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1. Introduction

Statistical queries in modern scientific investigations often involve simultaneous testing of multiple hypotheses appear-
ing in non-overlapping groups. Such group formation occurs naturally in many of these investigations due to the underlying
biological or experimental process or can be created to effectively capture certain specific features of the data. Whatever be
the reasons for the hypotheses to form groups, ignoring the group structure when constructing multiple testing methods
may result in misleading conclusions (Efron, 2008). A considerable amount of research has taken place in the development
of multiple testing methods for grouped hypotheses both from frequentist and Bayesian perspectives (Benjamini and Heller,
2007; Pacifico et al., 2004; Subramanian et al., 2005; Heller et al., 2009; Arbeitman et al., 2002; Calvano et al., 2005; Clements
etal, 2013,2014; Hu et al., 2010; Cai and Sun, 2009; Schildknecht et al., 2016), mostly in the framework of controlling false
discovery rate (FDR), as originally defined by Benjamini and Hochberg (1995), or its variants such as local FDR (Efron et al.,
2001) and marginal FDR (Sun and Cai, 2007, 2009).

A Bayesian approach can produce powerful method of controlling a rate of false discoveries when testing multiple
hypotheses (He et al., 2015; Sun and Cai, 2007, 2009; Efron and Tibshirani, 2002; Tang and Zhang, 2007; Sarkar et al.,
2008; Newton et al., 2004). With the posterior probability of a null hypothesis being true, often referred to as the local FDR
under a simple mixture model (Efron et al., 2001), as the key ingredient, such a method relies on controlling the cumulative
mean of these posterior probabilities. While these methods are well developed for multiple testing of a single group of
hypotheses, extension of the notion of local FDR from single to multiple groups, taking into account false discoveries both
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within and between groups given that the significance of a hypothesis in a group depends on whether or not the group itselfis
significant, has not been put forward yet, as far as we know. The novelty of our paper lies in considering such an extension and
using that to develop a new method for testing grouped hypotheses integrating both within and between group discoveries.

Let Xz be the observation corresponding to the jth hypothesis in the gth group and 6,; indicate the truth (65 = 0) or
falsity (8;; = 1) of that hypothesis, forg = 1,...,G;j = 1, ..., mg. We express each 6;; as follows: 8y = 6; - 6;5, with
0, = 0(or = 1)indicating that the gth group, and hence each (or at least one) of its component hypotheses, is non-significant
(or significant), and ;; having its interpretation as the hidden state for the jth hypothesis within the gth group depending
on the status of that group. In other words, if 6, = 0, then 6y = 0; and if 6; = 1, then 65 = 0 or 1 according to whether
8¢ = 0 or 1. This provides an explicit representation of the underlying group structure of the hidden states. It also leads
us to the consideration of a similarly defined two-stage multiple decision rule 8 (X) = 8 (X) - 8¢ (X), with 6,(X) € {0, 1}
and 8z (X) € {0, 1} being the decision rules for 6, and 6; 4, respectively, for the problem of deciding between 6 = 0 and
05 = 1 simultaneously for all (g, j). Our method provides such a two-stage rule controlling the FDR a posteriori at a given
level «, that is, satisfying the following constraint:

G m
ij — 0)84(X)
il X| <a, (1.1)

G mg -
{Z >4 (X)}
(witha v b = max(a, b)) on the expected false discovery proportion conditional on X = {X;}.

The above two-stage representations of the hidden states and the decision rules allow us to express the conditional
expectation in (1.1), we call it posterior total FDR (across all hypotheses), in terms of posterior FDRs within the truly
significant groups (6, = 1). Given o at which the posterior total FDR is to be controlled, our method screens the hypotheses
within each group at the first stage for possible rejections subject to a control over the posterior within-group FDR at a
certain level less than or equal to «. At the second stage, it makes the final decision on ultimately rejecting these hypotheses
if the groups containing them are identified as significant subject to the desired control over the posterior total FDR. We
call this method the “Two-fold Loop Testing Algorithm (TLTA)” for grouped hypotheses. Thus, the TLTA enjoys, unlike
the other available methods, the added flexibility in preserving a pre-chosen level of control over false discoveries within
each significant group along with controlling the false discoveries across all hypotheses. Moreover, with this within-group
posterior FDR being defined in terms of strengths of evidence towards rejection for the hypotheses in a group conditional on
that for the group itself, preserving a control over it presents an effective way of capturing the within-group dependencies
caused inherently or structurally by the grouping.

