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Given a set of observations X = (X1, . . . , Xm) ∼ f (x, θ), where θ = (θ1, . . . , θm) ∈ {0, 1}m, consider the problem of

deciding betweenHi : θi = 0 and H̄i : θi = 1 simultaneously for i = 1, . . . ,m, assuming that Xi | θi
ind∼ (1−θi)f0(xi)+θif1(xi),

for some given densities f0 and f1, and θi ∼ Bernoulli(1 − π0). Sun and Cai [12,13] started with the following uniformly

weighted 0–1 loss function:

Lλ(δ(X), θ) =
1

m

m


i=1

{λ(1 − θi)δi(X) + θi(1 − δi(X))} , (1.1)

for a decision rule δ(X) = (δ1(X), . . . , δm(X)) ∈ {0, 1}m, where λ is the relative cost of making a false discovery (type I

error) to that of missing a true discovery (type II error) and assumed to be constant over all the hypotheses. They considered

the Bayes rule associated with this loss function and showed that it is also optimal from a multiple testing point of view.

Specifically, given any α ∈ (0, 1), there exists a λ ≡ λ(α) for which it controls the marginal false discovery rate,

mFDR =
E



m


i=1

δi(X)(1 − θi)



E



m


i=1

δi(X)

 ,

at α, and minimizes the marginal false non-discovery rate,

mFNR =
E



m


i=1

{1 − δi(X)}θi


E



m


i=1

{1 − δi(X)}
 ,

among all decision rules defined in terms of statistics satisfying amonotone likelihood ratio condition (MLR) and controlling

themFDR at α. They expressed this optimal procedure in an alternative form using hypothesis specific test statistics defined

in terms of the local FDR measure (Lfdr, Efron [5]), and called it the oracle procedure. They provided numerical evidence

showing that their oracle procedure can outperform its competitors, such as those in [1,7].

Clearly, the loss function used in the above formulation is somewhat simplistic. It gives equal importance to all type I

errors as well as to all type II errors. While it might be reasonable to treat the type I errors equally in terms of severity and

attach a fixed cost to all of them, it is often unrealistic to do so for type II errors. For instance, in a microarray experiment,

there might be a fixed cost of doing a targeted experiment to verify that each gene is active and the loss due to making

a false discovery might be that cost (which is being wasted in case the gene is found to be inactive). However, it would

be unrealistic to assume that the loss in identifying a truly active gene as inactive does not depend on how strong is the

expected signal that has been missed. In fact, it might reasonably be proportional to the difference [3,14,11] or even to the

squared difference between the expected values of the missed and no signals.

In other words, the above formulation needs to be generalized conforming it more to the reality in modern high-

dimensional multiple testing. With that in mind, we consider testing Hi : µi = µi0 against its one or two-sided alternative,

for some specified values µi0, simultaneously for i = 1, . . . ,m, under the following model:

X | µ, θ ∼ f (x | µ), with µ = (µ1, . . . , µm), θ = (θ1, . . . , θm)

µi | θi ∼ (1 − θi)I(µi = µi0) + θih(µi − µi0) (1.2)

θi ∼ Bernoulli(1 − π0),

given a density h, and under the following more general loss function:

Lλ,s(δ(X), µ, θ) =
1

m

m


i=1

{λ(1 − θi)δi(X) + s(µi − µi0)θi(1 − δi(X))} . (1.3)

We do not impose any dependence restriction on X, µ or θ. It is assumed that there is only a baseline cost λ1 for each type

I error (which, as argued above, is reasonable for a point null hypothesis). For each type II error, however, we assume that

the cost is λ2, the baseline cost, times s(µi − µi0), a function s of µi − µi0 such that s(0) = 0 and is non-decreasing as µi

moves away from µi0. We call s(·) the severity function for type II errors. Through this function, a penalty is being imposed

onmaking a type II error for each Hi; the larger the value of |µi −µi0| is, the more severe this penalty is. The λ equals λ1/λ2,

the relative baseline cost of a type I error to a type II error. In other words, λ/s(µi − µi0) is the relative cost of a type I error

to a type II error. The specific choice of s(·) will depend on how fast we want the cost of the type II error to increase as µi

moves away from µi0.

