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1. Introduction

Simultaneous testing of multiple hypotheses is an integral part of analyzing high-dimensional data from modern
scientific investigations like those in genomics, brain imaging, astronomy, and many others, making multiple testing an
area of current importance and intense statistical research. A variety of multiple testing methods have been put forward
in the literature from both frequentist and Bayesian perspectives. However, the theories behind the development of these
methods are mostly driven by the overreaching goal of controlling an overall measure of type I errors or false discoveries,
with other fundamentally important statistical issues often being ignored. For instance, in many of the aforementioned
experiments there is a cost associated with the error of making a false discovery or missing a true discovery, and this cost
increases with increasing severity of that error. This is an important issue not often taken into account when developing
multiple testing procedures.

A Bayesian decision theoretic approach can yield a powerful multiple testing method not only incorporating costs of false
and missed discoveries but also simultaneously addressing dependency, optimality, and multiplicity [ 12,13]. This motivates
us to take a similar approach, but in a more general framework that conforms more to the present problem, that is, to address
the aforementioned issue related to severity of errors. Before explaining this generalization, let us first briefly outline the
approach takenin [12,13].
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Given a set of observations X = (X1, ...,Xpn) ~ f(x,0), where @ = (04, ...,6,) € {0, 1}, consider the problem of

deciding between H; : 6; = Oand H; : 6; = 1simultaneously fori = 1, ..., m, assuming thatX; | 6; e (1—-6)fo(x) +6:f1(x:),
for some given densities fy and f;, and 8; ~ Bernoulli(1 — mg). Sun and Cai [12,13] started with the following uniformly
weighted 0-1 loss function:

1 m
L(3(X), 0) = - Z {A(1 = 6)8:(X) + 6;(1 — 5i(X))} (1.1)
i=1

for a decision rule §(X) = (§;(X), ..., én(X)) € {0, 1}™, where A is the relative cost of making a false discovery (type I
error) to that of missing a true discovery (type Il error) and assumed to be constant over all the hypotheses. They considered
the Bayes rule associated with this loss function and showed that it is also optimal from a multiple testing point of view.
Specifically, given any « € (0, 1), there exists a A = A(«) for which it controls the marginal false discovery rate,

E [% 5X)(1 — 9i):|

i=1
m

E [Z 8f(X)]
i=1

at o, and minimizes the marginal false non-discovery rate,

E [i{l - &-(xn@}

i=1

mFDR =

’

mFNR =

E [Z {1- Si(X)}]
i=1
among all decision rules defined in terms of statistics satisfying a monotone likelihood ratio condition (MLR) and controlling
the mFDR at «. They expressed this optimal procedure in an alternative form using hypothesis specific test statistics defined
in terms of the local FDR measure (Lfdr, Efron [5]), and called it the oracle procedure. They provided numerical evidence
showing that their oracle procedure can outperform its competitors, such as those in [1,7].

Clearly, the loss function used in the above formulation is somewhat simplistic. It gives equal importance to all type I
errors as well as to all type I errors. While it might be reasonable to treat the type I errors equally in terms of severity and
attach a fixed cost to all of them, it is often unrealistic to do so for type II errors. For instance, in a microarray experiment,
there might be a fixed cost of doing a targeted experiment to verify that each gene is active and the loss due to making
a false discovery might be that cost (which is being wasted in case the gene is found to be inactive). However, it would
be unrealistic to assume that the loss in identifying a truly active gene as inactive does not depend on how strong is the
expected signal that has been missed. In fact, it might reasonably be proportional to the difference [3,14,11] or even to the
squared difference between the expected values of the missed and no signals.