We carried out numerical and simulation studies assessing the performance of the TLTA, both in terms of its oracle
and data-driven versions, against its relevant competitors that completely ignore the group structure. These studies were
conducted under a model setting that assumes independence between but not within groups and a truncated Bernoulli for
the hidden states within each significant group. These studies have revealed superior performance of the TLTA in terms
of FDR control and power (measured using false non-discoveries and the expected proportion of correctly rejected false
nulls) over its competitors in many practical scenarios. When applied to the data from the Adequate Yearly Progress (AYP)
study of California elementary schools in 2013 (http://www.cde.ca.gov/ta/ac/ay/aypdatafiles.asp) comparing the academic
performance for socioeconomically advantaged (SEA) versus socioeconomically disadvantaged (SED) students, the TLTA also
shows its favorable performance by making more discoveries than its competitors.

The remainder of the paper is organized as follows. We present the TLTA in Section 2. In Section 3, we introduce our
model assumption, explicit formulas for the within- and between-group local FDR scores under this model, and steps of
estimating the model parameters for derivation of data-driven versions of the TLTA and its competitors. The findings of
numerical studies associated with the TLTA and its competitors are presented in Section 4 for their oracle and data-driven
versions. The real data application is illustrated in Section 5. Concluding remarks are made in Section 6, and technical details
are given in the Appendix.

2. Methodologies

As mentioned above, 6;; = 0 if and only if either §; = 0 or 6;, = 0 when 6, = 1. With that in mind, we define
the following two quantities with the only model assumption made at this point that the hidden states are binary random
variables:

fdrg(X) = P(6; = 0|X) (2.1)
and
fdrjg(X) = P(6jjg = 06 = 1,X). (2.2)

The first is the local fdr score for the gth group, which is measured by its posterior probability of being not significant and
represents a key ingredient in discovering significant groups. The second is the posterior probability of 6;, = 0 given that
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8, = 1, which represents the conditional local FDR score for a hypothesis given that it is in a truly significant group and is a
key ingredient in making discoveries within a significant group.
The posterior total FDR, denoted by PFDRy (X)), is given by

G m G m

X305 o > 3 by X)
==l =1 (ZZ(SQ(X) > o) ‘g:]:] ,
{Z 5 <X>} s=1 =1 {Z Zgag;oo} vi
g=1j=1 g=1j=1

and so can be expressed as follows:
I (Z > 65(X) > o) — PFDR;(X)
g
> {(Sg(X)P(Qg =1X) Z(Sﬂg(X)P(Oﬂg = 1|0, = 1,X)}
J

(Zag()() [Zajg(X)D V1

2 :5g(X)(1 — fdrg (X)) 3 85(X)(1 _fdrjg)(x)}
J

(2 85 (X) {Zaﬂg(X)}) V1

) { 8;(X)(1 — fdr (X)) [1 (Z 8 (X) > o) - PFDRW|g(X)i| Z(Sﬂg()()}
g j J
(Z 8(X) [Zaj,g(X)}> V1
g J

Zé‘”g(X)fd Ig(X)
PFDRy = -

{Z(Sjg(X)} V1
J

where

is the posterior FDR within the gth group that is truly significant. In other words,

28 (X) {1 — (1 — fdry(X))(1 — PFDRy g (X)) } Z%m

(Zag(X) {Zaﬂg()()D V1

This leads us to our proposed method in its oracle form, as stated in the following. For notational convenience, from this
point onwards we will often suppress the symbol X in the quantities that obviously depend on the data.

