the apex point V(I) of I. The
second point Y is the apex point of I, j, the neighbouring dyadic interval of I from the
right. The points x and y are the apex points of the two children of I from left to right.
The point z is the apex point of the first child of I;4; ; from the left. Connecting the
points X, Y, x,y, z in that order gives a parallelogram with one extra point y on the side
between = and z which we call U, and we consider this as a pentagon with one straight
angle. We now let X’ denote the apex point of the image interval I’ of I. Similarly we



P. Koskela et al. / Journal of Functional Analysis 279 (2020) 108719 9

Fig. 3. The set U and its image set U’.

define Y’, z’, 9’ and z’. We now connect the points X', Y’ 2/, 4/, 2’ in that order to form
a pentagon which we denote by U’. See Fig. 3 for an illustration of the configuration. We
now wish to construct a piecewise affine map from U to U’ which is affine on each of the
five sides of U, mapping each side to the corresponding side of U’. Such a construction
is easily done if we map the triangles AXyz, AXYy and AY zy via affine maps to the
corresponding triangles on the image side. If the dyadic interval I is the last one of its
generation, meaning that there is no neighbouring dyadic interval on the right of it on
the interval [—1, 1], then we simply define U as the triangle AXyz and U’ as AX'y'z’.
It is clear that these sets are disjoint apart from their boundaries and fill the triangle T
completely. If we define our map H in each of the sets U as described above, then it is
also immediate that H is a homeomorphism from 7T to itself which is equal to the given
boundary map ¢ on the real line.

We begin to compute the energy EZ s[H] on U. For that, let us start by looking at the
map H from AXyx onto AX'y'z’. To make our argument more general, we compute
the energy of a general affine map H from AXyzx to a triangle AP; P, P3 in the upper
half plane. If L denotes the distance of the point X to the real line, then all of the sides
of AXyzx are comparable to L and L is comparable to 277, where j is the generation of
I. Let us define the number b as the largest side length in the triangle APy P, P3. Hence
the norm of the differential of the map H on AXyx can be estimated from above by a
constant times b/L since the angles in AXyx are bounded from below by some positive
constants. Thus

|DH(z)P bP 1

/ Gst(H ()7 C SO / Gst(H ()7 (41)

AXyz AXyz

It remains to estimate the integral expression on the right-hand side. Clearly we may
assume that pS > 0. Suppose without loss of generality that the distance from P; to the
real line is larger than or equal than to the distance from P, and P5 to the real line, and
call this largest distance b. If we now modify the triangle AP; P, P3 by moving both points
P, and P5 to the real line, then the integral on the right-hand side of (4.1) increases.
In this case, the quantity dist(H(z)) is equal to b on one vertex of the triangle AXyx
and equal to zero on the opposing side of the triangle. To make the computation a bit
easier, we cover this triangle with a rectangle R whose both side lengths are comparable
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Py

" L P P
L J L] L] L] | J L J

Fig. 4. The map H on the rectangle R.

to L, one side of R contains the side of the triangle where dist(H(z)) is zero and the
opposing side of R contains the vertex where dist(H(z)) is equal to b. See Fig. 4 for an
illustration. Letting the side lengths of R be ¢;L and ¢y L, we compute that

1 CILCQL 1
- < P
| <6 | [ o
R 0 0 (fy)

Lies g
-0 [
0
Cy L2
T 1 pBes

Here we also used the assumption p8 < 1. Hence for the full energy of H over AXyx we
obtain the estimate

DH(2)P 2y b7
AXyx
where C' only depends on p and .

Let us now suppose that the arbitrary triangle APy P, Py was AX’y’x’. In the triangle
AX'y'x’, the maximum distance from each vertex to the real line is comparable to the
maximum side length because of the way this triangle was constructed via apex points
of the dyadic intervals. Hence we find that

DH(z)P
/ dilst(H((Z)))"’g ds o
AXyx

where b again denotes the maximum side length of the triangle AX'y’z’ or equivalently
the maximum length of the dyadic intervals whose apex points are vertices of this trian-
gle.

The calculation in the triangles AXYy and AY zy is now exactly the same. In each of
these triangles the side lengths are comparable to the same L as before, and the angles
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are controlled from below. The energy of H on both of these triangles is again estimated
from above by the maximum side length of the corresponding target triangle, which is
always comparable to the maximum distance to the real line in the target triangle. Thus
we find the same estimate

[DH(=)|P

< 2—p pp—pB 4.
Dist(F (2))77 dz < CLPP, (4.2)
A

where A denotes one of the triangles AXYy or AY zy and ba denotes the maximum side
length of the corresponding target triangle, which is again comparable to the maximum
length of the involved dyadic intervals. If the original dyadic interval was Iy ;, then
these maximum lengths of the corresponding target triangles over each of the three
triangles that make up the corresponding set U are estimated from above by the quantity
I ;| 4 141 |- Applying this to (4.2) gives that