Our proposed loss function (1.3) is a non-uniformly weighted 0–1 loss function giving less and less weight to the type

I error relative to the type II error as the type II error gets more and more severe as measured by the severity function. In

this paper, we focus on deriving the theoretical form of an optimal multiple testing procedure from the Bayes rule under

this general loss function. Given a severity function s, this Bayes rule provides an optimal multiple testing procedure in the
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sense of minimizing a measure of non-discoveries subject to controlling a measure of false discoveries at a specified level

for a suitably chosen λ. These measures of false discoveries and false non-discoveries are of course different from the mFDR

andmFNR, respectively, since we now need to account for the weights or penalties attached to the type II errors through the

severity function that is not necessarily equal to one. We define these newer error rates as weighted mFDR and weighted

mFNR and establish the aforementioned optimality result through these rates. We study the performance of this oracle

optimal procedure with its relevant competitors through three numerical studies.

The remainder of the paper is organized as follows. The development of the Bayes rule under the loss function (1.3),

its characterization as an optimal multiple testing procedure in the framework of weighted false discovery and false non-

discovery rates, and our oracle multiple testing procedure are given in the next section. In Section 3, we present the results

of three numerical studies providing evidence of this oracle procedure’s superior performance over its relevant competitors.

We end the paper with some concluding remarks in Section 4.

2. Optimal rules

Assuming that our problem is that of testing Hi : µi = 0 simultaneously for i = 1, . . . ,m under the model (1.2) and the

loss function Lλ,s in (1.3), we do the following in this section: (i) determine the Bayes rule; (ii) show that the Bayes rule with

an appropriately chosen λ provides an optimal multiple testing procedure in the sense of minimizing a measure of false

non-discoveries among all rules that control a measure of false discoveries at a specified level; and (iii) express this optimal

multiple testing procedure in terms of some test statistics to define the oracle procedure in this paper.

2.1. The Bayes rule

Let us first define

wi(X) = E [s(µi) | θi = 1,X] , (2.1)

the average severity of type II errors conditional on the data X and θi = 1. Then, we have the following:

Theorem 2.1. Consider testing Hi : µi = 0 simultaneously for i = 1, . . . ,m under the model (1.2) and the loss function (1.3).

Then, the decision rule δ∗(X) = (δ∗
1(X), . . . , δ∗

m(X)), where

δ∗
i (X) =











1 if P(θi = 0 | X) ≤
wi(X)

λ
P(θi = 1 | X)

0 if P(θi = 0 | X) >
wi(X)

λ
P(θi = 1 | X),

(2.2)

is the Bayes rule.

Proof. For any rule δ(X) = (δ1(X), . . . , δm(X)), we have

E


Lλ,s(θ, µ, δ(X)) | X


=
1

m

m


i=1

{λδi(X)P(θi = 0 | X) + [1 − δi(X)]E [s(µi)I(θi = 1) | X]}

=
1

m

m


i=1

{λδi(X)P(θi = 0 | X) + [1 − δi(X)]E [s(µi) | θi = 1,X] P(θi = 1 | X)}

=
1

m

m


i=1

{wi(X)P(θi = 1 | X) + δi(X) [λP(θi = 0 | X) − wi(X)P(θi = 1 | X)]} .

Since the first term is constant with respect to δ, given X, it is clear that δ∗(X) in (2.2) is the rule for which this conditional

expectation is the minimum among all δ, and hence is Bayes. �

2.2. Optimal multiple testing procedure

Here we show that the aforementioned Bayes rule with an appropriately chosen λ provides an optimal multiple testing

procedure in the sense of minimizing a measure of false non-discoveries among all rules that control a measure of false

discoveries at a specified level. These measures of false discoveries and false non-discoveries are defined for any multiple

testing rule δ as

mFDR∗(δ) =
E



m


i=1

δi(X)(1 − θi)w
∗(θi, µi)



E



m


i=1

δi(X)w∗(θi, µi)

 , (2.3)
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and

mFNR∗(δ) =
E



m


i=1

{1 − δi(X)}θiw∗(θi, µi)



E



m


i=1

{1 − δi(X)} w∗(θi, µi)

 , (2.4)

respectively, where

w∗(θ, µ) =


1 if θ = 0

s(µ) if θ = 1.