In other words, the above formulation needs to be generalized conforming it more to the reality in modern high-
dimensional multiple testing. With that in mind, we consider testing H; : i; = itjp against its one or two-sided alternative,

for some specified values g, simultaneously fori = 1, ..., m, under the following model:
Xlp,0~fxlp), withp=(u,....,mmn), 0= (1,...,0n)
wi | 6~ (1 =) (i = pio) + Oih(pi — Lio) (1.2)

6; ~ Bernoulli(1 — mg),

given a density h, and under the following more general loss function:

m
Ls(8(X), p, 0) = % D (1 = 0)8iX) + s(ui — pio)6i(1 — 8i(X))}. (1.3)

i=1
We do not impose any dependence restriction on X, g or 6. It is assumed that there is only a baseline cost A for each type
I error (which, as argued above, is reasonable for a point null hypothesis). For each type II error, however, we assume that
the cost is A, the baseline cost, times s(i; — iLjp), a function s of u; — wjo such that s(0) = 0 and is non-decreasing as j;
moves away from . We call s(-) the severity function for type II errors. Through this function, a penalty is being imposed
on making a type Il error for each Hj; the larger the value of |u; — io| is, the more severe this penalty is. The A equals A1/X,,
the relative baseline cost of a type I error to a type Il error. In other words, A/s(u; — io) is the relative cost of a type I error
to a type Il error. The specific choice of s(-) will depend on how fast we want the cost of the type II error to increase as u;

moves away from pjg.

Our proposed loss function (1.3) is a non-uniformly weighted 0-1 loss function giving less and less weight to the type
[ error relative to the type Il error as the type Il error gets more and more severe as measured by the severity function. In
this paper, we focus on deriving the theoretical form of an optimal multiple testing procedure from the Bayes rule under
this general loss function. Given a severity function s, this Bayes rule provides an optimal multiple testing procedure in the
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sense of minimizing a measure of non-discoveries subject to controlling a measure of false discoveries at a specified level
for a suitably chosen A. These measures of false discoveries and false non-discoveries are of course different from the mFDR
and mFNR, respectively, since we now need to account for the weights or penalties attached to the type Il errors through the
severity function that is not necessarily equal to one. We define these newer error rates as weighted mFDR and weighted
mFNR and establish the aforementioned optimality result through these rates. We study the performance of this oracle
optimal procedure with its relevant competitors through three numerical studies.

The remainder of the paper is organized as follows. The development of the Bayes rule under the loss function (1.3),
its characterization as an optimal multiple testing procedure in the framework of weighted false discovery and false non-
discovery rates, and our oracle multiple testing procedure are given in the next section. In Section 3, we present the results
of three numerical studies providing evidence of this oracle procedure’s superior performance over its relevant competitors.
We end the paper with some concluding remarks in Section 4.

2. Optimal rules

Assuming that our problem is that of testing H; : u; = 0 simultaneously fori = 1, ..., m under the model (1.2) and the
loss function L, s in (1.3), we do the following in this section: (i) determine the Bayes rule; (ii) show that the Bayes rule with
an appropriately chosen A provides an optimal multiple testing procedure in the sense of minimizing a measure of false
non-discoveries among all rules that control a measure of false discoveries at a specified level; and (iii) express this optimal
multiple testing procedure in terms of some test statistics to define the oracle procedure in this paper.

2.1. The Bayes rule

Let us first define
wi(X) = E[s(ui) | 6 = 1, X], (2.1)

the average severity of type I errors conditional on the data X and 6; = 1. Then, we have the following:

Theorem 2.1. Consider testing H; : u; = 0 simultaneously for i = 1, ..., m under the model (1.2) and the loss function (1.3).
Then, the decision rule §*(X) = (87(X), ..., 8% (X)), where

w;(X)

1 ifP@G;=0|X) < PO =1[X)

8 (X) = wi(X) (2.2)

0 ifP(G;=0]|X) > P =1|X),

is the Bayes rule.

