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ABSTRACT

The first comprehensive timetree is presented for phytoplasmas, a diverse group of obligate intracellular bacteria
restricted to phloem sieve elements of vascular plants and tissues of their hemipteran insect vectors. Maximum
likelihood-based phylogenetic analysis of DNA sequence data from the 16S rRNA and methionine aminopepti-
dase (map) genes yielded well resolved estimates of phylogenetic relationships among major phytoplasma
lineages, 16Sr groups and known strains of phytoplasmas. Age estimates for divergences among two major
lineages of Mollicutes based on a previous comprehensive bacterial timetree were used to calibrate an initial 16S
timetree. A separate timetree was estimated based on the more rapidly-evolving map gene, with an internal
calibration based on a recent divergence within two related 16Sr phytoplasma subgroups in group 16SrV
thought to have been driven by the introduction of the North American leafhopper vector Scaphoideus titanus Ball
into Europe during the early part of the 20th century. Combining the resulting divergence time estimates into a
final 16S timetree suggests that evolutionary rates have remained relatively constant overall through the evo-
lution of phytoplasmas and that the origin of this lineage, at ~641 million years ago (Ma), preceded the origin of
land plants and hemipteran insects. Nevertheless, the crown group of phytoplasmas is estimated to have begun
diversifying ~316 Ma, roughly coinciding with the origin of seed plants and Hemiptera. Some phytoplasma
groups apparently associated with particular plant families or insect vector lineages generally arose more re-
cently than their respective hosts and vectors, suggesting that vector-mediated host shifts have been an im-
portant mechanism in the evolutionary diversification of phytoplasmas. Further progress in understanding
macroevolutionary patterns in phytoplasmas is hindered by large gaps in knowledge of the identity of competent

vectors and lack of data on phytoplasma associations with non-economically important plants.

1. Introduction

Phylum Tenericutes includes some of the most economically im-
portant bacteria species because of their agricultural and medical im-
portance (Bertaccini et al., 2014; Fletcher et al., 2006; Jensen, 2017;
Waites, 2016). Tenericutes includes the class Mollicutes, three taxa in
provisional status “Candidatus (Ca.) Izimaplasma” (Skennerton et al.,
2016), and several taxa of unspecified rank. Although some authors
strongly argued that Mollicutes should be moved to phylum Firmicutes
(Davis et al., 2013; Ogawa et al., 2011; Yutin and Galperin, 2013), the
taxonomic status of stand-alone phylum Tenericutes bestowed in 1984
(Murray, 1984) is strongly supported by two distinctive features that,
taken together, set Tenericutes apart from the Firmicutes: the inability to
synthetize precursors of peptidoglycan and, therefore, a cell wall
(Brown, 2010; Skennerton et al., 2016), and extreme reduction of the
genome (530-2220 kbp, Razin, 2006). Mollicutes includes five orders:
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Mycoplasmatales, Entomoplasmatales, Haloplasmatales, Acholeplasmatales,
and Anaeroplasmatales (Parte, 2018) and some groups of taxa that still
remain unclassified or poorly characterized (“Ca.” species, environ-
mental samples and undescribed strains). A new order Mycoplasmoidales
was recently proposed to include mycoplasmas in the “Hominis” and
“Pneumoniae” groups, previously included in Mycoplasmatales (Gupta
et al., 2018). Phytoplasmas, one group of bacteria considered to be bona
fide Mollicutes, have been listed as incertae sedis within the order
Acholeplasmatales (Brown et al., 2010). They include 44 ‘Candidatus
Phytoplasma’ species (Harrison et al., 2015; IRPCM, 2004), over 30 16S
ribosomal RNA groups (Bertaccini et al., 2014; Wei et al., 2007), and
2502 environmental samples deposited in the National Center for Bio-
technology Information (NCBI) database (Federhen, 2012). Some au-
thors tentatively allocated phytoplasmas to family Acholeplasmataceae
because, according to previous molecular phylogenies, they form a
distinct clade derived from within the genus Acholeplasma (Martini

Received 26 November 2019; Received in revised form 12 February 2020; Accepted 7 April 2020

Available online 10 April 2020
1055-7903/ © 2020 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com/science/journal/10557903
https://www.elsevier.com/locate/ympev
https://doi.org/10.1016/j.ympev.2020.106826
https://doi.org/10.1016/j.ympev.2020.106826
mailto:valeria.trivellone@gmail.com
https://doi.org/10.1016/j.ympev.2020.106826
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ympev.2020.106826&domain=pdf

Y. Cao, et al.

et al., 2014). Phytoplasmas were first observed using microscopy in
1967 (Doi et al., 1967) but, because they are very difficult to culture in
vitro, their great diversity only began to be revealed in the 1990s
through development of molecular techniques for characterizing groups
and subgroups (Namba et al., 1993). This classification method was
based on phylogenetic analysis of 16S rRNA, with other more variable
genetic loci used for finer-scale characterization. Thus, phytoplasmas
are currently organized into phylogenetic groups, each designated by a
Roman numeral, and different strains within a group are given a se-
parate letter designation defining the subgroup (currently more than
120) (Lee et al., 2010; Martini et al., 2007; Pérez-Lopez et al., 2016;
Zhao et al., 2009).