With w∗(θi, µi) representing a weight associated with the ith hypothesis, these measures of false discoveries and false

non-discoveries can be referred to as weighted mFDR and weighted mFNR, respectively. The severity function s(·) has an

effect on these weighted measures through the weight function w∗. Suppose there are two severity functions s1 and s2,

satisfying s1(µ) > s2(µ), ∀µ ≠ 0. Then for any decision rule δ, the mFDR∗ based on s1 is smaller than that based on s2, and

the mFNR∗ based on s1 is greater than that based on s2. Particularly, if s(µ) > 1, ∀µ ≠ 0, the corresponding mFDR∗ is a less

conservative error rate than the mFDR; and if s(µ) = 1, ∀µ ≠ 0, the corresponding mFDR∗ and mFNR∗ reduce to the mFDR

and mFNR respectively.

Theorem 2.2. Consider the model in (1.2). Suppose there exists a testing procedure δ0(X) = (δ10(X), . . . , δm0(X)) such that

δi0(X) is defined as in (2.2) and mFDR∗(δ0) = α. Let δ(X) be any other rule such that mFDR∗(δ) ≤ α. Then mFNR∗(δ0) ≤
mFNR∗(δ).

Proof. First note that

m


i=1

E



{δi0(X) − δi(X)}


P(θi = 0 | X) −
wi(X)

λ
P(θi = 1 | X)



≤ 0, (2.5)

according to (2.2), and

m


i=1

E



{δi0(X) − δi(X)}


P(θi = 0 | X) −
α

1 − α
wi(X)P(θi = 1 | X)



≥ 0, (2.6)

from the assumption,mFDR∗(δ) ≤ α = mFDR∗(δ0). From (2.5) and (2.6), we get

m


i=1

E



{δi0(X) − δi(X)} wi(X)P(θi = 1 | X)



1

λ
−

α

1 − α



≥ 0,

which implies that

m


i=1

E [δi0(X)wi(X)P(θi = 1 | X)] ≥
m


i=1

E [δi(X)wi(X)P(θi = 1 | X)] , (2.7)

since

α

1 − α
=

m


i=1

E [δi0(X)P(θi = 0 | X)]

m


i=1

E [δi0(X)wi(X)P(θi = 1 | X)]

≤
1

λ
.

Thus, we have from (2.7)

E









m


i=1















1 − δi0(X)
m


i=1

E [{1 − δi0(X)} wi(X)P(θi = 1 | X)]

−
1 − δi(X)

m


i=1

E [{1 − δi(X)} wi(X)P(θi = 1 | X)]















×


P(θi = 0 | X) −
wi(X)

λ
P(θi = 1 | X)











≥ 0.



110 L. He et al. / Journal of Multivariate Analysis 142 (2015) 106–116

This implies that

1 − mFNR∗(δ0)

mFNR∗(δ0)
≥

1 − mFNR∗(δ)

mFNR∗(δ)
,

that is,mFNR∗(δ0) ≤ mFNR∗(δ), as desired. �

Remark 2.1. Theorem 2.2 improves the work of Sun and Cai [12] in the following senses: (1) it accommodates situations

where penalties or weights associated with type II errors can be assessed through a severity function and incorporated into

the development of a multiple testing procedure; and (2) it provides a rule that is optimal among all procedures controlling

the mFDR∗ at level α without any distributional restriction on the corresponding test statistics. Next, we will prove the

existence of such a procedure δ0(X).

We can express the optimal procedure δ0(X) in Theorem 2.2 in terms of the following test statistics:

Ti(X) =
P(θi = 0 | X)

P(θi = 0 | X) + wi(X)P(θi = 1 | X)
, i = 1, . . . ,m. (2.8)

The statistic Ti will be referred to as generalized local fdr (Glfdr). When s(µ) = 1, it reduces to the usual definition of the

local fdr (Lfdr) of Efron [4] under independence and to the test statistic defined in [13] under arbitrary dependence. We

consider decision rules of the form δ(T, c) = (δ(T1, c), . . . , δ(Tm, c)), where

δ(Ti, c) =


1 if Ti ≤ c

0 if Ti > c,
(2.9)

with c being such that mFDR∗(δ(T, c)) ≤ α. In this paper we assume that X is continuous and hence mFDR∗(δ(T, c))
is continuous in c. Before we state our oracle procedure more explicitly in terms of the distributions of Ti’s, we give the

following proposition asserting the existence of such a c.