PFDRr (X) =

Proposed method: two-fold loop testing algorithm (TLTA)

Step 1. For each g, let fdr 3, < fdr )z < fdr(mg)lg be the ordered fdr;,;, with Hg(1), . . . , Hg(m,) being the corresponding
hypotheses, and find

ki
-l g
Rg = max{kg : F E fdr(mg =< 77} ,
g

=1

given 0 < n < & < 1. Mark the hypotheses Hg(1), - . ., Hg(r,) for possible rejection and go to the next step.
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Step 2. Calculate n, = é f;fdr(,»)‘g, and define fdr; = 1 — (1 — ng)(1 — fdry), for each g. Order these fdry values as
fdrfy,y < -+ < fdrig), and find

k
> R fdrfy,
[=max{k: &= - oy,

p <
> R
g=1

with R being the value of R for the group that corresponds to fdr’(g). The hypotheses that were marked for possible
rejection in the groups (1), ..., () are ultimately rejected.

Theorem 2.1. Givenany 0 < n < « < 1, the TLTA for grouped hypotheses controls the PFDRy at level c.
Sy Ry,

Proof. A proof of this theorem is immediate, since PFDRy of the TLTA is S
g=1"(8)

, which is less than or equal to «.

Remark 1. The TLTA is developed with special attention given to that the hypotheses are grouped, with each group having
a significance probability of its own. It also takes into account the dependency, which could be naturally present or caused
inherently due to grouping, between the significance of a hypothesis and that of the group containing it. More specifically,
given data, (i) it measures strength of evidence towards rejection for each hypothesis within a group conditional on that for
the group itself by using 1 — fdr;, (ii) pulls up the hypotheses with the highest average measure of conditional evidence
exceeding 1 — 5 from each group, and (iii) then sets up a rejection rule for these selected sub-groups of hypotheses by
taking into account the measures of evidence towards rejection for the respective groups subject to a control over total
false discoveries at the desired level. It provides a new two-fold loop algorithm integrating both within and between group
discoveries when testing multiple hypotheses that are grouped.

Let us consider testing a single group of hypotheses, say Hiq), ..., Hign,), assuming that G = 1. Here, since n; =
S fdr 1, where Ry = max {k1 LR gy < n}, and fdr} = fdry + (1 — fdry) - S0, fdr ., the TLTA rejects
the first R; of these hypotheses if

1 k
R; = max :k e ;fdr(,-m < min (n, [a — fdr,]/[1 —fdrﬂ)} . (2.4)

Our assumption that n should be restricted within the interval (0, @] can be justified from (2.3), since outside this
interval n has no effect on R;. Although our method works for any n < «, it works the best when n = o« with

Ry = max [k : ,—1 Z};lfdr@ll < [a — fdr,]/[1 —fdrl]]. This method with n = « is slightly different from the SC (Sun

and Cai, 2007) method for testing a single group of hypotheses. It actually modifies the SC method by incorporating into the
method the strength of significance of the group measured using its local fdr, and thus lets the SC method to adapt itself
according to the group’s own significance. The TLTA, of course, reduces to the SC method (irrespective of n) when m, = 1.

Going back to testing multiple groups of hypotheses, although the TLTA allows 7 to be chosen differently for the different
groups, each within the interval (0, «], we consider keeping the n’s same. Our reason is that it allows us to use a certain
portion of the overall FDR level to maintain control over within-group false discoveries. This may be desirable in some
applications where one would like to attach some measure of reliability to decisions made within each group. Of course, the
choice of 7 is subjective and can be made judiciously based on one’s prior knowledge or expertise.

Nevertheless, we will be choosing = « in the following sections on simulation studies and real-data application.