[DH(z)P o e s
| Gt 8 < O (g 7).
U

Summing over all of the dyadic intervals, we find that

9J+1

|DH (2)[? 2—
[ il o B <C 9—3(2-p) I/
dist(H (2))P Z Z'

T

We aim to show that the double sum on the right-hand side is finite. We consider first
the case p(1 — ) > 1. In this case

2]+1 o 2j+1 p(liﬂ)

ZQ i2-p) Zu/ |P(1 <22*J'(2*P) Zu}’w
j=1 k=1

9=3(2=p) . op(1-B) -

H'Mg

i1
since Zi;l |1}, ;] is just the total length of the target boundary on the real line, which
we assume to be equal to 2. If p(1 — 8) < 1, then by Hélder’s inequality

St git1 p(1-5)
Z |]]/€’j|p(1fﬁ) < 20(1-p(1=5)) Z I — 9i(=p(1=8)) , 9p(1—-8)_
k=1 k=1

Hence
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Choice 1 Choice 2

Fig. 5. The two choices of how to replace a segment in S,,. The quantities in the picture represent the portion
of the total length of the segment.

2i+1

ZQ*J'(Q*P) Z |II;7j|p(1*ﬁ) < 2r(1=h) ngj(lfpﬁ) < 0.
j=1 k=1 j=1

Thus &) 5[H] < oo, which completes the proof. O
5. Proof of Theorem 1.6

Proof. Let us first invoke a result of Rohde [26] which states that any quasicircle is
bilipschitz equivalent to a snowflake-type curve. This allows us to assume that T' is a
snowflake-type curve. We shall briefly explain the definition of such a snowflake-type
curve.

To construct a snowflake-type curve S, we fix a parameter p € [1/4,1/2). Let us then
construct a sequence of curves (S,) as follows. Let Sy denote the unit square in the
plane, and let us call its sides the segments of Sy. We now construct the sequence (S,)
inductively. For each segment s in .S,,, there are two choices. We replace the segment with
a translated and scaled copy one of the two choices in Fig. 5. In any case, the segment s
has been replaced by four smaller segments, which we call the children of s. The curve
obtained by making this choice for each segment s in S,, will be the curve S,41. We
assume from now on that all of the choices in the construction have been fixed. The
collection of all segments in all of the curves .S, is denoted by P.

Every possible sequence of choices leads to a different sequence of curves S, but in
any case these curves will converge to a limit curve S. Thus the snowflake-type curves
are defined as limit curves of these kinds of constructions. In order to define the required
quasiconformal map to the bounded Jordan domain whose boundary is S, it is enough
to find a quasisymmetric boundary map g : So — S such that g € C* with o > 1/2.
This is due to Theorem 2.1 in [20], which is a conveniently formulated version of an
extension theorem of Tukia, see [28]. To illustrate why this theorem implies our result
after the construction of g, we let f : C — C be the quasiconformal extension of g as in
[20]. Here g is defined on R instead of Sy, but this is merely a technicality since Sy is
locally bilipschitz-equivalent to R. Theorem 2.1 in [20] implies that

|Df(z +iy)| < Clyl Mgz +y) — g(z — y)| < Cly|*".
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On+1

&=
I
IS
I

Choice 1 Choice 2

Fig. 6. How to construct g,41 in the two different cases. The quantities in the picture represent the portion
of the total length of the segment.

The fact that f € C“ now follows by applying this estimate on a line integral between
any two arbitrary points in C.

We shall now explain the convergence of S,, to S more in detail as we would like to
fix a parametrization g, : Sg — S, so that we obtain the desired map ¢ as a limit.

Some terminology used here: By two disjoint line segments we mean that they share at
most one point (we do not pay much mind to whether line segments are open or closed).
Two quantities are comparable (denoted =) if both can be estimated by a constant
times the other. The dependence of the constant will be only on the parameter p, unless
explicitly stated otherwise.

Let the exponent « and the number x be defined by the equations

1\ L1
(Z) =p and %= (5.1)

Hence a > 1/2 and = < 1/4. Let us now construct the sequence (g,) inductively. We
let go : Sop — Sp be the identity map. We then construct ¢,41 based on g,. For each
segment s in Sy, let I be the preimage of s under g,, which will always be a line segment.
If the segment s was split according to Choice 1 in Fig. 5, then we split I into four equal
length line segments and define g,,+1 so that it maps each of these line segments to the
children of s linearly, see Fig. 6. If instead s was split according to Choice 2, then we
split I as in Fig. 6 into two segments of length 2 and two segments of length 1/2 — «.
These will be mapped to the children of s as in Fig. 6. The four intervals that I splits
into are also called the children of I. Let also R denote the collection of all such line
segments I which are preimages of some segment in P under the appropriate g,. This
also induces a natural map g* : P — R.