Proposition 2.1. For the decision rule in (2.9) with Ti defined in (2.8), mFDR∗(δ(T, c)) is non-decreasing in c.

We will prove this proposition by making use of the following two lemmas.

Lemma 2.1. Consider the ratio of expectations EH1
[δ(T , c)] /EH0

[δ(T , c)], for any random variable T having distribution H1

in the numerator and distribution H0 in the denominator. It is non-decreasing (non-increasing) in c > 0, if dH1(t)/dH0(t) is

non-decreasing (non-increasing) in t.

Proof. The ratio can be expressed as the expectation, EH∗
c
ϕ(T ), of the non-decreasing function ϕ(T ) = dH1(T )/dH0(T ),

where H∗
c is such that

dH∗
c (t) = δ(t, c)dH0(t)/EH0

[δ(T , c)] .

Since δ(t, c) is totally positive of order two (TP2) in (t, c), that is, it satisfies the inequality

δ(t, c) δ(t ′, c ′) ≥ δ(t, c ′) δ(t ′, c), ∀t < t ′, c < c ′,

the lemma follows from the following result [8]: The expectation of a non-decreasing (non-increasing) function of a random

variable Y ∼ g(y, θ), with g(y, θ) being TP2 in (y, θ), is non-decreasing (non-increasing) in θ . �

Remark 2.2. Sun and Cai [12] derived the above result for the collection of decisions based on the test statistics satisfying

the MLR condition. Note that our proof, which is different, does not rely on any such condition.

Lemma 2.2. Given two distributions f0(x) and f1(x) of a random vector X, define T (X) = af0(X)/{af0(X) + bf1(X)}, for any
constants a, b > 0. Let Hi(t) = Pfi(T (X) ≤ t), 0 < t < 1, for i = 0, 1. Then, dH1(t)/dH0(t) = a(1 − t)/bt.

Proof. Since

[T (X) − t] [I(T (X) ≤ t) − I(T (X) ≤ t ± ϵ)] ≤ 0, ∀0 < t < 1, ϵ > 0,

by taking expectations of both sides in this inequality with respect to

X ∼
a

a + b
f0(x) +

b

a + b
f1(x),

we have

a(1 − t) [H0(t) − H0(t ± ϵ)] ≤ bt [H1(t) − H1(t ± ϵ)] , ∀0 < t < 1, ϵ > 0.

The desired result then follows by letting ϵ → 0. �
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Proof of Proposition 2.1. Let G
(j)

i,µ denote the conditional distribution of Ti(X) given θi = j and µ, for j = 0, 1. Then, from
(2.3), we note that

mFDR∗(δ(T, c)) =
π0

m


i=1

Gi,0(c)

π0

m


i=1

Gi,0(c) + (1 − π0)
m


i=1

Gi,1(c)

,

where

Gi,0(c) =


G
(0)
i,µ(c)h(µ|θi = 0)dµ

and Gi,1(c) =


s(µi)G
(1)
i,µ(c)h(µ|θi = 1)dµ,

with h(µ|θi = 0) and h(µ|θi = 1) representing the joint distribution ofµ conditionally given θi = 0 and θi = 1, respectively.

1 − mFDR∗(δ(T, c))

mFDR∗(δ(T, c))
=

E



m


i=1

δ(Ti, c)θiω
∗(θi, µi)



E



m


i=1

δ(Ti, c)(1 − θi)ω∗(θi, µi)



=
E



m


i=1

δ(Ti, c)s(µi)I(θi = 1)



E



m


i=1

δ(Ti, c)I(θi = 0)



=
1 − π0

π0



1

m

m


i=1

βi



EG1 [δ(T , c)]

EG0 [δ(T , c)]
, (2.10)

where G1(t) =
m

i=1 wiG̃i,1(t), G0(t) = 1

m

m

i=1 Gi,0(t), G̃i,1(t) = Gi,1(t)/βi, and wi = βi/
m

j=1 βj, with βi =


s(µi)h(µ|θi = 1)dµ. The propositionwill be proved from Lemma2.1 if we can show that dG1(t)/dG0(t) is a non-increasing
function of t , since the left hand side of proposition (2.10) is a decreasing function ofmFDR∗(δ(T, c)).