3. Model under group structure
3.1. The model
We consider the following model for (Xg;, 0;, 6jg),. g =1,...,Gj=1,..., mg:

01,...,6¢ He Bernoulli(ry),

Orig - - - Omglg|0g = 0 %5 Bernoulli (0) (i.e., P(65 = 0]6, = 0) = 1),
e 6
i
= J

1—(1—my)™e
Xgj | Ogj d (1 — 05)fo(xg) + Ogif1(xg), for some given densities fo and f;. (3.1)

Oligs - - OmglglOg = 1~ [Truncated Bernoulli (731)]

We call such a model with Truncated Bernoulli hidden states within each Significant Group as BSG model.
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3.2. Formulas for fdr;, and fdr,

Under the BSG model, we can obtain explicit formulas for fdr;,; and fdr, when all the parameters are known, before using

them to calculate the corresponding scores based on the data x = (11, ..., Xgm¢)-
LetX; = (Xg1, - - ., Xgm, ) represent the data vector for the gth group. Let us introduce the following notations

~ (1= my)folxg)
Hra =" f )

with f(x) = (1 — m1)fo(X) + 721f1(x), to define the local fdr scores for the hypothesis corresponding to xg; within the gth

mg
and fdr, = l_[fdrgk,
k=1

group and for the gth group itself, respectively, under the assumption 6, Hg Bernoulli(rrz;1), which would be appropriate
to make if we were to ignore whether or not the group is significant by letting Zj Ojg > 0.

Then, as shown in Appendix A.1, when the significance of a group is taken into account by making the Truncated Bernoulli
(721) assumption for the 6,;’s given that the gth group containing it is truly significant (i.e., 6, = 1), the local FDR score fdr;,
within that group is given by

fdrg; —A]jdrg

dry, = P(6;; =0]6; = 1,x) = , 3.2
f jlg (]Ig | g ) l—fdrg ( )
and the group level local fdr score fdr, is given by
1-—7m fdr
fdrg _ ( 1)f g (3‘3)

(1—m )8

1- ﬂ])fag + 7y W(l _fa;g)

The fact that these scores should reduce to zero when the gth group is not significant (§;, = 0) is immediate from these
formulas.

Remark 2. It is interesting to note the following identities:
1—fdrg = (1= fdry)(1 — fdryy),
and
1= (—my)"  fdr, _ m  fir
(1 — 1) 1—fdry, 1-m 1—fdry’

which explain more directly how within- and between-group local FDR scores obtained by ignoring whether or not a group
itself is significant relate to those when the group significance is taken into account using the BSG model.

3.3. Estimation

Here, we present the main steps of estimating the model parameters. These will be used later to derive data-driven
versions of the TLTA and its competitors.
We assume that Xg;|0g; ~ (1 — 04)fo(Xg) + Ogif1 (Xg), with fo (x) = ¢ (%), the density of N(0, 1), and

f =3 alte (X0
1(x _,:1Cl<71¢< o >7

after making appropriate transformations to the data. The following algorithm provides the steps to estimate the set of
parameters B = (71, 721, ¢, i, 07). It is based on EM algorithm (Dempster et al., 1977; Bilmes, 1998), and its detailed
derivation is given in Appendix A.2.

Definition 1 (Estimation Algorithm for B).

1. Given the current value §', calculate fdr,(8) = P(6; = O|x, B = B'), fdr;,(B") = P(6j; = O|x,0; = 1,8 = B') using
(3.2) and (3.3), respectively, and

P(Og = 1,0, = 1, myg = l|x, ')
ate (52

= (1—fdry(B)) (1 — fdryz(B)) - .
Y aze ()
=1

, Yi=1,2,...,L
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2. Update ¢ and my); as

> fdrg(B)
g

:]—7’
G

new
US|

and

0

(1 fdrj (B))

J

2
new &

THon =

(1—fdry(B))

M3

-
Il
_-

3. Update (¢, 1, 07) as

mg
2 Py = 1,0, = 1, myg = I|x, B)

cnew — g j=1
1 - mg )
> > (1 —fdry(B))(1 — fdr;, (B"))
g j=1
mg
Z xng(Gg = 1, ejlg = ], mﬂg = llX, ﬂ/)
new g j=1
Mmoo = mg ,
22 PO =10 = 1, mjg = l|x, B)
g j=1
and
mg
22 (kg — m)*P (O = 1.6y = 1. mjg = IIx. B))
O,[Znew _ 2 j=1

mg
222 PO = 1,65 =1, mjg = lIx. f)
g j=1

4, Repeat steps (1-3) until convergence.

