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We present an improved spectral algorithm for Cauchy-characteristic extraction and characteristic
evolution of gravitational waves in numerical relativity. The new algorithms improve spectral convergence
both at the poles of the spherical-polar grid and at future null infinity, as well as increase the temporal
resolution of the code. The key to the success of these algorithms is a new set of high-accuracy tests, which
we present here. We demonstrate the accuracy of the code and compare with the existing PITTNULL

implementation.
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I. INTRODUCTION

The discovery of GW150914 [1] heralded the beginning
of gravitational wave astronomy. In the subsequent years
that detection has been followed up by a number of other
signals observed from binary black hole (BBH) mergers
[2-5], as well as from the merger of a binary neutron star
(BNS) system [6]. As the aLIGO [7] and Virgo [8]
detectors push to ever greater sensitivities, the number of
expected observations will continue to grow.

Extracting the signals from the noise involves matching
the incoming data against a template bank of theoretically
expected waveforms generated across possible binary
configurations. The efficacy of extracting the configuration
parameters (for instance, masses and spins of the binary
components) from a given signal depends on the fidelity of
the computed waveforms comprising the template bank;
this is because errors in the template bank will bias the
estimated parameters. The only ab initio method of gene-
rating accurate theoretical waveforms for merging BBH
systems is via numerical relativity: the numerical solution
of the full Einstein equations on a computer. Other methods
of generating theoretical BBH waveforms, such as effective
one-body solutions [9] and phenomenological models
[10,11], are calibrated to numerical relativity.

One limitation of numerical relativity simulations is that
they all rely on a Cauchy approach in which the spacetime
is decomposed into a foliation of spacelike slices, and the
solution marches from one slice to the next. Such an
approach can compute the solution to Einstein’s equations
only in a region of spacetime with finite spatial and
temporal extents bounded around the compact objects,
whereas the gravitational radiation is defined at future null
infinity Z". While some work has gone into hyperboloidal
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compactification methods for simulating the propagation of
gravitational waves to Z " [12—14], these methods have never
been fully implemented in the nonlinear regime. Without
them, extracting the waveform signal from the simulations
with these finite extents requires additional work.

The most common method of extracting the gravitational
radiation from a numerical relativity simulation is to
compute quantities such as the Newman-Penrose scalar
W, [15] or the Regge-Wheeler and Zerilli scalars [16] at
some large but finite distance from the near zone (perhaps
100-1000 M, where M is the total mass of the system),
typically on coordinate spheres of constant surface area
coordinate r. Because these quantities or the methods of
computing them include finite-radius effects, these quan-
tities are computed on a series of shells at different radii r,
fit to a polynomial in 1/r, and then extrapolated to infinity
by reading off the 1/r coefficient of the polynomial [17].
As the extraction surfaces are shells of constant coordinate
radii, the choice of gauge implemented in the simulation
can contaminate the resulting waveforms. Furthermore, if
the shells are too close to the orbiting binary, the extrapo-
lation procedure might not remove all of the near-zone
effects.

An alternative method for computing gravitational radi-
ation in numerical relativity is to solve the full Einstein
equations in a domain that extends all the way to Z*, where
gravitational waves can be measured. This can be done by
rewriting Einstein’s equations using a characteristic for-
malism [18-20], in which the equations are solved on
outgoing null surfaces that extend to Z. This formalism
chooses coordinates that correspond to distinct outward
propagating null rays, so it fails in the dynamical, strong
field regime at any location where outgoing null rays
intersect (i.e., caustics). Because of this, characteristic
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FIG. 1. Penrose diagram showing a typical CCE setup. The
metric is evolved using 3 + 1 methods in the Cauchy region
(shaded red) and with null methods in the characteristic region
(shaded blue). The Cauchy and characteristic regions overlap.
Curves of constant 7 or ¥, the Cauchy coordinates, are shown in
red and are shown as dashed curves outside the Cauchy region,
where they extend to spatial infinity i® or future temporal infinity
i*. Null curves of constant u are shown in blue. Given data on a
world tube I" (thick red curve) and on an initial null slice (thick
blue curve), the characteristic evolution computes the full metric
in the characteristic region. In Sec. III we describe the interface
from Cauchy to Bondi coordinates on I'. In Sec. [V we describe
the characteristic evolution. In Sec. V we discuss computing the
news function at Z* (thick green curve) and transforming it to
coordinates corresponding to a free-falling observer.

evolution is unable to evolve the near-field region of a
merging binary system, so it cannot accomplish a BBH
simulation on its own. However, it is possible to combine
an interior numerical relativity code that solves the equa-
tions on Cauchy slices with an exterior characteristic code
that solves them on null slices; the determination of
characteristic quantities from Cauchy data is known as
Cauchy-characteristic extraction (CCE) (see Fig. 1), and
the subsequent numerical evolution of those quantities is
known as characteristic evolution.

Specifically, CCE uses the metric and its derivatives
computed from a Cauchy evolution (red region in Fig. 1)
and evaluated on a world tube I'" (thick red line) that lies on
or inside the boundary of the Cauchy region. These
quantities on the world tube are then used as inner
boundary data for a characteristic evolution (blue region)
based on outgoing null slices (blue curves). Because the
combined CCE system uses the full Einstein equations for
both the Cauchy and characteristic evolutions, it produces
the correct solution at Z*, with the characteristic evolution

properly resolving near-zone effects. The gravitational
radiation is computed according to a particular inertial
observer at Z (green curve). This observer is related to any
other inertial observer by a single Bondi-Metzner-Sachs
(BMS) transformation [19] (the group of Lorentz boosts,
rotations, and supertranslations [21]), so up to this BMS
transformation the waveform is independent of the gauge
chosen by the Cauchy evolution.

The first code to implement CCE and characteristic
evolution was the PITTNULL code [22-24]. Since its initial
implementation there have been a number of improvements
made, and the current iteration of that code utilizes stereo-
graphic angular coordinate patches, finite differencing, and
a null parallelogram scheme with fixed time steps for
integrating in the null and time directions. Overall the code
is second-order convergent with resolution [25,26]
(although a fourth-order implementation also exists; see
[27]). Compared to waveforms computed from a Cauchy
code by evaluating W, at finite radii and extrapolating to
r — oo as described above, waveforms extracted via CCE
using PITTNULL were shown to better remove gauge effects
and to better resolve the m = 0 memory modes [28-30].

Currently, PITTNULL requires thousands of CPU hours to
compute a waveform at Z* given world tube output from a
typical Cauchy BBH simulation at multiple resolutions
[31]. While that cost is smaller than the computational
expense of the Cauchy simulation, it is still unwieldy and is
likely one reason that most Cauchy numerical-relativity
codes do not use CCE and characteristic evolution despite
the availability of PITTNULL. Because the metric in the
characteristic region is smooth, the computational cost of
characteristic evolution should be greatly reduced by using
spectral methods instead of finite differencing. Such a
spectral implementation of characteristic evolution has
been introduced in the SpEC framework [31-33]. Their
tests showed improved speed and accuracy over the finite-
difference implementation of prTTNULL [31,32].

Our work here describes improvements in accuracy,
efficiency, and robustness to the code described in [31-
33]. In particular, we discuss an improved handling of the
integration along the null slices, we clarify issues related to
the particular choice of coordinates along the null slice, and
we implement better handling of the inertial coordinates at
Z". We demonstrate through a series of analytic tests that
our version of CCE and characteristic evolution can
compute waveforms with much lower computational cost
than PITTNULL. An earlier version of our implementation
has been used to probe the near-field region of a binary
black hole ringdown [34].

We start with a brief summary of the Bondi metric and
the null formulation of the Einstein equations in Sec. II. A
detailed explanation for how CCE and characteristic
evolution works can be broken up into three distinct parts:
the inner boundary formalism, the volume characteristic
evolution, and the Z* extraction, which we describe in
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subsequent sections. Section III describes the means by
which the metric known on a world tube is converted into
Bondi form to serve as the inner boundary values for the
characteristic evolution system. Section IV discusses the
process of evolving FEinstein’s equations from the inner
boundary to Z*. Section V explains how to take the metric
computed on Z* and extract the Bondi news function in the
frame of an inertial observer at Z*. In Sec. VI, we describe
code tests and performance.

Throughout this paper, indices with Greek letters
(u,v, ...) correspond to spacetime coordinates, lowercase
Roman letters (i, j, ...) to spatial coordinates, and capital-
ized Roman letters (A, B, ...) to angular coordinates, and
we choose a system of geometrized units (¢ = G = 1). For
convenience, we have included a definitions key in the
Appendix C.

II. SUMMARY OF CHARACTERISTIC
FORMULATION

In the characteristic region (see Fig. 1), we adopt a
coordinate system x* = (u, r,x*), where u is the coordi-
nate labeling the outgoing null cones, r is an areal radial
coordinate, and x4 are the angular coordinates. Note that a
curve of constant (u,x%) is an outgoing null ray para-
metrized by r; for this reason we sometimes call r a
“radinull” coordinate. The metric can then be expressed in
the Bondi-Sachs form [18,19],

ds* = —(e?(1 + rW) — rPhyg UAU®)du?
—2e*dudr — 2r*h, g UBdudx? + r*h,pdx*dx5,
(1)

where W corresponds to the mass aspect, U* to the shift, 3
to the lapse, and &, p to the spherical 2-metric. The quantity
h,p has the same determinant as the unit sphere metric
qap> |has| = |qap|- Note that the metric Eq. (1) is not
constrained to be asymptotically flat, as required by
Bondi-Sachs coordinates. Instead, we impose the weaker
constraint that all metric components of Eq. (1) are
asymptotically finite at Z%. To emphasize this subtle
difference with Bondi-Sachs coordinates, we refer to the
spacetime metric as having the “Bondi-Sachs form” rather
than being expressed in Bondi-Sachs coordinates. An
additional intermediate quantity, Q,, is defined to reduce
the evolution equations to a series of first order partial
differential equations (PDE),

QA = r2€_2ﬂhABU€,. (2)

Instead of expressing the metric in terms of tensorial
objects, we employ a complex dyad so that the metric
components can be computed as spin-weighted scalars,
and each of these scalars can be expanded in terms of

spin-weighted spherical harmonics (SWSHes) of the appro-
priate spin weight; see Appendix A for details about
SWSHes. The dyad ¢* has the following properties:

g gy =0, (3)
g, =2. (4)

If we define g, and g2 such that

1, _
das =5 (4G5 + Gaqs). (5)
q*“qcp = 84, (6)
then
q* = q*Bq. (7)

We express the metric coefficients and the quantity O, in
terms of spin-weighted scalars J, K, U, and Q, defined by

1
J = EhABquB’ (8)
1 _
K= EhABquBy (9)
U= q,U*, (10)
0= QAqA- (11)

The determinant condition on h,p defines a relationship
between J and K as

K=+\1+J]. (12)

We introduce one more intermediate variable H, the time
derivative of J along slices of constant r,

H = J,u\x",r:const' (13)

The quantities J, f, and Q are all dimensionless while U,
W, and H have units of 1/R (identically, units of 1/u in the
case of H).