Proof. For any rule §(X) = (§:(X), ..., §n (X)), we have

1 m
E[Lis(0, 1, 8(X) | X] - Z {AiX)P(0; = 0 | X) + [1 = §X)IE [s(upI(6; = 1) | X]}
i=1

%Z{lﬁf(x)l’(@ =0[X)+[1—8&XIE [s(ui) | 6; = 1, X]P(6; = 1] X)}
i=1

%Z {wiX)P(O; = 1] X) +8(X) [AP(O; = 0 [ X) — wi(X)P(6; = 1| X)]} .
i=1

Since the first term is constant with respect to §, given X, it is clear that 6" (X) in (2.2) is the rule for which this conditional
expectation is the minimum among all §, and hence is Bayes. O

2.2. Optimal multiple testing procedure

Here we show that the aforementioned Bayes rule with an appropriately chosen XA provides an optimal multiple testing
procedure in the sense of minimizing a measure of false non-discoveries among all rules that control a measure of false
discoveries at a specified level. These measures of false discoveries and false non-discoveries are defined for any multiple
testing rule & as

E [Z 8i(X) (1 — GHw*(6;, lti):|

i=1

mFDR*(8) = (2.3)

E [Z i X)w* (6}, Mi)]

i=1
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and

E [%{1 — 8i(X)}0,w*(6;, Mi)]

i=1

mFNR*(8) = (2.4)

E [i (1 - 8X)) w (@, m)]
i=1

respectively, where

. 1 ife=0
w(e’“)—{s(m if6 = 1.

With w*(6;, u;) representing a weight associated with the ith hypothesis, these measures of false discoveries and false
non-discoveries can be referred to as weighted mFDR and weighted mFNR, respectively. The severity function s(-) has an
effect on these weighted measures through the weight function w*. Suppose there are two severity functions s; and s,
satisfying s () > s(u), Viu # 0. Then for any decision rule §, the mFDR* based on s; is smaller than that based on s,, and
the mFNR* based on s; is greater than that based on s,. Particularly, if s(u) > 1,V # 0, the corresponding mFDR* is a less
conservative error rate than the mFDR; and if s(u) = 1, Vu # 0, the corresponding mFDR* and mFNR* reduce to the mFDR
and mFNR respectively.

Theorem 2.2. Consider the model in (1.2). Suppose there exists a testing procedure 8o(X) = (810(X), ..., dmo(X)) such that
8i0(X) is defined as in (2.2) and mFDR*(8¢) = «. Let §(X) be any other rule such that mFDR*(§) < «. Then mFNR*(§y) <
mENR* (8).

Proof. First note that

E[{8i0X) = 8i(X)} {P(O; = 0] X) — wi(x)P(Qi =1 X)” <0, (2.5)
i=1 L
according to (2.2), and
ZE {8i0(X) — 8;(X)} {P(6; =0 | X) — %wi(X)P(Qi =1| X)” >0, (2.6)
i—1 L -

from the assumption, mFDR*(§) < a« = mFDR*(8g). From (2.5) and (2.6), we get

E[{aiom—&-(xnwi(xw(e,-:1|X> (%— o )}20,
=1

11—«

L

which implies that

i E18000wi(X)P@ = 1| X)] > il E800wi(0P@ =11 X)], 2.7)
since . )
éb‘ BeOP@=01X]
T-a ™ is[amxm(xw(@i IR
Thus, we have from 2.7)
n 1—6p(X) 1—8(X)

E Z m T m
=LY EHT = 80X} wiOP@ = 11X)] Y E[{1—&X)}wiX)PO: =1 X)]
i=1 i=1

w;(X)

x {P(O,-=O|X)— PG =1%} |>o0.
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This implies that
1— mENR*(d9) _ 1 — mFNR*(3)
mFNR*(8o) —  mFNR*(§)
that is, mFNR*(8g) < mFNR*(8), as desired. O

5

Remark 2.1. Theorem 2.2 improves the work of Sun and Cai [12] in the following senses: (1) it accommodates situations
where penalties or weights associated with type Il errors can be assessed through a severity function and incorporated into
the development of a multiple testing procedure; and (2) it provides a rule that is optimal among all procedures controlling
the mFDR* at level o without any distributional restriction on the corresponding test statistics. Next, we will prove the
existence of such a procedure 8o (X).

