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We present an improved spectral algorithm for Cauchy-characteristic extraction and characteristic
evolution of gravitational waves in numerical relativity. The new algorithms improve spectral convergence
both at the poles of the spherical-polar grid and at future null infinity, as well as increase the temporal
resolution of the code. The key to the success of these algorithms is a new set of high-accuracy tests, which
we present here. We demonstrate the accuracy of the code and compare with the existing PITTNULL

implementation.
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I. INTRODUCTION

The discovery of GW150914 [1] heralded the beginning
of gravitational wave astronomy. In the subsequent years
that detection has been followed up by a number of other
signals observed from binary black hole (BBH) mergers
[2–5], as well as from the merger of a binary neutron star
(BNS) system [6]. As the aLIGO [7] and Virgo [8]
detectors push to ever greater sensitivities, the number of
expected observations will continue to grow.
Extracting the signals from the noise involves matching

the incoming data against a template bank of theoretically
expected waveforms generated across possible binary
configurations. The efficacy of extracting the configuration
parameters (for instance, masses and spins of the binary
components) from a given signal depends on the fidelity of
the computed waveforms comprising the template bank;
this is because errors in the template bank will bias the
estimated parameters. The only ab initio method of gene-
rating accurate theoretical waveforms for merging BBH
systems is via numerical relativity: the numerical solution
of the full Einstein equations on a computer. Other methods
of generating theoretical BBH waveforms, such as effective
one-body solutions [9] and phenomenological models
[10,11], are calibrated to numerical relativity.
One limitation of numerical relativity simulations is that

they all rely on a Cauchy approach in which the spacetime
is decomposed into a foliation of spacelike slices, and the
solution marches from one slice to the next. Such an
approach can compute the solution to Einstein’s equations
only in a region of spacetime with finite spatial and
temporal extents bounded around the compact objects,
whereas the gravitational radiation is defined at future null
infinity Iþ. While some work has gone into hyperboloidal

compactification methods for simulating the propagation of
gravitationalwaves to Iþ [12–14], thesemethods have never
been fully implemented in the nonlinear regime. Without
them, extracting the waveform signal from the simulations
with these finite extents requires additional work.
The most common method of extracting the gravitational

radiation from a numerical relativity simulation is to
compute quantities such as the Newman-Penrose scalar
Ψ4 [15] or the Regge-Wheeler and Zerilli scalars [16] at
some large but finite distance from the near zone (perhaps
100–1000M, where M is the total mass of the system),
typically on coordinate spheres of constant surface area
coordinate r. Because these quantities or the methods of
computing them include finite-radius effects, these quan-
tities are computed on a series of shells at different radii r,
fit to a polynomial in 1=r, and then extrapolated to infinity
by reading off the 1=r coefficient of the polynomial [17].
As the extraction surfaces are shells of constant coordinate
radii, the choice of gauge implemented in the simulation
can contaminate the resulting waveforms. Furthermore, if
the shells are too close to the orbiting binary, the extrapo-
lation procedure might not remove all of the near-zone
effects.
An alternative method for computing gravitational radi-

ation in numerical relativity is to solve the full Einstein
equations in a domain that extends all the way to Iþ, where
gravitational waves can be measured. This can be done by
rewriting Einstein’s equations using a characteristic for-
malism [18–20], in which the equations are solved on
outgoing null surfaces that extend to Iþ. This formalism
chooses coordinates that correspond to distinct outward
propagating null rays, so it fails in the dynamical, strong
field regime at any location where outgoing null rays
intersect (i.e., caustics). Because of this, characteristic
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evolution is unable to evolve the near-field region of a
merging binary system, so it cannot accomplish a BBH
simulation on its own. However, it is possible to combine
an interior numerical relativity code that solves the equa-
tions on Cauchy slices with an exterior characteristic code
that solves them on null slices; the determination of
characteristic quantities from Cauchy data is known as
Cauchy-characteristic extraction (CCE) (see Fig. 1), and
the subsequent numerical evolution of those quantities is
known as characteristic evolution.
Specifically, CCE uses the metric and its derivatives

computed from a Cauchy evolution (red region in Fig. 1)
and evaluated on a world tube Γ (thick red line) that lies on
or inside the boundary of the Cauchy region. These
quantities on the world tube are then used as inner
boundary data for a characteristic evolution (blue region)
based on outgoing null slices (blue curves). Because the
combined CCE system uses the full Einstein equations for
both the Cauchy and characteristic evolutions, it produces
the correct solution at Iþ, with the characteristic evolution

properly resolving near-zone effects. The gravitational
radiation is computed according to a particular inertial
observer at Iþ (green curve). This observer is related to any
other inertial observer by a single Bondi-Metzner-Sachs
(BMS) transformation [19] (the group of Lorentz boosts,
rotations, and supertranslations [21]), so up to this BMS
transformation the waveform is independent of the gauge
chosen by the Cauchy evolution.
The first code to implement CCE and characteristic

evolution was the PITTNULL code [22–24]. Since its initial
implementation there have been a number of improvements
made, and the current iteration of that code utilizes stereo-
graphic angular coordinate patches, finite differencing, and
a null parallelogram scheme with fixed time steps for
integrating in the null and time directions. Overall the code
is second-order convergent with resolution [25,26]
(although a fourth-order implementation also exists; see
[27]). Compared to waveforms computed from a Cauchy
code by evaluating Ψ4 at finite radii and extrapolating to
r → ∞ as described above, waveforms extracted via CCE
using PITTNULL were shown to better remove gauge effects
and to better resolve the m ¼ 0 memory modes [28–30].
Currently, PITTNULL requires thousands of CPU hours to

compute a waveform at Iþ given world tube output from a
typical Cauchy BBH simulation at multiple resolutions
[31]. While that cost is smaller than the computational
expense of the Cauchy simulation, it is still unwieldy and is
likely one reason that most Cauchy numerical-relativity
codes do not use CCE and characteristic evolution despite
the availability of PITTNULL. Because the metric in the
characteristic region is smooth, the computational cost of
characteristic evolution should be greatly reduced by using
spectral methods instead of finite differencing. Such a
spectral implementation of characteristic evolution has
been introduced in the SpEC framework [31–33]. Their
tests showed improved speed and accuracy over the finite-
difference implementation of PITTNULL [31,32].
Our work here describes improvements in accuracy,

efficiency, and robustness to the code described in [31–
33]. In particular, we discuss an improved handling of the
integration along the null slices, we clarify issues related to
the particular choice of coordinates along the null slice, and
we implement better handling of the inertial coordinates at
Iþ. We demonstrate through a series of analytic tests that
our version of CCE and characteristic evolution can
compute waveforms with much lower computational cost
than PITTNULL. An earlier version of our implementation
has been used to probe the near-field region of a binary
black hole ringdown [34].
We start with a brief summary of the Bondi metric and

the null formulation of the Einstein equations in Sec. II. A
detailed explanation for how CCE and characteristic
evolution works can be broken up into three distinct parts:
the inner boundary formalism, the volume characteristic
evolution, and the Iþ extraction, which we describe in

FIG. 1. Penrose diagram showing a typical CCE setup. The
metric is evolved using 3þ 1 methods in the Cauchy region
(shaded red) and with null methods in the characteristic region
(shaded blue). The Cauchy and characteristic regions overlap.
Curves of constant t̆ or r̆, the Cauchy coordinates, are shown in
red and are shown as dashed curves outside the Cauchy region,
where they extend to spatial infinity i0 or future temporal infinity
iþ. Null curves of constant u are shown in blue. Given data on a
world tube Γ (thick red curve) and on an initial null slice (thick
blue curve), the characteristic evolution computes the full metric
in the characteristic region. In Sec. III we describe the interface
from Cauchy to Bondi coordinates on Γ. In Sec. IV we describe
the characteristic evolution. In Sec. V we discuss computing the
news function at Iþ (thick green curve) and transforming it to
coordinates corresponding to a free-falling observer.
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subsequent sections. Section III describes the means by
which the metric known on a world tube is converted into
Bondi form to serve as the inner boundary values for the
characteristic evolution system. Section IV discusses the
process of evolving Einstein’s equations from the inner
boundary to Iþ. Section V explains how to take the metric
computed on Iþ and extract the Bondi news function in the
frame of an inertial observer at Iþ. In Sec. VI, we describe
code tests and performance.
Throughout this paper, indices with Greek letters

(μ; ν;…) correspond to spacetime coordinates, lowercase
Roman letters (i; j;…) to spatial coordinates, and capital-
ized Roman letters (A;B;…) to angular coordinates, and
we choose a system of geometrized units (c ¼ G ¼ 1). For
convenience, we have included a definitions key in the
Appendix C.

II. SUMMARY OF CHARACTERISTIC

FORMULATION

In the characteristic region (see Fig. 1), we adopt a
coordinate system xμ ¼ ðu; r; xAÞ, where u is the coordi-
nate labeling the outgoing null cones, r is an areal radial
coordinate, and xA are the angular coordinates. Note that a
curve of constant ðu; xAÞ is an outgoing null ray para-
metrized by r; for this reason we sometimes call r a
“radinull” coordinate. The metric can then be expressed in
the Bondi-Sachs form [18,19],

ds2 ¼ −ðe2βð1þ rWÞ − r2hABU
AUBÞdu2

− 2e2βdudr − 2r2hABU
BdudxA þ r2hABdx

AdxB;

ð1Þ

where W corresponds to the mass aspect, UA to the shift, β
to the lapse, and hAB to the spherical 2-metric. The quantity
hAB has the same determinant as the unit sphere metric
qAB, jhABj ¼ jqABj. Note that the metric Eq. (1) is not
constrained to be asymptotically flat, as required by
Bondi-Sachs coordinates. Instead, we impose the weaker
constraint that all metric components of Eq. (1) are
asymptotically finite at Iþ. To emphasize this subtle
difference with Bondi-Sachs coordinates, we refer to the
spacetime metric as having the “Bondi-Sachs form” rather
than being expressed in Bondi-Sachs coordinates. An
additional intermediate quantity, QA, is defined to reduce
the evolution equations to a series of first order partial
differential equations (PDE),

QA ¼ r2e−2βhABU
B
;r: ð2Þ

Instead of expressing the metric in terms of tensorial
objects, we employ a complex dyad so that the metric
components can be computed as spin-weighted scalars,
and each of these scalars can be expanded in terms of

spin-weighted spherical harmonics (SWSHes) of the appro-
priate spin weight; see Appendix A for details about
SWSHes. The dyad qA has the following properties:

qAqA ¼ 0; ð3Þ

qAq̄A ¼ 2: ð4Þ

If we define qAB and qAB such that

qAB ¼ 1

2
ðqAq̄B þ q̄AqBÞ; ð5Þ

qACqCB ¼ δAB; ð6Þ

then

qA ¼ qABqB: ð7Þ

We express the metric coefficients and the quantityQA in
terms of spin-weighted scalars J, K, U, and Q, defined by

J ¼ 1

2
hABq

AqB; ð8Þ

K ¼ 1

2
hABq

Aq̄B; ð9Þ

U ¼ qAU
A; ð10Þ

Q ¼ QAq
A: ð11Þ

The determinant condition on hAB defines a relationship
between J and K as

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ JJ̄
p

: ð12Þ

We introduce one more intermediate variable H, the time
derivative of J along slices of constant r,

H ¼ J;ujxA;r¼const: ð13Þ

The quantities J, β, and Q are all dimensionless while U,
W, and H have units of 1=R (identically, units of 1=u in the
case of H).
Evaluating the components of the Einstein equation

Gμν ¼ 0 provides a system of equations for the quantities
β, Q, U, W, and H:

β;r ¼ N β; ð14Þ

ðr2QÞ;r ¼ −r2ðð̄J þ ðKÞ;r þ 2r4ððr−2βÞ;r þN Q; ð15Þ

U;r ¼ r−2e2βQþN U; ð16Þ
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ðr2WÞ;r ¼
1

2
e2βR − 1 − eβðð̄eβ

þ 1

4
r−2ðr4ððŪ þ ð̄UÞÞ;r þNW ; ð17Þ

2ðrHÞ;r ¼ ðð1þ rWÞðrJÞ;rÞ;r − r−1ðr2ðUÞ;r
þ 2r−1eβð2eβ − ðrWÞ;rJ þN J; ð18Þ

where

R ¼ 2K − ðð̄K þ 1

2
ðð̄2J þ ð

2J̄Þ þ 1

4K
ðð̄ J̄ ðJ − ð̄JðJ̄Þ;

ð19Þ

andN β, NW , N Q, NW , and N J are the terms nonlinear in
J and its derivatives, according to [22]. Appendix B
provides the full expressions for these equations.
These equations correspond to different components of

the Einstein equations, namely, Rrr ¼ 0 gives the equation
for β;r, RrAq

A ¼ 0 gives the equation for U;r, RABh
AB ¼ 0

gives the equation for W;r, and RABq
AqB ¼ 0 gives the

equation for H;r. These cover six of the ten independent
components of Einstein’s equations. As [23] discusses in
more detail, of the four remaining components of the
Einstein equations, one of these is identically zero (Rr

r ¼ 0)
while the other three (Rr

u ¼ 0 and Rr
Aq

A ¼ 0) serve as
constraint conditions for the evolution on each of the null
slices.
However, computing these constraint conditions involve

lengthy expressions that include the u-derivatives of
evolution quantities other than J;u. It is not straightforward
to compute these derivatives to the same accuracy achieved
by the rest of the code. We leave to future implementations
the ability to accurately compute these constraints as a
monitor of how well we obey the full Einstein equations
during the evolution.
The equations are presented in a useful hierarchical

order: the right-hand side of the β equation involves only J
and its hypersurface derivatives, the right-hand side of the
Q equation involves only J and β and their hypersurface
derivatives, and so on for the other equations. Therefore,
given data for all quantities on the inner boundary as well as
J on an initial u ¼ const null slice, we can integrate the
series of equations in Eqs. (14)–(18) on that slice from the
inner boundary to r ¼ ∞ to obtain β, Q, U,W, and then H
in sequence on that slice. Then, given H ¼ J;ujr¼const on
that slice, we can integrate forward in time to obtain J on
the next null slice.