4. Numerical studies
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We conducted numerical studies to examine how well the TLTA performs for multiple testing in comparison with its
relevant competitors in their oracle and data-driven forms under the BSG model. In this section, we present the competing

methods and the results of these studies.

4.1. Competing methods

The most relevant, alternative approaches against which ours should be compared are the ones that ignore the group
structure and perform multiple testing by pulling the hypotheses in a single group. With that in mind, we consider the
following two methods and present them in their oracle forms under the above model setting.

The SC method. (Sun and Cai, 2007) Let
P(6g = 0)fo(Xg)
fxg)

be the pulled local FDR score for each hypothesis. Let PLfdr ) < ---
with Hy, ..., Hoy) being the corresponding hypotheses. Find

1 k
k=maxii: - PLfdr ;, < ,
|3 o =]

and reject H foralli=1, ..., k.
Under the BSG model, we have

(1 — my7m2)1)fo (Xg)
(1 — 7 )fo (Xg) + m1721f1(Xg)

PLfdrg(x) = Pr(6g = 0[x) =

’

PLfdrg(x) =

< PLfdry, (N = Zg mg) be the ordered PLfdr values,
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Table 1
The basic values for the unknown quantities in 8 in the simulation studies.
BSG model
L Basic values for
L=1 w1 =0.2,71 =0.6,G=100,m; =100, =2,0 =1
L=2 c1 = ¢, =0.5,8, = —2,0, = 1(in addition to the quantities for L = 1)

The adaptive BH method. (Benjamini and Hochberg, 2000). Let each X be transformed to its p-value Pg;. Let Py < - -+ <
P(y) be the ordered versions of these p-values when they are pulled into a single group. Compute

o
k = max {l (11— JT]]TZH)P(,') < N} .
If such a k exists, then reject the hypotheses associated with P(y), . . ., P; otherwise, do not reject any hypotheses.

Remark 3. It should be noted that Cai and Sun (2009) introduced a multiple-group version of the SC method and Hu
et al. (2010) developed an adaptive BH method for grouped hypotheses. However, both papers rely on different model
assumptions. In particular, in these two approaches, 1 has been assumed to be one, implying that there is no sparsity on
between-group level which is not appropriate when there are many groups. Secondly, they assumed the independence
assumption within each group.

4.2. Oracle comparison

We now present the results of numerical studies conducted under the BSG model to examine the performance of the TLTA
relative to its aforementioned competitors in their oracle forms in terms of FDR control and power. Two different definitions
of power are used; one is the FNR (the expected proportion of false acceptances among all the accepted hypotheses), and
the other is the Average Power (the expected proportion of truly rejected hypothesis).

We set fo(x) = ¢(x), fi(x) = ¢(x — §), and o = n = 0.05. There are five unknown quantities, 771, 751, 6, G, and mg. The
simulated values of FDR, FNR and Average Power were calculated based on 500 runs for each of these three methods having
chosen some values for these quantities.

Fig. 1 compares the three methods in terms of simulated FDR, FNR and Average Power. The basic values chosen for the
unknown quantities are 71 = 0.2, mp;; = 0.6, G = 100, mgy = 100, and § = 2. In each figure, we allow the value of one of
these quantities to vary, holding the other quantities at the aforementioned values. As seen from the graphs, the TLTA can
perform significantly better than the other two methods in all cases.

4.3. Comparison of data-driven methods

In the oracle versions of the different methods, we assume that all the parameters are known. In this section, they are
estimated using the Estimation Algorithm in Section 3. We simulated the FDR, FNR and Average Power, for each of the three
methods with different values of the unknown quantities in 8. The components of 8 and the basic values chosen for them
are listed in Table 1. The value of = « was set at 0.05. The simulated values were based on 500 runs under each setting
for the set of unknown quantities.