We can express the optimal procedure §y(X) in Theorem 2.2 in terms of the following test statistics:
P6; =0]X)
Pl:=0[X) +wX)Pl=1[X’

The statistic T; will be referred to as generalized local fdr (Glfdr). When s(u) = 1, it reduces to the usual definition of the
local fdr (Lfdr) of Efron [4] under independence and to the test statistic defined in [13] under arbitrary dependence. We

Ti(X) =

=1,...,m. (2.8)

consider decision rules of the form §(T, ¢) = (6(Ty, ¢), ..., 8(Tpm, €)), where
1 ifTi<c
8(Ti, ) = {0 ifT, > c, (29)

with ¢ being such that mFDR*(8(T, ¢)) < «. In this paper we assume that X is continuous and hence mFDR*(§(T, c))
is continuous in c. Before we state our oracle procedure more explicitly in terms of the distributions of T;’s, we give the
following proposition asserting the existence of such a c.

Proposition 2.1. For the decision rule in (2.9) with T; defined in (2.8), mFDR*(8(T, c)) is non-decreasing in c.

We will prove this proposition by making use of the following two lemmas.

Lemma 2.1. Consider the ratio of expectations Ey, [8(T, c)] /En, [8(T, ¢)], for any random variable T having distribution H,
in the numerator and distribution Hy in the denominator. It is non-decreasing (non-increasing) in ¢ > 0, if dH,(t)/dHy(t) is
non-decreasing (non-increasing) in t.

Proof. The ratio can be expressed as the expectation, Eyx¢(T), of the non-decreasing function ¢(T) = dH(T)/dHo(T),
where H} is such that

dH; (t) = 8(t, c)dHo(t)/En, [8(T, ©)].
Since 4(t, c) is totally positive of order two (TP;) in (t, ¢), that is, it satisfies the inequality
8(t,c) 8(t',c) = 68(t,c)s(t',c), Vt<t, c<c,

the lemma follows from the following result [8]: The expectation of a non-decreasing (non-increasing) function of a random
variable Y ~ g(y, ), with g(y, ) being TP, in (y, 6), is non-decreasing (non-increasing)in 6. 0O

Remark 2.2. Sun and Cai [12] derived the above result for the collection of decisions based on the test statistics satisfying
the MLR condition. Note that our proof, which is different, does not rely on any such condition.

Lemma 2.2. Given two distributions fo(x) and f;(X) of a random vector X, define T(X) = afy(X)/{afo(X) + bfi(X)}, for any
constants a, b > 0. Let H;(t) = P;(T(X) <t), 0 <t < 1,fori =0, 1. Then, dH,(t)/dHo(t) = a(1 — t)/bt.

Proof. Since
[TX) —t][I(TX) <t) —I(TX) <t+e)] <0, YVO<t<1,e>0,

by taking expectations of both sides in this inequality with respect to

X~ o0 + aibfl(x),
we have

a(1 —t)[Ho(t) — Ho(t = €)] < bt [H{(t) —H{(t £€)], VO<t<1, e>0.
The desired result then follows by lettinge — 0. O
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Proof of Proposition 2.1. Let G,(’L denote the conditional distribution of T;(X) given 6; = j and u, for j = 0, 1. Then, from
(2.3), we note that

m
o Y, Gio(c)
=1

mFDR*(8(T, ¢)) =

m

7o Y Gio(c) + (1 — 1) Y~ Gi1(c)
i=1 i=1
where
Gio(c) = / G (©)h(plt; = O)dp

and Gyy(c) = / S GO h(lts = dp,

with h(u|6; = 0) and h(u|6; = 1) representing the joint distribution of u conditionally given 8; = 0 and 6; = 1, respectively.