Evaluating the components of the Einstein equation
G,, = 0 provides a system of equations for the quantities
p, 0, U, W, and H:

(rPQ), =—-r*(dJ + 0K) , +2r*0(r2p) , + N, (15)

U, =20+ Ny, (16)
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1 -
(W), = EezﬂR — 1 - ¢#dde”

2400 +0U)) , + Ny,  (17)

N

+

2(rH) . = (1 +rW)(r]) ) , = 17! (r?00),

+2rtef el — (rW) . J + N, (18)

where

N I R
R =2K — 00K + 5 (8] + 0°7) + - (3707 = 3J07).
(19)

and Ny, Ny, N g, Ny, and \V; are the terms nonlinear in
J and its derivatives, according to [22]. Appendix B
provides the full expressions for these equations.

These equations correspond to different components of
the Einstein equations, namely, R,, = 0 gives the equation
for f,, R,4q" = 0 gives the equation for U ,, R zh"8 =0
gives the equation for W ,, and R,zq"¢® = 0 gives the
equation for H ,. These cover six of the ten independent
components of Einstein’s equations. As [23] discusses in
more detail, of the four remaining components of the
Einstein equations, one of these is identically zero (R} = 0)
while the other three (R =0 and R,¢* = 0) serve as
constraint conditions for the evolution on each of the null
slices.

However, computing these constraint conditions involve
lengthy expressions that include the wu-derivatives of
evolution quantities other than J . It is not straightforward
to compute these derivatives to the same accuracy achieved
by the rest of the code. We leave to future implementations
the ability to accurately compute these constraints as a
monitor of how well we obey the full Einstein equations
during the evolution.

The equations are presented in a useful hierarchical
order: the right-hand side of the f equation involves only J
and its hypersurface derivatives, the right-hand side of the
Q equation involves only J and f and their hypersurface
derivatives, and so on for the other equations. Therefore,
given data for all quantities on the inner boundary as well as
J on an initial ¥ = const null slice, we can integrate the
series of equations in Egs. (14)—(18) on that slice from the
inner boundary to r = oo to obtain f, Q, U, W, and then H
in sequence on that slice. Then, given H = J ,j,_cons O
that slice, we can integrate forward in time to obtain J on
the next null slice.

III. INNER BOUNDARY FORMALISM

The coordinates used to evolve Einstein’s equations in
the Cauchy region (red area of Fig. 1) are generally
different from the coordinates discussed in Sec. II. The
Cauchy coordinates are chosen to make the interior

evolution proceed without encountering coordinate singu-
larities; the procedure for choosing these coordinates is
complicated and typically involves coordinates that are
evolved along with the solution [35-40]. Therefore, for
CCE we must transform from arbitrary Cauchy coordinates
to coordinates such that the spacetime metric takes the
Bondi-Sachs form [Eq. (1)] at the world tube.

Here, in the Cauchy region, for simplicity we assume
Cartesian coordinates (7,%) in which the world tube
hypersurface I' (which is chosen by the Cauchy code) is

a surface of constant ¥, where ¥ = /%> + > + 2°.
We also define angular coordinates ¥* = (6, ) in the

usual way from the Cartesian coordinates ¥'.

The world tube serves as the inner boundary of the
characteristic domain (see Fig. 1). On this boundary, we
assume that the interior Cauchy code provides the spatial
3-metric G5 the shift 4, and the lapse &, along with the
7 and 7 derivatives of each of these quantities. Angular
derivatives of these quantities are necessary as well;
however, we can compute those numerically within the
world tube itself, so they need not be provided a priori.

Reference [24] describes how to take the data provided
by the interior Cauchy code and covert it into Bondi form
[Eq. (1)] to extract the inner boundary values of the
evolution quantities (Jir, A, ...). This section is primarily
a summary of their results; however, we use different
notation than Ref. [24]. Additionally, as noted above, the
SpEC CCE treatment takes the inner boundary of the
domain to be the world tube provided by the Cauchy code,
which is generally not a surface of constant r. The
PITTNULL treatment, on the other hand, uses a surface of
constant r as the inner boundary of the domain, and
performs a Taylor expansion in the affine radial coordinate
in order to determine inner boundary data on this surface.
Avoiding the Taylor expansion simplifies the boundary
computation and may provide marginal precision improve-
ments by avoiding a finite Taylor series truncation error.

A. Affine null coordinates

Our goal is to transform from the coordinates (7, ¥!) to
coordinates such that the metric takes the Bondi-Sachs
form [Eq. (1)]. It is simplest to proceed in two steps: the
first step, described in this subsection, is to construct
coordinates foliated by outgoing null geodesics. The
second step, described in Sec. III B, will be to transform
from these affine coordinates to Bondi coordinates.

We begin by constructing a choice null generator £%,
which involves the unit outward spatial vector normal to the
world tube’s surface, s#, and the unit timelike vector normal
to a slice of constant 7, n#:
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W= 2 {14 o)

Equation (20) depends on our simplifying assumption
that the world tube is spherical in Cauchy coordinates
and can be generalized. From these equations, the null
generator is

=T (22)

The time derivatives of these vectors are

st =10, (=g + 5'5/2)s% g1} (23)
I S SRV S
;=3 {=dz a:p' = ap';}, (24)

i W4 sh + O (=ag + g S+ giiBs) + ')
G = g

(25)

We will now construct a null coordinate system based on
outgoing null geodesics generated by ##. Let 4 be an affine
parameter along these geodesics such that the value of 4 on
the world tube I is /_I|r = 0. We also define a null coordinate
it and angular coordinates ¥ = (8, $) that obey iz = 7 and
x4 = x4 on the world tube and are constant along the
outgoing null geodesic generated by ##. Thus we have
defined a new intermediate, affine coordinate system,
# = (1,4.0,¢), and we will express the metric Gzp in
these affine coordinates.

To do this, we will need to write down the coordinate
transformation from ¥ to X in a neighborhood of the world
tube, not just on the world tube itself, because we need
derivatives of this transformation. In particular, we will
need derivatives with respect to 1. The derivative of the
metric components g;; along the null direction simply is

Gnvg = 4 79,1 vy (26)

The evolution of the coordinates ¥ along null geodesics
implies that in a neighborhood of the world tube

)“cf% = YOt = R, (27)
Given the new coordinates X*, the metric components in
these coordinates are

X %P
= = ————= (. 5. 2
g;w 8)?” 85(” gaﬁ ( 8)
On the world tube,
ot
0,
oxA
ox o
oxr oxd’
ot
b
on ’
ox!
— =0, 29
on (29)

where the term OX /Ox4 is the standard Cartesian to
spherical Jacobian. The above values of the Jacobians hold
only on the world tube. In addition to the metric itself, we
will also need first derivatives of the metric, including the
derivative with respect to A. This requires the A derivatives
of the Jacobians evaluated on the world tube, which we
represent here as

az,iﬂ = 8_'“% — A
oxrol  oxr A
2y ji )
o0 X B 0)4 _ g (30)

onol  om "

where we have made use of Eq. (27).

We are now ready to write out the metric in these
intermediate coordinates by taking the expression in
Eq. (28) and taking the appropriate derivatives,

9a7 = —1,
911=94=0,
9au = Gii»
ox!
Juad = I i
9% oW
IAB = o oxk I
o o% L ox L o
L — _ H o M
IABL= oxi g i (fﬂf‘ oxp T (9)?;‘>gﬁi’
ox oy
9iBa = ﬁa_g iz
y o% y
9aaz =40+ 53 (97 + Cai)- (31)
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and

gt = guA =0,
gﬁz E——|
7"Pgpe = 8.

B. Bondi form of metric

Given the intermediate null coordinates and the metric in
that coordinate system, we apply one last coordinate
transformation to put the spacetime metric in Bondi-
Sachs form [Eq. (1)]. We define coordinates (u, r, 0, ),
where r is a surface area coordinate, u = i1, 0 = 6, and
¢ = ¢. The surface area coordinate r is defined by

1 COINL
- <|9AB|>4 _ (|gAB|>4’ (33)
98] 945

where ¢; 5 is the unit sphere metric.
The components of the metric in Bondi coordinates are
then

_ oo 4
= oxE g !

v

!

(34)

The Jacobians include the derivatives of the surface area
coordinate r. We compute

I ( 4B |‘Z"‘a
r,azz(gABgAB,&_ A ) (35)

|94 5

Since the only difference between the final boundary
coordinates (u, r, 0, ¢) and intermediate coordinates is the
choice of radinull coordinates, the Jacobians for the u, 6,
and ¢ directions are trivial. Equation (32) gives us

guu — gﬂﬁ — O,
guA — g'tA — O,
gt =" (36)

The other metric components are

g = ﬁgﬁﬁ ==rj
or Or __ .
rro_ ﬁa)—cz v_ (r’/_1>2g/l/1
+2r;(ragd —ra) +rarpg't,
or - -
grAZﬁ P =r;0" +rpg'?. (37)

From this we can also construct the inverse Jacobian
elements. The elements of that Jacobian we shall need are

oi _
ou
on
oxt 7
Or_ _ra
ou ry’
o
= =,
oxt A
ozt oxt
—=—-=0. 38
or  Ou (38)
The final metric element we shall want is g4z which we can
compute as

17

ox* 9%’
95 = . 5
ol ol oL 0A
= YaiB +@91A +@£IZB +@Wgzz
= 9aB (39)

where we made use of the fact that g;; = g;; = 0.

Because u and x* are equal to 7 and X¥* on the world tube
and are constant along outgoing null geodesics, the time

and angular coordinates (7, ¥*) on the world tube determine
the coordinates u# and x* throughout the characteristic
region, including on Z*. Thus, the coordinates at Z* will

be gauge-dependent, since 7 and ¥4 are dependent upon the
gauge choices made in the 3 4 1 Cauchy evolution. We will
later eliminate this gauge dependence by evolving and
transforming to the coordinates of free-falling observers on
I+, as described below in Sec. V B.

C. Inner boundary values of characteristic variables

Now that we have the full metric in Bondi-Sachs form
[Eq. (1)], we assemble the inner boundary values for the
various evolution variables used in the volume, J, 3, Q, U,
W, and H. We write out the complex dyads as
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qs = {-1,—isin6},

g = {-1,-&}. (40)

Because of the identification between the intermediate

angular coordinates ¥4 and the characteristic coordinates

x4, the dyads are identified, ¢* = ¢* and ¢, = ¢;5. Then,asa

consequence of Eq. (40), g, ; = qf‘j =0andg,; = qj‘}, =0.
Inverting the metric in Eq. (1),

0 —e % oA
¢v= |- (1+rW)e? —e2Uur|, (41)
OB _e—2/i UB r—2 hAB

where hygh®C = 5§ and |hyp| = |qasl-

In the PITTNULL code, the quantities J, A, Q, U, and
W and their 1 derivatives are computed using an
expansion in affine coordinates to compute their values
along a surface of constant surface area coordinate r [24].
PITTNULL then chooses its internal compactified radinull
coordinates in the characteristic region to be surfaces of
constant r. However, in Ref. [31] and here, we choose
our inner boundary to be the world tube. The value of the
surface area coordinate r at the world tube we define as
R(u,x"),

R = r‘r, (42)
R;=rjpr, (43)
Rz =rar. (44)

The consequences of this change in the inner boundary
hypersurface are discussed in more detail within
Sec. IVA.