Previous research on Tenericutes phylogeny has mostly relied on the
sequences of the 16S rRNA gene. These indicate that Mollicutes are a
well-supported monophyletic entity (Ludwig and Klenk, 2001) having
diverged from a Gram-positive ancestor by regressive evolution (Razin
et al.,, 1998). Early 16S phylogenies characterized five phylogenetic
groups and 16 phylogenetic clusters (Pettersson et al., 1996; Weisburg
et al., 1989). These are partly congruent with a more recent phylogeny
based on phosphoglycerate kinase (Pgk) amino acid sequences (Wolf
et al., 2004). A recent multilocus phylogeny confirmed four well-es-
tablished major groups of Tenericutes (“Acholeplasma”, “Spiroplasma”,
“Pneumoniae” and “Hominis”) (Gupta et al., 2018), but phytoplasmas
were underrepresented in this dataset. In 2007, the first extensive
phylogenetic investigation to include a large sample of phytoplasma
groups, other Mollicutes and Gram-positive bacteria showed that Mol-
licutes includes two main subclades: one comprising 46 phytoplasma
strains and two Acholeplasma species, and the second including 14 re-
presentative Mollicutes from the other orders (Martini et al., 2007). The
most recent phylogeny of phytoplasmas, based on 16S and including
145 taxa and two species of Acholeplasma, provided further insights,
suggesting that each phylogenetically distinct subgroup is equivalent to
a putative species in the provisional “Ca. Phytoplasma” genus (Harrison
et al., 2015).

Tenericutes bacteria have evolved a broad range of lifestyles, in-
cluding free-living, commensalism and parasitism (Razin, 2006; Rivera-
Tapia et al., 2002; Tully, 1996). Most of the well-known species are
associated with humans or other vertebrates and are commensals in-
habiting different organs. Some are suspected to be associated with
diseases, whereas others are proven pathogens causing important dis-
eases to animals (mycoplasmas) or plants (phytoplasmas and three
species of Spiroplasma). Some free-living species are associated with
inert substrates (e.g. “Ca. Izimaplasma”) or animal/plant surfaces (e.g.
Acholeplasma laidlawii). These observed lifestyles and host associations
occur in multiple lineages of Mollicutes suggesting a high level of eco-
logical plasticity in the evolution of the group as a whole. In contrast,
the large phytoplasma clade represents a unique and highly specialized
group defined by its adaptation to obligate intracellular parasitism. All
known phytoplasmas live strictly within insects and plant phloem, have
evolved mechanisms for evading their host's defenses (Tomkins et al.,
2018) and use various strategies to successfully exploit the host's me-
tabolic pathways (Chang et al., 2018; MacLean et al., 2011; Maejima
et al., 2014). Most known phytoplasmas are pathogenic to plants and
have been proven to be associated with devastating diseases that cause
significant losses in agriculture (Bertaccini et al., 2014). In contrast,
phytoplasmas evolved a commensal relationship with hemipteran (sap-
sucking) insect vectors (mainly Auchenorrhyncha) that move these
bacteria from plant to plant. They rarely negatively affect the fitness of
insect hosts and in some cases have been shown to confer positive fit-
ness benefits on vectors (Hogenhout et al., 2008). The highly specia-
lized nature of phytoplasma-plant-insect associations, the widespread
geographic occurrence of phytoplasmas, and the extensive phylogenetic
diversity of the phytoplasma lineage suggest that this group of bacteria
has been co-evolving with its plant and insect hosts for a very long time.
Unfortunately, no attempts have yet been made to estimate the age of
the group and its constituent lineages using molecular divergence time
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methods.

Because soft-bodied organisms such as bacteria are generally not
preserved in the fossil record, indirect methods must be used to esti-
mate the times of origin of such groups. Divergence times of bacterial
lineages have been estimated using three indirect methods: ecological
events, inference from host fossils, and inference from Eukaryotic mo-
lecular clocks (Ochman et al., 1999). An earlier evolutionary re-
construction using 16S rRNA phylogenetic trees calibrated by corre-
lating the nodes with ecological and geological events, showed that the
lineage of Mollicutes from which phytoplasmas are derived diverged
from ancestral Firmicutes about 605 million years ago (Ma) and, sub-
sequently (407 Ma) the ancestral Acholeplasma-like Mollicute gave rise
to two major branches, AAP (Acholeplasma, Anaeroplasma, Aster-
oleplasma and phytoplasmas) and SEM (Spiroplasma, Entomoplasma,
Mesoplasma, Mycoplasma and Ureaplasma) (Maniloff, 2002). A com-
prehensive timetree using 90 calibration points from other studies and
small-subunit rRNA was recently constructed for prokaryotes (Marin
et al., 2016) revealing a constant overall diversification rate and sug-
gesting that emergence of new lineages is a random process. Although
non-uniform rates of molecular evolution were observed between dif-
ferent bacterial lineages of 42 obligate endosymbionts, the rates still
appeared constant within each clade (Kuo and Ochman, 2009). Un-
fortunately, phytoplasmas have, so far, not been included in published
bacterial timetrees.