III. INNER BOUNDARY FORMALISM

The coordinates used to evolve Einstein’s equations in
the Cauchy region (red area of Fig. 1) are generally
different from the coordinates discussed in Sec. II. The
Cauchy coordinates are chosen to make the interior

evolution proceed without encountering coordinate singu-
larities; the procedure for choosing these coordinates is
complicated and typically involves coordinates that are
evolved along with the solution [35–40]. Therefore, for
CCE we must transform from arbitrary Cauchy coordinates
to coordinates such that the spacetime metric takes the
Bondi-Sachs form [Eq. (1)] at the world tube.
Here, in the Cauchy region, for simplicity we assume

Cartesian coordinates ðt̆; x̆ĭÞ in which the world tube
hypersurface Γ (which is chosen by the Cauchy code) is

a surface of constant r̆, where r̆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̆2 þ y̆2 þ z̆2
p

.
We also define angular coordinates x̆Ă ¼ ðθ̆; ϕ̆Þ in the

usual way from the Cartesian coordinates x̆ĭ.
The world tube serves as the inner boundary of the

characteristic domain (see Fig. 1). On this boundary, we
assume that the interior Cauchy code provides the spatial
3-metric gĭ j̆, the shift βĭ, and the lapse ᾰ, along with the
r̆ and t̆ derivatives of each of these quantities. Angular
derivatives of these quantities are necessary as well;
however, we can compute those numerically within the
world tube itself, so they need not be provided a priori.
Reference [24] describes how to take the data provided

by the interior Cauchy code and covert it into Bondi form
[Eq. (1)] to extract the inner boundary values of the
evolution quantities (JjΓ; βjΓ;…). This section is primarily
a summary of their results; however, we use different
notation than Ref. [24]. Additionally, as noted above, the
SpEC CCE treatment takes the inner boundary of the
domain to be the world tube provided by the Cauchy code,
which is generally not a surface of constant r. The
PITTNULL treatment, on the other hand, uses a surface of
constant r as the inner boundary of the domain, and
performs a Taylor expansion in the affine radial coordinate
in order to determine inner boundary data on this surface.
Avoiding the Taylor expansion simplifies the boundary
computation and may provide marginal precision improve-
ments by avoiding a finite Taylor series truncation error.

A. Affine null coordinates

Our goal is to transform from the coordinates ðt̆; x̆ĭÞ to
coordinates such that the metric takes the Bondi-Sachs
form [Eq. (1)]. It is simplest to proceed in two steps: the
first step, described in this subsection, is to construct
coordinates foliated by outgoing null geodesics. The
second step, described in Sec. III B, will be to transform
from these affine coordinates to Bondi coordinates.
We begin by constructing a choice null generator lμ̆,

which involves the unit outward spatial vector normal to the
world tube’s surface, sμ̆, and the unit timelike vector normal
to a slice of constant t̆, nμ̆:

sμ̆ ¼

8

<

:

0;
gĭ j̆x̆j̆
ffiffiffiffiffiffiffiffiffiffiffiffi

gĭ j̆x̆ĭx̆j̆

q

9

=

;

; ð20Þ
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nμ̆ ¼ 1

ᾰ
f1;−βĭg: ð21Þ

Equation (20) depends on our simplifying assumption
that the world tube is spherical in Cauchy coordinates
and can be generalized. From these equations, the null
generator is

l
μ̆ ¼ nμ̆ þ sμ̆

ᾰ − gĭ j̆β
ĭsj̆

: ð22Þ

The time derivatives of these vectors are

s
μ̆

;t̆
¼ f0; ð−gĭ j̆ þ sĭsj̆=2Þsk̆gj̆ k̆;t̆g; ð23Þ

n
μ̆

;t̆
¼ 1

ᾰ2
f−ᾰ;t̆; ᾰ;t̆βĭ − ᾰβĭ

;t̆
g; ð24Þ

l
μ̆

;t̆
¼

n
μ̆

;t̆
þ s

μ̆

;t̆
þ lμ̆ð−ᾰ;t̆ þ gĭ j̆;t̆β

ĭsj̆ þ gĭ j̆β
ĭ
;t̆
sj̆ þ gĭ j̆β

ĭs
j̆
;t̆
Þ

ᾰ − gĭ j̆β
ĭsj̆

:

ð25Þ

We will now construct a null coordinate system based on
outgoing null geodesics generated by lμ̆. Let λ̄ be an affine
parameter along these geodesics such that the value of λ̄ on
the world tube Γ is λ̄jΓ ¼ 0. We also define a null coordinate

ū and angular coordinates x̄Ā ¼ ðθ̄; ϕ̄Þ that obey ū ¼ t̆ and
x̄Ā ¼ x̆Ă on the world tube and are constant along the
outgoing null geodesic generated by l

μ̆. Thus we have
defined a new intermediate, affine coordinate system,
x̄μ̄ ¼ ðū; λ̄; θ̄; ϕ̄Þ, and we will express the metric gμ̄ ν̄ in
these affine coordinates.
To do this, we will need to write down the coordinate

transformation from x̆μ̆ to x̄μ̄ in a neighborhood of the world
tube, not just on the world tube itself, because we need
derivatives of this transformation. In particular, we will
need derivatives with respect to λ̄. The derivative of the
metric components gμ̆ ν̆ along the null direction simply is

gμ̆ ν̆;λ̄ ¼ lγ̆gμ̆ ν̆;γ̆: ð26Þ

The evolution of the coordinates x̆μ̆ along null geodesics
implies that in a neighborhood of the world tube

x̆
μ̆

;λ̄
¼ l

ν̆∂ ν̆x̆
μ̆ ¼ l

μ̆: ð27Þ

Given the new coordinates x̄μ̄, the metric components in
these coordinates are

gμ̄ ν̄ ¼
∂x̆ᾰ

∂x̄μ̄
∂x̆β̆

∂x̄ν̄
gᾰ β̆: ð28Þ

On the world tube,

∂ t̆

∂x̄Ā
¼ 0;

∂x̆ĭ

∂x̄Ā
¼ ∂x̆ĭ

∂x̆Ă
;

∂ t̆

∂ū
¼ 1;

∂x̆ĭ

∂ū
¼ 0; ð29Þ

where the term ∂x̆ĭ=∂x̄Ā is the standard Cartesian to
spherical Jacobian. The above values of the Jacobians hold
only on the world tube. In addition to the metric itself, we
will also need first derivatives of the metric, including the
derivative with respect to λ̄. This requires the λ̄ derivatives
of the Jacobians evaluated on the world tube, which we
represent here as

∂2x̆μ̆

∂x̄Ā∂λ̄
¼ ∂lμ̆

∂x̄Ā
¼ l

μ̆

;Ā
;

∂2x̆μ̆

∂ū∂λ̄
¼ ∂lμ̆

∂ū
¼ l

μ̆
;ū; ð30Þ

where we have made use of Eq. (27).
We are now ready to write out the metric in these

intermediate coordinates by taking the expression in
Eq. (28) and taking the appropriate derivatives,

gū λ̄ ¼ −1;

gλ̄ λ̄ ¼ gλ̄ Ā ¼ 0;

gū ū ¼ gt̆ t̆;

gū Ā ¼ ∂x̆ĭ

∂x̄Ā
gĭ t̆;

gĀ B̄ ¼ ∂x̆ĭ

∂x̄Ā
∂x̆j̆

∂x̄B̄
gĭ j̆;

gĀ B̄;λ̄ ¼
∂x̆ĭ

∂x̄Ā
∂x̆j̆

∂x̄B̄
gĭ j̆;λ̄ þ

�

l
μ̆

;Ā

∂x̆ĭ

∂x̄B̄
þ l

μ̆

;B̄

∂x̆ĭ

∂x̄Ā

�

gμ̆ ĭ;

gĀ B̄;ū ¼
∂x̆ĭ

∂x̄Ā
∂x̆j̆

∂x̄B̄
gĭ j̆;t̆;

gū Ā;λ̄ ¼ l
μ̆

;Ā
gt̆ μ̆ þ

∂x̆ĭ

∂x̄Ā
ðgĭ t̆;λ̄ þ l

μ̆
;ūgĭ μ̆Þ; ð31Þ
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and

gū ū ¼ gū Ā ¼ 0;

gū λ̄ ¼ −1;

gĀ B̄gB̄ C̄ ¼ δĀ
C̄
;

gλ̄ Ā ¼ gĀ B̄gū B̄;

gλ̄ λ̄ ¼ −gū ū þ gλ̄ Āgū Ā;

gĀ B̄
;λ̄
¼ −gĀ C̄gB̄ D̄gC̄ D̄;λ̄;

gλ̄ Ā
;λ̄
¼ gĀ B̄ðgū B̄;λ̄ − gλ̄ C̄gB̄ C̄;λ̄Þ: ð32Þ

B. Bondi form of metric

Given the intermediate null coordinates and the metric in
that coordinate system, we apply one last coordinate
transformation to put the spacetime metric in Bondi-
Sachs form [Eq. (1)]. We define coordinates ðu; r; θ;ϕÞ,
where r is a surface area coordinate, u ¼ ū, θ ¼ θ̄, and
ϕ ¼ ϕ̄. The surface area coordinate r is defined by

r ¼
�jgABj
jqABj

�

1

4 ¼
�jgĀ B̄j
jqĀ B̄j

�

1

4

; ð33Þ

where qĀ B̄ is the unit sphere metric.
The components of the metric in Bondi coordinates are

then

gμν ¼ ∂xμ

∂x̄ᾱ
∂xν

∂x̄β̄
gᾱ β̄: ð34Þ

The Jacobians include the derivatives of the surface area
coordinate r. We compute

r;ᾱ ¼
r

4

�

gĀ B̄gĀ B̄;ᾱ −
jqĀ B̄j;ᾱ
jqĀ B̄j

�

: ð35Þ

Since the only difference between the final boundary
coordinates ðu; r; θ;ϕÞ and intermediate coordinates is the
choice of radinull coordinates, the Jacobians for the u, θ,
and ϕ directions are trivial. Equation (32) gives us

guu ¼ gū ū ¼ 0;

guA ¼ gū Ā ¼ 0;

gAB ¼ gĀ B̄: ð36Þ

The other metric components are

gur ¼ ∂r

∂x̄μ̄
gū μ̄ ¼ −r;λ̄;

grr ¼ ∂r

∂x̄μ̄
∂r

∂x̄ν̄
gμ̄ ν̄ ¼ ðr;λ̄Þ2gλ̄ λ̄

þ 2r;λ̄ðr;Āgλ̄ Ā − r;ūÞ þ r;Ār;B̄g
Ā B̄;

grA ¼ ∂r

∂x̄μ̄
gĀ μ̄ ¼ r;λ̄g

λ̄ Ā þ r;B̄g
Ā B̄: ð37Þ

From this we can also construct the inverse Jacobian
elements. The elements of that Jacobian we shall need are

∂ū

∂u
¼ 1;

∂ū

∂xi
¼ 0;

∂λ̄

∂u
¼ −

r;ū

r;λ̄
;

∂x̄Ā

∂xA
¼ δĀA;

∂x̄Ā

∂r
¼ ∂x̄Ā

∂u
¼ 0: ð38Þ

The final metric element we shall want is gAB which we can
compute as

gAB ¼ ∂x̄ᾱ

∂xA
∂x̄β̄

∂xB
gᾱ β̄

¼ gĀ B̄ þ ∂λ̄

∂xB
gλ̄ Ā þ ∂λ̄

∂xA
gλ̄ B̄ þ ∂λ̄

∂xA
∂λ̄

∂xB
gλ̄ λ̄

¼ gĀ B̄; ð39Þ

where we made use of the fact that gλ̄ λ̄ ¼ gλ̄ Ā ¼ 0.
Because u and xA are equal to t̆ and x̆Ă on the world tube

and are constant along outgoing null geodesics, the time
and angular coordinates ðt̆; x̆ĂÞ on the world tube determine
the coordinates u and xA throughout the characteristic
region, including on Iþ. Thus, the coordinates at Iþ will
be gauge-dependent, since t̆ and x̄Ā are dependent upon the
gauge choices made in the 3þ 1 Cauchy evolution. Wewill
later eliminate this gauge dependence by evolving and
transforming to the coordinates of free-falling observers on
Iþ, as described below in Sec. V B.