We can now write down the inner boundary values of the
characteristic variables in terms of the metric coefficients
that we have computed at the inner boundary. Going back
to the definition of J = 14*¢®h,p, we get the expressions

Jir = %quBgAB = %q;‘q"’_’gm, (45)
K= /1407, (46)

Jar = ﬁq;‘qgg-g,z —%J\r, (47)
Jar = %CIACIBQAB,L‘; - %J\r- (48)

To get the inner boundary value of H, we expand J , as

S Jato-d5 (49)
u
so then we find after substituting and simplifying that
1 5 R;
— A . i
H\r T oR? q qB (9 Ba~ R,Z 9a B,/l)' (50)

We can read off the value for ¢"” to compute f,

fr = —3In(R;) (51)

We will also need f ;- in order to compute Q. Directly
differentiating Eq. (51) yields

Rj;
Pir = T2R; (52)

but this involves the quantity R 33, which appears to depend
on second derivatives of the metric. So we instead compute
B ;r using f’s evolution equation, Eq. (B1):

R -
ﬁ,j\r —Qop. (J,I1|FJ,I1|F - (K,Z\r)z)v (53)
8R;

which involves only first derivatives.
The quantities U and W can similarly be read off from
the metric:

grA
U|r = F qa, (54)

1 grr
we=- (-9 _1). 55
r=x(-%-1) (53

To get O, we will also need U ;r, which we compute
by differentiating the expression for U r and using Eq. (52)
to eliminate R ;; in favor of f ;-

-~ Rs» -- Ra --
Use == (o + 5227 + 2 )0
+ 28 5r(Upr + QMCIA), (56)

where it is understood that ;- is to be evaluated using
Eq. (53). Now that we have an expression for U j, the
inner boundary value of Q is given by

Or= RZ(J\FD,Z\F + KirU jpr)- (57)

D. Computational domain

We implement angular basis functions through the use of
the external code packages SPHEREPACK [41,42], which can
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handle standard spherical harmonics, and SPINSFAST [43],
which is capable of handling SWSHes. The world tube
metric and most of the intermediate quantities of the inner
boundary formalism are real, tensorial metric quantities
(i.e., representable by the typical spherical harmonics), so
we use SPHEREPACK. Once all of the inner boundary values
of the Bondi evolution quantities are computed, they are
then projected onto the basis utilized by SPINSFAST for use
during the volume evolution. Because Cauchy codes
evaluate the world tube data at discrete time slices, we
use cubic interpolation to evaluate each of the metric
quantities at arbitrary time values.

IV. VOLUME EVOLUTION

A. Computational domain

Because the domain of characteristic evolution extends
all of the way out to Z* where the surface area coordinate r
is infinite, to express Z* on a finite computational domain,
we define a compactified coordinate, p,

. (58)

where R is the surface area coordinate of the world tube
given in Eq. (42) so that p runs from p - = 1/2to pr+ =1
This choice of compactification is subtly different from that
which is used in PITTNULL [27]. Because they expand in
affine coordinates to obtain a hypersurface of constant
Bondi radius, their compactification parameter is constant
and unchanging during their entire evolution. By tying our
compactification parameter to a fixed Cauchy coordinate
radius 7 and allowing the surface area coordinate r to
change freely, we must be careful in how we define our
derivatives.

One consequence of utilizing p is that angular derivatives
computed numerically on our grid, ), are evaluated at a
constant value of p, so these are not the same as angular
derivatives defined on surfaces of constant r, which we
denote as 9. Since Egs. (14)—(18) involve d and not 9|, we
must apply a correction factor to compute d from 9,

p(1—p)

-p
oF = 6|pF - F’pé‘pp = 6‘pF - F.pTé‘pR, (59)

for an arbitrary spin-weighted scalar quantity F. Similar
correction factors are needed for second derivatives that
appear in the evolution equations:

1-2 1
—pa\ﬂR - F,pﬂp(

)

-p
(0F),=0,F,~F O,

»

(60)

Zxr p(1-p) 5
66F—6|p6pF+pr< R2 >(2(1—p)6/,R6pR

< p(1-p)s
—R0,0,R) =0, F, (TalpR>

-0,F, <’@6PR> +F,, <’¥> 25‘,,R6‘,,R.
(61)

Correction factors for dF, dF p» OOF, OdF, and 3 F are
obtained by appropriately interchanging & and & in
Eqgs. (59)—(61).

Numerical derivatives with respect to ¢ and u are also
taken at constant p on our grid, but at constant r in the
equations, so similar correction factors are required there as
well, as discussed below in Sec. IV E.

We employ computational grid meshes suitable for
spectral methods, Chebyshev-Gauss-Lobatto for the radi-
null direction and SPINSFAST mesh for the angular direc-
tions with uniform ¢ and € grids.

B. Spectral representability

Spectral techniques represent functions over a finite
numerical domain as a series of polynomial functions.
Such representations are of greatest use when the numerical
evolution gives rise to smooth solutions, which converge
exponentially with resolution in the spectral expansion.
However, any defect in the solution, such as discontinuities,
corners, cusps, or the presence of logarithmic dependence,
will spoil the exponential convergence of a spectral
method, and potentially introduce spurious oscillatory
contributions to the numerical result. For this reason, it
is of great importance to the characteristic evolution code in
SpEC to minimize or eliminate sources of such nonregular
contributions to the hypersurface equations.

The nature of the characteristic hypersurface equations
permits terms proportional to log(r) to develop in the
solution of the characteristic evolution system. These terms
are not representable by polynomial expansions in 1/r or
by polynomial expansions in p, so if present they spoil
exponential convergence. Such terms creep into the
evolved solutions by three principal avenues: (1) via the
initial data choice, which if constructed naively can excite
logarithmic modes, (2) via poorly chosen coordinates of the
metric on the u = const hypersurfaces, and (3) via incom-
plete numerical cancellation in the equations, which possess
nontrivial pole structure. Points (1) and (2) arise from the use
of the asymptotically nonflat Bondi form of the spacetime
metric, Eq. (1). In that form, even mathematically faithful
solutions to the hypersurface equations for generic world
tube data possess logarithmic dependence. These logarithmic
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terms would vanish in an asymptotically flat coordinate
system, so they are a pure gauge contribution.

In Secs. IVC and IV D, we explain our methods for
minimizing the logarithmic contributions in the character-
istic evolution system. As part of the discussion in Sec. IV
C, we describe the choice of initial data that eliminates
logarithmic dependence from the first hypersurface of the
characteristic evolution system, addressing point (1) above.
In Sec. IV D, we describe improvements to the integration
techniques that address point (3) above. These methods
reduce logarithmic dependence to the point where it is not
noticeable in the tests presented here. However, the full
remedy for point (2) requires careful reexamination of the
characteristic evolution equations and a set of coordinate
transformations for the evolution system that will be
considered for future development of spectral characteristic
techniques, but is beyond the scope of this paper.

C. Initial data slice

The characteristic evolution equations require boundary
data on two boundaries: the world tube (thick red curve in
Fig. 1) and an initial slice u = u, (thick blue curve in
Fig. 1). Boundary values on the world tube were treated in
Sec. III above; here we discuss values on the initial slice.
Given the hierarchical nature of the evolution equations, the
only piece of the metric we need to specify on the initial
slice is J, as we can compute all of the other evolution
quantities from J using Eqs. (14)—(18). The main math-
ematical consideration for choosing J for the initial slice is
ensuring the regularity of J at Z'; the main physical
consideration in typical applications is choosing a J that
corresponds to no incoming radiation, either by a linearized
approximation [26] or by matching to a linearized solution
[44]. Finally, there is the numerical consideration men-
tioned in Sec. IV B that we wish to minimize the excitation
of pure-gauge logarithmic dependence and keep the initial
data C* over the numerical domain.

When choosing J on the initial u = u slice, we wish to
match the world tube data provided by the Cauchy code as
closely as possible. The world tube data that we take as
input (see Sec. III) consist of the full spacetime metric and
its first radial and time derivatives, which are sufficient to
constrain the value of J and the value of 0,J on the world
tube. By careful analysis of the characteristic evolution
equations, one can show that the initial u = u, hypersur-
face is free of logarithmic dependence if [45] 02J —
J((0,K)* = 9,J0,J) = 0 at Z". This condition is satisfied
by the simpler conditions J =J,, =0 at 77, so we
construct an initial J that satisfies J =J,, =0 at I+
and matches the world tube data. This construction is
consistent with the input Cauchy data in the overlap region
of (Fig. 1) to linear order in a radial expansion.

Our initial choice of J, determined by the functions J|-
and 0,J|p, is

R R3
Jinitial = 3 (3J|r + ROJ|r) - 53 (Ir + RO J|r)

R /1
5 (- 1)@+ o)

3 3
_% </_1]_ 1> (J| + ROJ|p). (62)

D. Radinull Integration

The characteristic equations Eqgs. (14)—(18) can be
solved in sequence by integration in » from the world tube
to Z*. We use a numerical radinull grid in the compactified
variable p, and we reexpress the characteristic equations in
terms of p derivatives; see Egs. (B1)(B6). The grid points in
p are chosen at Chebyshev-Gauss-Lobatto quadrature
points. The radinull equations for § , and U , [Egs. (BI)
and (B3)] both lend themselves to straightforward
Chebyshev-Gauss-Lobatto quadrature. Starting at the inner
boundary values of - [Eq. (51)] and U r [Eq. (§5)], these
evolution variables are integrated out to Z+.

A quick examination of the radinull equations for the
evolution quantities Q ,, W ,, and H , [Egs. (B2), (BS), and
(B6)] reveals powers of (p—1) in denominators, so
regularity at Z* (p = 1) is not guaranteed by the form
of the equations. A previous version of this same spectral
characteristic evolution method [31] utilized integration by
parts in order to rewrite the equations in a form without
poles, allowing them to be integrated directly via
Chebyshev-Gauss-Lobatto quadrature. However, integra-
tion by parts introduced logarithmic terms like log(1 — p)
which canceled analytically in the final results of gauge
invariants such as the Bondi news, but which were not well
represented by a Chebyshev-Gauss-Lobatto spectral expan-
sion in p. These logarithmic terms spoiled exponential
convergence and led to a large noise floor, limiting the
accuracy of the method. We choose an alternative
approach here.

The evolution equation for Q, Eq. (B2), can be written in
the form

QC QD
(T=p2  T=p)"

(rQ), = (63)

where Q¢ corresponds to the 1/(1 — p)? term and Q) is the
1/(1 = p)? term in Eq. (B2), and all factors of (1 —p) in
denominators have been written explicitly.