The simulation results are displayed in Figs. 2 (L = 1) and 3 (L = 2).In each graph, we allow the value of one of the above
quantities to vary while holding the others at the aforementioned values. As seen from these figures: (i) The performance
of the data-driven version is very close to that of its oracle version, (ii) the overall FDR of all the procedures is controlled at
the desired level « in all the scenarios considered, and (iii) the average power of the TLTA is the highest in all cases (as seen
from Figs. 2(c) and 3(c)).

Our simulations for the data-driven methods were done by starting with G = 3 and then by increasing G from 10 to
100 in increments of 10. The simulation results showed that the TLTA would have much better performance when there are
more groups, for instance, more than 10, although it gets plateaued with G more than 20.

In summary, as demonstrated through our numerical studies, the TLTA seems to outperform its competitors by effectively
capturing the group structure. Therefore, we would like to recommend it for application to multiple testing of grouped
hypotheses.

5. Real data application (AYP study of California 2013)

We take up the adequate yearly progress (AYP) study of California elementary schools in 2013 (http://www.cde.
ca.gov/ta/ac/ay/aypdatafiles.asp) comparing the academic performance for socioeconomically advantaged (SEA) against
socioeconomically disadvantaged (SED) students in the elementary schools. We compare the success rates in Math exams
of SEA versus SED students. Although it is generally the case that the average success rate of SEA students is higher than
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Fig. 1. Simulation results for the TLTA (—0—), the SC (—+— ), and the adaptive BH ( —¢— ) procedures in their oracle forms under the BSG model.
SED students, our focus is in discovering the schools with unusually small or large advantaged-disadvantaged performance

differences, and also to identify the school districts with such schools.
Let p1; and p,; be the success rates and nq; and ny; be the numbers of students in the groups of SEA and SED students,

respectively, in the ith school,i = 1, ..., N.Similar to Cai and Sun (2009) and Efron (2008), a z-value for school i is computed
according to
P1i—D2i— T
Zi

V(= pi)/mi + pa(1 — pa)/nai
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(c) Comparison of average power for different procedures.

Fig. 2. Simulation results for our data-driven (—s— ), the SC (—+—), and the adaptive BH ( —¢— ) procedures with parameters estimated by EM
algorithm and our oracle procedure (—o— ) with L = 1 under the BSG model.

where t is the overall difference, median (pq;)-median (p,;), which is 18.4% in this AYP study. There are 4118 (= N)
elementary schools and 701 qualified school districts (defined as having at least 20 students in each category and |z| < 10
for each school). We consider these school districts as the groups in our application.

We apply the data-driven versions of the TLTA, the SC and the adaptive BH methods, assuming that fo(x) = ¢ (x) and f; (x)
is a mixture of two normal distributions each with variance 1. Using the Estimation Algorithm in Section 3, the estimated
proportion of group significance 777 is seen to be about 0.53, the estimated proportion of within-group significance 751 is
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(c) Comparison of average power for different procedures.

Fig. 3. Simulation results for our data-driven (—s— ), the SC (—+—), and the adaptive BH (—¢— ) procedures with parameters estimated by EM
algorithm and our oracle procedure (—o— ) with L = 2 under the BSG model.

about 0.59, and the estimated f; isz(x\) ~ 0.21N(2.64, 1) +0.79N(—1.88, 1). We chose two different values, 0.05 and 0.10,
forn = a.

The numbers of discoveries made by the three methods are shown in Table 2. As seen from this table, the TLTA can identify
more unusual schools having extremely small or large academic performance difference between SEA and SED students than
the other methods. Our discoveries of schools within each district seem statistically more informative than those made by
the other methods that, unlike ours, do not attempt to control within-group false discoveries, and so could potentially be of
value to district level education policy makers.
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Table 2

Number of discoveries made by the three procedures.
Procedures School discoveries Group decisions School district discoveries
o = 0.05and n = 0.05
TLTA 736 Yes 224
SC 471 No
Adaptive BH 410 No
a=0.1andn =0.1
TLTA 1085 Yes 284
SC 668 No
Adaptive BH 629 No

6. Concluding remarks

When testing grouped hypotheses, how overall false discoveries across all hypotheses are intertwined with false
discoveries of hypotheses within each group seem fundamental to deeper understanding towards effectively capturing the
underlying group structure. This is an important issue that has not been answered in the literature, as far as we know. This
article presents a theoretical framework built on this fundamental understanding from a Bayesian viewpoint, and develops
a new approach to multiple testing of grouped hypotheses that allows one to maintain some specific control over within-
group false discoveries while controlling the overall false discoveries across all hypotheses. This new approach is a two-fold
loop algorithm integrating within and between group discoveries.