Since Ti(X) = π0fi,0(X)/{π0fi,0(X) + (1 − π0)βif
∗
i,1(X)}, and Gi,0 and G̃i,1 are the cdf’s of Ti(X) under the distributions

fi,0(x) = f (x | θi = 0) and

f ∗
i,1(x) =

1

βi



s(µi)f (x | θi = 1, µ)h(µ|θi = 1)dµ,

respectively, we see from Lemma 2.2 that dG̃i,1(t) = π0

(1−π0)βi



1

t
− 1



dGi,0(t), for any 0 < t < 1. Thus,



m


i=1

βi



dG1(t) =
m


i=1

βidG̃i,1(t)

=
m


i=1

βiπ0(1 − t)

βi(1 − π0)t
dGi,0(t) =

mπ0

1 − π0



1

t
− 1



dG0(t),

implying that dG1(t)/dG0(t) is non-increasing in t ∈ (0, 1), as desired. Thus, the proposition is proved. �

Given Proposition 2.1, we are now ready to define our oracle procedure in the following:

Definition 2.1 (The Oracle Procedure). Consider the multiple testing procedure δ(T, c∗), where

c∗ = sup


t : mFDR∗(δ(T, t)) ≤ α


. (2.11)

This is a generalized version of the oracle procedure of Sun and Cai [12]. It is developed not only under any dependence

structure among (X, µ) but also it allows the alternatives to vary across tests and each type II error to be weighted by a

measure of severity. Moreover, for its optimality, any specific property, like themonotone likelihood ratio property that Sun

and Cai [12] assumed for the underlying test statistics, is not required.
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Remark 2.3. Let fdri(X) = P(θi = 0|X) and di(X) = fdri(X)/Ti(X). Then, it is to be noted that the mFDR∗(δ(T, t)) can be

expressed as follows:

mFDR∗(δ(T, t)) =

m


i=1

E [I(Ti(X) < t)fdri(X)]

m


i=1

E [I(Ti(X) < t)fdri(X) + I(Ti(X) < t)(1 − fdri(X))wi(X)]

=

m


i=1

E [I(Ti(X) < t)Ti(X)di(X)]

m


i=1

E [I(Ti(X) < t)di(X)]

. (2.12)

3. Numerical studies related to the oracle procedure

We carried out three numerical studies to see how our procedure in its oracle form compares with its relevant

competitors for the problem of testing µi = 0 against µi ≠ 0, i = 1, . . . ,m, with s(µ) = µ2, under the following model:

X | µ, θ ∼ Nm(µ, Σ), with Σ = (1 − ρ)Im + ρ1m1
′
m

µi | θi
ind∼ (1 − θi)I(µi = 0) + θih(µi)

θi
i.i.d.∼ Bernoulli(1 − π0).

(3.1)

In the first two numerical studies, we assume ρ = 0 so that (Xi, µi, θi), i = 1, . . . ,m are independently distributed, while

in the third numerical study, we assume the dependence case with ρ > 0.

Often a multiple testing procedure can be seen as first ranking the hypotheses according to a measure of significance,

based on some test statistic, p-value, or local fdr, before choosing a cut-off point for the significance measure to determine

whichhypotheses are to be declared significant subject to control over a certain error rate, such as FDRormFDR, at a specified

level. Such ranking plays an important role in a procedure’s performance, and can itself be used as a basis to compare with

another procedure controlling a different error rate. More specifically, between two procedures providing the same number

of discoveries, the one with better ranking should provide more true discoveries. The first numerical study was designed to

make such ranking comparison between the Sun and Cai [12] and our oracle procedures that control two different measures

of false discoveries, even though one is a generalized version of the other.

The second numerical study was conducted in light of Theorem 2.2, that is, to investigate if the mFNR∗ is indeed the

smallest for our procedure in comparison with others that control the mFDR∗, the procedure based on Lfdr scores [12] and

the p-value based procedure.