E [i 8(T;, ©)0;w* (6}, Mi)]

1 — mFDR*(§(T,¢)) =

mFDR*(8(T, c))

m

Ms

3(Ti, o)(1 = B)w*(6;, Ml)]

t
M=

C_— 1 C_ 1
I

8(Ti, ©)s(u)l (6; = 1)]

Il
-

E ﬁs(r,,c)z(e _0)]

i=1
0o (1 Ec, [8(T, 0)]
(m ;ﬂi> Eg, [8(T. ©)]’ (2.10)

where Gi(t) = Y, wiGii(D), Go(t) = 30 Gio(t), Gia(t) = Gia(t)/Bi and w; = Bi/ YL, B, with g =
f s(ui)h(p|6; = 1)dp. The proposition will be proved from Lemma 2.1 if we can show that dG; (t) /dGy(t) is a non-increasing
function of t, since the left hand side of proposition (2.10) is a decreasing function of mFDR*(&(T, c)).

Since T;(X) = mofi,0(X)/{mafioX) + (1 — 7o) Bif (X)}, and G; o and 6,-,1 are the cdf’s of T;(X) under the distributions
fioX) =f(x|6; =0)and

i) = /S(M,)f(x | 6 =1, wh(p|6; = Ddp,

Bi
respectively, we see from Lemma 2.2 that d(j?m(t) a Z”O)ﬂ ( ) dG;o(t), forany 0 < t < 1. Thus,
m m ~
(Z ﬂ,) dGy(t) = ) BidGia(t)

= i=1

T Bimo(1 — m 1
=3 B0 46 00 = 27 (1 - 1) deoe),

— Bi(1 —mo)t — 7o \ ¢

implying that dG;(t)/dGy(t) is non-increasing in t € (0, 1), as desired. Thus, the proposition is proved. O

Given Proposition 2.1, we are now ready to define our oracle procedure in the following:

Definition 2.1 (The Oracle Procedure). Consider the multiple testing procedure (T, c*), where

¢* = sup {t : mFDR*(§(T, t)) < a}. (2.11)

This is a generalized version of the oracle procedure of Sun and Cai [12]. It is developed not only under any dependence
structure among (X, p) but also it allows the alternatives to vary across tests and each type II error to be weighted by a
measure of severity. Moreover, for its optimality, any specific property, like the monotone likelihood ratio property that Sun
and Cai [12] assumed for the underlying test statistics, is not required.
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Remark 2.3. Let fdr;(X) = P(6; = 0|X) and d;(X) = fdr;(X)/T;(X). Then, it is to be noted that the mFDR*(§(T, t)) can be
expressed as follows:

> ET(X) < 0)fdri(X)]
i=1

mFDR*(8(T, t))

iE I(Ti(X) < Ofdri(X) + I(Ti(X) < £)(1 — fdri(X)) wi(X)]

i=1
if [(Ti(X) < HTi(X)di(X)]
i=1

= B ) (2.12)
Y EU(T(X) < Hdi(X)]

i=1

3. Numerical studies related to the oracle procedure

We carried out three numerical studies to see how our procedure in its oracle form compares with its relevant
competitors for the problem of testing 1; = 0 against u; # 0,i = 1, ..., m, with s(.t) = p2, under the following model:

X|pm,0~Np(p, %), with¥ =(1-p)l,+ plml;n

ind
i | 6~ (1 =61 = 0) + 6ih(ws) (3.1)
6, "X Bernoulli(1 — 7).

In the first two numerical studies, we assume p = 0 so that (X;, i, 6;), i = 1, ..., m are independently distributed, while
in the third numerical study, we assume the dependence case with p > 0.