Having a separate control over within-group false discoveries, we argue, is often an effective way of capturing the un-
derlying group structure when testing grouped hypotheses, particularly when there are high positive dependencies within
groups. Moreover, this is often desired in some applications, such as in analyzing the AYP data in Section 4 where discov-
ering schools within a school district controlling a district specific false discovery rate seems practically more useful than
discovering these schools through a global discovery process controlling a global false discovery rate. It allows making sta-
tistically more reliable district level decisions for policy makers. Of course, the choice of the level n at which within-group
false discoveries is to be controlled is subjective and can be made judiciously based on one’s prior knowledge in terms of
how stringent that control should be.

There is lot more that can be done following our current research; for instance, (i) extending the TLTA to other types of
within-group dependency, such as hidden Markov (Newton et al., 2004) or time series dependency (Tang and Zhang, 2007),
(ii) investigating its optimality, and (iii) developing its frequentist analog providing a multiple-group and improved version
of the single-group (Benjamini and Hochberg, 1995) method.

An R-package, called “GroupTest”, which is developed to carry out the numerical calculations associated with the TLTA
in this paper is made available at http://astro.temple.edu/~zhaozhg/software.html. All simulations involving EM algorithm
were run through the high performance computing cluster at Temple University supported by NSF instrumentation grant
CNS-09-58854.
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Appendix
A.1. Proofs of (3.2) and (3.3)

Letfgk‘g (x) = (1= 0yg)fo(x) +9k|gf1(x),§ = (O1ig, - - - » Omg1g), and £2 = {0, 1}™\ (0, ..., 0).Then, Eq. (3.2) follows from
that fact that

fdr;, = f(xg10g = 0,60, = DP(6j; = 0[6; = 1)
e f(xgl6s = 1) ’
where
f(x1055 = 0,0, = 1)P(Gj3 = 0[6; = 1)

1 0 mg 1-6 9’<\g
= W Z l_[{f(-)k‘g(xgk)} l—[ {(1 — T11) T Ty }

k=1 k=1

0j)g=0.0g€02
(1 — mo1)fo(xg) e e 1=y, K|
= —1 — (1 . )mg Z 1_[ {fgk|g(ng)} 1_[ {(1 — 7'[2“) klgn'Zl]g}
A7 g =0.0ge Lk=1k#i k=1,kj


http://astro.temple.edu/%7Ezhaozhg/software.html

12 Y. Liu et al. / Journal of Statistical Planning and Inference 179 (2016) 1-14

(1 —mfolxg) | 1= T
= ———5 | ] —(1- = T {
1-0- o)™ |:I<:1,k¢jf(xgk) ( 772\1) 1<=1,k¢jf0(xg’):|

fa;' . Mg — mg
T {1 - 11 fdrgk} [1560

K=1,kj Pl
1 ~ ~ .
= T =gy VA T gf (xg0), a1)
and
! ) ) 1-6 Ok|g
f(xg0; = 1) = m Z 1—[ {fgk‘g(ng)} 1_[ {(] — 721) k\gnzn }
I fges2 Lk=1 k=1
1 g mg
= W _Z |:1—[ {f@,qg (ng)} 1_[ {(] — 7'[2“)1 9’<\gn klg}:|
e Lk=1 k=1

mg

1
T 1 (1—my)" |:l_[f(xgk) — (1 —mp)™ l_[fo(xgk):|

1 : mg
1= (1 —my)™ [1 - gfdrgk} gﬂxgk)

1 ~
= Ty ] [ 1, (A2)
Eq. (3.3) follows from the fact that
_ 1_7Tl)f(xg|9g—0)
fdrg =
(1 = 1)f (|65 = 0) + m1f (X6 = 1)

f ()0 = 0) = ]"[fo<xgk> f e o L Hf(xg,a
and f (x40, = 1) equals what is given in (A.2).