The rapid pace of discovery of new phytoplasmas has recently
yielded large amounts of relevant sequence data, providing a valuable
opportunity to estimate a phytoplasma timetree and explore patterns in
their diversification and phylogenetic relatedness. Previous phyloge-
netic analyses based on 16S rRNA and secY (protein-coding gene) se-
quences, as well as a recent large-scale phylogenomic analysis of the
bacterial phylum Tenericutes, strongly support the monophyly of phy-
toplasmas, indicating that the group was derived from within a clade
comprising facultative plant- and animal-associated bacteria within
class Mollicutes (Gupta et al., 2018; Martini et al., 2007). Thus, extant
phytoplasmas apparently evolved from a single common ancestor that
acquired a specific association with phloem-feeding insects and their
host plants (presumably a single ancestral host plant and vector spe-
cies). Several phytoplasmas are widespread and infect a wide variety of
plants but many groups appear to be more restricted, with a tendency to
be associated with particular biogeographic regions and/or plant fa-
milies (Trivellone, 2019). The great phyletic diversity, widespread
present-day geographic distribution, and association of the group with a
wide variety of host species suggest that the group has been evolving in
close association with its plant hosts and hemipteran vectors for mil-
lions of years.

The present study aimed to construct the first timetree for phyto-
plasmas using molecular divergence time methods and available DNA
sequence data. The general objective was to determine whether rates of
molecular divergence within the phytoplasma lineage are similar to
those of related non-plant-pathogenic bacteria and to look for possible
correspondence between the origins of particular phytoplasma lineages
and historical biogeographic processes or events in the evolution of
their plant and hemipteran insect hosts.

2. Materials and methods
2.1. Data sets

To estimate the divergence times of phytoplasmas, two genetic
datasets with varying taxonomic sampling were used, one for 16S rRNA
and one for the methionine aminopeptidase (map) gene.

The 16S rRNA dataset (16S hereafter) consisted of 220 sequences
obtained from the NCBI database. The ingroup included 169 designated
phytoplasma subgroups (44 described as Ca. Phytoplasma (P.) species,
including incidental citations), except 16SrIII-O, 16SrIII-R, 16SrVI-G,
16SrVII-F, and 16SrX-E subgroups. The outgroup included 49 taxa
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representing all the orders of Tenericutes (15 Acholeplasma species, three
species of Anaeroplasmatales, one Haloplasmatales, 20 Mycoplasmatales,
seven Entomoplasmatales, two “Candidatus Izimaplasma” species, one
“Candidatus Hepatoplasma” species), and two species of Firmicutes
(Bacillus pumilus and Clostridioides difficile) used to root the tree. These
outgroup taxa were chosen to represent diverse geographic origins,
lifestyles and association with hosts (Table S1).

The map dataset was assembled with 82 phytoplasma strains and the
outgroup Acholeplasma palmae. The ingroup consists of seven strains in
the phylogenetic group 16Srl (including five subgroups), four in 16SrIl
(three), seven in 16SrIII (six), two in 16SrIV (two), 47 in 16SrV (five),
four in 16SrVI (two), two in 16SrX (two), four in 16SrXII (three), and
single subgroups and strains from 16SrVII, 16SrVIII, 16SrIX, 16SrXI,
16SrXIII and 16SrXVIII groups. The 47 strains in the 16SrV include 10
“Ca. P. ulmi” strains (16SrV-A), two “Ca. P. ziziphi” (16SrV-B), two “Ca.
P. rubi” (16SrV-E), 32 strains in the subgroups 16SrV-C and -D, and one
strain of undesignated subgroup (Table S2).

2.2. Phylogenetic analysis

Sequence alignment was conducted using the Muscle algorithm as
implemented in MEGA v7.0.26 (Kumar et al., 2016) with default set-
tings, followed by manual editing. The map alignment was trimmed
according to the length most commonly found for published 16SrV
strains. The aligned dataset is available at https://zenodo.org under
DOI  https://doi.org//10.5281/zenodo.3366176. DNA evolution
models and partitioning schemes were determined by PartitionFinder 2
(Lanfear et al., 2014). For both 16S rRNA and map, the GTR + G + I
model, which considers variable base frequencies and the proportion of
invariant sites, had the lowest corrected Akaike Information Criterion
score during model selection and thus was determined as the best-fit
model. The maximum likelihood (ML) tree for each gene was con-
structed using RAXML 8.2.11 (Stamatakis, 2014) with the “-f a” algo-
rithm, and support for nodes was evaluated using 1000 bootstrap re-
plicates.

2.3. Divergence time estimation

The RelTime algorithm implemented in MEGA 7.0.26 was used to
estimate the divergence times of the phytoplasma lineage (Mello,
2018). Because phytoplasmas have not been included in previous mo-
lecular divergence time analyses, it is not known whether their evolu-
tionary rates are the same as in lineages of related bacteria. Thus, the
RelTime algorithm that allows substitution rates to vary among lineages
was chosen (Tamura et al., 2018). This algorithm was used recently to
estimate divergence times of the major lineages of prokaryotes overall
(Marin et al., 2016).