To better characterize the asymptotic behavior of this
equation, we rewrite the system in terms of the inverse
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radinull coordinate x = R/r =1/p — 1. Then Eq. (63)

becomes
955w
where
co Lt -
D= _%. (66)

We know the right-hand side quantities C and D are
regular at x = 0, and we seek a solution Q that is also
regular there. So we introduce new variables, motivated by
Taylor series expansions of Q, C, and D about Zt (x = 0),

Q = Q - Q|I' - xQ,x|I" (67)
C=C- C\I* - )CC,)C‘I+7 (68)

x2
D=D- D\I* - XD,X\I+ - 71),”|z—+. (69)

Thus, by construction, Q and C are both guaranteed to
behave like x? near x =0 while D behaves as x>.
Substituting these variables into Eq. (64) and gathering

similar terms, we find the differential equation

C D 2C,.;++D 7+
<Q> _C. D 2 xx|T

x2 32X 2x

Q,x|Z+ + C|Z* +D,x|Z+ 2Q\I+ +D|I+
+ = e Al g

E (70)

Because of how we have defined O, C, and D, any potential
singularity issues are confined to the last three terms. To
satisfy Eq. (70) for all x, the numerators of each of these
terms must identically vanish, providing constraints
and boundary conditions on the asymptotic values of Q,
C, and D,

=T 71

Or > (71)

Oyt = —Ciz+ = D y1+, (72)
1

0 - _C,X|I+ - ED’xx‘I‘F. (73)

The last equation, Eq. (73), is a regularity condition on C
and D. If satisfied, it ensures no logarithmic dependence in
the solution to the Q equation. A careful analysis of the
differential equations, which will be presented in complete
detail in future work, shows that the leading violation of
Eq. (73) is « 80%J |7+, and that Eq. (73) is entirely satisfied

if J=0and J,, =0 at Z*. The leading violation of the
conditions on J can be determined through further analysis
to have the leading contribution of U(9,J)?|;+ . These pure-
gauge regularity violations are important to note for
precision studies and for unusual regimes for characteristic
evolution, but for the practical evolutions, the scales we
observe do not typically exceed U ~ 107, J ~ 1073, So,
even for long evolutions, the logarithmic dependence does
not grow to a significant fraction of the main contribution.
We now integrate the equation

X X X

with inner boundary value

Dy
Qr = QO+ % + (Ciz+ + D y7+) (75)

to obtain Q at all radinull points. Then we reconstruct Q by
adding back in its asymptotic values,

D+
Q=0Q-—1—x(Cy+ + D yz+). (76)
Because the equation for Q does not mix the real and
imaginary parts of O, we follow [31] and solve for real and
imaginary parts of Q separately.

Examining the evolution equation for W, Eq. (BS), we
recognize that it has the same form as the equation for Q,
Eq. (B2). Therefore, in order to solve for W, we use the
same procedure as we do for Q, following from Eq. (63)
through Eq. (76) but replacing all of the quantities specific
to Q with their W equivalents.

The radinull equation for H, Eq. (B6) can be written as

rJ = — HB HC
H) ——(HT+HT)=Hy +——
(r ).[} 2( + ) A+1_p+(1_p)2’

(77)

where Hp = Z;Hp;. The form of this equation is very
similar to that of Eq. (63) that governs the Q (and W)
radinull evolution. However, there is now the additional
complication that H , has a term proportional to not only H,
but also to H. This couples the real and imaginary parts of
the equation.

The previous version of this code employed the Magnus
expansion in order to handle this difficulty [31]. While the
Magnus expansion might be useful for systems where the
terms in its expansion are rapidly shrinking, there is no
guarantee that will hold in general. Instead, we will write
the system as a matrix differential equation, expressing H
(and H,, Hp, and H) as column vectors such as

. (9’{(}1) ) s)

S(H)
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and defining the quantity M as
(79)

so that MH here represents matrix multiplication. Then
Eq. (77) becomes the matrix equation,

Hc
(1-p)*
As before, we convert from p into the inverse radinull

coordinate x = R/r=1/p —1 to better characterize its
behavior near Z,

Hp
H) , —rMH =H
(}" ),p r. A+1_,0

H H B C
<—> +M—=—=A+—+, (81)
X/ . X X X
where
M
M= (82)
_ Hy
A R(1+4x)*’ (83)
_ Hp
B=—ri+n (84)
__Hc
C=-—F. (85)

As we did with the Q equation, we shall introduce one final
set of variables, motivated by Taylor series expansions of
H, B, and C about x = 0:

H=H-Hpy, (86)
B=B- B+ — MH‘I+ + M‘I+H‘I+, (87)
C=C- C\I* - xC.x‘p. (88)

Once again, these variables are constructed so that 7 and B
behave as x and C behaves as x? in a neighborhood about
x = 0. Substituting these into Eq. (81), we get

H H B C Hyg+ +Cpg+

&J FMT=A S

x) X X X X

n B|I+ + C,x|I+ - M|I+H\I+
T .

(89)

As before, the numerators of the last two terms must vanish,
which gives us a boundary condition on H at Z+,

H‘I* — _C‘I+7 (90)

and a boundary constraint on B, C, and M,
0= B\I* + C,X‘IJr + M\I+C|I+- (91)

The last constraint is a regularity condition that is guaran-
teed to be satisfied provided the input spin-weighted scalars
S, Q, U, and W themselves are regular [45]. Of course, the
small violation that arises from the Q and W equations will
lead to a similarly small violation in the regularity of H. In
principle, a carefully chosen coordinate transformation
could fully address all of these small violations.
We then integrate the equation

H H B C
(%) cwMoaiB S oy
x) . x X x

from the world tube to Z*, with boundary value
Hir = Hr + Cjz+, to obtain H on the entire null slice.
We reconstruct H by computing

H=H-Cy. (93)

To help ensure the stability of the system, we perform
spectral filtering for each of the evolution quantities J, 3, Q,
U, W, and H after every time we compute them, similar to
[31]. For the angular filtering, we set to 0 the highest two
Z-modes in the spectral decomposition on each shell of
constant p. Thus, resolving the system up through £,
modes requires storing and evolving the evolution quan-
tities in the volume up through ¢ = 7, + 2 modes. We
filter along the radinull direction by taking the spectral
expansion of the evolution quantities along each null ray
and scaling the ith coefficient by

¢~ 108(i/(n,=1))'® (94)

where n, is the number of radinull points. This is a fairly
stringent filter. Future work may be able to retain more
mode content by exploring the precise needs of the filter to
avoid aliasing effects in a range of practical simulation data.

To demonstrate the improvement afforded by our new
method of treating the radinull integration, we test the new
method of integrating Eq. (81) versus the previous method
introduced in [31] on an analytic test case. Consider
Eq. (81) with

9 sinx — 1.53 cos x
R(1+x)?

2Y310Y2—20Y107 (95)

xsinx

B = _T(ZYS—I +3 Y43,V )

+ (0Y00 = 1), Y|, Y 2|, (96)
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New method
10-2 4 = = Previous method
----- Difference
10—5 -
10—8 -
10—11 -
10—14 -

FIG. 2. The angle-averaged value of the radinull spectral
coefficients of H after integrating Eq. (81) for the test system
given in Egs. (95)-(99) for both the new method of integration
described here and the previous method introduced in [31].

C = (1—cosx)(z¥5_1 +1 Y22, Y3)
+ (sinx + cosx), Y5, (97)

and with M defined by Egs. (79), (82), and (B7) with
J =Y, (98)
T == ZYZZOYOO’ (99)

For this test case, we set R = 2.94 and we resolve the
computational domain through L = 10 and n, = 41. This
test case is not necessarily physical, but satisfies the
boundary constraint given in Eq. (91). We integrate
Eq. (81) from an inner boundary value of Hr =0 to
x =0, obtaining H as a function of x, 6, and ¢, or
equivalently, obtaining the radial spectral coefficients of

¢;(0;. ¢y) at each angular collocation point (6;, ¢). To
reduce the size of the dataset, we average these coefficients
over the sphere according to

2
V{leail) = Zci(ej’(ﬁk)éi(ej’(pi) Singjzi’ (100)
I n9n¢
and we plot these angle-averaged coefficients in Fig. 2.
Because the test case satisfies the regularity conditions,
we expect that with sufficient resolution, an accurate
integration scheme would be capable of resolving the
solution to numerical roundoff. From Fig. 2 we see that
our current method demonstrates this behavior. However,
the radial modes of the previous method from [31] flattens
out about 6 orders of magnitude larger, because the

logarithmic terms are not properly represented via our
chosen spectral decomposition.

E. Time evolution

To evolve J forward in time, we integrate

J,u\p,xA:const = (101)
at each radinull point using the method of lines. This is
done using an ordinary differential equation (ODE) inte-
grator, integrating forward in u, with a supplied right-hand
side ®@. Here ® is computed using

Ry
Q=H+p(l-p)—J,

B (102)

where R ; is the derivative of the surface area coordinate r
along the world tube given by Eq. (44) and where H is the
result of the radinull integration, Eq. (18), accomplished
using the method in Sec. IV D.

The time integration of J [Eq. (101)] uses a fifth order
Dormand-Prince ODE solver with adaptive time stepping
[46], and a default relative error tolerance of 1078 except
where otherwise noted. The step sizes are limited entirely
by the error measure and is independent of the time steps of
the Cauchy evolution used to generate the world tube. The
time evolution is also done in tandem with the evolution of
the inertial coordinates [Eq. (130), and of the conformal
factor (Eq. (113)] from Z* extraction, as described below.

V.Z* EXTRACTION

Once the characteristic equations have been solved in the
volume so that the metric variables of the Bondi-Sachs
form Eq. (1) are known on Z™, the gravitational waveform
can be computed. This involves two steps. The first step is
computing the Bondi news function at Z* from the metric
variables there. The second step involves transforming the
news to a freely falling coordinate system at Z*; this
removes all remaining gauge freedom up to a BMS trans-
formation. These steps are described below.

A. News function

The metric in Bondi-Sachs form given in Eq. (1) is
divergent at Z© where r — co, so we work with a
conformally rescaled Bondi metric, g, = f2gm/, where
¢ = 1/r, that is finite at r - oco. Expressing this metric in
the coordinate system % = (u, Z, x*), it takes the form [23]

gﬁf/ = —(ezﬁ(z,”z + fW) - hABUAUB)dM2
+2e*dudt — 2h,z U dudx?

+ hydxAdx®. (103)
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Here hyg, B, W, and U# are the same quantities that appear
in Eq. (1).
To facilitate the computation of the news function, we
construct an additional conformal metric
Jio = @Yo (104)
that is asymptotically Minkowski at Z*. The conformal
factor w is chosen so that the angular part of g,, is a unit
sphere metric [45],

dAB = wzhABm- (105)
In terms of the original metric,
Jnp = QGaps (106)

Q = of. (107)

On a given constant u slice, @ can be computed by
solving an elliptic equation related to the two-dimensional
(2D) curvature scalar,

R =2(w* + hif:DyDyInw),

(108)

AB
iz

Equation (108) has the effect of setting the asymptotic 2D
curvature in the conformally rescaled metric to be 2, which
is the curvature of the unit sphere. Expanding out the
covariant derivatives yields [23]

where D, is the covariant derivative associated with %

1 _ - _ _ - _
hf;iDADB Inw = i (=28’ Inw] — 28* InwJ + 430 In wK — d1n wdJJ?> — d1In wdTJT — 20 In wdT

+28In wdKIK + 0ln wdJIK + dlnwdJ JK — 20 In wdKJJ + 8J3In wIK + 3T dIn wJK

—20KdInwJJ — dInwdJJJ —28In wdJ — dIn @d J J*> + 28 In wdKJIK).