One may verify that the mappings g, converge uniformly to a homeomorphism g :
So — 5. We now aim to show the Holder-continuity and quasisymmetry of the map g.
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Let us first explain how to calculate the length £(s) of a line segment s in R or P.
Denote by F the collection of all finite words that can be formed using the letters A, B
and C. We now define a map 7 from R to F inductively as follows. If I is one of the sides
of Sp, then 7(I) is the empty word. If for some I € R we have already defined 7(I) = w
for a word w € F, then 7 will be defined on the children of I as follows. If the children
of I are formed via Choice 1 in Fig. 6, then we define 7(I') = wA for every child I’ of I,
where wA denotes the word obtained by adding the letter A to the end of w. If instead
the children are formed based on Choice 2, then 7(I') = wB for those children I" of I for
which ¢(I")/¢(I) = « and 7(I") = wC for those children for which ¢(I")/¢(I) = 1/2 — x.

Let now a(w) denote the number of letters A in the word w € F, similarly b(w) the
number of letters B and c¢(w) the number of letters C. Then from the construction we
find the formulas

1\ e (@) 1 e(r(D))
oI = (Z) (D) (5 - a:) forall I e R

and

1\ b (g™ () Fe(r (9" (5)))
) for all s € P.

— pa(r(g™(s)) =
() =p (3

Notice that by the relations of z, & and p in (5.1), we have for every s € P that

£(s) (r(g" ()
e =1 where n =
t(g*(s))

Hence
U(s) < L(g™(s))" (5.3)

for all such s. We define another function g on P which sends every segment s to
the smaller arc of the snowflake-type curve S with the same endpoints as s. From the
construction of the snowflake-type curve one may see that the diameters of s and u(s)
are always comparable. Then (5.3) implies that

diam(g(I)) < C¢(I)* forall I € R. (5.4)

Let now J be any arc of Sy. Take a cover of J with line segments from R with disjoint
interiors so that the number of line segments in this cover is minimal. Then there cannot
be more than six line segments in this cover since in any seven consecutive line segments
there are always four which are exactly the children of another line segment in R (with
which we could then replace these four). Furthermore, we may choose the line segments
so that their length is at most a constant depending on p times the total length of J.
From (5.4) we then find that g must be Hélder-continuous of exponent c.
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We must now show that g is quasisymmetric. Thus we must prove that

1_lge+)—g@)l

C " g(x) —g(z —1)]
for some constant C. Due to the nature of the construction, if we define J; = [z, x + ]
and J_ = [x—t, z] then it holds that |g(z+t) —g(x)]| is always comparable to diam(g(J4))
and similarly |g(z) — g(z —t)| is comparable to diam(g(J_)). Now note that any arc J in
So may be covered by six or less line segments from R of comparable length with J and
must also contain at least one line segment from R of comparable length with J, which
shows that it is enough to prove the following claim to deduce the quasisymmetry of g.

Claim. Let C be a fixed constant. Suppose I1,Is € R are disjoint intervals such that
C~Y(1) < 4(1y) < CU(I1) and dist(I1, Iz) < CU(I7). Then the lengths of g(I1) and g(I2)
are comparable by a constant only depending on C' and p.

Suppose without loss of generality that ¢(7(I1)) > c(7(I2)). By formula (5.2), the
lengths of g(11) and g(I>) differ by at most a constant times 7", where N := ¢(7(I1)) —
¢(7(I2)). Hence we are to estimate the number N. Denote by 11(1) the parent of I, 11(2
the parent of 11(1) and so on. We consider the line segment I* = Il(N72). This choice

implies that
e(t(I7) = e(r(1)) + 2, (5.5)

which shows that the words 7(I*) and 7([z) differ by at least two letters C. The line
segments I* and I, must be disjoint since otherwise one would contain the other, which
would either imply Iy C I or contradict (5.5).

Suppose first that the word 7(I3) has at least as many letters as 7(I*), meaning that
I5 is of the same or later generation than I*. In this case let I5 be the line segment in R
which contains Iy and such that 7(I*) and 7(I3) have the same length. Since 7(I3) has
fewer letters than 7(I3), we have ¢(7(I*)) > ¢(7(13)) + 2 by (5.5). Hence there must be
a line segment I in R between I* and I3 of the same generation. We may assume this
line segment is a neighbour of I*. Now we must have that £(13) < dist(I1, I2) < C4(Iy).
Furthermore,

(1)

U(I3) = ((I7) > 12N>’

since taking the parent of a line segment increases the length by at least a factor of
(1/2 — )=t This gives a bound for N in terms of C' and p, which is enough.

Suppose now that the word 7(I3) has less letters than 7(I*). Let I3 be the line segment
in R which is contained in I3, of the same generation as I'*, and closest to I* (hence
sharing an endpoint with I3). Then by construction we have ¢(7(I3)) = c(7(l2)) <
e(T(I*)) — 2. The rest of the proof follows the same line of arguments as the previous
case (starting from the definition of I3). This proves the claim. 0O
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