2.4. Calibration of the 16S timetree was carried out in two separate steps.

Step 1. Divergence times of phytoplasmas were initially estimated
based on the 16S tree with the ages of the two deepest nodes being
constrained (Fig. 1, blue arrows) using calibration information acquired
from the TimeTree web resource (http://www.timetree.org/, Kumar
et al., 2017): 1) the split of Anaeroplasmatales + Acholeplasmatales from
Mycoplasmatales + Entomoplasmatales was constrained at 1704.5-2070
million years ago (Ma) (Marin et al., 2016; Sheridan et al., 2003); 2) the
split of Mycoplasmatales from Entomoplasmatales was constrained at
1581-1679.4 Ma (Marin et al., 2016; Sjostrand et al., 2014).

Step 2. Because evolutionary rates may differ between phytoplasmas
and other lineages of Tenericutes, an internal calibration on the 16Sr
tree based on an inferred recent divergence event in the 16SrV group
was added; specifically, a cluster which includes 32 strains belonging to
the 16SrV-C and -D subgroups (Fig. S1, box in grey). Some of these
strains are associated with an epidemic disease named Flavescence
dorée (FD) that appeared recently and threatens the wine industry of

Molecular Phylogenetics and Evolution 149 (2020) 106826

Europe. This disease and the associated phytoplasma strains have been
studied intensively and, therefore, data available from the literature
provide strong justification for using recent divergences among FD-re-
lated strains to calibrate the phytoplasma timetree based on ecological
events. Outbreaks of FD were first observed in southwestern France in
the 1950s, although FD-like symptoms had been reported as early as the
1920s (Caudwell, 1957; Caudwell, 1964). Earlier research revealed a
high genetic diversity between phytoplasma strains belonging to the
16SrV-C and -D subgroups varying with host plant, strains associated
with grapevine being less variable than those detected on other plants
(Angelini et al., 2001, 2003; Arnaud et al., 2007). Using a multilocus
sequence typing approach, it was possible to further classify the strains
infecting grapevine and strictly transmitted by the introduced Nearctic
leathopper vector Scaphoideus titanus Ball in three consistent lineages
(hereafter referred to as FD phytoplasmas sensu stricto; FDp according to
Angelini et al., 2004): the low-variability cluster which includes the
reference strain recorded in grapevine for the first time in France
(FD70; Caudwell et al., 1970), the cluster including the clonal strains
currently widespread in Central Europe (FD-D; Angelini et al., 2001;
Daire et al., 1997), and the more-variable cluster detected mainly in
Italy and in Eastern Europe (FD-C; Angelini et al., 2001). Several other
European FD-related phytoplasma (FD-rp) strains infecting mainly
alder, clematis and other arboreal plants including grapevine, such as
those causing Alder yellows disease (e.g. ALY strain) and Palatinate
grapevine yellows (PGY strains), showed a non-monophyletic origin
(Arnaud et al., 2007). Fig. 2 depicts the timeline of the important an-
thropogenic events and scientific evidence upon which our assumption
about the probable time range of FDp diversification is based. Sca-
phoideus titanus was recorded in Europe for the first time at the end of
the 1950s (Bonfils and Schvester, 1960), and characterized as a highly
efficient vector of FDp (Schvester et al., 1962), strictly associated with
grapevine. Earlier research suggested that the European population of
this leathopper originated from a single accidental introduction (Papura
et al., 2012). Introduction of S. titanus into Europe is thought to have
occurred between 1900 and 1920, during the extensive importation of
American vine rootstocks (Chuche and Thiéry, 2014) used to provide
resistance to Phylloxera damage (Ollat et al., 2016). Phylogenetic ana-
lyses of FDp and FD-rp strains showed a high diversity of genotypes in
endemic European alders and, to a lesser extent, in clematis, with some
of the latter identical to strains detected in grapevines. This supports
the hypothesis that alder and clematis could be the original reservoirs
for recently evolved strains associated with grapevines (Angelini et al.,
2004; Malembic-Maher et al., 2017). Based on map genetic clustering,
Arnaud et al. (2007) hypothezed that spreading of FD-rp from alder (or
other plant hosts) to grapevine happened at least three times, giving
rise to the three FDp clusters. It seems likely that the introduction of S.
titanus into Europe remained unnoticed until this competent vector
initiated vine-to-vine transmission within vineyards, leading to evolu-
tionary divergence of new grapevine-specific FDp strains and disease
outbreaks as a result of vector-mediated isolation on the new host
(grapevine).

Due to the limited availability of 16S sequences and their high si-
milarity among the strains of 16SrV-C and -D subgroups, it was ne-
cessary to use the more variable and rapidly evolving map gene (Arnaud
et al. 2007) to estimate precisely the very recent divergence times be-
tween FDp and FD-rp assumed to be recently diverged phytoplasma
lineages. Although other variable and rapidly evolving phytoplasma
genes have been reported (e.g., secY gene, Lee et al., 2010; uvrB-degV,
Malembic-Maher et al., 2011), the map gene was chosen because it is
considered a neutral marker and sequences are available for many FDp
strains.