Often a multiple testing procedure can be seen as first ranking the hypotheses according to a measure of significance,
based on some test statistic, p-value, or local fdr, before choosing a cut-off point for the significance measure to determine
which hypotheses are to be declared significant subject to control over a certain error rate, such as FDR or mFDR, at a specified
level. Such ranking plays an important role in a procedure’s performance, and can itself be used as a basis to compare with
another procedure controlling a different error rate. More specifically, between two procedures providing the same number
of discoveries, the one with better ranking should provide more true discoveries. The first numerical study was designed to
make such ranking comparison between the Sun and Cai [12] and our oracle procedures that control two different measures
of false discoveries, even though one is a generalized version of the other.

The second numerical study was conducted in light of Theorem 2.2, that is, to investigate if the mFNR* is indeed the
smallest for our procedure in comparison with others that control the mFDR*, the procedure based on Lfdr scores [12] and
the p-value based procedure.

In the third simulation study, we provide some insight into the performance of our oracle procedure under dependence.
Although we have theoretically proved the existence and the optimality property of our proposed procedure under arbitrary
dependence, the calculations of w;(X)’s and the test statistics T;(X)'s require the knowledge of the dependence structure.
The construction of data-driven version of our procedure, particular under dependence, presents additional complexities
and newer theoretical challenges that require a careful and special attention in a separate communication. In this numerical
study, we investigate how well our oracle procedure derived without accounting for dependence information performs
when dependence does indeed exist.

Towards understanding what significance measure is being used to rank the hypotheses in our procedure, we note that
under the independence case of model (3.1) (o = 0), the mFDR*(§(T, t)) given in Remark 2.3 reduces to the following:

EI(TX) < )T(X)d(X))
EI(TX) = 1)d(X))
with T(X) = T;(X) and d(X) = d;(X). The numerator and denominator expectations in the above ratio can be approximated

(for large m) by % Z,’":] (I(T;(X) < O)T;(X)d;(X)) and % Z:":] (I(T;(X) < t)d;(X)), respectively, resulting in an estimate of
mFDR*(8(T, t)) at t as follows:

mFDR*(8(T, t)) =

3

T ITX) < OTX)AX)
mFDR*(8(T, 1)) = =
S ITX) < Odi(X)
i=1

Let T(y), ..., T(m) be the ordered versions of T;(X), ..., Tn(X), and H(;, and d; (X) be respectively the null hypothesis and
the d-value corresponding to T; (X). Then, our oracle procedure can be described approximately as follows:
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Find
J
> Toy X)d iy (X)
k = max j:'zljifa , (3.2)
> dyp(X)
i=1
and reject H; foralli=1, ..., k.
In other words, our procedure can be seen as ranking the hypotheses according to the increasing values of T;(X), the
Glfdr scores corresponding to the H;'s, before determining the cut-off point t € {T(1y(X), ..., T¢m (X)} to control the mFDR*;

whereas, the Sun-Cai oracle procedure does the same in terms of the Lfdr scores to control the mFDR.

3.1. Numerical study 1

We considered using a measure of non-discoveries to compare the rankings provided by the Sun-Cai and our oracle
procedures. More specifically, we wanted to see how these procedures compare in terms of not discovering the most
important signals (i.e., the signals that are truly and highly significant), given the same number of discoveries made by
each of them. The measure of non-discoveries is defined with weights assigned to the signals according to their magnitudes
using our chosen severity function s(t) = p? to capture these most important signals with greater certainty.

With that in mind, we generated m = 1000 observations according to the model (3.1). Here we chose p = 0, 7y = 0.95
and

h(ui) = rN(u—, ) + 7N (g, ),

with ry; = 0.2, u— = —1.5, u4 = 1,and r = 0.5. We then calculated the values of Glfdr given in (2.8), which can be