A.2. Detailed derivation of estimation algorithm for 8

For better presentation of the results, let us define 7] = 7y, 70 = 1 — 7y, 7121“ = 1y and nzon = 1 — my;. Consider
(x, 0) as the complete data. Then the complete log-likelihood function can be written as:

1
Ix,0) =) > 1(6; = k)(log 7} + logf (xgl0 = k)

g k=0
Mg
= Z {Keg =0) |:logn? + ZIng(ngWg = 0)i| + 1 = 1) [log 7, + log f (%, |0 = 1)]}
=1
1 L
- ZZ (0 = k) log 7} + ZZZ [0y = 1,055 = 1, mjjg = 1) log(ma101)
g k=0 g =1 =1

+1(6; = 1,053 =0) 108(”20“)]

Mg mg
+ Z [neg =0) Z log fo(xg) + 16 = 1) Zz(eﬂg =0) lngo(Xg;)]

+ Zz(eg =1) ZZz(eﬂg =1, mj, = ) logfi(xgl6je = 1),

j=1 I=1

where mjj; = I implies that x;, is generated from N(u,, o).
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The expected value of the complete-data log-likelihood I(x, #) with respect to the unknown 8; and 8;¢, given the observed
data x and the current value 8’ of the parameter, is:

Q(B. B) =E[ix,0)|x, ']

1 m
=Y logm{P(6; = kix. ) + ) ]
g g

1
> logmf, PO = 1,65 = kix, B)
j=1 k=0

L
> logaP (¥ = 1,6 = 1,my, = lIx. B))

j=1 I=1
Mg
+ ) logfolxg)fdr, (B) + Zzlogfo(xg,)(l — fdrg(B))
g j=1 g j=1
Mg

L
D logfilxg)P (O = 1,615 = 1, myg =[x, B).

Note that

io ()

P(Gg:1,0]-|g:1,mj‘g:llx,ﬂ/):P(ngl,eﬂg:1|x,,3) L U ( )
Z gl Xgj— ]
where
P(6; = 1,6 = 1|x, ") = (1 — fdr;,(8"))(1 — fdrg(B").

We want to maximize the Q function, which can be realized by maximizing each of these parts to get the estimates of
(71, 7211, ¢) and (i, 012), since these parts are not related. To maximize the first part with the restriction that 71? + 71]] =1,
using the Lagrange multipliers, we can find the maximizers for 7111 as

>_fdrg(B)
=1

Similarly, we can find the maximizer for m; and ¢; as

(1 fdry (B)(1 — firy, (8)

new s =

Tyn =

Y 3°(1 - fdr (B)
g j=1

mg
ZZP(Qj\g =1,6, = 1, myg = l|x, ﬂ/)
g

j=1
CIHEW —

(1 — fdry(B))(1 — fdry, ()
g

j=1

For the last part of Q function, we know that fo(x) ~ N(0, 1) and fj(x) ~ N(u,, 0,2) with probability ¢;. Therefore, for
each I, we need to find the MLEs for x; and o2 by maximizing the following log-likelihood function:

mg L
DX logfixg)P(Oy = 1,6 = 1, mjg = l|x, B)

g j=1 I=1

L

Mg
1 1
=222 [—2 logoy’ — — (= m)z} PO = 1,0 = 1, my, = Ix, B).
20

g j=1 I=1
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Taking derivatives with respect to u; and 012 and equating them to zero, we can get:

mg
22 XgP(Oy = 1,6 = 1, my; = lx, B')
new g j=1

Mmoo = mg

Y2 Pl =165 =1, my; = l|x, B)
g j=1

Mg
Z Xg(xg] - Ml)zp(eg = ]7 9}|g = 15 m]lg = l|x7 ﬂ/)
g J=

2new __
O'l = g
22 PO =10 = 1,my, = l|x, B)
g j=1
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