To calibrate the map tree, age of the crown group of phytoplasmas
inferred from Step 1 (302.90 Ma; Fig. 1, node 50) was used. Due to the
requirement of both upper and lower bounds of the calibration in
MEGA, the time interval was estimated by presuming a normal dis-
tribution (although MEGA does not support use of distribution models
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Fig. 1. Maximum likelihood tree based on 16S rRNA gene. Bootstrap values (> 75) are shown above the branches or indicated at nodes by colored dots or boxes: red
refers to 90-100 and orange refers to 75-89. The scale bar indicates the branch length, except the branch marked with “//” which was shortened, with the real length
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Families or groups sensu Gupta et al. (2018). Divergence times of the numbered nodes are shown in the table on the left: “Step1l” column ages estimated from the
preliminary 16S timetree; “Step2” ages estimated from final 16S timetree. Detailed information on reference strains is reported in Table S1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

for the calibration) with 302.90 Ma as mean and a standard deviation

(SD) of 10 Ma (using the method of Sanglas et al.,

2017). The 95%

confidence interval 283.30-322.50 Ma was used as calibration bound-
aries. Then, the split between ALY + PGY-B (FD-rp strains) and the

clade of FDp including nine strains in 16SrV-D subgroup and the SI04-
S4 strain (16SrV-C subgroup) was constrained (Fig. S1, blue arrow) to a
time range of 22-100 years before present. The minimum age
(22 years) refers to the earliest published record of the strains in the
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Fig. 2. Timeline of events supporting hypothesis of a recent diversification in phytoplasma subgroup 16SrV-C and -D corresponding to the introduction into Europe of
the Nearctic vector Scaphoideus titanus. The records of the reference strains used in this study were reported from 1970 to 2016.

constrained clade (ALY and PGY-B), and the maximum age (100) was
based on the hypothesized time of introduction of S. titanus into Eur-
opean vineyard agroecosystems (1900-1920), also corresponding with
the earliest report of symptoms associated with grapevine yellows dis-
eases observed in Europe. Although it is possible that some or all of
these early disease outbreaks may have been due to a different, en-
demic, grapevine yellows disease (Bois noir), it seems reasonable to
assume that vector-mediated divergence of the FDp phytoplasma strains
began soon after introduction of the non-native leafthopper vector.
Constraining the divergence of FDp strains to a narrower range with a
more recent maximum age would be expected to yield slightly more
recent divergence time estimates with narrower 95% confidence in-
tervals, but we opted to apply a broader, more conservative date range
calibration, given the uncertainty around the actual time of origin of
the FDp strains.

To build the final 16S timetree, the divergence time for the split of
16SrV-A, 16SrV-C, 16SrV-D and 16SrV-E estimated from the map tree
(5.74 Ma; Fig. S1, node 23) was added as a recent internal calibration to
the 16S tree (Fig. 1, red arrow). Calibration boundaries were set as
5.16-6.33 Ma, which was the 95% confidence interval of the normal
distribution with a mean of 5.74 Ma and SD of 0.3 Ma. The deeper node
calibrations used in Step 1 were also applied in this step (Fig. 1, blue
arrows). Applying this additional node calibration near the tip of the
phytoplasma tree enabled us to examine the effect of including an in-
ternal calibration on the divergence time estimates for phytoplasmas
overall.

The final 16S timetree was plotted against geological time using the
strap package (Bell and Lloyd, 2015) in R 3.6.0 (R Core Team, 2019).

3. Results and discussion
3.1. Phylogenetic analysis

The 16S rRNA gene sequence data set included 169 taxa and re-
presented all described “Ca. Phytoplasma” species and almost all de-
signated subgroups in the 35 16Sr phytoplasma groups. The map se-
quences were collected from 33 species and subgroups, representing 14
16Sr groups. Group 16SrV was sampled to include multiple strains of
subgroups 16SrV-C and -D. Alignments of 16S rRNA and map consisted
of 1655 positions and 564 positions (both including gaps), respectively.

Relationships among Mollicutes recovered by the 16S ML tree
(Fig. 1) are largely congruent with previous results based on genome

data (Gupta et al., 2018). “Candidatus Izimaplasma” (including two
strains, HR1 and HR2) branches near the root and is sister to the other
Mollicutes (excluding Haloplasma) although it was previously suggested
as a sister clade of Acholeplasmatales (Skennerton et al., 2016). Anae-
roplasmatales is polyphyletic, with Asteroleplasma branching more
deeply than Anaeroplasma. Our results are in agreement with Weisburg
et al. (1989), who showed that Asteroleplasma branched from other
Firmicutes independently of Anaeroplasma. Metamycoplasmataceae and
Mycoplasmoidaceae sensu Gupta et al. (2018) were recovered here as
monophyletic, but contrary to Gupta et al. the latter family and “Ca.
Hepatoplasma” was sister to the “Spiroplasma” group sensu Gupta et al.
The entire clade including Metamycoplasmataceae, Mycoplasmoidaceae,
“Ca. Hepatoplasma” and “Spiroplasma” group is sister to Achole-
plasmatales + Anaeroplasma. Minor discrepancies among outgroup re-
lationships compared to previous analyses are probably artifacts of low
sample coverage in our dataset and were not expected to affect the
divergence time estimates for phytoplasmas.