Equation (108) could in principle be used to solve for @
at each slice of constant u. However, we instead solve this
equation for @ only on the initial slice, where the equation
simplifies significantly (see below), and then we construct
an evolution equation for @ and we evolve @ as a function
of u. Note that when evolving @, one could use Eq. (108) as
a check to monitor the error in w; however, we do not yet
do so.

On the initial slice, Eqgs. (108) and (109) simplify
considerably; we have set J i+ =0 [see Eq. (62)], so
Eq. (109) implies that hlAIliDADB Inw = 43dInw and
Eq. (19) implies that R =2, reducing Eq. (108) to
1 = @* + 3dIn . This has the trivial solution of @ = 1.

The null generators at Z* are defined as [23]

(109)

|
so that

it = w0t

(112)

where the covariant derivative V; is associated with the
Bondi metric, g;;. Derivation for evolution of the con-
formal factor on Z™ in the frame of the compactified metric
is given in Ref [23] and can be computed by

2ﬁﬁVﬁ Inw = —6_2/}W|I+. (1 13)

Reference [23] derived the formula for the news function
in the conformal metric with the evolution coordinates,

il = PV Qe (110)  with a sign error corrected in [47] (Ref. [23] chose their
convention to agree with Bondi’s original expression in the
i ib . axisymmetric case [18]). Here we have factored the s;

=gl = 97, (111) gliohtly differently than they did,

|
N = ! 4s) + 25, — (8U + dU) i +2 (114)
T 16wA(K + 1)\ T BTN )

A = we?, (115)
sy=J*H,+JJH,+2(K+1)(H,—JK /), (116)
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53 =0J pJJ U +dJ zJ*U +20UJIK , +200J1J s +dJ ;JJU + 3T ,J*U +20UJ*J , +20 U J°K »
+ (K +1)(20J,U — 20K ,JU — 20UJJ , + 4dUK , — 20UJK , + 4dUJ ,

+20J ;U — 20K ,JU —20UJK , —20U JJ ;),
s3=J0J,+JIT,+2(K+1)J,—JK,),

54 = 0AdwJJ + 0AdwJ* + (K + 1)(20Adw — dAdwJ — dAdwJ),

55 = 20°AJT + 20°AJ* + dADJJJ* + dADTJ*J — DADIITK — dAD T J*K + 20AdKJ*T
+ 20A0KJ*J + dAdJJ?T + AT J? — 20A0KJ* K
+ (K + 1)(40°A — 400AJ + 20AdJJ + 20AdTJ — 40AIK + 20AdJ — 20AdJ + 40AIKJ)

+ (K +2)(—20A3KJJ — dADJJJ — BADIJ?).

The news as defined in Eq. (114) has spin weight +2.
However, the usual convention for gravitational radiation is
to work with quantities with spin weight —2. Furthermore,
the news N has the opposite sign as the usual convention.
To relate this news function to the gravitational wave strain
defined using the following convention: given a radially
outward propagating metric perturbation from Minkowski,
hz = Guy — Mz and polarizations given by h, = (hyp +
h(M)/2 and h, = hg;, the strain is given by

h=h, —ih,. (121)
Then the news is related to the strain by
O;h = 2N. (122)

B. Inertial coordinates

Once the news function is computed according to
Sec. VA, it is known as a function of coordinates
(u,x*) on Z*. Recall that these coordinates are chosen

so that u = 7 and x* = ¥ on the world tube, where (%, ¥!)
are the time and angular coordinates of the interior Cauchy
evolution. Therefore, the news as computed above depends
on the choice of Cauchy coordinates.

In this section, we transform the news to a new inertial

coordinate system (i, )?A) on Z1, where curves of constant

% correspond to worldlines of free-falling observers

(because we are working on Z*, we can suppress the
radinull coordinate). This removes the remaining gauge
freedom in the news, up to a choice of free-falling observers
(or in other words up to a BMS transformation).

On the initial slice, we choose it = u and ¥4 = x4.
These inertial coordinates then evolve along the Z+
generators [23]

(117)
(118)
(119)
(120)
|
0, = w, (123)
9,5 =0, (124)

where the 71# are given by elements of the compactified
metric according to Eq. (111).

Since ¥ = (0, ¢) are not representable via a spectral
expansion in spherical harmonics, thus making them poor
choices for our numerics, we represent the inertial coor-
dinates using a Cartesian basis ¥ = (%, J, Z). We reexpand
Eq. (124), using the transformations

b 1 (e
oxt %2432 Yo T o )

o 1 0% 0y, . 0z
axﬂiz\/w<”8x”+yzaxﬂ 4350 )
(126)

(125)

Plugging those into Eq. (124) yields the coupled equations

Ox oy A _ox  _ 0y
k= = — . 127
You o ( yaxAHa;cA)’ 2
0% O, . 0%
XZ%"F Za——(x +y>£

ﬁf*< 0% oy s az)
=—|¥Z—+FZ—=-(+y =] (128
P oa T ( y)aA (128)

By expanding the basis from two coordinates to three,
we also need to introduce a constraint which will force the
% to remain on the unit sphere and eliminate the extra
degree of freedom, 7= /%> + 7> + 7> = 1. While this
holds analytically, numerically 7 will shift away from one
during the evolution, which makes it necessary to introduce
a constraint equation to the system of equations,
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or ox 0y 07
R Pl PR (129)
where C(7) is a constraint term where C(7 = 1) = 0. In our
code, C(7) = —k(7 — 1) for some positive parameter .
With these three equations, Eqs. (127)-(129), we solve
for the three ‘2)—)‘” After some manipulations and massaging,
we obtain the evolution equations for the Cartesian inertial
coordinates with respect to the characteristic coordinates,

o% 1 ok A
— 2 C(F) + = (=76, + 6 ,72)
3y~ 7 C) =5 (X0 + kr)(wﬁu

(130)

Once we know ii(u, x*), ¥ (u,x*), then obtaining the
news on this grid is a matter of interpolation. Our code does
so in two steps. First, each of the spatial coordinates, as well
as the news function is interpolated in time onto slices of
constant i1, so that we then have both ¥ (it,x*) and
N(it,x*) = N(@, %), using a cubic spline along each grid
point on Z.

Then on each constant i slice, we perform the spatial
interpolation by projecting the news function onto its
spectral coefficients ¢’”, using the orthonormality of
SWSHes from Eq. (A7),

(i) = | N(a, )0, P) sin0dddg.
SZ

(131)

However, since we numerically evaluate news function on
the noninertial characteristic coordinates, we must instead
do the integration over its area elements, sin d@d¢, so we
convert the coordinates of this expression, which introduces
the determinant of a Jacobian,

dOd¢ = ded(;)' g—ij . (132)

Once again, because of the difficulties of representing
angular coordinates spectrally, we convert this expression
from 6 and ¢ to ¥'. To facilitate our expansion to Cartesian
coordinates, we introduce a temporary radial coordinates ¥
and t on the unit sphere with ¥ = (¥,0,¢) and x* =
(r,0,¢) so that we can properly define the determinants
(keeping in mind ¥ and r are analytically identical to 1 and
will disappear from the final expressions),

oxA | ox || Ox?
1 oF
B (f2 siné) OxA| (133)

Plugging everything in yields the full expression,

@y = [ N, g) | %%

; | 7| Sin 040,

(134)

Note that we have included a factor of sin 6/ sin @ which,
while analytically trivial, aids with the numerics of our
code. Incorporating the sin € in the numerator generates the
proper spherical area element for the integration, while we
factor the 1/siné into the 8% terms in the Jacobian, as

numerically computed spherical gradients return factors
1 0

If the strain is similarly decomposed into spin weight —2
spherical harmonic coefficients, %,,,, then they are related
to the news coefficients by

Dahom = 2(~1) el (135)

One potential issue with Eq. (134) is the possibility that
there is a significant drift in the inertial coordinates relative
to the code coordinates. If there is a large systematic shift in
the coordinates (for example, if they all drift toward a single
sky location), then there could be regions on the unit sphere
which are sparsely represented. Because spectral methods
of computing integrals often assume an optimal distribution
of grid points across the surface, this drift means there is a
risk of underresolving the computation Eq. (134), espe-
cially for high # modes. To forestall this issue, we have
taken to representing the Z' extraction portion at a
significantly higher angular resolution from the rest of
our code. In particular, when we properly resolve the
volume evolution up to #,,,,, angular modes, we maintain a
basis consisting of 2£,, angular modes for our Z+
extraction code. Our properly resolved information content
is still no better than what is resolved in the volume
evolution (i.e., Zp,), but this allows us to accurately
project onto the inertial coordinates with Eq. (134).
Because the Z* extraction portion of the code is only a
2D surface, this choice is an insignificant contribution to
the overall computational cost of our code.

While this coordinate evolution projects the news func-
tion on an inertial frame, it is not a unique inertial frame.
The class of inertial observers at Z" are all related to each
other by the group of BMS transformations. Because our
CCE inertial coordinates at Z* correspond to free-falling
observers, the BMS frame remains constant throughout the
entire characteristic evolution. Thus, the BMS frame we use
in our evolution is frozen in entirely by our choice to
identify our inertial coordinates with the characteristic
coordinates on our initial slice (i.e., # = u and ¥* = x*).
This choice is in some sense arbitrary, as it is ultimately
related to the coordinates provided on the world tube by the
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Cauchy evolution on that initial slice, and there are no
guarantees of consistency between CCE evolutions on
different world tubes even from the same Cauchy evolu-
tion. However, development of a consistent treatment of
handing the choice of BMS frame is beyond the scope of
this paper.

C. Computational grid

We use SPHEREPACK for most of the Z* extraction, with
the final projection onto the inertial coordinates done using
SPINSFAST. The time evolution of the inertial coordinates,
Eq. (130), and of the conformal factor, Eq. (113), is done
in tandem with the evolution of J, Eq. (102), in the
volume extraction, using the same routine (fifth order
Dormand-Prince) and error tolerance as specified for that
evolution.

VI. CODE TESTS

In order to showcase the accuracy, speed, and robustness
of this spectral CCE code, we perform a number of tests on
the code. We have two linearized solutions, a trivial
analytic solution, and two fully nonlinear tests which
outline how well the code can remove purely coordinate
effects from the news output.

A. Linearized analytic solution

The linearized form for the Bondi-Sachs metric for a
shell of outgoing perturbations on a Minkowski back-
ground was given in [48], though our choice of notation

[+ jur? . !
Nin = ER(e”‘” lim <¥Jf ——Jf_,) +e’”“ﬂ;> Z=2)

4

r—o0

follows more closely with that used in [25]. We can express
the solutions in terms of the metric quantities

Jin = V(€ +2)1/(€ = 2)PZ"R (I (r)e™),
Ui = V(0 +1)1Z7"R(Uy(r)e™),

Pin = 2Z"R (B (r)e™),

Wlin = OZf’"ER(Wf(r)ei”“), (136)
where v is a real constant setting the frequency of the
perturbations and J,(r), U(r),B(r), and W,(r) are all
analytic complex functions of just the radius and #-mode of
the perturbation, given below. The angular content is

expressed through the various *Z™, which are just linear
combinations of the typical SWSHes defined as in [48]

1
sgtm _ syfm 4 (=1)msy?=m)  for m > 0,
ﬁ( (=1) )
i
sgém _ —1)msytm _syf=m)  for m < 0,
ﬁ(( ) )
s700 — sy?0. (137)

To get the linearized expression for Hy;,, we can simply
take a direct u derivative of Jj;,. Since these expressions are
defined according to the Bondi metric, with the surface area
coordinate r (rather than p), u derivatives are taken along
curves of constant r. Thus Hy, = Jy, .