C. Inner boundary values of characteristic variables

Now that we have the full metric in Bondi-Sachs form
[Eq. (1)], we assemble the inner boundary values for the
various evolution variables used in the volume, J, β, Q, U,
W, and H. We write out the complex dyads as
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qA ¼ f−1;−i sin θg;

qA ¼
�

−1;−
i

sin θ

�

: ð40Þ

Because of the identification between the intermediate
angular coordinates x̄Ā and the characteristic coordinates
xA, the dyads are identified,qA ¼ qĀ andqA ¼ qĀ. Then, as a
consequence ofEq. (40),qA;λ̄ ¼ qA

;λ̄
¼ 0 andqA;ū ¼ qA;ū ¼ 0.

Inverting the metric in Eq. (1),

gμν ¼

2

6

4

0 −e−2β 0A

−e−2β ð1þ rWÞe−2β −e−2βUA

0B −e−2βUB r−2hAB

3

7

5
; ð41Þ

where hABh
BC ¼ δCA and jhABj ¼ jqABj.

In the PITTNULL code, the quantities J, β, Q, U, and
W and their λ̄ derivatives are computed using an
expansion in affine coordinates to compute their values
along a surface of constant surface area coordinate r [24].
PITTNULL then chooses its internal compactified radinull
coordinates in the characteristic region to be surfaces of
constant r. However, in Ref. [31] and here, we choose
our inner boundary to be the world tube. The value of the
surface area coordinate r at the world tube we define as
Rðu; xAÞ,

R ¼ rjΓ; ð42Þ

R;λ̄ ¼ r;λ̄jΓ; ð43Þ

R;ū ¼ r;ūjΓ: ð44Þ

The consequences of this change in the inner boundary
hypersurface are discussed in more detail within
Sec. IVA.
We can now write down the inner boundary values of the

characteristic variables in terms of the metric coefficients
that we have computed at the inner boundary. Going back
to the definition of J ¼ 1

2
qAqBhAB, we get the expressions

JjΓ ¼ 1

2R2
qAqBgAB ¼ 1

2R2
qĀqB̄gĀ B̄; ð45Þ

KjΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ JjΓJ̄jΓ

q

; ð46Þ

J;λ̄jΓ ¼ 1

2R2
qĀqB̄gĀ B̄;λ̄ −

2R;λ̄

R
JjΓ; ð47Þ

J;ūjΓ ¼ 1

2R2
qĀqB̄gĀ B̄;ū −

2R;ū

R
JjΓ: ð48Þ

To get the inner boundary value of H, we expand J;u as

J;u ¼
∂ū

∂u
J;ū þ

∂λ̄

∂u
J;λ̄; ð49Þ

so then we find after substituting and simplifying that

HjΓ ¼ 1

2R2
qĀqB̄

�

gĀ B̄;ū −
R;ū

R;λ̄

gĀ B̄;λ̄

�

: ð50Þ

We can read off the value for gur to compute β,

βjΓ ¼ −
1

2
lnðR;λ̄Þ: ð51Þ

We will also need β;λ̄jΓ in order to compute QjΓ. Directly
differentiating Eq. (51) yields

β;λ̄jΓ ¼ −
R;λ̄ λ̄

2R;λ̄

; ð52Þ

but this involves the quantity R;λ̄ λ̄, which appears to depend
on second derivatives of the metric. So we instead compute
β;λ̄jΓ using β’s evolution equation, Eq. (B1):

β;λ̄jΓ ¼ R

8R;λ̄

ðJ;λ̄jΓJ̄;λ̄jΓ − ðK;λ̄jΓÞ2Þ; ð53Þ

which involves only first derivatives.
The quantities U and W can similarly be read off from

the metric:

UjΓ ¼ grA

gur
qA; ð54Þ

WjΓ ¼ 1

R

�

−
grr

gur
− 1

�

: ð55Þ

To get QjΓ, we will also need U;λ̄jΓ, which we compute
by differentiating the expression for UjΓ and using Eq. (52)
to eliminate R;λ̄ λ̄ in favor of β;λ̄jΓ:

U;λ̄jΓ ¼ −

�

gλ̄ Ā
;λ̄

þ R;λ̄ B̄

R;λ̄

gĀ B̄ þ R;B̄

R;λ̄

gĀ B̄
;λ̄

�

qĀ

þ 2β;λ̄jΓðUjΓ þ gλ̄ ĀqĀÞ; ð56Þ

where it is understood that β;λ̄jΓ is to be evaluated using
Eq. (53). Now that we have an expression for U;λ̄jΓ, the
inner boundary value of Q is given by

QjΓ ¼ R2ðJjΓŪ;λ̄jΓ þ KjΓU;λ̄jΓÞ: ð57Þ

D. Computational domain

We implement angular basis functions through the use of
the external code packages SPHEREPACK [41,42], which can
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handle standard spherical harmonics, and SPINSFAST [43],
which is capable of handling SWSHes. The world tube
metric and most of the intermediate quantities of the inner
boundary formalism are real, tensorial metric quantities
(i.e., representable by the typical spherical harmonics), so
we use SPHEREPACK. Once all of the inner boundary values
of the Bondi evolution quantities are computed, they are
then projected onto the basis utilized by SPINSFAST for use
during the volume evolution. Because Cauchy codes
evaluate the world tube data at discrete time slices, we
use cubic interpolation to evaluate each of the metric
quantities at arbitrary time values.

IV. VOLUME EVOLUTION

A. Computational domain

Because the domain of characteristic evolution extends
all of the way out to Iþ where the surface area coordinate r
is infinite, to express Iþ on a finite computational domain,
we define a compactified coordinate, ρ,

ρ ¼ r

Rþ r
; ð58Þ

where R is the surface area coordinate of the world tube
given in Eq. (42) so that ρ runs from ρjΓ ¼ 1=2 to ρjIþ ¼ 1.
This choice of compactification is subtly different from that
which is used in PITTNULL [27]. Because they expand in
affine coordinates to obtain a hypersurface of constant
Bondi radius, their compactification parameter is constant
and unchanging during their entire evolution. By tying our
compactification parameter to a fixed Cauchy coordinate
radius r̆ and allowing the surface area coordinate r to
change freely, we must be careful in how we define our
derivatives.
One consequence of utilizing ρ is that angular derivatives

computed numerically on our grid, ðjρ, are evaluated at a
constant value of ρ, so these are not the same as angular
derivatives defined on surfaces of constant r, which we
denote as ð. Since Eqs. (14)–(18) involve ð and not ðjρ, we
must apply a correction factor to compute ð from ðjρ:

ðF ¼ ðjρF − F;ρðjρρ ¼ ðjρF − F;ρ

ρð1 − ρÞ
R

ðjρR; ð59Þ

for an arbitrary spin-weighted scalar quantity F. Similar
correction factors are needed for second derivatives that
appear in the evolution equations:

ððFÞ;ρ ¼ ðjρF;ρ − F;ρ

1 − 2ρ

R
ðjρR − F;ρρ

ρð1 − ρÞ
R

ðjρR;

ð60Þ

ð̄ðF¼ ð̄jρðjρFþF;ρ

�

ρð1−ρÞ
R2

�

ð2ð1−ρÞð̄jρRðjρR

−Rð̄jρðjρRÞ−ðjρF;ρ

�

ρð1−ρÞ
R

ð̄jρR

�

− ð̄jρF;ρ

�

ρð1−ρÞ
R

ðjρR

�

þF;ρρ

�

ρð1−ρÞ
R

�

2

ð̄jρRðjρR:

ð61Þ

Correction factors for ð̄F, ð̄F;ρ, ððF, ðð̄F, and ð̄ ð̄F are
obtained by appropriately interchanging ð and ð̄ in
Eqs. (59)–(61).
Numerical derivatives with respect to t and u are also

taken at constant ρ on our grid, but at constant r in the
equations, so similar correction factors are required there as
well, as discussed below in Sec. IV E.
We employ computational grid meshes suitable for

spectral methods, Chebyshev-Gauss-Lobatto for the radi-
null direction and SPINSFAST mesh for the angular direc-
tions with uniform ϕ and θ grids.

B. Spectral representability

Spectral techniques represent functions over a finite
numerical domain as a series of polynomial functions.
Such representations are of greatest use when the numerical
evolution gives rise to smooth solutions, which converge
exponentially with resolution in the spectral expansion.
However, any defect in the solution, such as discontinuities,
corners, cusps, or the presence of logarithmic dependence,
will spoil the exponential convergence of a spectral
method, and potentially introduce spurious oscillatory
contributions to the numerical result. For this reason, it
is of great importance to the characteristic evolution code in
SpEC to minimize or eliminate sources of such nonregular
contributions to the hypersurface equations.
The nature of the characteristic hypersurface equations

permits terms proportional to logðrÞ to develop in the
solution of the characteristic evolution system. These terms
are not representable by polynomial expansions in 1=r or
by polynomial expansions in ρ, so if present they spoil
exponential convergence. Such terms creep into the
evolved solutions by three principal avenues: (1) via the
initial data choice, which if constructed naively can excite
logarithmic modes, (2) via poorly chosen coordinates of the
metric on the u ¼ const hypersurfaces, and (3) via incom-
plete numerical cancellation in the equations, which possess
nontrivial pole structure. Points (1) and (2) arise from the use
of the asymptotically nonflat Bondi form of the spacetime
metric, Eq. (1). In that form, even mathematically faithful
solutions to the hypersurface equations for generic world
tube data possess logarithmicdependence. These logarithmic
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terms would vanish in an asymptotically flat coordinate
system, so they are a pure gauge contribution.
In Secs. IV C and IV D, we explain our methods for

minimizing the logarithmic contributions in the character-
istic evolution system. As part of the discussion in Sec. IV
C, we describe the choice of initial data that eliminates
logarithmic dependence from the first hypersurface of the
characteristic evolution system, addressing point (1) above.
In Sec. IV D, we describe improvements to the integration
techniques that address point (3) above. These methods
reduce logarithmic dependence to the point where it is not
noticeable in the tests presented here. However, the full
remedy for point (2) requires careful reexamination of the
characteristic evolution equations and a set of coordinate
transformations for the evolution system that will be
considered for future development of spectral characteristic
techniques, but is beyond the scope of this paper.

C. Initial data slice

The characteristic evolution equations require boundary
data on two boundaries: the world tube (thick red curve in
Fig. 1) and an initial slice u ¼ u0 (thick blue curve in
Fig. 1). Boundary values on the world tube were treated in
Sec. III above; here we discuss values on the initial slice.
Given the hierarchical nature of the evolution equations, the
only piece of the metric we need to specify on the initial
slice is J, as we can compute all of the other evolution
quantities from J using Eqs. (14)–(18). The main math-
ematical consideration for choosing J for the initial slice is
ensuring the regularity of J at Iþ; the main physical
consideration in typical applications is choosing a J that
corresponds to no incoming radiation, either by a linearized
approximation [26] or by matching to a linearized solution
[44]. Finally, there is the numerical consideration men-
tioned in Sec. IV B that we wish to minimize the excitation
of pure-gauge logarithmic dependence and keep the initial
data C∞ over the numerical domain.
When choosing J on the initial u ¼ u0 slice, we wish to

match the world tube data provided by the Cauchy code as
closely as possible. The world tube data that we take as
input (see Sec. III) consist of the full spacetime metric and
its first radial and time derivatives, which are sufficient to
constrain the value of J and the value of ∂rJ on the world
tube. By careful analysis of the characteristic evolution
equations, one can show that the initial u ¼ u0 hypersur-
face is free of logarithmic dependence if [45] ∂2

l
J −

Jðð∂lKÞ2 − ∂lJ∂lJ̄Þ ¼ 0 at Iþ. This condition is satisfied
by the simpler conditions J ¼ J;ll ¼ 0 at Iþ, so we
construct an initial J that satisfies J ¼ J;ll ¼ 0 at Iþ

and matches the world tube data. This construction is
consistent with the input Cauchy data in the overlap region
of (Fig. 1) to linear order in a radial expansion.