Acholeplasmatales was recovered as sister to Anaeroplasma in
agreement with previous studies (Gupta et al., 2018; Johansson et al.,
1998; Maniloff, 2002). Phytoplasmas are a well supported mono-
phyletic group in Acholeplasmatales, forming a sister lineage to Acho-
leplasma palmae + A. parvum. Although branch support for this re-
lationship is low, this result is congruent with a previous phylogeny
based on genome data (Gupta et al., 2018). Interestingly, a previous
phylogeny of Acholeplasma, not considering phytoplasmas, reported this
group as monophyletic (Volokhov et al., 2007); however, when phy-
toplasmas are included, Acholeplasma is rendered paraphyletic
(Gundersen et al., 1994; Gupta et al., 2018). The phytoplasma clade is
separated into two major subclades, in agreement with previous results
(Lee et al., 2010). The first subclade is composed of 16Srl, 16SrXII,
16SrXIIl, 16SrXVI, 16SrXVII, 16SrXVII, 16SrXXIIl, 16SrXXVIII and
16SrXXXI groups with high branch support (bootstrap value 96). The
remaining 16Sr subgroups form a second subclade. The analysis also
strongly supports the monophyly of several 16Sr groups, including
16SrIll, 16SrV, 16SrIX, 16SrX, 16SrXIIl, 16SrXIV, 16SrXV, 16SrXXII
and 16SrXXXII. However, two of the largest groups 16Srl and 16Srll are
polyphyletic. All the subgroups of 16SrI group together in a single clade
but this group gave rise to 16SrXXVIIIL. The 16SrlI lineage (also con-
taining 16SrXV and 16SrXXXIV) and the 16SrXXV branch group to-
gether, forming a sister relationship to 16SrIIl. Group 16SrV is sister to
the lineage comprising 16SrVI and 16SrVIL Sister relationships be-
tween some other small groups are also strongly supported, including
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Fig. 3. Timetree chronogram for the final 16S rRNA gene dataset (tree on the top left). Blue dots indicate the calibrated deeper nodes. * Families or group sensu Gupta
et al. (2018). The divergence time estimation of phytoplasmas and Acholeplasma sister clade (dashed orange box) is magnified below. The horizontal scale indicates
age in millions of years, with vertical lines indicating boundaries between geological time units (Era and Period). N: Neogene. Node age estimates correspond to those
in Fig. 1, column “Step2”. Branches are colored from bottom to top as follows: gray, Acoleplasma palmae + A. parvum; light blue, 16SrXIII group; blue, 16SrXII; red,
168r]; violet, 16SrX; green, 16SrXI; orange, 16SrXIV; brown, 16SrIV + 16SrXXII; pink, 16SrXXXII; deep pink, 16SrV; dark green, 16SrVII; yellow, 16SrVI; light pink
16SrIX; navy, 16Srlll; light yellow, 16SrIl. Numbered pictures: 1, land plants (473.5-514.8 Ma; Morris et al., 2018); 2, hemipteran insects (~300-386 Ma; Johnson
et al., 2018); 3, Spermatophyta (289-365 Ma; Kumar et al., 2017; Morris et al., 2018); 4, angiosperms (168-246 Ma; Kumar et al., 2017; Morris et al., 2018); 5,
Fulgoroidea (~200 Ma; Johnson et al., 2018); 6, Arecaceae (97-110 Ma; Percy et al., 2018); 7, Rosaceae (~101.6 Ma; Xiang et al., 2017); 8, Psyllidae ca. 95 Ma;
Johnson et al., 2018; Percy et al., 2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

16SrIX + 16SrXXIX, 16SrXIX + 16SrXXI, 16SrXX + 16SrXXXIII and
16SrXXVI + 16SrXXVIL To our knowledge, this is the first phylogeny of
phytoplasmas that includes a well sampled outgroup including re-
presentatives of all major lineages of Tenericutes.

The ML tree for map (Fig. S1) was constructed based on partial
coding sequences with incomplete sampling of 16Sr phytoplasma
groups and subgroups, representing only groups 16SrI to 16SrXIII and
16SrXVIII. Although the map sequences were not available for all sub-
groups considered, the map tree recovered two major subclades similar
to the 168S tree (Fig. 1), but with the position of 16SrX shifted from one
subclade to another. Notably, neither the 16S nor the map tree indicated
high branch support for the position of 16SrX, but the major subclades
were strongly supported when 16SrX (or the small clade containing
16SrX) was excluded. 16Srl, 16Srll, 16SrlIll, 16SrIV and 16SrVI were
recovered as well-supported monophyletic groups, probably due to the
limited sample coverage. Group 16SrXVIII was nested within 16SrXII as
in the 16S tree. Group 16SrV was also recovered as a monophyletic
lineage but with moderate support (bootstrap value 72). Subgroups
16SrV-A, -C, -D and -E formed a sister group to 16SrV-B (or 16SrV-
B + 16SrV-F in 168S tree), which was previously reported as the most
divergent lineage with respect to the other groups (Arnaud et al., 2007;
Jung et al., 2003). The positions of 16SrV-A and 16SrV-E were different
in the two ML trees. 16SrV-C and -D, including FDp and FD-rp strains,

were consistently recovered as closely related subgroups (clade in the
gray box, Fig. S1), and three main clusters (A, B and C in Fig. S1) were
detected. The first two clusters (A and B) include FDp in subgroup
16SrV-C and FD-rp strains, whereas the third one (cluster C) includes a
well-supported monophyletic lineage of strains belonging to the 16SrV-
D subgroup (bootstrap value 98) sister to SI04-S4 strain, and siblings to
the FD-rp strains ALY + PGY-B. The ML general topology is consistent
with earlier studies of the map gene (Arnaud et al., 2007; Plavec et al.,
2019).