From this, the linearized news function can be
expressed as

(138)

Reference [25] explicitly wrote out the solutions to the linearized evolution quantities and news function for the # = 2

and 7 = 3 modes, which we reproduce here. For £ = 2,

ﬁZ = BZ’
2432 + 3il/C2a - il/3C2h CZa C2h
Jo(r) = -2,
2(r) 36 AT
—24iIJB2 + 31/2C2a - U4C2b 232 C2a iIJCQb C2b
Up(r) = +— 2 3T A0
36 r 2r 3r 4r
W . 2411/32 - 31/2C2a + I/4C2b 3il/C2a - 6B2 - il/3C2h V2C2b il/CZh CZh
2(r) = 6 + 37 ) 3 247
i13Cy),
NZm Y (ll/ 2b ewu> ZZZWL’ 139
o (139

and for 7 = 3,
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ﬂ3 = B3v
J ( ) 6OB3 + 3il/C3a +I/4C3b C3a il/C3b C3b
r) = e 27 __ 27
’ 180 10r 65 4t
U (r) - —60iI/B3 + 3U2C3a - iU5C3b 4 233 C3a 21/2C3b 5i1/C3b C3b
T 180 ro 27 38 at P
60iIJB3 - 31/2C3a + il/SC3b il/C3a - 2B3 + 1/4C3b 2il/3C3b 4iU2C3b 51/C3b 3C3b
Ws(r) = + - > 7+ i T 5
15 3r r r 2r r

where B,,C,,, and C,, are all freely chosen complex
constants. Note that only the values of C,;, show up in the
expression for the news.

For the tests we performed here, we follow a similar
setup as in [25,27], where we evolve a system which is a
simple linear combination of the (2,2) and (3,3) modes.
Specifically, the parameter values are v = 1, B, = 0.5iq,
Cso = 1.5a, and C,;, = —iC5;, = 0.5a, where the constant
a sets the amplitude of the resulting news as well as the
scale of the linearity of the system. Because we evolve the
entire nonlinear solution, and not just a linearized version,
we expect our results to differ from the analytic solution
|

(140)

with differences that scale as the square of the ampli-
tude, a?.

We place these linearized values of the evolution
quantities (J, W, U, 8) on a chosen world tube to serve
as the inner boundary values for the volume evolution. By
starting with the world tube in the Bondi metric, we bypass
the entire inner boundary formalism since we are already
starting with the Bondi metric quantities. To make this test
even more demanding, we chose our world tube such that
its surface area coordinate varies both in time and across the
surface, given by the formula

R(u,x,y,z) = 5(1 +

We chose this distortion of the surface area coordinate
somewhat arbitrarily, ensuring that it had distortions with
modes up through £ =4 as well as a time varying
component with a frequency distinct from that of the
linearized perturbation. This tests the code’s ability to
distinguish between H and @ with the correct handling
of the moving world tube surface area coordinate, R, at
least to linear order. Since this test bypasses the inner
boundary formalism, we cannot make any claim about
whether the coordinate radius 7 of the world tube is moving
as there is no defined coordinate radius.

The data for J on the initial slice we also read off from
Eq. (136). With the world tube metric values and initial slice
established, we evolve the full characteristic system. We
resolve SWSH modes through # = 8 with a radinull reso-
lution of 20 grid points and a relative time integration error
tolerance of 1078, We test the characteristic evolution against
perturbation amplitudes of a = (1072,1073,1074,1073,
1076,1077,107®) from u = 0 to u = 10. We compute the
difference between the computed news and the analytic

(=0.42x +0.29y +0.092)(0.2x + 0.1y — 0.122)(0.7x + 0.1y — 0.3z)(0.12x — 0.31y — 0.5z) sin )
mu |.
(x4 y2 4 2%)?

(141)

[
results from Eq. (138), [AN“™| = |[N&" — N¢™| in Fig. 3.

lin
Note, we are examining the news function evaluated at the

7 coordinates (u, 6, ¢), rather than the inertial coordinates
(i1, 0, ¢), because we expect the difference between the two
systems to be a small correction to the linearized values.

From Fig 3 we clearly see that when a > 1076, |AN‘"|
scales as @>. When a < 1079, the difference in news rapidly
reaches a floor below 10~'* for the smallest amplitude
perturbations. Modes other than (2,£2) and (3,+3) all
converge toward 0 with scaling behavior no worse than
|AN?™| S O(a?) until reaching machine roundoff. The
observed scaling with a matches the expected scaling: we
are evolving the full nonlinear equations but are comparing to
an analytic solution of the linearized equations.

Previous iterations of CCE codes have performed a
similar linearized analytic test [28,47]. While their choice
of parameters differs slightly from ours, they are most
similar to our @ = 107°, with inner boundaries at fixed,
uniform R world tube surfaces. The error in their news at
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FIG. 3. The difference between the numerically evolved news
function and the analytic solution for the linearized analytic test
of Sec. VI A, for various amplitudes of the linear perturbation a.
The (2,2) mode is on the left and the (3,3) mode on the right. We
expect differences of order a® because we evolve the nonlinear
terms that the linearized analytic solution neglects. For both
modes, the magnitude of the differences scales as at least o until
they approach numerical roundoff.

the resolutions they tested was worse than 10710, whereas
the error in our news for the @ = 107° case is at the order of
10~'%, hovering just about the error of our numerical
roundoff. While comparing our results to theirs is not
exactly a 1-1 comparison, we believe this is evidence for
how effective our code is at resolving the linear case.

B. Teukolsky wave

A Teukolsky wave is a propagating gravitational wave in
the perturbative limit of Einstein’s equations. For outgoing
waves the metric has the form [49]

ds* = —dP + (1 + f,,)d7?* + 2Bf ,rd7d0
+ 2B,y sinddrdp + (1 + CFiy) + AFS)) a6’
+2(A = 2C) fy,7* sin 0dOd

+ (14 CFY) + AFS) Psin?d di?, (142)

where the functions f; ; are known functions of angles listed
below, and the functions A, B, and C are computed from the
freely specifiable function F(it) = F( —F),

diF  3d,F  3F
A—3<;3 +— +;—5>,

?2 ;3 ;;.4 ;5

d&3F 3d2F 6d,F 6F
B=-— + + :

1 (diF 2d;F 9d2F 21d,F 21F
C=- i i it i 22, 143
4<?+?2+?3+?4+F5) (143)

where dj, is the total derivative with respect to #. The choice
of F(i—7F) specifies outward propagating waves, as
opposed to F(7 + ¥) which would generate ingoing waves.

Following [50,51], we choose the outgoing solution
corresponding to the SWSH 2Y?° mode, defining the f;;
from above as ‘

f,r =2—23sin? 0, fro =—3sinBcos, frp =0,
“(1 o “(2 Y

fée) = 3sin? 0, fée) =-—I, fop =0,

“(1 “(1 (2 .

Tl =T T =3sin%0 -1, (144)

and defining the profile of the waves with F(it) = ae™%/%,
where a and 7 are the amplitude and width of the wave,
respectively. This is slightly different from the choice of
F(it) used in either [50] or [51].

Because this solution starts with a metric that is not in
Bondi-Sachs form, this test utilizes the full inner boundary
formalism, in contrast to the linearized analytic test in
Sec. VI A, which tests only the characteristic evolution. We
evaluate the components of the metric [see Eq. (142)] at a
world tube of constant radius, 7. The world tube treatment
in Sec. III assumes that the metric is given by the 3 + 1

variables g;;, &, and /' in Cartesian coordinates; we obtain
these 3 + 1 Cartesian quantities from the spherical com-
ponents in Eq. (142) in the standard way, using X =
¥ sin @ cos g?z and so on.

Given the metric and its derivatives evaluated on a world
tube, the inner boundary formalism creates a correspon-
dence between time and angular coordinates on the world
tube and at T+, ie., (u=1.0=0,¢ = ). With that in
mind, the news function of this waveform at Z* is given by
the formula [51]
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3 sin?

N=-—

85F(i¢) (145)

where i = u — Fr. For our choice of F(it),

or
N = g /?”e—uz(lzoa — 16053 +32i%)  (146)

with all other news modes A"#*20 = (. When we compare
our computed news with this analytic news, we do so using
the news evaluated on the coordinates (u, 6, ¢), rather than
the inertial ones (i, 0, q;ﬁ)

Because this is a solution of the linearized Einstein
equations, comparing with our numerical solution of the
full nonlinear equations should yield differences that scale
like . Note that even though we represent the magnitude
of the linear perturbation with @ in both this test and the
linearized analytic test above, the absolute amplitude for a
given a is not the same for the two tests. The Teukolsky
wave news function here is over 2 orders of magnitude
larger than the linearized analytic solution for the same
value of a.

For our test, the world tube is at a coordinate radius of
Fr = 5, and we start the wave at the origin with a width of
7 =1 with amplitudes a = (1072, 1073, 107, 1073, 1075,
1077,107%). The CCE code is run to resolve the news up
through Z = 8 modes with 20 radinull points and a relative
time integration error tolerance of ~4 x 1076, We evolve
the system from u = 0 through u = 10, which starts and
ends when the metric is effectively flat.

We show the difference between the numerical evolution
and the (2,0) mode of the analytic news from Eq. (146),
|AN?| = |[N&.z — N9 on the left side of Fig. 4. We see
for larger perturbations (a > 107%) the difference in the
news scales with «?, while for smaller perturbations
(@ £107%) |AN?| reaches a floor below 1072, For other
¢ = even, m = ( modes, such as the (4,0) mode plotted on
the right half of Fig. 4, the behavior is similar. Because we
chose a solution with m =0, all m #0 modes of
the numerical solution vanish to numerical roundoff
for all a.

This behavior is very similar to what we see for the
linearized analytic test. This confirms that our CCE code is
consistent with the linear solution. Because this test also
incorporates the full inner boundary formalism (as opposed
to the linearized analytic test which does not), this also
confirms that to linear order, we reproduce the Bondi metric
on the world tube.

C. Rotating Schwarzschild

Following the test used in [23], we generate data
corresponding to the Schwarzschild metric in Eddington-
Finkelstein coordinates with a rotating coordinate trans-
formation, qZ - 55 + wit, so the metric is

102

10—4 —

[

.;u

i

’h‘t 1

0 5 10

FIG. 4. The difference between the numerically evolved news
function and the analytic solution for the Teukolsky wave test of
Sec. VI B, for various amplitudes of the linear perturbation a. The
(2,0) mode is on the left and the (4,0) mode on the right. We
expect differences of order a® because we evolve the nonlinear
terms that the Teukolsky wave solution neglects. For both modes,
the magnitude of the differences scales as at least o until it
approaches numerical roundoff.

oM .
a2 = — (1 - a)2?2sin20> dit? — 2diidy

7
+ 20i2sin*Oditdd) + Fsin>0d?, (147)
where M is the mass, @ is the parameter of the trans-
formation, and # is the coordinate it = 7 — #*. For our test,
we chose M = 1 and @ = 0.1. The world tube has a radius
of #=3M and the solution is evolved from u = OM to
u = 0.5M. Because the metric is just Schwarzschild in
different coordinates, there is no gravitational radiation. We
ran our code with an absolute time integration error
tolerance of 107'? and an inertial coordinate damping
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parameter of x = 10. The resulting numerical values of all
the news modes (resolved up through £ = 8) are below
absolute values of 107'2. Because this case uses a space-
time metric that is not in Bondi form and has a nontrivial
angular dependence, it is a full, nonlinear test of our
code (albeit with no time dependence) from the inner
boundary formalism through the extraction of the news
function at Z.