Our initial choice of J, determined by the functions Jj
Γ

and ∂rJjΓ, is

Jinitial ¼
R

2r
ð3JjΓ þ R∂rJjΓÞ −

R3

2r3
ðJjΓ þ R∂rJjΓÞ

¼ R

2

�

1

ρ
− 1

�

ð3JjΓ þ R∂rJjΓÞ

−
R3

2

�

1

ρ
− 1

�

3

ðJjΓ þ R∂rJjΓÞ: ð62Þ

D. Radinull Integration

The characteristic equations Eqs. (14)–(18) can be
solved in sequence by integration in r from the world tube
to Iþ. We use a numerical radinull grid in the compactified
variable ρ, and we reexpress the characteristic equations in
terms of ρ derivatives; see Eqs. (B1)(B6). The grid points in
ρ are chosen at Chebyshev-Gauss-Lobatto quadrature
points. The radinull equations for β;ρ and U;ρ [Eqs. (B1)
and (B3)] both lend themselves to straightforward
Chebyshev-Gauss-Lobatto quadrature. Starting at the inner
boundary values of βjΓ [Eq. (51)] and UjΓ [Eq. (55)], these
evolution variables are integrated out to Iþ.
A quick examination of the radinull equations for the

evolution quantitiesQ;ρ;W;ρ, andH;ρ [Eqs. (B2), (B5), and
(B6)] reveals powers of (ρ − 1) in denominators, so
regularity at Iþ (ρ ¼ 1) is not guaranteed by the form
of the equations. A previous version of this same spectral
characteristic evolution method [31] utilized integration by
parts in order to rewrite the equations in a form without
poles, allowing them to be integrated directly via
Chebyshev-Gauss-Lobatto quadrature. However, integra-
tion by parts introduced logarithmic terms like logð1 − ρÞ
which canceled analytically in the final results of gauge
invariants such as the Bondi news, but which were not well
represented by a Chebyshev-Gauss-Lobatto spectral expan-
sion in ρ. These logarithmic terms spoiled exponential
convergence and led to a large noise floor, limiting the
accuracy of the method. We choose an alternative
approach here.
The evolution equation forQ, Eq. (B2), can be written in

the form

ðr2QÞ;ρ ¼
QC

ð1 − ρÞ2 þ
QD

ð1 − ρÞ3 ; ð63Þ

whereQC corresponds to the 1=ð1 − ρÞ2 term andQD is the
1=ð1 − ρÞ3 term in Eq. (B2), and all factors of (1 − ρ) in
denominators have been written explicitly.
To better characterize the asymptotic behavior of this

equation, we rewrite the system in terms of the inverse
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radinull coordinate x ¼ R=r ¼ 1=ρ − 1. Then Eq. (63)
becomes

�

Q

x2

�

;x

¼ C

x2
þ D

x3
; ð64Þ

where

C ¼ −
QC þQD

R2
; ð65Þ

D ¼ −
QD

R2
: ð66Þ

We know the right-hand side quantities C and D are
regular at x ¼ 0, and we seek a solution Q that is also
regular there. So we introduce new variables, motivated by
Taylor series expansions of Q, C, and D about Iþ (x ¼ 0),

Q ¼ Q −QjIþ − xQ;xjIþ ; ð67Þ

C ¼ C − CjIþ − xC;xjIþ ; ð68Þ

D ¼ D −DjIþ − xD;xjIþ −
x2

2
D;xxjIþ : ð69Þ

Thus, by construction, Q and C are both guaranteed to
behave like x2 near x ¼ 0 while D behaves as x3.
Substituting these variables into Eq. (64) and gathering
similar terms, we find the differential equation
�

Q

x2

�

;x

¼ C

x2
þD

x3
þ
2C;xjIþ þD;xxjIþ

2x

þ
Q;xjIþ þCjIþ þD;xjIþ

x2
þ
2QjIþ þDjIþ

x3
: ð70Þ

Because of how we have definedQ, C, andD, any potential
singularity issues are confined to the last three terms. To
satisfy Eq. (70) for all x, the numerators of each of these
terms must identically vanish, providing constraints
and boundary conditions on the asymptotic values of Q,
C, and D,

QjIþ ¼ −
DjIþ

2
; ð71Þ

Q;xjIþ ¼ −CjIþ −D;xjIþ ; ð72Þ

0 ¼ −C;xjIþ −
1

2
D;xxjIþ : ð73Þ

The last equation, Eq. (73), is a regularity condition on C
and D. If satisfied, it ensures no logarithmic dependence in
the solution to the Q equation. A careful analysis of the
differential equations, which will be presented in complete
detail in future work, shows that the leading violation of
Eq. (73) is ∝ ð̄∂2

xJjIþ , and that Eq. (73) is entirely satisfied

if J ¼ 0 and J;xx ¼ 0 at Iþ. The leading violation of the
conditions on J can be determined through further analysis
to have the leading contribution ofUð∂xJÞ2jIþ . These pure-
gauge regularity violations are important to note for
precision studies and for unusual regimes for characteristic
evolution, but for the practical evolutions, the scales we
observe do not typically exceed U ∼ 10−6, J ∼ 10−3. So,
even for long evolutions, the logarithmic dependence does
not grow to a significant fraction of the main contribution.
We now integrate the equation

�

Q

x2

�

;x

¼ C

x2
þ D

x3
ð74Þ

with inner boundary value

QjΓ ¼ QjΓ þ
DjIþ

2
þ ðCjIþ þD;xjIþÞ ð75Þ

to obtainQ at all radinull points. Then we reconstructQ by
adding back in its asymptotic values,

Q ¼ Q −
DjIþ

2
− xðCjIþ þD;xjIþÞ: ð76Þ

Because the equation for Q does not mix the real and
imaginary parts of Q, we follow [31] and solve for real and
imaginary parts of Q separately.
Examining the evolution equation for W, Eq. (B5), we

recognize that it has the same form as the equation for Q,
Eq. (B2). Therefore, in order to solve for W, we use the
same procedure as we do for Q, following from Eq. (63)
through Eq. (76) but replacing all of the quantities specific
to Q with their W equivalents.
The radinull equation for H, Eq. (B6) can be written as

ðrHÞ;ρ −
rJ

2
ðHT̄ þ H̄TÞ ¼ HA þ HB

1 − ρ
þ HC

ð1 − ρÞ2 ; ð77Þ

where HB ¼ ΣiHBi. The form of this equation is very
similar to that of Eq. (63) that governs the Q (and W)
radinull evolution. However, there is now the additional
complication thatH;ρ has a term proportional to not onlyH,
but also to H̄. This couples the real and imaginary parts of
the equation.
The previous version of this code employed the Magnus

expansion in order to handle this difficulty [31]. While the
Magnus expansion might be useful for systems where the
terms in its expansion are rapidly shrinking, there is no
guarantee that will hold in general. Instead, we will write
the system as a matrix differential equation, expressing H
(and HA, HB, and HC) as column vectors such as

H ¼
�

ℜðHÞ
ℑðHÞ

�

; ð78Þ
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and defining the quantity M as

M ≡

�

ℜðJÞℜðTÞ ℜðJÞℑðTÞ
ℑðJÞℜðTÞ ℑðJÞℑðTÞ

�

; ð79Þ

so that MH here represents matrix multiplication. Then
Eq. (77) becomes the matrix equation,

ðrHÞ;ρ − rMH ¼ HA þ HB

1 − ρ
þ HC

ð1 − ρÞ2 : ð80Þ

As before, we convert from ρ into the inverse radinull
coordinate x ¼ R=r ¼ 1=ρ − 1 to better characterize its
behavior near Iþ,

�

H

x

�

;x

þM
H

x
¼ Aþ B

x
þ C

x2
; ð81Þ

where

M ¼ M

ð1þ xÞ2 ; ð82Þ

A ¼ −
HA

Rð1þ xÞ2 ; ð83Þ

B ¼ −
HB

Rð1þ xÞ ; ð84Þ

C ¼ −
HC

R
: ð85Þ

As we did with theQ equation, we shall introduce one final
set of variables, motivated by Taylor series expansions of
H, B, and C about x ¼ 0:

H ¼ H −HjIþ ; ð86Þ

B ¼ B − BjIþ −MHjIþ þMjIþHjIþ ; ð87Þ

C ¼ C − CjIþ − xC;xjIþ : ð88Þ

Once again, these variables are constructed so thatH and B
behave as x and C behaves as x2 in a neighborhood about
x ¼ 0. Substituting these into Eq. (81), we get

�

H

x

�

;x

þM
H

x
¼ Aþ B

x
þ C

x2
þ
HjIþ þ CjIþ

x2

þ
BjIþ þ C;xjIþ −MjIþHjIþ

x
: ð89Þ

As before, the numerators of the last two terms must vanish,
which gives us a boundary condition on H at Iþ,

HjIþ ¼ −CjIþ ; ð90Þ

and a boundary constraint on B, C, and M,

0 ¼ BjIþ þ C;xjIþ þMjIþCjIþ : ð91Þ

The last constraint is a regularity condition that is guaran-
teed to be satisfied provided the input spin-weighted scalars
β, Q, U, and W themselves are regular [45]. Of course, the
small violation that arises from the Q andW equations will
lead to a similarly small violation in the regularity of H. In
principle, a carefully chosen coordinate transformation
could fully address all of these small violations.
We then integrate the equation

�

H

x

�

;x

þM
H

x
¼ Aþ B

x
þ C

x2
ð92Þ

from the world tube to Iþ, with boundary value
HjΓ ¼ HjΓ þ CjIþ , to obtain H on the entire null slice.
We reconstruct H by computing

H ¼ H − CjIþ : ð93Þ

To help ensure the stability of the system, we perform
spectral filtering for each of the evolution quantities J, β,Q,
U, W, and H after every time we compute them, similar to
[31]. For the angular filtering, we set to 0 the highest two
l-modes in the spectral decomposition on each shell of
constant ρ. Thus, resolving the system up through lmax
modes requires storing and evolving the evolution quan-
tities in the volume up through l ¼ lmax þ 2 modes. We
filter along the radinull direction by taking the spectral
expansion of the evolution quantities along each null ray
and scaling the ith coefficient by

e−108ði=ðnρ−1ÞÞ
16

; ð94Þ

where nρ is the number of radinull points. This is a fairly
stringent filter. Future work may be able to retain more
mode content by exploring the precise needs of the filter to
avoid aliasing effects in a range of practical simulation data.
To demonstrate the improvement afforded by our new

method of treating the radinull integration, we test the new
method of integrating Eq. (81) versus the previous method
introduced in [31] on an analytic test case. Consider
Eq. (81) with

A ¼ :94 sin x − 1.53 cos x

Rð1þ xÞ2 2
Y310

Y2−20Y10; ð95Þ

B ¼ −
x sin x
R

ð
2
Y3−1 þ3 Y4−3 1

Y22Þ

þ ð
0
Y00 − 1Þ

2
Y22j2Y22j2; ð96Þ
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C ¼ ð1 − cos xÞð
2
Y3−1 þ1 Y2−21Y30Þ

þ ðsin xþ cos xÞ
2
Y22; ð97Þ

and with M defined by Eqs. (79), (82), and (B7) with

J ¼
2
Y22; ð98Þ

T ¼
2
Y220

Y00: ð99Þ

For this test case, we set R ¼ 2.94 and we resolve the
computational domain through L ¼ 10 and nρ ¼ 41. This
test case is not necessarily physical, but satisfies the
boundary constraint given in Eq. (91). We integrate
Eq. (81) from an inner boundary value of HjΓ ¼ 0 to
x ¼ 0, obtaining H as a function of x, θ, and ϕ, or
equivalently, obtaining the radial spectral coefficients of
H, ciðθj;ϕkÞ at each angular collocation point ðθj;ϕkÞ. To
reduce the size of the dataset, we average these coefficients
over the sphere according to

ffiffiffiffiffiffiffiffiffiffi

hjciji
p

¼
X

j;k

ciðθj;ϕkÞc̄iðθj;ϕiÞ sin θj
2π2

nθnϕ
; ð100Þ

and we plot these angle-averaged coefficients in Fig. 2.
Because the test case satisfies the regularity conditions,

we expect that with sufficient resolution, an accurate
integration scheme would be capable of resolving the
solution to numerical roundoff. From Fig. 2 we see that
our current method demonstrates this behavior. However,
the radial modes of the previous method from [31] flattens
out about 6 orders of magnitude larger, because the

logarithmic terms are not properly represented via our
chosen spectral decomposition.

E. Time evolution

To evolve J forward in time, we integrate

J;ujρ;xA¼const ¼ Φ ð101Þ

at each radinull point using the method of lines. This is
done using an ordinary differential equation (ODE) inte-
grator, integrating forward in u, with a supplied right-hand
side Φ. Here Φ is computed using

Φ ¼ H þ ρð1 − ρÞR;ū

R
J;ρ; ð102Þ

where R;ū is the derivative of the surface area coordinate r
along the world tube given by Eq. (44) and where H is the
result of the radinull integration, Eq. (18), accomplished
using the method in Sec. IV D.
The time integration of J [Eq. (101)] uses a fifth order

Dormand-Prince ODE solver with adaptive time stepping
[46], and a default relative error tolerance of 10−8 except
where otherwise noted. The step sizes are limited entirely
by the error measure and is independent of the time steps of
the Cauchy evolution used to generate the world tube. The
time evolution is also done in tandem with the evolution of
the inertial coordinates [Eq. (130), and of the conformal
factor (Eq. (113)] from Iþ extraction, as described below.

V. I + EXTRACTION

Once the characteristic equations have been solved in the
volume so that the metric variables of the Bondi-Sachs
form Eq. (1) are known on Iþ, the gravitational waveform
can be computed. This involves two steps. The first step is
computing the Bondi news function at Iþ from the metric
variables there. The second step involves transforming the
news to a freely falling coordinate system at Iþ; this
removes all remaining gauge freedom up to a BMS trans-
formation. These steps are described below.