3.2. Divergence times

To overcome the absence of a fossil record for most prokaryotes,
secondary calibrations and divergence times of hosts are often em-
ployed in the estimation of microbial evolutionary history (Chriki-
Adeeb and Chriki, 2016; Gruen et al., 2019). Previous studies on the
divergence times of Mollicutes (Marin et al., 2016; Sheridan et al., 2003;
Sjostrand et al., 2014) and multilocus genetic characterization of FDp
and FD-rp strains supporting the assumption of recent divergences of
FDp (Angelini et al., 2003; Arnaud et al., 2007; Malembic-Maher et al.,
2017), provided an opportunity to illuminate the evolutionary history
of phytoplasmas. In this paper, times of origin and major divergences of
phytoplasmas were estimated using the 16S rRNA gene. This molecular
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marker has been widely used for phylogenetic and taxonomic classifi-
cation of prokaryotes (Johansson et al., 1998).

Our initial timetree estimate, using calibrations of deeper nodes
only (Fig. 1, blue arrows), suggested the divergence between the most
recent common ancestor of phytoplasmas and A. palmae + A. parvum
occurred ~614.55 Ma. In a previous study that attempted to infer times
of origin of various bacterial lineages based on known geological events
without incorporating information on molecular divergence, the split
between phytoplasma and Acholeplasma clade was dated much later
(180 Ma; Maniloff, 2002). In our tree, the crown clade of the phyto-
plasmas was dated ~302.90 Ma. Within the crown clade, the first major
subclade (including 16Srl, 16SrXII, 16SrXIII and 6 other small groups)
began to diversify in Lower Cretaceous, and the second one (including
16SrII and 16SrIIl, and 24 other groups) in the Late Paleozoic (Fig. 1,
column “ Step 17).

In the map timetree, the first (including 16Srl, 16SrXII, etc.) and
second (including 16SrIl, 16SrIll, 16SrV, etc.) major phytoplasma
subclades were dated ~ 269.71 Ma (Fig. S1, node 2) and ~174.63 Ma
(Fig. S1, node 3), respectively, substantially different compared to the
preliminary 16S tree: 139.77 Ma (Fig. S1, “Stepl”; node 51) for the first
subclade and 246 Ma (Fig. S1, “Stepl”; node 52) for the second sub-
clade. This discrepancy may be partly due to the different positions of
the 16SrX group between the two trees. The age of the 16SrV lineage
was estimated at ~ 15 Ma (Fig. S1, node 22) and the divergence among
16SrV-A, 16SrV-C, 16SrV-D and 16SrV-E started ~ 5.74 Ma (Fig. S1,
node 23). Due to the absence of 16SrV-F in the map tree, the divergence
time of 16SrV-A + (16SrV-E + (16SrV-C + 16SrV-D)) (Fig. S1, red
arrow) rather than the crown of 16SrV was used to constrain the age of
the corresponding node in the 16S tree (Fig. 1, red arrow).

The final 16S timetree, with the internal calibration for 16SrV ap-
plied, yielded similar divergence times to those obtained for the initial
16S tree without the internal calibration (Fig. 1, compare columns
“Stepl” and “Step2”), suggesting that rates of evolution have remained
relatively constant overall within this lineage.

Fig. 3 shows a simplified version of the final 16S timetree of the
phytoplasma lineage plotted against geological time with important
evolutionary events indicated. The phytoplasma lineage was found to
have diverged from the A. palmae + A. parvum subclade in the late
Proterozoic (~641 Ma), before the emergence of land plants, dated at
middle Cambrian-Early Ordovician (473.5-514.8 Ma; Morris et al.,
2018), and the Hexapoda (insect) clade dated at Upper Cambrian
(~500 Ma; Giribet and Edgecombe, 2019). Known Acholeplasma species
are broadly associated with vertebrates, except for A. pleciae associated
to Plecia sp. (Diptera) and A. laidlawii and A. morum associated with two
species of mosquito (Brown and Johansson, 2010). So far, there is no
evidence for parasitic associations of Acholeplasma with their hosts. We
speculate that the ecological niche of the Acholeplasma-like ancestor of
modern phytoplasmas was similar to that of extant Acholeplasma. Pos-
sibly these ancestral stem-group “phytoplasmas” were associated with
ancestral Chordata (including vertebrates) or Panarthropoda (dos Reis
et al., 2015; Edgecombe and Legg, 2014). The possibility must also be
considered that the recent timetree of prokaryotes (Marin et al., 2016),
upon which our calibration of the divergence of Acholeplasmatales from
related Mollicutes was based, overestimated the ages of Mollicutes
lineages included in that study. Further analysis with additional cali-
bration points may be expected to improve the divergence time esti-
mates presented here.

Interestingly, the basal divergence in the crown clade of phyto-
plasmas (315.80 Ma; Fig. 1, node 50) corresponds to recent date esti-
mates for the rise of seed plants (Spermatophyta) 289-365 Ma (Kumar
et al., 2017; Morris et al., 2018) and hemipteran insects ~ 300-386 Ma
(Johnson et al., 2018). Subsequently, a few additional divergences of
major phytoplasma lineages occurred between the Carboniferous and
the Cretaceous but most of the recognized modern 16Sr phytoplasma
groups did not appear until later in the Cretaceous or during the Cen-
ozoic, after the radiation of angiosperms (168-246 Ma; Kumar et al.,
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2017; Morris et al., 2018) was underway. Many of the numbered 16S
groups radiated between 20 and 50 Ma.