In the third simulation study, we provide some insight into the performance of our oracle procedure under dependence.

Althoughwe have theoretically proved the existence and the optimality property of our proposed procedure under arbitrary

dependence, the calculations of wi(X)’s and the test statistics Ti(X)’s require the knowledge of the dependence structure.

The construction of data-driven version of our procedure, particular under dependence, presents additional complexities

and newer theoretical challenges that require a careful and special attention in a separate communication. In this numerical

study, we investigate how well our oracle procedure derived without accounting for dependence information performs

when dependence does indeed exist.

Towards understanding what significance measure is being used to rank the hypotheses in our procedure, we note that

under the independence case of model (3.1) (ρ = 0), themFDR∗(δ(T, t)) given in Remark 2.3 reduces to the following:

mFDR∗(δ(T, t)) =
E (I(T (X) ≤ t)T (X)d(X))

E (I(T (X) ≤ t)d(X))
,

with T (X) ≡ T1(X) and d(X) ≡ d1(X). The numerator and denominator expectations in the above ratio can be approximated

(for large m) by 1

m

m

i=1 (I(Ti(X) ≤ t)Ti(X)di(X)) and 1

m

m

i=1 (I(Ti(X) ≤ t)di(X)), respectively, resulting in an estimate of

mFDR∗(δ(T, t)) at t as follows:

mFDR∗(δ(T, t)) =

m


i=1

I(Ti(X) ≤ t)Ti(X)di(X)

m


i=1

I(Ti(X) ≤ t)di(X)

.

Let T(1), . . . , T(m) be the ordered versions of T1(X), . . . , Tm(X), and H(i) and d(i)(X) be respectively the null hypothesis and

the d-value corresponding to T(i)(X). Then, our oracle procedure can be described approximately as follows:
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Find

k = max



















j :

j


i=1

T(i)(X)d(i)(X)

j


i=1

d(i)(X)

≤ α



















, (3.2)

and reject H(i) for all i = 1, . . . , k.
In other words, our procedure can be seen as ranking the hypotheses according to the increasing values of Ti(X), the

Glfdr scores corresponding to theHi’s, before determining the cut-off point t ∈ {T(1)(X), . . . , T(m)(X)} to control themFDR∗;
whereas, the Sun–Cai oracle procedure does the same in terms of the Lfdr scores to control the mFDR.

3.1. Numerical study 1

We considered using a measure of non-discoveries to compare the rankings provided by the Sun–Cai and our oracle

procedures. More specifically, we wanted to see how these procedures compare in terms of not discovering the most

important signals (i.e., the signals that are truly and highly significant), given the same number of discoveries made by

each of them. The measure of non-discoveries is defined with weights assigned to the signals according to their magnitudes

using our chosen severity function s(µ) = µ2 to capture thesemost important signals with greater certainty.

With that in mind, we generatedm = 1000 observations according to the model (3.1). Here we chose ρ = 0, π0 = 0.95
and

h(µi) = π11N(µ−, τ 2) + π12N(µ+, τ 2),

with π11 = 0.2, µ− = −1.5, µ+ = 1, and τ = 0.5. We then calculated the values of Glfdr given in (2.8), which can be

written for this model as Glfdr i = π0φ(xi)

π0φ(xi)+π1H(xi)
with

H(xi) = π11



1
√
1 + τ 2

φ



xi − µ−√
1 + τ 2



τ 2

1 + τ 2
+

(τ 2xi + µ−)2

(1 + τ 2)



+ π12



1
√
1 + τ 2

φ



xi − µ+√
1 + τ 2



τ 2

1 + τ 2
+

(τ 2xi + µ−)2

(1 + τ 2)



. (3.3)

We ordered these values of Glfdr increasingly as Glfdr (1) ≤ · · · ≤ Glfdr (m). Let H(i) be the null hypothesis corresponding

to Glfdr (i), for i = 1, . . . ,m. For each given R = 1, 2, . . . ,m, we marked the first R null hypothesis to be rejected and the

rest to be accepted. With θ(i) = 0 or 1 indicating whether the null hypothesis H(i) is true or false (with µ(i) being the true

signal), respectively, we then calculated the weighted type II errors
m

j=R+1 θ(j)µ
2
(j). We replicated these steps 2000 times

and averaged the 2000 values of the weighted type II errors before obtaining the simulated value of β∗(R), the expected

weighted type II errors (or non-discoveries) given R rejections (or discoveries). The red curve in Fig. 1 shows the plot of

β∗(R) against R. The similar plot was obtained for the Lfdr score and is shown using the green curve in this figure. As seen

from this figure, between the Sun–Cai and our oracle procedures, ours can potentially be more powerful in the sense of

producing a smaller amount of weighted type II errors associated with missing themost important signals.