D. Bouncing black hole

One expected key feature of CCE is its ability to remove
gauge effects from the resulting waveform regardless of the
coordinates of the Cauchy metric. We construct a test
similar to those in [28,51]. We start with a Schwarzschild
black hole and apply a simple time-dependent periodic
coordinate translation on the spacetime. Doing so produces
a time-dependent, periodic metric at the (coordinate-
stationary) world tube, but because this black hole is not
radiating, the news function of this spacetime should be
zero; the goal of this test is to verify that we indeed get zero
in this nonlinear, time-dependent situation.

Specifically, the solution is that of a Schwarzschild black
hole with mass M = 1 in Kerr-Schild coordinates (7, X, ¥, %),
with a simple oscillating coordinate transformation

2t
)“c—n“c—l-asin“(%),

where in our test we chose a = 2M and b = 40M. Thus, in
the coordinate frame, which is also the frame of the world
tube, the black hole will appear to bounce back and forth
along the X-axis, but there is no radiated gravitational wave
content. The world tube is placed at 7 = 15M, which is
intentionally very small compared to what would be used for
a compact binary simulation (typically hundreds of M); we
chose an artificially small world tube to produce an extremely
difficult test of the CCE code. We evolve the system from
u=0M to u=40M, one full period of the coordinate
oscillation, starting and ending when the coordinates of the
black hole are at the origin.

We performed the characteristic evolution with our
spectral code at three different resolutions, which we label
as Sk, where k is (0,1,2). We set the resolution at each level
of refinement as follows: we retain SWSH modes *Y*”
through ¢, = 8 + 2k, we use 20 + 2k collocation points
in the radinull direction, and the adaptive time stepper uses
a relative error tolerance of 3 x 107 x ¢~* with a maxi-
mum step size of Au = 0.1. For each resolution, we ran our
code on a single core on the Wheeler cluster at Caltech an
Intel Xeon E5-2680, taking less than (30,50,120) minutes
for the (S0, S1, S2) resolutions, respectively.

For simplicity, we examine the news at ZT in the
coordinates (u, @, ¢) rather than in the inertial coordinates
(1,0, ). Similarly, we expand the news into spherical
harmonic modes 2Y?"(0, ¢). Since the news function is

(148)

supposed to be zero uniformly, simple coordinate trans-
formations at Z* are not expected to affect the overall
results presented here.

As a baseline for comparison, we also ran the PITTNULL
code on the same world tube data. We ran PITTNULL at
multiple resolutions (PO-P5). These correspond to a res-
olution of (100%,200?,300°,400%, 6003 900°) spatial
points and fixed time steps of Awu = (0.05,0.025,
0.01667,0.0125,0.00833, 0.00556)M. Because PITTNULL
takes significant computational resources at high resolu-
tion, we intentionally terminated the P5 simulation after
less than 15M. During the time that it ran, that simulation
continued trends seen in the lower resolution PITTNULL
simulations. The PITTNULL resolutions (PO, P1, P2) were
run on 24 cores on the Wheeler cluster at Caltech, taking
approximately (850, 2650, 5350) total CPU hours, respec-
tively, while resolutions (P3, P4, P5) were run on 512 cores
on the BlueWaters cluster, taking approximately (9000,
17000, 24000) total CPU hours, respectively. In the case of
P5, that corresponds to the cost expended on the simulation
before we terminated it. This massive discrepancy on
computational costs between the two codes demonstrates
the impressive speed-up achieved by utilizing spectral
methods, similar to what was observed with the previous
implementation of this spectral code [31,32].

In Figs. 5 and 6, we plot the amplitudes of the (2,2),(2,0),
(3,3), and (4,4) modes of the news for both codes for all
resolutions for one oscillation period. In both codes, the
amplitude of the £ 4+ m = odd modes vanishes except for
numerical roundoff, likely due to the planar symmetry of
the system. For the £ + m = even modes the computed
numerical news is nonzero for both codes at finite
resolution.

We see in Fig. 5 that for the £ = 2 modes the SpEC code
does a better job than the PITTNULL code does at removing
the gauge effects from the news function, at our chosen
resolutions. This is especially true at the beginning and end
of the oscillations when the difference between the shifted
coordinates and Schwarzschild is minor.

During the middle of the period, when the coordinate
effects on the world tube metric are the largest, the
difference between the SpEC and PITTNULL news in the
(2,2) and (2,0) modes is the smallest. Yet even in this
regime, the lowest resolution SpEC simulation improves on
the highest resolution PITTNULL simulation by over an order
of magnitude. For the higher order modes, like the (3,3) or
(4,4) modes in Fig. 6, the peak errors in the lowest
resolution SpEC results are roughly 2 orders of magnitude
better than those of PITTNULL. In all the modes, improving
the SpEC CCE resolution reduces the amplitude of the
news, suggesting the remaining errors in the SpEC results
are due to finite numerical resolution, rather than any issue
inherent to the code.

This test is a rather extreme test of the code’s ability to
distinguish coordinate effects, with the black hole moving

024004-20



SPECTRAL CAUCHY-CHARACTERISTIC EXTRACTION OF THE ...

PHYS. REV. D 102, 024004 (2020)

10712 o I I I

10~4
105
106
107
%%; 108
10-°
10—10
10—11

10712 I I
0 10 20 3

S -

40

FIG. 5. The absolute values of the (2,2) and (2,0) news modes
for both the SpEC (color, resolutions denoted by SO through S2)
and PITTNULL (grayscale, resolutions denoted by PO through P5)
CCE codes for the bouncing black hole test (Sec. VI D). For this
test the news should be zero. Although both codes are convergent,
the SpEC results achieve much smaller errors than the PITTNULL
results, especially near the beginning and end of the cycle as the
off-center translation vanishes.

an appreciable fraction of the world tube’s radius in its
coordinate frame. We also ran our code at the lowest
resolution on this identical system while placing the world
tube radius at a series of different coordinate values,
fir € (10,12, 15,20,25)M, spread quasi-uniformly in
1/7. In Fig. 7, we plot the amplitude of our code’s (2,2)
mode for each of these world tube radii.

Moving the world tube to smaller radii raises the error as
might be expected; eventually if the world tube is close
enough to the BH we expect caustics to form (i.e., radially
outward null rays cross paths) and the characteristic
formulation to fail. There is a clear convergence of this
error to zero as we move the world tube farther away and
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FIG. 6. Same as Fig. 5, but for the (3,3) and (4,4) modes of the
news. For these modes, the SpEC news is at least 2 orders of
magnitude smaller than that of PITTNULL.

the relative size of the coordinate transformation of the
bouncing BH shrinks.

E. Gauge wave

The bouncing black hole test is a measure of the code’s
ability to remove coordinate effects resulting from simple
translations; we now introduce a test to examine the code’s
ability to distinguish between outgoing gravitational waves
and gauge waves propagating along null slices. To generate
this gauge wave, we construct a metric similar to that
introduced by Eq. (5.2) in Ref. [52], except modified for an
outward propagating gauge transformation. Starting with
the Schwarzschild metric in ingoing Eddington-Finkelstein
coordinates, we apply the transformation of » =7+ 7 +
F(i—¥)/F where F(i1) is an arbitrary function. The line
element is
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oM dyF
a5 = - ( )<1 )dt2+2<1
r r
d,F F oM
T+t
7 7‘

Here M is the mass of the black hole and dj, is the total
derivative with respect to i. For the test, we set M = 1 and
we chose F to be a sine-Gaussian,

(u=itp)?
— a sin (wii + po)e” © . (150)

F(a)
Here o is the amplitude of the gauge wave, w is the
frequency, p, is the initial phase offset, i is the time when
the peak is at the origin, and k is its characteristic width. For
our test, we choose a =M, w=05/M, p,=0.01l,
ity = 40M, and k = 10.

Because this system is spherically symmetric, most of
the terms in the evolution equations are trivially zero. In
order to make the test more stringent and to generate
nonzero terms in the evolution equations, we also apply
an additional translation to displace the center of the
black hole from the center of the world tube. The translation
used is
—(?/40)4)‘

toi+2(l—e (151)

By moving the system entirely along the Z-axis, we expect
only m = 0 modes to be excited. We choose the world tube
radius to be 7/ = 50M. Our gauge wave is configured so
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FIG. 7. The absolute values of the (2,2) news modes from our
SpEC code at the lowest numerical resolution S1, for the
bouncing black hole test at different coordinate world tube
radii 7.

d;F\ (2M 2M\ (diF | F
TG 5 3))or
r r r 7 V
< L ))dr~+?%xf

.

that the peak will propagate outwards and pass through this
world tube at 7 = 90M.

We ran our SpEC CCE code at three different resolu-
tions, Sk, for k = (0, 1,2). This corresponds to angular
resolution of £, =8 + 2k, radinull resolution of
20 + 2k, and absolute time integration error tolerance of
10~"2¢7k, The three resolutions, (SO, S1, S2), were run on a
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FIG. 8. The amplitude of the (2,0) and (3,0) modes of the news
for SpEC (color) and pPITTNULL (grayscale) CCE codes for the
gauge wave test (Sec. VIE). The center of the coordinate shift
off-center occurs around u = 40M while the peak of the gauge
wave propagates to Z* at u = 90M. For this test, the news should
be zero. At all times, the SpEC code is orders of magnitude more
accurate than the PITTNULL code.
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single core on Caltech’s Wheeler cluster for approximately
(35,75,165) minutes.

PITTNULL CCE was also run at three resolutions,
PO-P2 corresponding to a finite differencing grid with
(100%,200%,300°) spatial points and fixed times steps of
size Au = (0.05,0.025,0.01667)M. Each resolution was
run on 256 cores on the BlueWaters cluster, costing
approximately (1100, 3200, 6000) CPU hours.

In Fig. 8, we plot the amplitude of the (2,0) and (3,0)
news modes for both codes and in both modes. We expect
the news to be zero because the solution is merely
Schwarzschild in moving coordinates. At all times both
codes show convergence toward zero, with SpEC several
orders of magnitude below PITTNULL. In the SpEC results,
at the times corresponding to the coordinate shift, we see
the amplitude of the news is noticeably smaller than seen in
the bouncing black hole test, consistent with the larger
world tube radius used in this test. The passing gauge wave
also leaves an imprint on the news that is appropriately
vanishing with resolution.

Examining the higher £ modes yields a similar picture
for both codes just at slightly decreasing amplitudes, as
seen in the right panel of Fig. 8. Also, as expected by the
axisymmetry of the setup for this test, both codes produce
zero news to numerical roundoff for all m # 0 modes.