A. News function

The metric in Bondi-Sachs form given in Eq. (1) is
divergent at Iþ where r → ∞, so we work with a
conformally rescaled Bondi metric, ĝμν ¼ l

2gμν, where
l ¼ 1=r, that is finite at r → ∞. Expressing this metric in
the coordinate system x̂α̂ ¼ ðu;l; xAÞ, it takes the form [23]

ĝμ̂ ν̂ ¼ −ðe2βðl2 þ lWÞ − hABU
AUBÞdu2

þ 2e2βdudl − 2hABU
BdudxA

þ hABdx
AdxB: ð103Þ

FIG. 2. The angle-averaged value of the radinull spectral
coefficients of H after integrating Eq. (81) for the test system
given in Eqs. (95)–(99) for both the new method of integration
described here and the previous method introduced in [31].
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Here hAB, β,W, and UA are the same quantities that appear
in Eq. (1).
To facilitate the computation of the news function, we

construct an additional conformal metric

g̃μ̂ ν̂ ¼ ω2ĝμ̂ ν̂; ð104Þ

that is asymptotically Minkowski at Iþ. The conformal
factor ω is chosen so that the angular part of g̃μν is a unit
sphere metric [45],

qAB ¼ ω2hABjIþ : ð105Þ

In terms of the original metric,

g̃μ̂ ν̂ ¼ Ωgμ̂ ν̂; ð106Þ

Ω ¼ ωl: ð107Þ

On a given constant u slice, ω can be computed by
solving an elliptic equation related to the two-dimensional
(2D) curvature scalar,

R ¼ 2ðω2 þ hABjIþDADB lnωÞ; ð108Þ

where DA is the covariant derivative associated with hABjIþ .

Equation (108) has the effect of setting the asymptotic 2D
curvature in the conformally rescaled metric to be 2, which
is the curvature of the unit sphere. Expanding out the
covariant derivatives yields [23]

hABjIþDADB lnω ¼ 1

4
ð−2ð2 lnωJ̄ − 2ð̄2 lnωJ þ 4ð̄ð lnωK − ð lnωðJJ̄2 − ð lnωðJ̄JJ̄ − 2ð lnωðJ̄

þ 2ð lnωðKJ̄K þ ð lnωð̄JJ̄K þ ð lnωð̄ J̄ JK − 2ð lnωð̄KJJ̄ þ ðJð̄ lnωJ̄K þ ðJ̄ ð̄ lnωJK

− 2ðKð̄ lnωJJ̄ − ð̄ lnωð̄JJJ̄ − 2ð̄ lnωð̄J − ð̄ lnωð̄ J̄ J2 þ 2ð̄ lnωð̄KJKÞ: ð109Þ

Equation (108) could in principle be used to solve for ω
at each slice of constant u. However, we instead solve this
equation for ω only on the initial slice, where the equation
simplifies significantly (see below), and then we construct
an evolution equation for ω and we evolve ω as a function
of u. Note that when evolving ω, one could use Eq. (108) as
a check to monitor the error in ω; however, we do not yet
do so.
On the initial slice, Eqs. (108) and (109) simplify

considerably; we have set JjIþ ¼ 0 [see Eq. (62)], so
Eq. (109) implies that hABjIþDADB lnω ¼ 4ð̄ð lnω and

Eq. (19) implies that R ¼ 2, reducing Eq. (108) to
1 ¼ ω2 þ ð̄ð lnω. This has the trivial solution of ω ¼ 1.
The null generators at Iþ are defined as [23]

ñμ̂ ¼ g̃μ̂ ν̂∇ν̂ΩjIþ ; ð110Þ

n̂μ̂ ¼ ĝμ̂ ν̂∇ν̂ljIþ ¼ ĝμ̂l; ð111Þ

so that

ñμ̂ ¼ ω−1n̂μ̂; ð112Þ

where the covariant derivative ∇ν̂ is associated with the
Bondi metric, gμ̂ ν̂. Derivation for evolution of the con-
formal factor on Iþ in the frame of the compactified metric
is given in Ref [23] and can be computed by

2n̂μ̂∇μ̂ lnω ¼ −e−2βWjIþ : ð113Þ

Reference [23] derived the formula for the news function
in the conformal metric with the evolution coordinates,
with a sign error corrected in [47] (Ref. [23] chose their
convention to agree with Bondi’s original expression in the
axisymmetric case [18]). Here we have factored the si
slightly differently than they did,

N ¼ 1

16ωAðK þ 1Þ

�

4s1 þ 2s2 − ððŪ þ ð̄UÞs3 −
8

ω2
s4 þ

2

ω
s5

�

; ð114Þ

A ¼ ωe2β; ð115Þ

s1 ¼ J2H̄;l þ JJ̄H;l þ 2ðK þ 1ÞðH;l − JK;ulÞ; ð116Þ
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s2 ¼ ðJ;lJJ̄ ŪþðJ̄;lJ
2Ū þ 2ðUJJ̄K;l þ 2ðŪJJ̄J;l þ ð̄J;lJJ̄U þ ð̄J̄;lJ

2U þ 2ð̄UJ2J̄;l þ 2ð̄ Ū J2K;l

þ ðK þ 1Þð2ðJlŪ − 2ðK;lJŪ − 2ðUJJ̄;l þ 4ðUK;l − 2ðŪJK;l þ 4ðŪJ;l

þ 2ð̄J;lU − 2ð̄K;lJU − 2ð̄UJK;l − 2ð̄ Ū JJ;lÞ; ð117Þ

s3 ¼ J2J̄;l þ JJ̄J;l þ 2ðK þ 1ÞðJ;l − JK;lÞ; ð118Þ

s4 ¼ ðAðωJJ̄ þ ð̄Að̄ωJ2 þ ðK þ 1Þð2ðAðω − ðAð̄ωJ − ð̄AðωJÞ; ð119Þ

s5 ¼ 2ð2AJJ̄ þ 2ð̄2AJ2 þ ðAðJJJ̄2 þ ðAðJ̄J2J̄ − ðAð̄JJJ̄K − ðAð̄ J̄ J2K þ 2ðAð̄KJ2J̄

þ 2ð̄AðKJ2J̄ þ ð̄Að̄JJ2J̄ þ ð̄Að̄ J̄ J3 − 2ð̄Að̄KJ2K

þ ðK þ 1Þð4ð2A − 4ð̄ðAJ þ 2ðAðJJ̄ þ 2ðAðJ̄J − 4ðAðK þ 2ðAð̄J − 2ð̄AðJ þ 4ð̄AðKJÞ
þ ðK þ 2Þð−2ðAðKJJ̄ − ð̄AðJJJ̄ − ð̄AðJ̄J2Þ: ð120Þ

The news as defined in Eq. (114) has spin weight þ2.
However, the usual convention for gravitational radiation is
to work with quantities with spin weight −2. Furthermore,
the news N has the opposite sign as the usual convention.
To relate this news function to the gravitational wave strain
defined using the following convention: given a radially
outward propagating metric perturbation from Minkowski,
hμ̃ ν̃ ¼ gμ̃ ν̃ − ημ̃ ν̃ and polarizations given by hþ ¼ ðhθ̃ θ̃ þ
hϕ̃ ϕ̃Þ=2 and h× ¼ hθ̃ ϕ̃, the strain is given by

h ¼ hþ − ih×: ð121Þ

Then the news is related to the strain by

∂ ũh ¼ 2N̄: ð122Þ

B. Inertial coordinates

Once the news function is computed according to
Sec. VA, it is known as a function of coordinates
ðu; xAÞ on Iþ. Recall that these coordinates are chosen
so that u ¼ t̆ and xA ¼ x̆Ă on the world tube, where ðt̆; x̆ĂÞ
are the time and angular coordinates of the interior Cauchy
evolution. Therefore, the news as computed above depends
on the choice of Cauchy coordinates.
In this section, we transform the news to a new inertial

coordinate system ðũ; x̃ÃÞ on Iþ, where curves of constant
x̃Ã correspond to worldlines of free-falling observers
(because we are working on Iþ, we can suppress the
radinull coordinate). This removes the remaining gauge
freedom in the news, up to a choice of free-falling observers
(or in other words up to a BMS transformation).
On the initial slice, we choose ũ ¼ u and x̃Ã ¼ xA.

These inertial coordinates then evolve along the Iþ

generators [23]

n̂μ∂μũ ¼ ω; ð123Þ

n̂μ∂μx̃
Ã ¼ 0; ð124Þ

where the n̂μ are given by elements of the compactified
metric according to Eq. (111).
Since x̃Ã ¼ ðθ̃; ϕ̃Þ are not representable via a spectral

expansion in spherical harmonics, thus making them poor
choices for our numerics, we represent the inertial coor-
dinates using a Cartesian basis x̃ĩ ¼ ðx̃; ỹ; z̃Þ. We reexpand
Eq. (124), using the transformations

∂θ̃

∂xμ
¼ 1

x̃2 þ ỹ2

�

−ỹ
∂x̃

∂xμ
þ x̃

∂ỹ

∂xμ

�

; ð125Þ

∂ϕ̃

∂xμ
¼ 1

r̃2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̃2 þ ỹ2
p

�

x̃ z̃
∂x̃

∂xμ
þ ỹ z̃

∂ỹ

∂xμ
− ðx̃2 þ ỹ2Þ ∂z̃

∂xμ

�

:

ð126Þ

Plugging those into Eq. (124) yields the coupled equations

−ỹ
∂x̃

∂u
þ x̃

∂ỹ

∂u
¼ n̂Â

n̂u

�

−ỹ
∂x̃

∂x̂Â
þ x̃

∂ỹ

∂x̂Â

�

; ð127Þ

x̃ z̃
∂x̃

∂u
þ ỹ z̃

∂ỹ

∂u
− ðx̃2 þ ỹ2Þ ∂z̃

∂u

¼ n̂Â

n̂u

�

x̃ z̃
∂x̃

∂x̂Â
þ ỹ z̃

∂ỹ

∂x̂Â
− ðx̃2 þ ỹ2Þ ∂z̃

∂x̂Â

�

: ð128Þ

By expanding the basis from two coordinates to three,
we also need to introduce a constraint which will force the
x̃ĩ to remain on the unit sphere and eliminate the extra

degree of freedom, r̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̃2 þ ỹ2 þ z̃2
p

¼ 1. While this
holds analytically, numerically r̃ will shift away from one
during the evolution, which makes it necessary to introduce
a constraint equation to the system of equations,
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∂r̃

∂u
¼ x̃

∂x̃

∂u
þ ỹ

∂ỹ

∂u
þ z̃

∂z̃

∂u
¼ r̃Cðr̃Þ; ð129Þ

where Cðr̃Þ is a constraint term where Cðr̃ ¼ 1Þ ¼ 0. In our
code, Cðr̃Þ ¼ −κðr̃ − 1Þ for some positive parameter κ.
With these three equations, Eqs. (127)–(129), we solve

for the three ∂x̃ĩ

∂u
. After some manipulations and massaging,

we obtain the evolution equations for the Cartesian inertial
coordinates with respect to the characteristic coordinates,

∂x̃i

∂u
¼ x̃i

r̃
Cðr̃Þ þ 1

r̃2
ð−x̃ix̃jδjk þ δikr̃

2Þ ∂x̃
k

∂x̂Â

n̂Â

n̂u
: ð130Þ

Once we know ũðu; xAÞ, x̃ĩðu; xAÞ, then obtaining the
news on this grid is a matter of interpolation. Our code does
so in two steps. First, each of the spatial coordinates, as well
as the news function is interpolated in time onto slices of
constant ũ, so that we then have both x̃ĩðũ; xAÞ and
Nðũ; xAÞ ¼ Nðũ; x̃ĩÞ, using a cubic spline along each grid
point on Iþ.
Then on each constant ũ slice, we perform the spatial

interpolation by projecting the news function onto its
spectral coefficients clm, using the orthonormality of
SWSHes from Eq. (A7),

clmðũÞ ¼
Z

S2
Nðũ; x̃ĩÞ2Ylmðθ̃; ϕ̃Þ sin θ̃dθ̃dϕ̃: ð131Þ

However, since we numerically evaluate news function on
the noninertial characteristic coordinates, we must instead
do the integration over its area elements, sin θdθdϕ, so we
convert the coordinates of this expression, which introduces
the determinant of a Jacobian,

dθ̃dϕ̃ ¼ dθdϕ

�

�

�

�

∂x̃Ã

∂xA

�

�

�

�

: ð132Þ

Once again, because of the difficulties of representing
angular coordinates spectrally, we convert this expression
from θ̃ and ϕ̃ to x̃ĩ. To facilitate our expansion to Cartesian
coordinates, we introduce a temporary radial coordinates r̃
and r on the unit sphere with x̃Ã ¼ ðr̃; θ̃; ϕ̃Þ and xA ¼
ðr; θ;ϕÞ so that we can properly define the determinants
(keeping in mind r̃ and r are analytically identical to 1 and
will disappear from the final expressions),

�

�

�

�

∂x̃Ã

∂xA

�

�

�

�

¼
�

�

�

�

∂x̃Ã

∂x̃ĩ

�

�

�

�

�

�

�

�

∂x̃ĩ

∂xA

�

�

�

�

¼
�

1

r̃
2 sin θ̃

��

�

�

�

∂x̃ĩ

∂xA

�

�

�

�

: ð133Þ

Plugging everything in yields the full expression,

clmðũÞ ¼
Z

S2
Nðũ; x̃ĩÞ2Ylmðθ̃; ϕ̃Þ 1

sin θ

�

�

�

�

∂x̃ĩ

∂xA

�

�

�

�

sin θdθdϕ:

ð134Þ

Note that we have included a factor of sin θ= sin θ which,
while analytically trivial, aids with the numerics of our
code. Incorporating the sin θ in the numerator generates the
proper spherical area element for the integration, while we
factor the 1= sin θ into the ∂

∂ϕ
terms in the Jacobian, as

numerically computed spherical gradients return factors
of 1

sin θ
∂
∂ϕ
.