written for this model as Glfdr; = W%% with
1 1

B 1 Xi—p—\ T’ (T2 + p1-)?
H(Xi)—ﬂll[J]+f2¢(J]+T2>1+T2+ 01 :|

1 <Xf—ﬂ+> 2 (T2X,'+M)2:|
S+2 \V1+72) 14712 1+72) |

We ordered these values of Glfdr increasingly as Glfdr;, < --- < GIfdr . Let H; be the null hypothesis corresponding
to Glfdr(i), fori = 1,..., m. Foreach givenR = 1, 2, ..., m, we marked the first R null hypothesis to be rejected and the
rest to be accepted. With 64 = 0 or 1 indicating whether the null hypothesis H; is true or false (with 1 being the true
signal), respectively, we then calculated the weighted type II errors ZJZR +196) ,ué.). We replicated these steps 2000 times
and averaged the 2000 values of the weighted type II errors before obtaining the simulated value of 8*(R), the expected
weighted type Il errors (or non-discoveries) given R rejections (or discoveries). The red curve in Fig. 1 shows the plot of
B*(R) against R. The similar plot was obtained for the Lfdr score and is shown using the green curve in this figure. As seen
from this figure, between the Sun-Cai and our oracle procedures, ours can potentially be more powerful in the sense of
producing a smaller amount of weighted type Il errors associated with missing the most important signals.

(3.3)

+7T12|:

3.2. Numerical study 2

In this numerical study, we again consider model (3.1) with p = 0and h(u;) = 711N (i, T2) + 112N (u_72) but now we
chose uy =4, u_ = —1,t = 0.5 and g = 0.95. The rejection region for our oracle procedure is {X; : X; < ¢; or X; > ¢,}
for each H;, with the cut-offs ¢; and ¢, being determined as in the following steps:

(i) Foragiven 0 < t < 1, solve the following equation for z to obtain ¢” and c{":
tmH(z) — mo(1 - t)¢(z) =0

where H(-) is defined in (3.3).
(i) Calculate

t t
¥ (), i)

mFDR* = s
ﬂo‘I’(C[(t), o) + m {”llEm [M%‘I’(C;r) — g, 0 — Ml)] + m2E,, [M%‘I’(C[(t) — g, e — Hz)]]

where 111 ~ N(uu_, 72), sty ~ N(uy, 72, and ¥ (¢, c) = 1 — & (c”) + ("), with @ being the cdf of N(0, 1).
(iii) Repeat the above two steps until we find t* such that the mFDR* is «.

* *
(iv) ¢ and ¢, are then determined as ¢’ and ¢
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Fig. 1. Simulated average weighted type Il errors.

Once ¢; and ¢, are determined, the mFNR* of the oracle procedure is calculated as follows:

w1 {rnEp, {1301 — W (@ — w1, o — w1} 4 2B, {H3[1 — (0 — pa, cu — n2)1}}

mFNR* = 3 3 .
mol1 — ¥ (a, c)l + w1 {miEy, {0301 — ¥ — w1, & — )1} + 2By, {1301 — ¥ (a — pa, o — p2)1}}

For the p-value based procedure, sz and c,ﬁt) in the step (i) are respectively the t /2th and (1 —t/2)th quantiles of N(0, 1)

distribution. For the Lfdr based procedure, cf” and cf,” are obtained as in our proposed procedure with s(-) = 1. Then for

both procedures, we follow the same steps (ii)-(iv) as above to determine the corresponding ¢; and c,, and mFNR*,
Fig. 2 compares the mFNR* values of these three procedures across different values of r1; and for some values of . Our
proposed procedure does indeed have the smallest mFNR* among these three procedures.

3.3. Numerical study 3

Here, we generated an observation X = (Xi,...,Xn) according to Model (3.1) with h(x;) = 0.2N(u, ) +
0.8N(u_, t2), wherem = 1000, u. = 4, u_ = —1,7 = 0.5, 1y = 0.95, and p is chosen from {0.1,0.2, ..., 0.9}, and
then applied the above three oracle procedures. We replicated the above step 1000 times to obtain the simulated mFDR*
and mFNR* of the three procedures. From Fig. 3, we see that, for all p values, the mFDR* is still controlled by all three
procedures and our proposed procedure still has the lowest mFNR*. These results suggest that even when we do not make
use of the dependence information in deriving our oracle procedure, it can still be valid under positive dependence and be
more powerful than its relevant competitors.