VII. CONCLUSION

In this paper, we have detailed the implementation of our
spectral CCE code as a means of extracting gravitational
wave information from an interior Cauchy evolution of a
relativistic system. We summarized the full theoretical
framework CCE along with discussion of the changes
made to the previous version of the code [31,32]. In
particular, beyond bug fixes and miscellaneous alterations
to the code, we have improved the numerical treatment of
the poles contained within the Q, W, and H evolution
equations, switched the time stepper from fixed step size to
a fifth order adaptive, changed the representation of the
inertial coordinates at Z+ for better spectral handling. All of
these cumulative effects lead to a more robust and accurate
code than before. This paper also clarifies a number of
analytic subtleties and paper typos present within [31,32].

We applied our code to a number of analytic test cases in
order to examine its efficacy to extract the correct gravi-
tational wave content from the world tube data. In the pair
of linearized test cases, the code successfully reproduces
the analytic solution to linear order, with their differences
scaling as expected (i.e., scaling by the nonlinear terms
unaccounted for by the linear approximations). In these two
tests, the code is ultimately limited by the numerical
truncation limit of using double precision. A third test, a
Schwarzschild black hole in a rotating coordinate frame, is
a full nonlinear test of the code with a straightforward

vanishing solution. Similar to the linear tests, the code
resolves this solution up to numerical truncation limits.

The other two tests, the bouncing black hole and the
gauge wave, are more rigorous tests of the code’s capability
of eliminating gauge effects from the final output, and are
successful at doing so. For these tests, the errors are small
and convergent with resolution. Furthermore, as the world
tube boundary is placed farther from the black hole, less
resolution is needed to attain a given level of error.

Overall, this version of the code shows marked improve-
ments from the previous standards set by the PITTNULL
code. In both the bouncing black hole and gauge wave tests,
we ran PITTNULL at a series of different resolutions to
serve as an independent comparison. The resulting news
output from our code, for tests where the news should be
zero, was orders of magnitude smaller than that of
PITTNULL. In addition, we still observe the computational
speed-up of our code by a factor of > 100 that had been
noted in [31,32].

Our current goal is to run our CCE code on the catalog of
SpEC waveforms [53,54]. In future work, we plan to couple
the CCE code to run concurrently with the SpEC Cauchy
evolution. Then CCE would not have to be run as a seperate
postprocessing step to generate the final waveforms. We
would then like to follow that with Cauchy-characteristic
matching (CCM) [24], whereby information from the
Bondi metric is fed back into the Cauchy domain as both
the Cauchy and the characteristic systems are jointly
evolved. The characteristic evolution would then couple
directly with the Cauchy evolution, removing the need for
boundary conditions at the artificial outer boundary of the
Cauchy domain. While a previous code has successfully
performed CCM in the linearized case, they were unable to
stably run it for the general case [55].
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APPENDIX A: SPIN-WEIGHTED SPHERICAL
HARMONICS

Spin-weighted spherical harmonics (SWSH) are a gen-
eralization of the typical spherical harmonics by introduc-
ing spin-weight raising () and lowering operators (d)
[56,57]. These derivative operators are defined by con-
tracting the dyads with the angular derivative operator. For
any spin-weighted scalar quantity v = q‘?‘ ~--q’§2 VA A,
where each ¢; may be either ¢ or g, we define the spin-
weighted derivatives,

ov = q/fl o 'qﬁanDBUAlmAn’ (A1)

dv=q\" ¢ Dgva,..4 . (A2)
where D is the angular covariant derivative on the unit
sphere. By contracting these dyads with the tensor com-
ponent gives the spin-weighted version of the quantities,
computed above in Egs. (8)-(11). The dyads contracted
with a given quantity determine its spin weight, with +1 for
each ¢” and —1 for each g*. For example, the spin weight
of 8J = $04hpcq*q®gc is —1. Thus we see that (K, §, W)
have spin weight of 0, (Q,U) have spin weight 1, and
(J,H,®) have spin weight 2.

Now we can also express O as a complex spherical
derivative operator on a given quantity F with a spin weight
of s, and for our choice of dyad given in Eq. (4),

a0 i 0 I
OF = —sin 9(@ —+ Slﬂﬂ%) (Sln HF), (A3)
N I AV
OF = —sin 9(@ m@) (Sln 9F> (A4)

While pITTNULL used a finite difference formulation for
computing these derivatives [58], our code will make use of
how & acts on individual SWSH modes,

OV =\/(¢ —s)(+s+ 1)y (AS5)

VM = —\/(€ +5)(€—s+ 1) (A6)

With this, we can start from the regular spherical harmonics

And just like regular spherical harmonics, we can take an
arbitrary spin-weighted function of and decompose into
spectral coefficients with the use of the expression of
orthonormality of the SWSHes over the unit sphere,

/Sz ‘nydeQ = 5ff’5mm/’ (A7)

where dQ is the area element of the unit sphere S. Thus,
given a spin-weighted quantity, we can decompose it as a
sum of SWSH modes and take d and O derivatives by
applying the properties of Egs. (AS5) and (A6) to the
spectral coefficients.

Last, we list some basic, useful properties of SWSHes:

(1) It is only possible to add together spin-weighted
quantities of identical spin weights.

(ii) The spin weight of a product of two SWSHes is the
sum of their individual spin weights.

(iii) Because typical spherical harmonics are more gen-
erally SWSHes of spin weight 0, SWSHes inherit
the same mode properties of spherical harmonics
(.., 2>0,|m| <2).

(iv) In addition, the spin weight serves as a lower bound
on possible # modes, £ > |s|.

(v) Thedandd operators do not commute as, given spin-
weighted quantity F of spin s, 3dF = 3F + 2sF.

We utilize two external code packages to assist with the

numerical implementation for the angular basis function,
SPHEREPACK [41,42] for the standard spherical harmonics
and SPINSFAST [43] for the SWSHes. In particular, we use
SPHEREPACK primarily during the inner boundary formal-
ism and partially during ZT extraction, while we use
SPINSFAST during the volume evolution and Z* extraction.

APPENDIX B: NONLINEAR
EVOLUTION EQUATIONS

The full system of nonlinear equations appears below.
The equations are the radinull equations on the null
hypersurface for a given time slice. Reference [22] com-
puted these full nonlinear expressions and first expressed
them as SWSH quantities in [23], although we follow [31]
by writing them in terms of the compactified coordinate p,

(s = 0) and build up the SWSH modes for arbitrary spin _ p(1-p) JJ K Bl
weight. Py 8 ot »): (B1)
|
1 - - - -
(er).p = m R2p2(26ﬂ,,, - KoK ,— KdoJ , +9(JJ ,) +0(JK ,) —J ,0K
1 - - - - 1
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e _
U"’:RT)Z(KQ_JQ)’ (B3)
- 1 - - 1 - R
R:2K—66K+§(62J+62J)+R(6161—6J61), (B4)
1 R2p2 _ _ B R3p4 _ _ _
(rPw), = = (—R +— (00, +0U,) —e ¥ < (2KU U, + JU% + JU?)
Re* . - - - - L -
+ N (R — 2K (3p3p + ddp) + JOB* + JOp* — dB(OK — dJ) — dB(OK — dJ)
- _ 1 _ -
+JO%B + 162,6)> + 1=y (R*p(dU + 0U)). (B5)
The evolution equation of J is given by H = J ,,—const>
e Hp) + Hpy + Hpy + Hpy Hc
H) ——(HT +HT)=H , B6
(r ),p 2( + ) A+ ]_p +(1_p)2 ( )
where
JK,
T— <J,p _ K) (B7)
R , p
HA = (1 _p)'],/) +Ep W,/)J,/) + 5(1 —pP + RpW)J,/)p - 4Jﬁ,pv (BS)
Rp _ = _ - _
Hp = T((6 —4p)WJ , - 16JWp ,—-0JU ,—0JU ,—-2KdU ,—J ,(0U +oU) + J(0U , —dU ,)). (B9)
Rp = - - _ -
Hg = T((U(’i] +uvoJ)(JJ,—-JJ,)—-2U0dJ ,-2UdJ],
+2(KJ , —JK ,)(UdK + UdK + K(dU — dU) + JO U —JdU)), (B10)
e - - - - - - _ _
Hp = 2, (24 JJ)(0%B + 0p%) + J>(8°B + Op*) — 2JK (DB + pOB) + J(OKP — OPOK + dJOS)
Y
+JJOp + K(dJ3B — dJOp — 20Kp)), (B11)
e ’R*p’ N2 7 2772
HB4:T((2+JJ)UJ,+2JKU’/,U’,,+J U2). (B12)
R _ - _
Hc:—E(ZKGU—I—6JU—|—6]U—J6U+J6U). (B13)
|
APPENDIX C: PAPER DEFINITION KEY 9ny: Cauchy metric
Jup = C*gu: C tified tric in Bondi f
Here we define the quantities we use in the paper for ease I VE q (1(?;3“3 ofpactiied metric - Bondl - torm,

of reference.
a: Lapse function in Cauchy metric
S Shift vector in Cauchy metric
p: Time-time part of metric in Bondi form, Eq. (1)
d,d: Angular derivative operators, Eqs. (A1)—(A2)
I': World tube hypersurface _
9w+ Metric in Bondi form, Eq. (1) K = V1 + JJ: Auxiliary angular variable

Z": Future null infinity
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Tnp = ’ 9y Conformal metric in Bondi form, Eq. (104)
H: Time derivative of J in Bondi frame, Eq. (13)
h,p: Angular part of metric in Bondi form, Eq. (1)

J =1 hapq*q®: Spin-weighted angular metric function
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¢ = 1/r: Compactified surface-area coordinate
£#: World tube null generator, Eq. (22)

A: World tube affine radinull parameter

N: News function, Eq. (114)

n': Timelike unit vector at world tube, Eq. (21)
n#: Compactified Bondi generator at Z+, Eq. (111)
it#: Conformal Bondi generator at Z*, Eq. (110)
@: Time derivative of J in affine frame, Eq. (101)
Q,: Radial derivative of U4, Eq. (2)

Q = Q4q": Spin-weighted radial derivative of U
q4: Complex dyad, Eq. (40)

q4p: Unit sphere metric

R = ryr: Radius of world tube, Eq. (42)

R: Curvature scalar for angular metric, Eq. (19)
r: Surface-area coordinate

r .

p = g+ Compactified surface-area coordinate

7: Radius of world tube in Cauchy coordinates
s": Spatial outgoing unit normal to T, Eq. (20)

f: Time coordinate in Cauchy metric

u: Retarded time coordinate

it: Conformal Bondi time coordinate, Eq. (110)
UA: Angular shift part of metric in Bondi form, Eq. (1)
U = U"q,: Spin-weighted angular shift

W: Mass aspect of metric in Bondi form, Eq. (1)
Q: A conformal factor at Z%, Eq. (107)

dQ: Unit sphere area element

w: A conformal factor at ZF, Eq. (105)

X" = (u,r,0,¢): Coordinates of g,,, Eq. (1)

X”: Coordinates of Cauchy metric g

x”: Coordinates of g;;, Eq. (28)

5c“ = (u,¢.,0,¢): Coordinates of g, Eq. (103)
X% Coordinates of g;;, Eq. (104)
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