If the strain is similarly decomposed into spin weight −2
spherical harmonic coefficients, hlm, then they are related
to the news coefficients by

∂ ũhlm ¼ 2ð−1Þ−mcl−mCCE : ð135Þ

One potential issue with Eq. (134) is the possibility that
there is a significant drift in the inertial coordinates relative
to the code coordinates. If there is a large systematic shift in
the coordinates (for example, if they all drift toward a single
sky location), then there could be regions on the unit sphere
which are sparsely represented. Because spectral methods
of computing integrals often assume an optimal distribution
of grid points across the surface, this drift means there is a
risk of underresolving the computation Eq. (134), espe-
cially for high l modes. To forestall this issue, we have
taken to representing the Iþ extraction portion at a
significantly higher angular resolution from the rest of
our code. In particular, when we properly resolve the
volume evolution up to lmax angular modes, we maintain a
basis consisting of 2lmax angular modes for our Iþ

extraction code. Our properly resolved information content
is still no better than what is resolved in the volume
evolution (i.e., lmax), but this allows us to accurately
project onto the inertial coordinates with Eq. (134).
Because the Iþ extraction portion of the code is only a
2D surface, this choice is an insignificant contribution to
the overall computational cost of our code.
While this coordinate evolution projects the news func-

tion on an inertial frame, it is not a unique inertial frame.
The class of inertial observers at Iþ are all related to each
other by the group of BMS transformations. Because our
CCE inertial coordinates at Iþ correspond to free-falling
observers, the BMS frame remains constant throughout the
entire characteristic evolution. Thus, the BMS framewe use
in our evolution is frozen in entirely by our choice to
identify our inertial coordinates with the characteristic
coordinates on our initial slice (i.e., ũ ¼ u and x̃Ã ¼ xA).
This choice is in some sense arbitrary, as it is ultimately
related to the coordinates provided on the world tube by the
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Cauchy evolution on that initial slice, and there are no
guarantees of consistency between CCE evolutions on
different world tubes even from the same Cauchy evolu-
tion. However, development of a consistent treatment of
handing the choice of BMS frame is beyond the scope of
this paper.

C. Computational grid

We use SPHEREPACK for most of the Iþ extraction, with
the final projection onto the inertial coordinates done using
SPINSFAST. The time evolution of the inertial coordinates,
Eq. (130), and of the conformal factor, Eq. (113), is done
in tandem with the evolution of J, Eq. (102), in the
volume extraction, using the same routine (fifth order
Dormand-Prince) and error tolerance as specified for that
evolution.

VI. CODE TESTS

In order to showcase the accuracy, speed, and robustness
of this spectral CCE code, we perform a number of tests on
the code. We have two linearized solutions, a trivial
analytic solution, and two fully nonlinear tests which
outline how well the code can remove purely coordinate
effects from the news output.

A. Linearized analytic solution

The linearized form for the Bondi-Sachs metric for a
shell of outgoing perturbations on a Minkowski back-
ground was given in [48], though our choice of notation

follows more closely with that used in [25]. We can express
the solutions in terms of the metric quantities

Jlin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þ!=ðl − 2Þ!
p

2ZlmℜðJlðrÞeiνuÞ;
Ulin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

1ZlmℜðUlðrÞeiνuÞ;
βlin ¼ 0ZlmℜðβlðrÞeiνuÞ;
Wlin ¼ 0ZlmℜðWlðrÞeiνuÞ; ð136Þ

where ν is a real constant setting the frequency of the
perturbations and JlðrÞ; UlðrÞ; βlðrÞ, and WlðrÞ are all
analytic complex functions of just the radius and l-mode of
the perturbation, given below. The angular content is
expressed through the various sZlm, which are just linear
combinations of the typical SWSHes defined as in [48]

sZlm ¼ 1
ffiffiffi

2
p ðsYlm þ ð−1Þm sYl−mÞ for m > 0;

sZlm ¼ i
ffiffiffi

2
p ðð−1Þm sYlm − sYl−mÞ for m < 0;

sZl0 ¼ sYl0: ð137Þ

To get the linearized expression for Hlin, we can simply
take a direct u derivative of Jlin. Since these expressions are
defined according to the Bondi metric, with the surface area
coordinate r (rather than ρ), u derivatives are taken along
curves of constant r. Thus Hlin ¼ Jlin;u.
From this, the linearized news function can be

expressed as

N lin ¼ ℜ

�

eiνu lim
r→∞

�

lðlþ 1Þ
4

Jl −
iνr2

2
Jl;r

�

þ eiνuβl

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þ!
ðl − 2Þ!

s

2Zlm: ð138Þ

Reference [25] explicitly wrote out the solutions to the linearized evolution quantities and news function for the l ¼ 2

and l ¼ 3 modes, which we reproduce here. For l ¼ 2,

β2 ¼ B2;

J2ðrÞ ¼
24B2 þ 3iνC2a − iν3C2b

36
þ C2a

4r
−

C2b

12r3
;

U2ðrÞ ¼
−24iνB2 þ 3ν2C2a − ν4C2b

36
þ 2B2

r
þ C2a

2r2
þ iνC2b

3r3
þ C2b

4r4
;

W2ðrÞ ¼
24iνB2 − 3ν2C2a þ ν4C2b

6
þ 3iνC2a − 6B2 − iν3C2b

3r
−
ν2C2b

r2
þ iνC2b

r3
þ C2b

2r4
;

N 2m ¼ ℜ

�

iν3C2b
ffiffiffiffiffi

24
p eiνu

�

2Z2m; ð139Þ

and for l ¼ 3,
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β3 ¼ B3;

J3ðrÞ ¼
60B3 þ 3iνC3a þ ν4C3b

180
þ C3a

10r
−
iνC3b

6r3
−
C3b

4r4
;

U3ðrÞ ¼
−60iνB3 þ 3ν2C3a − iν5C3b

180
þ 2B3

r
þ C3a

2r2
−
2ν2C3b

3r3
þ 5iνC3b

4r4
þ C3b

r5
;

W3ðrÞ ¼
60iνB3 − 3ν2C3a þ iν5C3b

15
þ iνC3a − 2B3 þ ν4C3b

3r
−
2iν3C3b

r2
−
4iν2C3b

r3
þ 5νC3b

2r4
þ 3C3b

r5
;

N 3m ¼ ℜ

�

−ν4C3b
ffiffiffiffiffi

30
p eiνu

�

2Z3m; ð140Þ

where Bl; Cla, and Clb are all freely chosen complex
constants. Note that only the values of Clb show up in the
expression for the news.
For the tests we performed here, we follow a similar

setup as in [25,27], where we evolve a system which is a
simple linear combination of the (2,2) and (3,3) modes.
Specifically, the parameter values are ν ¼ 1, Bl ¼ 0.5iα,
Cla ¼ 1.5α, and C2b ¼ −iC3b ¼ 0.5α, where the constant
α sets the amplitude of the resulting news as well as the
scale of the linearity of the system. Because we evolve the
entire nonlinear solution, and not just a linearized version,
we expect our results to differ from the analytic solution

with differences that scale as the square of the ampli-
tude, α2.
We place these linearized values of the evolution

quantities ðJ;W;U; βÞ on a chosen world tube to serve
as the inner boundary values for the volume evolution. By
starting with the world tube in the Bondi metric, we bypass
the entire inner boundary formalism since we are already
starting with the Bondi metric quantities. To make this test
even more demanding, we chose our world tube such that
its surface area coordinate varies both in time and across the
surface, given by the formula

Rðu;x; y; zÞ ¼ 5

�

1þ ð−0.42xþ 0.29yþ 0.09zÞð0.2xþ 0.1y− 0.12zÞð0.7xþ 0.1y− 0.3zÞð0.12x− 0.31y− 0.5zÞ
ðx2 þ y2 þ z2Þ2 sinπu

�

:

ð141Þ

We chose this distortion of the surface area coordinate
somewhat arbitrarily, ensuring that it had distortions with
modes up through l ¼ 4 as well as a time varying
component with a frequency distinct from that of the
linearized perturbation. This tests the code’s ability to
distinguish between H and Φ with the correct handling
of the moving world tube surface area coordinate, R, at
least to linear order. Since this test bypasses the inner
boundary formalism, we cannot make any claim about
whether the coordinate radius r̆ of the world tube is moving
as there is no defined coordinate radius.
The data for J on the initial slice we also read off from

Eq. (136). With the world tube metric values and initial slice
established, we evolve the full characteristic system. We
resolve SWSH modes through l ¼ 8 with a radinull reso-
lution of 20 grid points and a relative time integration error
tolerance of 10−8.We test the characteristic evolution against
perturbation amplitudes of α ¼ ð10−2; 10−3; 10−4; 10−5;
10−6; 10−7; 10−8Þ from u ¼ 0 to u ¼ 10. We compute the
difference between the computed news and the analytic

results from Eq. (138), jΔNlmj ¼ jNlm
Char −N lm

lin j in Fig. 3.
Note, we are examining the news function evaluated at the
Iþ coordinates ðu; θ;ϕÞ, rather than the inertial coordinates
ðũ; θ̃; ϕ̃Þ, because we expect the difference between the two
systems to be a small correction to the linearized values.
From Fig 3 we clearly see that when α≳ 10−6, jΔNlmj

scales as α2. When α ≲ 10−6, the difference in news rapidly
reaches a floor below 10−14 for the smallest amplitude
perturbations. Modes other than ð2;�2Þ and ð3;�3Þ all
converge toward 0 with scaling behavior no worse than
jΔNlmj ⪅ Oðα2Þ until reaching machine roundoff. The
observed scaling with α matches the expected scaling: we
are evolving the full nonlinear equations but are comparing to
an analytic solution of the linearized equations.
Previous iterations of CCE codes have performed a

similar linearized analytic test [28,47]. While their choice
of parameters differs slightly from ours, they are most
similar to our α ¼ 10−6, with inner boundaries at fixed,
uniform R world tube surfaces. The error in their news at
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the resolutions they tested was worse than 10−10, whereas
the error in our news for the α ¼ 10−6 case is at the order of
10−14, hovering just about the error of our numerical
roundoff. While comparing our results to theirs is not
exactly a 1-1 comparison, we believe this is evidence for
how effective our code is at resolving the linear case.

B. Teukolsky wave

ATeukolsky wave is a propagating gravitational wave in
the perturbative limit of Einstein’s equations. For outgoing
waves the metric has the form [49]

ds̆2 ¼ −dt̆2 þ ð1þ f̆rrÞdr̆2 þ 2Bf̆rθr̆dr̆dθ̆

þ 2Bf̆rϕr̆ sin θ̆dr̆dϕ̆þ ð1þ Cf̆
ð1Þ
θθ þ Af̆

ð2Þ
θθ Þr̆2dθ̆2

þ 2ðA − 2CÞf̆θϕr̆2 sin θ̆dθ̆dϕ̆

þ ð1þ Cf̆
ð1Þ
ϕϕ þ Af̆

ð2Þ
ϕϕÞr̆2sin2θ̆ dϕ̆2; ð142Þ

where the functions f̆ij are known functions of angles listed
below, and the functions A, B, andC are computed from the
freely specifiable function FðŭÞ ¼ Fðt̆ − r̆Þ,

A ¼ 3

�

d2ŭF

r̆3
þ 3dŭF

r̆4
þ 3F

r̆5

�

;

B ¼ −

�

d3ŭF

r̆2
þ 3d2ŭF

r̆3
þ 6dŭF

r̆4
þ 6F

r̆5

�

;

C ¼ 1

4

�

d4ŭF

r̆
þ 2d3ŭF

r̆2
þ 9d2ŭF

r̆3
þ 21dŭF

r̆4
þ 21F

r̆5

�

; ð143Þ

where dŭ is the total derivative with respect to ŭ. The choice
of Fðt̆ − r̆Þ specifies outward propagating waves, as
opposed to Fðt̆þ r̆Þ which would generate ingoing waves.
Following [50,51], we choose the outgoing solution

corresponding to the SWSH 2Y20 mode, defining the f̆ij
from above as

f̆rr ¼ 2 − 3sin2 θ̆; f̆rθ ¼ −3 sin θ̆ cos θ̆; f̆rϕ ¼ 0;

f̆
ð1Þ
θθ ¼ 3sin2 θ̆; f̆

ð2Þ
θθ ¼ −1; f̆θϕ ¼ 0;

f̆
ð1Þ
ϕϕ ¼ −f̆

ð1Þ
θθ ; f̆

ð2Þ
ϕϕ ¼ 3sin2θ̆ − 1; ð144Þ

and defining the profile of the waves with FðŭÞ ¼ αe−ŭ
2=τ2 ,

where α and τ are the amplitude and width of the wave,
respectively. This is slightly different from the choice of
FðŭÞ used in either [50] or [51].
Because this solution starts with a metric that is not in