4. Concluding remarks

The decision theoretic approach to a multiple testing problem is not new. Other relevant work includes Sarkar et al. [ 10]
and Pefia et al. [9]. Nevertheless, the idea of incorporating the severity of type II errors has not been fully explored
previously in the literature. We have developed the theory behind our idea from a compound decision theoretic point
of view considering a loss function that incorporates the type Il error severity. The consideration of type II error severity
into the loss function allows us to re-formulate the work of Sun and Cai [ 12] in a more general framework involving newer,
generalized forms of marginal false discovery and marginal false non-discovery rates. Newer theoretical results generalizing
and often improving the existing ones are given in this process. We now have the theory for developing a much wider class
of multiple testing procedures constructed from a decision theoretic point of view. Some of the newer methods in this class,
those corresponding to non-constant type II error severity, are seen to have better performance in their oracle forms, as
shown in our numerical studies, than those with constant type Il error severity (i.e., those in [ 12] and some standard p-value
based procedures).

The idea of weighting hypotheses or p-values while developing multiple testing methods in an FDR but non-decision
theoretic framework has been proposed before. Benjamini and Hochberg [2] considered weighting the hypotheses in the
original definition of the FDR to define the weighted FDR and proposed a weighted version of their 1995 FDR controlling
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Fig.3. Comparison of the three procedures with exact mFDR* control under independence for equi-correlated dependence structure: the oracle procedure
based on the Glfdr (Blue), the oracle procedure based on the Lfdr statistic (red), and the p-value based procedure (Green) based on the model given in (3.1)
with g = 0.95, h(u;) = 0.2N(4, 0.25) 4+ 0.8N(—1, 0.25) and p € {0.1, 0.2, ..., 0.9}. The significance level « is chosen to be 0.05.

method, the so-called BH method, that controls this weighted FDR. Genovese et al. [6], on the other hand, weighted each
p-value and developed a BH type method controlling the usual FDR based on these weighted p-values. Our concern in this
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paper has been to define weighted versions of not only the marginal FDR but also the marginal FNR from their original
definitions before providing a theoretical framework for the development of our procedure. Our approach to defining
weighted mFDR and weighted mFNR is similar to Benjamini and Hochberg [2]. We attach weights to the hypotheses,
although they are chosen to effectively act only on the false nulls. More specifically, we have

E [ﬁl(n <c b= 0)]

i=1

mFDR*(§(T, ¢)) = - - ,
E |:ZI(T1 <c,6;,=0)+ ZI(T, <c, b= 1)5(,11,,’):|

i=1 i=1

and

E [iz(n > ¢, = 1)S(m)]

i=1

mFNR*(8(T, ¢)) = — — .
E [ZI(T,- >c, 60 =1Ds(ui) + D I(Ti > ¢, 6= 0)]

i=1 i=1
The weight is assigned to a false null hypothesis according to its signal strength. It does not depend on whether acceptance
or rejection of the false null contributes to a measure of false non-discoveries or false discoveries in the form of a penalty
or boon. It is important to point out that our weights for all the hypotheses do not add up to m, contrary to what one might
conclude from Benjamini and Hochberg [2]. In fact, a careful study of Benjamini and Hochberg [2] would reveal that such a
restriction on the weights is not necessary in their paper, even though they have assumed it.

Derivation of an optimal multiple testing procedure incorporating type Il error severity in its oracle form has been our
primary focus in this paper. Now that we have this oracle procedure, a data-driven version of it with similar optimal property
can potentially be constructed. However, construction of such an optimal data-driven procedure depends heavily on the
underlying model and the chosen severity function, requiring newer efforts and techniques. We therefore leave this for a
future communication. Also, a more comprehensive study of the procedure in terms of its sensitivity under varying choice
of the severity function is also on our agenda for future research.
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