The highly specialized 16SrX group began a rapid radiation in the
Upper Cretaceous (96.76 Ma). Within this group, subclade 16SrX-A + -
B + -C (originating 50.98 Ma) is strictly associated with a group of
Palearctic insect vectors in the genus Cacopsylla (Psyllidae) and the
plant family Rosaceae. The crown of the 16SrX group was
estimated ~ 96.76 Ma (Fig. 1, node 62), similarly Rosaceae emerged in
Lower Cretaceous (~101.6 Ma; Xiang et al., 2017). A recent molecular
phylogeny of Psylloidea recovered Psyllidae (sensu stricto), including
Heteropsylla and Cacopsylla, in the terminal clade (Percy et al., 2018).
The hemipteroid timetree of Johnson et al. (2018) did not include
Cacopsylla but the related psyllid genus Heteropsylla diverged from
other Psylloidea at ca. 95 Ma, slightly more recently than the estimated
time of origin of Rosaceae. Cacopsylla comprises two well-supported
subclades, the first one including the European species of Cacopsylla
predominantly associated with Rosaceae. Interestingly, all the species
of this subclade are recorded as competent or potential vectors of
phytoplasmas in the Rosaceae-associated 16SrX sub-clade. The phyto-
plasma lineage that includes group 16SrX, the only group associated
with non-Auchenorrhyncha vectors (Sternorrhyncha: Psyllidae), is one
of the earliest diverging lineages among the modern phytoplasma
groups, suggesting that the association of this lineage with Sternor-
rhyncha may be much older. Sternorrhyncha diverged from other
Hemiptera ca. 386 Ma and Psylloidea diverged from other Sternor-
rhyncha ca. 356 Ma, predating the age (~256 Ma) of the initial di-
vergence of the clade which includes the 16SrX group (and three small
groups for which vectors are currently unknown).

The non-monophyletic group which includes 16SrIV, 16SrXXII-A,
-B, 16SrXXVI-A, and 16SrXXVII-A recently evolved another specific
association with plants (64.37 Ma; Fig. 1, node 72). All the strains,
except 16SrXXVI-A and 16SrXXVII-A, are associated with the palm fa-
mily (Arecaceae), and the known geographic distribution of this group
of phytoplasmas roughly coincides with the pantropical distribution of
palms. The split of Arecaceae from their closest relative is dated at
120 Ma and the divergence of the extant lineages of these plants began
between 110 and 97 Ma (Anderson and Janssen, 2009). The known
vectors of the two subclades in phytoplasma group IV belong to Ful-
goroidea (planthoppers) which emerged ~ 200 Ma (Johnson et al.,
2018), well before the estimated time of emergence of this phytoplasma
lineage.

The last two examples support the hypothesis of a macroevolu-
tionary pattern of pathogen diversification mediated by host-shifts.
Based on available host data, we speculate that shifts in host plants by
insect vectors may have driven rapid radiation and diversification of
phytoplasmas. As suggested by Poinar (2014), when a host shift results
in a highly specialized association this will lead to a less stable patho-
system, whereas less specialized associations lead to increased resi-
lience against abiotic and biotic constraints. In our representative da-
taset, several diverse lineages (e.g. 16Srl, 16SrIl) are associated with
many different plant and insect families. Although preliminary analyses
of patterns of phytoplasma-plant and phytoplasma-insect associations
suggest more stable pathosystems for some groups of phytoplasmas, it
was also noted that available records of phytoplasma-host associations
are affected by a sampling bias due to under-sampling of interactions
that occur in natural habitats (Trivellone, 2019; Trivellone and Flores
Garcia, 2019). So far, almost all investigations of phytoplasma-plant-
vector interactions have aimed to clarify the epidemiology of phyto-
plasma-associated diseases in agroecosystems.

3.3. Conclusions

More research is needed on phytoplasma-host associations in nat-
ural habitats to facilitate robust analyses of the origin of this ancient
lineage of pathogens and specific evolutionary patterns related to host
shifts, biogeography and other macroevolutionary processes.
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A detailed estimate of divergence times in phytoplasmas is relevant
for further research aimed to reveal the macro- and microevolutionary
processes driving diversification patterns. Our results indicate that the
phytoplasma lineage is much older (~640.71 Ma) than previously in-
ferred (180 Ma based on known geological events but in the absence of
molecular divergence information). This very ancient origin implies
that the lineage that eventually gave rise to phytoplasmas retained a
free-living lifestyle or commensal associations with the ancestors of
vertebrates or Hexapoda for hundreds of millions of years before ac-
quiring the highly specialized parasitic/plant-pathogenic lifestyle
shared by all modern members of the group. This study represents a
first attempt to develop a detailed timetree for phytoplasmas using
molecular divergence time estimation methods. Further investigations
of the interactions of phytoplasmas with their host plants and vectors
are needed in order to fill major gaps in knowledge of the long evolu-
tionary history of this group of pathogenic bacteria.
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