Bondi-Sachs form, this test utilizes the full inner boundary
formalism, in contrast to the linearized analytic test in
Sec. VI A, which tests only the characteristic evolution. We
evaluate the components of the metric [see Eq. (142)] at a
world tube of constant radius, r̆jΓ. The world tube treatment
in Sec. III assumes that the metric is given by the 3þ 1

variables ğij, ᾰ, and β̆i in Cartesian coordinates; we obtain
these 3þ 1 Cartesian quantities from the spherical com-
ponents in Eq. (142) in the standard way, using x̆ ¼
r̆ sin θ̆ cos ϕ̆ and so on.
Given the metric and its derivatives evaluated on a world

tube, the inner boundary formalism creates a correspon-
dence between time and angular coordinates on the world
tube and at Iþ, i.e., ðu ¼ t̆; θ ¼ θ̆;ϕ ¼ ϕ̆Þ. With that in
mind, the news function of this waveform at Iþ is given by
the formula [51]

FIG. 3. The difference between the numerically evolved news
function and the analytic solution for the linearized analytic test
of Sec. VI A, for various amplitudes of the linear perturbation α.
The (2,2) mode is on the left and the (3,3) mode on the right. We
expect differences of order α2 because we evolve the nonlinear
terms that the linearized analytic solution neglects. For both
modes, the magnitude of the differences scales as at least α2 until
they approach numerical roundoff.
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N ¼ −
3 sin2 θ̆

4
∂5
uFðŭÞ; ð145Þ

where ŭ ¼ u − r̆jΓ. For our choice of FðŭÞ,

N 20 ¼ α

ffiffiffiffiffiffi

6π

5

r

e−ŭ
2ð120ŭ − 160ŭ3 þ 32ŭ5Þ ð146Þ

with all other news modesN lm≠20 ¼ 0. When we compare
our computed news with this analytic news, we do so using
the news evaluated on the coordinates ðu; θ;ϕÞ, rather than
the inertial ones ðũ; θ̃; ϕ̃Þ.
Because this is a solution of the linearized Einstein

equations, comparing with our numerical solution of the
full nonlinear equations should yield differences that scale
like α2. Note that even though we represent the magnitude
of the linear perturbation with α in both this test and the
linearized analytic test above, the absolute amplitude for a
given α is not the same for the two tests. The Teukolsky
wave news function here is over 2 orders of magnitude
larger than the linearized analytic solution for the same
value of α.
For our test, the world tube is at a coordinate radius of

r̆jΓ ¼ 5, and we start the wave at the origin with a width of
τ ¼ 1 with amplitudes α ¼ ð10−2; 10−3; 10−4; 10−5; 10−6;
10−7; 10−8Þ. The CCE code is run to resolve the news up
through l ¼ 8 modes with 20 radinull points and a relative
time integration error tolerance of ≈4 × 10−6. We evolve
the system from u ¼ 0 through u ¼ 10, which starts and
ends when the metric is effectively flat.
We show the difference between the numerical evolution

and the (2,0) mode of the analytic news from Eq. (146),
jΔN20j ¼ jN20

CCE −N 20j on the left side of Fig. 4. We see
for larger perturbations (α≳ 10−6) the difference in the
news scales with α2, while for smaller perturbations
ðα≲ 10−6Þ jΔN20j reaches a floor below 10−12. For other
l ¼ even,m ¼ 0modes, such as the (4,0) mode plotted on
the right half of Fig. 4, the behavior is similar. Because we
chose a solution with m ¼ 0, all m ≠ 0 modes of
the numerical solution vanish to numerical roundoff
for all α.
This behavior is very similar to what we see for the

linearized analytic test. This confirms that our CCE code is
consistent with the linear solution. Because this test also
incorporates the full inner boundary formalism (as opposed
to the linearized analytic test which does not), this also
confirms that to linear order, we reproduce the Bondi metric
on the world tube.

C. Rotating Schwarzschild

Following the test used in [23], we generate data
corresponding to the Schwarzschild metric in Eddington-
Finkelstein coordinates with a rotating coordinate trans-
formation, ϕ̆ → ϕ̆þ ωŭ, so the metric is

ds̆2 ¼ −

�

1 −
2M

r̆
− ω2r̆2sin2θ̆

�

dŭ2 − 2dŭdr̆

þ 2ωr̆2sin2θ̆dŭdϕ̆þ r̆2sin2θ̆dΩ̆2; ð147Þ

where M is the mass, ω is the parameter of the trans-
formation, and ŭ is the coordinate ŭ ¼ t̆ − r̆�. For our test,
we chose M ¼ 1 and ω ¼ 0.1. The world tube has a radius
of r̆ ¼ 3M and the solution is evolved from u ¼ 0M to
u ¼ 0.5M. Because the metric is just Schwarzschild in
different coordinates, there is no gravitational radiation. We
ran our code with an absolute time integration error
tolerance of 10−12 and an inertial coordinate damping

FIG. 4. The difference between the numerically evolved news
function and the analytic solution for the Teukolsky wave test of
Sec. VI B, for various amplitudes of the linear perturbation α. The
(2,0) mode is on the left and the (4,0) mode on the right. We
expect differences of order α2 because we evolve the nonlinear
terms that the Teukolsky wave solution neglects. For both modes,
the magnitude of the differences scales as at least α2 until it
approaches numerical roundoff.
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parameter of κ ¼ 10. The resulting numerical values of all
the news modes (resolved up through l ¼ 8) are below
absolute values of 10−12. Because this case uses a space-
time metric that is not in Bondi form and has a nontrivial
angular dependence, it is a full, nonlinear test of our
code (albeit with no time dependence) from the inner
boundary formalism through the extraction of the news
function at Iþ.

D. Bouncing black hole

One expected key feature of CCE is its ability to remove
gauge effects from the resulting waveform regardless of the
coordinates of the Cauchy metric. We construct a test
similar to those in [28,51]. We start with a Schwarzschild
black hole and apply a simple time-dependent periodic
coordinate translation on the spacetime. Doing so produces
a time-dependent, periodic metric at the (coordinate-
stationary) world tube, but because this black hole is not
radiating, the news function of this spacetime should be
zero; the goal of this test is to verify that we indeed get zero
in this nonlinear, time-dependent situation.
Specifically, the solution is that of a Schwarzschild black

holewith massM ¼ 1 in Kerr-Schild coordinates ðt̆; x̆; y̆; z̆Þ,
with a simple oscillating coordinate transformation

x̆→ x̆þ a sin4
�

2πt̆

b

�

; ð148Þ

where in our test we chose a ¼ 2M and b ¼ 40M. Thus, in
the coordinate frame, which is also the frame of the world
tube, the black hole will appear to bounce back and forth
along the x̆-axis, but there is no radiated gravitational wave
content. The world tube is placed at r̆Γ ¼ 15M, which is
intentionally very small compared towhat would be used for
a compact binary simulation (typically hundreds of M); we
chose an artificially smallworld tube to produce an extremely
difficult test of the CCE code. We evolve the system from
u ¼ 0M to u ¼ 40M, one full period of the coordinate
oscillation, starting and ending when the coordinates of the
black hole are at the origin.
We performed the characteristic evolution with our

spectral code at three different resolutions, which we label
as Sk, where k is (0,1,2). We set the resolution at each level
of refinement as follows: we retain SWSH modes sYlm

through lmax ¼ 8þ 2k, we use 20þ 2k collocation points
in the radinull direction, and the adaptive time stepper uses
a relative error tolerance of 3 × 10−5 × e−k with a maxi-
mum step size ofΔu ¼ 0.1. For each resolution, we ran our
code on a single core on the Wheeler cluster at Caltech an
Intel Xeon E5-2680, taking less than (30,50,120) minutes
for the (S0, S1, S2) resolutions, respectively.
For simplicity, we examine the news at Iþ in the

coordinates ðu; θ;ϕÞ rather than in the inertial coordinates
ðũ; θ̃; ϕ̃Þ. Similarly, we expand the news into spherical
harmonic modes 2Ylmðθ;ϕÞ. Since the news function is

supposed to be zero uniformly, simple coordinate trans-
formations at Iþ are not expected to affect the overall
results presented here.
As a baseline for comparison, we also ran the PITTNULL

code on the same world tube data. We ran PITTNULL at
multiple resolutions (P0–P5). These correspond to a res-
olution of ð1003; 2002; 3003; 4003; 6003; 9003Þ spatial
points and fixed time steps of Δu ¼ ð0.05; 0.025;
0.01667; 0.0125; 0.00833; 0.00556ÞM. Because PITTNULL

takes significant computational resources at high resolu-
tion, we intentionally terminated the P5 simulation after
less than 15M. During the time that it ran, that simulation
continued trends seen in the lower resolution PITTNULL

simulations. The PITTNULL resolutions (P0, P1, P2) were
run on 24 cores on the Wheeler cluster at Caltech, taking
approximately (850, 2650, 5350) total CPU hours, respec-
tively, while resolutions (P3, P4, P5) were run on 512 cores
on the BlueWaters cluster, taking approximately (9000,
17000, 24000) total CPU hours, respectively. In the case of
P5, that corresponds to the cost expended on the simulation
before we terminated it. This massive discrepancy on
computational costs between the two codes demonstrates
the impressive speed-up achieved by utilizing spectral
methods, similar to what was observed with the previous
implementation of this spectral code [31,32].
In Figs. 5 and 6, we plot the amplitudes of the (2,2),(2,0),

(3,3), and (4,4) modes of the news for both codes for all
resolutions for one oscillation period. In both codes, the
amplitude of the lþm ¼ odd modes vanishes except for
numerical roundoff, likely due to the planar symmetry of
the system. For the lþm ¼ even modes the computed
numerical news is nonzero for both codes at finite
resolution.
We see in Fig. 5 that for the l ¼ 2modes the SpEC code

does a better job than the PITTNULL code does at removing
the gauge effects from the news function, at our chosen
resolutions. This is especially true at the beginning and end
of the oscillations when the difference between the shifted
coordinates and Schwarzschild is minor.
During the middle of the period, when the coordinate

effects on the world tube metric are the largest, the
difference between the SpEC and PITTNULL news in the
(2,2) and (2,0) modes is the smallest. Yet even in this
regime, the lowest resolution SpEC simulation improves on
the highest resolution PITTNULL simulation by over an order
of magnitude. For the higher order modes, like the (3,3) or
(4,4) modes in Fig. 6, the peak errors in the lowest
resolution SpEC results are roughly 2 orders of magnitude
better than those of PITTNULL. In all the modes, improving
the SpEC CCE resolution reduces the amplitude of the
news, suggesting the remaining errors in the SpEC results
are due to finite numerical resolution, rather than any issue
inherent to the code.
This test is a rather extreme test of the code’s ability to

distinguish coordinate effects, with the black hole moving
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an appreciable fraction of the world tube’s radius in its
coordinate frame. We also ran our code at the lowest
resolution on this identical system while placing the world
tube radius at a series of different coordinate values,
r̆jΓ ∈ ð10; 12; 15; 20; 25ÞM, spread quasi-uniformly in
1=r̆. In Fig. 7, we plot the amplitude of our code’s (2,2)
mode for each of these world tube radii.
Moving the world tube to smaller radii raises the error as

might be expected; eventually if the world tube is close
enough to the BH we expect caustics to form (i.e., radially
outward null rays cross paths) and the characteristic
formulation to fail. There is a clear convergence of this
error to zero as we move the world tube farther away and

the relative size of the coordinate transformation of the
bouncing BH shrinks.

E. Gauge wave

The bouncing black hole test is a measure of the code’s
ability to remove coordinate effects resulting from simple
translations; we now introduce a test to examine the code’s
ability to distinguish between outgoing gravitational waves
and gauge waves propagating along null slices. To generate
this gauge wave, we construct a metric similar to that
introduced by Eq. (5.2) in Ref. [52], except modified for an
outward propagating gauge transformation. Starting with
the Schwarzschild metric in ingoing Eddington-Finkelstein
coordinates, we apply the transformation of v̆ ¼ t̆þ r̆þ
Fðt̆ − r̆Þ=r̆ where FðŭÞ is an arbitrary function. The line
element is

FIG. 6. Same as Fig. 5, but for the (3,3) and (4,4) modes of the
news. For these modes, the SpEC news is at least 2 orders of
magnitude smaller than that of PITTNULL.