3.2. Numerical study 2

In this numerical study, we again considermodel (3.1) with ρ = 0 and h(µi) = π11N(µ+, τ 2)+π12N(µ−τ 2) but nowwe

chose µ+ = 4, µ− = −1, τ = 0.5 and π0 = 0.95. The rejection region for our oracle procedure is {Xi : Xi ≤ cl or Xi ≥ cu}
for each Hi, with the cut-offs cl and cu being determined as in the following steps:

(i) For a given 0 < t < 1, solve the following equation for z to obtain c
(t)
l and c

(t)
u :

tπ1H(z) − π0(1 − t)φ(z) = 0

where H(·) is defined in (3.3).

(ii) Calculate

mFDR∗ =
π0Ψ (c

(t)
l , c

(t)
u )

π0Ψ (c
(t)
l , c

(t)
u ) + π1



π11Eµ1



µ2
1Ψ (c

(t)
l − µ1, c

(t)
u − µ1)



+ π12Eµ2



µ2
2Ψ (c

(t)
l − µ2, c

(t)
u − µ2)

 ,

where µ1 ∼ N(µ−, τ 2), µ2 ∼ N(µ+, τ 2), and Ψ (c
(t)
l , c

(t)
u ) = 1 − Φ(c

(t)
u ) + Φ(c

(t)
l ), with Φ being the cdf of N(0, 1).

(iii) Repeat the above two steps until we find t∗ such that themFDR∗ is α.

(iv) cl and cu are then determined as c
(t∗)
l and c

(t∗)
u .
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Fig. 1. Simulated average weighted type II errors.

Once cl and cu are determined, the mFNR∗ of the oracle procedure is calculated as follows:

mFNR∗ =
π1



π11Eµ1



µ2
1[1 − Ψ (cl − µ1, cu − µ1)]



+ π12Eµ2



µ2
2[1 − Ψ (cl − µ2, cu − µ2)]



π0[1 − Ψ (cl, cu)] + π1



π11Eµ1



µ2
1[1 − Ψ (cl − µ1, cu − µ1)]



+ π12Eµ2



µ2
2[1 − Ψ (cl − µ2, cu − µ2)]

 .

For the p-value based procedure, c
(t)
l and c

(t)
u in the step (i) are respectively the t/2th and (1− t/2)th quantiles ofN(0, 1)

distribution. For the Lfdr based procedure, c
(t)
l and c

(t)
u are obtained as in our proposed procedure with s(·) = 1. Then for

both procedures, we follow the same steps (ii)–(iv) as above to determine the corresponding cl and cu, and mFNR∗.
Fig. 2 compares the mFNR∗ values of these three procedures across different values of π11 and for some values of α. Our

proposed procedure does indeed have the smallest mFNR∗ among these three procedures.

3.3. Numerical study 3

Here, we generated an observation X = (X1, . . . , Xm) according to Model (3.1) with h(µi) = 0.2N(µ+, τ 2) +
0.8N(µ−, τ 2), where m = 1000, µ+ = 4, µ− = −1, τ = 0.5, π0 = 0.95, and ρ is chosen from {0.1, 0.2, . . . , 0.9}, and
then applied the above three oracle procedures. We replicated the above step 1000 times to obtain the simulated mFDR∗

and mFNR∗ of the three procedures. From Fig. 3, we see that, for all ρ values, the mFDR∗ is still controlled by all three

procedures and our proposed procedure still has the lowest mFNR∗. These results suggest that even when we do not make

use of the dependence information in deriving our oracle procedure, it can still be valid under positive dependence and be

more powerful than its relevant competitors.

4. Concluding remarks

The decision theoretic approach to a multiple testing problem is not new. Other relevant work includes Sarkar et al. [10]

and Peña et al. [9]. Nevertheless, the idea of incorporating the severity of type II errors has not been fully explored

previously in the literature. We have developed the theory behind our idea from a compound decision theoretic point

of view considering a loss function that incorporates the type II error severity. The consideration of type II error severity

into the loss function allows us to re-formulate the work of Sun and Cai [12] in a more general framework involving newer,

generalized forms ofmarginal false discovery andmarginal false non-discovery rates. Newer theoretical results generalizing

and often improving the existing ones are given in this process. We now have the theory for developing a much wider class

of multiple testing procedures constructed from a decision theoretic point of view. Some of the newer methods in this class,

those corresponding to non-constant type II error severity, are seen to have better performance in their oracle forms, as

shown in our numerical studies, than those with constant type II error severity (i.e., those in [12] and some standard p-value

based procedures).

The idea of weighting hypotheses or p-values while developing multiple testing methods in an FDR but non-decision

theoretic framework has been proposed before. Benjamini and Hochberg [2] considered weighting the hypotheses in the

original definition of the FDR to define the weighted FDR and proposed a weighted version of their 1995 FDR controlling
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(a) α = 0.01. (b) α = 0.03.

(c) α = 0.05.

Fig. 2. Comparison of the three procedures with exact mFDR∗ control under independence: the oracle procedure based on the Glfdr (Blue), the oracle

procedure based on the Lfdr statistic (red), and the p-value based procedure (Green) based on Model (3.1) with π0 = 0.95, π11 varying from 0 to 1,

µ− = −1, and µ+ = 4.

(a)mFDR∗ . (b)mFNR∗ .

Fig. 3. Comparison of the three procedureswith exactmFDR∗ control under independence for equi-correlated dependence structure: the oracle procedure

based on the Glfdr (Blue), the oracle procedure based on the Lfdr statistic (red), and the p-value based procedure (Green) based on the model given in (3.1)

with π0 = 0.95, h(µi) = 0.2N(4, 0.25) + 0.8N(−1, 0.25) and ρ ∈ {0.1, 0.2, . . . , 0.9}. The significance level α is chosen to be 0.05.

method, the so-called BH method, that controls this weighted FDR. Genovese et al. [6], on the other hand, weighted each

p-value and developed a BH type method controlling the usual FDR based on these weighted p-values. Our concern in this
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paper has been to define weighted versions of not only the marginal FDR but also the marginal FNR from their original

definitions before providing a theoretical framework for the development of our procedure. Our approach to defining

weighted mFDR and weighted mFNR is similar to Benjamini and Hochberg [2]. We attach weights to the hypotheses,

although they are chosen to effectively act only on the false nulls. More specifically, we have

mFDR∗(δ(T, c)) =
E



m


i=1

I(Ti < c, θi = 0)



E



m


i=1

I(Ti < c, θi = 0) +
m


i=1

I(Ti < c, θi = 1)s(µi)

 ,

and

mFNR∗(δ(T, c)) =
E



m


i=1

I(Ti > c, θi = 1)s(µi)



E



m


i=1

I(Ti > c, θi = 1)s(µi) +
m


i=1

I(Ti > c, θi = 0)

 .

The weight is assigned to a false null hypothesis according to its signal strength. It does not depend on whether acceptance

or rejection of the false null contributes to a measure of false non-discoveries or false discoveries in the form of a penalty

or boon. It is important to point out that our weights for all the hypotheses do not add up tom, contrary to what one might

conclude from Benjamini and Hochberg [2]. In fact, a careful study of Benjamini and Hochberg [2] would reveal that such a

restriction on the weights is not necessary in their paper, even though they have assumed it.

Derivation of an optimal multiple testing procedure incorporating type II error severity in its oracle form has been our

primary focus in this paper. Now thatwe have this oracle procedure, a data-driven version of it with similar optimal property

can potentially be constructed. However, construction of such an optimal data-driven procedure depends heavily on the

underlying model and the chosen severity function, requiring newer efforts and techniques. We therefore leave this for a

future communication. Also, a more comprehensive study of the procedure in terms of its sensitivity under varying choice

of the severity function is also on our agenda for future research.
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