FIG. 5. The absolute values of the (2,2) and (2,0) news modes
for both the SpEC (color, resolutions denoted by S0 through S2)
and PITTNULL (grayscale, resolutions denoted by P0 through P5)
CCE codes for the bouncing black hole test (Sec. VI D). For this
test the news should be zero. Although both codes are convergent,
the SpEC results achieve much smaller errors than the PITTNULL

results, especially near the beginning and end of the cycle as the
off-center translation vanishes.
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ds̆2 ¼ −

�

1 −
2M

r̆

��

1þ dŭF

r̆

�

2

dt̆2 þ 2

�

1þ dŭF

r̆

��

2M

r̆
þ
�

1 −
2M

r̆

��

dŭF

r̆
þ F

r̆2

��

dt̆dr̆

þ
�

1 −
dŭF

r̆
−
F

r̆2

��

1þ 2M

r̆
þ
�

1 −
2M

r̆

��

dŭF

r̆
þ F

r̆2

��

dr̆2 þ r̆2dΩ̆2: ð149Þ

Here M is the mass of the black hole and dŭ is the total
derivative with respect to ŭ. For the test, we set M ¼ 1 and
we chose F to be a sine-Gaussian,

FðŭÞ ¼ α sin ðwŭþ p0Þe−
ðŭ−ŭ0Þ2

k2 : ð150Þ

Here α is the amplitude of the gauge wave, w is the
frequency, p0 is the initial phase offset, ŭ0 is the time when
the peak is at the origin, and k is its characteristic width. For
our test, we choose α ¼ M, w ¼ 0.5=M, p0 ¼ 0.01,
ŭ0 ¼ 40M, and k ¼ 10.
Because this system is spherically symmetric, most of

the terms in the evolution equations are trivially zero. In
order to make the test more stringent and to generate
nonzero terms in the evolution equations, we also apply
an additional translation to displace the center of the
black hole from the center of the world tube. The translation
used is

z̆ → z̆þ 2ð1 − e−ðt̆=40Þ
4Þ: ð151Þ

By moving the system entirely along the z̆-axis, we expect
onlym ¼ 0 modes to be excited. We choose the world tube
radius to be r̆Γ ¼ 50M. Our gauge wave is configured so

that the peak will propagate outwards and pass through this
world tube at t̆ ¼ 90M.
We ran our SpEC CCE code at three different resolu-

tions, Sk, for k ¼ ð0; 1; 2Þ. This corresponds to angular
resolution of lmax ¼ 8þ 2k, radinull resolution of
20þ 2k, and absolute time integration error tolerance of
10−12e−k. The three resolutions, (S0, S1, S2), were run on a

FIG. 7. The absolute values of the (2,2) news modes from our
SpEC code at the lowest numerical resolution S1, for the
bouncing black hole test at different coordinate world tube
radii r̆.

FIG. 8. The amplitude of the (2,0) and (3,0) modes of the news
for SpEC (color) and PITTNULL (grayscale) CCE codes for the
gauge wave test (Sec. VI E). The center of the coordinate shift
off-center occurs around u ¼ 40M while the peak of the gauge
wave propagates to Iþ at u ¼ 90M. For this test, the news should
be zero. At all times, the SpEC code is orders of magnitude more
accurate than the PITTNULL code.
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single core on Caltech’s Wheeler cluster for approximately
(35,75,165) minutes.

PITTNULL CCE was also run at three resolutions,
P0–P2 corresponding to a finite differencing grid with
ð1003; 2003; 3003Þ spatial points and fixed times steps of
size Δu ¼ ð0.05; 0.025; 0.01667ÞM. Each resolution was
run on 256 cores on the BlueWaters cluster, costing
approximately (1100, 3200, 6000) CPU hours.
In Fig. 8, we plot the amplitude of the (2,0) and (3,0)

news modes for both codes and in both modes. We expect
the news to be zero because the solution is merely
Schwarzschild in moving coordinates. At all times both
codes show convergence toward zero, with SpEC several
orders of magnitude below PITTNULL. In the SpEC results,
at the times corresponding to the coordinate shift, we see
the amplitude of the news is noticeably smaller than seen in
the bouncing black hole test, consistent with the larger
world tube radius used in this test. The passing gauge wave
also leaves an imprint on the news that is appropriately
vanishing with resolution.
Examining the higher l modes yields a similar picture

for both codes just at slightly decreasing amplitudes, as
seen in the right panel of Fig. 8. Also, as expected by the
axisymmetry of the setup for this test, both codes produce
zero news to numerical roundoff for all m ≠ 0 modes.

VII. CONCLUSION

In this paper, we have detailed the implementation of our
spectral CCE code as a means of extracting gravitational
wave information from an interior Cauchy evolution of a
relativistic system. We summarized the full theoretical
framework CCE along with discussion of the changes
made to the previous version of the code [31,32]. In
particular, beyond bug fixes and miscellaneous alterations
to the code, we have improved the numerical treatment of
the poles contained within the Q, W, and H evolution
equations, switched the time stepper from fixed step size to
a fifth order adaptive, changed the representation of the
inertial coordinates at Iþ for better spectral handling. All of
these cumulative effects lead to a more robust and accurate
code than before. This paper also clarifies a number of
analytic subtleties and paper typos present within [31,32].
We applied our code to a number of analytic test cases in

order to examine its efficacy to extract the correct gravi-
tational wave content from the world tube data. In the pair
of linearized test cases, the code successfully reproduces
the analytic solution to linear order, with their differences
scaling as expected (i.e., scaling by the nonlinear terms
unaccounted for by the linear approximations). In these two
tests, the code is ultimately limited by the numerical
truncation limit of using double precision. A third test, a
Schwarzschild black hole in a rotating coordinate frame, is
a full nonlinear test of the code with a straightforward

vanishing solution. Similar to the linear tests, the code
resolves this solution up to numerical truncation limits.
The other two tests, the bouncing black hole and the

gauge wave, are more rigorous tests of the code’s capability
of eliminating gauge effects from the final output, and are
successful at doing so. For these tests, the errors are small
and convergent with resolution. Furthermore, as the world
tube boundary is placed farther from the black hole, less
resolution is needed to attain a given level of error.
Overall, this version of the code shows marked improve-

ments from the previous standards set by the PITTNULL

code. In both the bouncing black hole and gauge wave tests,
we ran PITTNULL at a series of different resolutions to
serve as an independent comparison. The resulting news
output from our code, for tests where the news should be
zero, was orders of magnitude smaller than that of
PITTNULL. In addition, we still observe the computational
speed-up of our code by a factor of > 100 that had been
noted in [31,32].
Our current goal is to run our CCE code on the catalog of

SpECwaveforms [53,54]. In future work, we plan to couple
the CCE code to run concurrently with the SpEC Cauchy
evolution. Then CCE would not have to be run as a seperate
postprocessing step to generate the final waveforms. We
would then like to follow that with Cauchy-characteristic
matching (CCM) [24], whereby information from the
Bondi metric is fed back into the Cauchy domain as both
the Cauchy and the characteristic systems are jointly
evolved. The characteristic evolution would then couple
directly with the Cauchy evolution, removing the need for
boundary conditions at the artificial outer boundary of the
Cauchy domain. While a previous code has successfully
performed CCM in the linearized case, they were unable to
stably run it for the general case [55].
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APPENDIX A: SPIN-WEIGHTED SPHERICAL

HARMONICS

Spin-weighted spherical harmonics (SWSH) are a gen-
eralization of the typical spherical harmonics by introduc-
ing spin-weight raising (ð) and lowering operators (ð̄)
[56,57]. These derivative operators are defined by con-
tracting the dyads with the angular derivative operator. For
any spin-weighted scalar quantity v ¼ q

A1

1
� � � qA2

2
vA1���An

,
where each qi may be either q or q̄, we define the spin-
weighted derivatives,

ðv ¼ q
A1

1
� � � qAn

n qBDBvA1���An
; ðA1Þ

ð̄v ¼ q
A1

1
� � � qAn

n q̄BDBvA1���An
; ðA2Þ

where D is the angular covariant derivative on the unit
sphere. By contracting these dyads with the tensor com-
ponent gives the spin-weighted version of the quantities,
computed above in Eqs. (8)–(11). The dyads contracted
with a given quantity determine its spin weight, withþ1 for
each qA and −1 for each q̄A. For example, the spin weight
of ðJ̄ ¼ 1

2
∂AhBCq

Aq̄Bq̄C is −1. Thus we see that ðK; β;WÞ
have spin weight of 0, ðQ;UÞ have spin weight 1, and
ðJ;H;ΦÞ have spin weight 2.
Now we can also express ð as a complex spherical

derivative operator on a given quantity F with a spin weight
of s, and for our choice of dyad given in Eq. (4),

ðF ¼ −sinsθ

�

∂

∂θ
þ i

sin θ
∂

∂ϕ

�

ðsin−sθFÞ; ðA3Þ

ð̄F ¼ −sin−sθ

�

∂

∂θ
−

i

sin θ
∂

∂ϕ

�

ðsinsθFÞ: ðA4Þ

While PITTNULL used a finite difference formulation for
computing these derivatives [58], our code will make use of
how ð acts on individual SWSH modes,

ðsYlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sÞðlþ sþ 1Þ
p

sþ1Ylm; ðA5Þ

ð̄
sYlm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ sÞðl − sþ 1Þ
p

s−1Ylm: ðA6Þ

With this, we can start from the regular spherical harmonics
(s ¼ 0) and build up the SWSH modes for arbitrary spin
weight.

And just like regular spherical harmonics, we can take an
arbitrary spin-weighted function of and decompose into
spectral coefficients with the use of the expression of
orthonormality of the SWSHes over the unit sphere,

Z

S2

sYlmsYl
0m0
dΩ ¼ δll0δmm0 ; ðA7Þ

where dΩ is the area element of the unit sphere S2. Thus,
given a spin-weighted quantity, we can decompose it as a
sum of SWSH modes and take ð and ð̄ derivatives by
applying the properties of Eqs. (A5) and (A6) to the
spectral coefficients.
Last, we list some basic, useful properties of SWSHes:
(i) It is only possible to add together spin-weighted

quantities of identical spin weights.
(ii) The spin weight of a product of two SWSHes is the

sum of their individual spin weights.
(iii) Because typical spherical harmonics are more gen-

erally SWSHes of spin weight 0, SWSHes inherit
the same mode properties of spherical harmonics
(i.e., l ≥ 0; jmj ≤ l).

(iv) In addition, the spin weight serves as a lower bound
on possible l modes, l ≥ jsj.

(v) The ð and ð̄ operators do not commute as, given spin-
weighted quantity F of spin s, ð̄ðF ¼ ðð̄F þ 2sF.

We utilize two external code packages to assist with the
numerical implementation for the angular basis function,
SPHEREPACK [41,42] for the standard spherical harmonics
and SPINSFAST [43] for the SWSHes. In particular, we use
SPHEREPACK primarily during the inner boundary formal-
ism and partially during Iþ extraction, while we use
SPINSFAST during the volume evolution and Iþ extraction.

APPENDIX B: NONLINEAR

EVOLUTION EQUATIONS

The full system of nonlinear equations appears below.
The equations are the radinull equations on the null
hypersurface for a given time slice. Reference [22] com-
puted these full nonlinear expressions and first expressed
them as SWSH quantities in [23], although we follow [31]
by writing them in terms of the compactified coordinate ρ,

β;ρ ¼
ρð1 − ρÞ

8
ðJ;ρJ̄;ρ − K2

;ρÞ; ðB1Þ

ðr2QÞ;ρ ¼
1

ð1 − ρÞ2
�

R2ρ2ð2ðβ;ρ − KðK;ρ − Kð̄J;ρ þ ððJ̄J;ρÞ þ ð̄ðJK;ρÞ − J;ρð̄K

þ 1

2K2
ððJ̄ðJ;ρ − J2J̄;ρÞ þ ðJðJ̄;ρ − J̄2J;ρÞÞÞ

	

þ 1

ð1 − ρÞ3 ð−4R
2ρðβÞ; ðB2Þ
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U;ρ ¼
e2β

Rρ2
ðKQ − JQ̄Þ; ðB3Þ

R ¼ 2K − ðð̄K þ 1

2
ðð̄2J þ ð

2J̄Þ þ 1

4K
ðð̄ J̄ ðJ − ð̄JðJ̄Þ; ðB4Þ

ðr2WÞ;ρ ¼
1

ð1 − ρÞ2
�

−Rþ R2ρ2

4
ððŪ;ρ þ ð̄U;ρÞ − e−2β

R3ρ4

8
ð2KU;ρŪ;ρ þ JŪ2

;ρ þ J̄U2
;ρÞ

þ Re2β

2
ðR − 2Kððβð̄β þ ðð̄βÞ þ Jð̄β2 þ J̄ðβ2 − ðβðð̄K − ðJ̄Þ − ð̄βððK − ð̄JÞ

þJð̄2β þ J̄ð2βÞ
�

þ 1

ð1 − ρÞ3 ðR
2ρððŪ þ ð̄UÞÞ: ðB5Þ

The evolution equation of J is given by H ¼ J;ujr¼const,

ðrHÞ;ρ −
rJ

2
ðHT̄ þ H̄TÞ ¼ HA þHB1 þHB2 þHB3 þHB4

1 − ρ
þ HC

ð1 − ρÞ2 ; ðB6Þ

where

T ¼
�

J;ρ −
JK;ρ

K

�

; ðB7Þ

HA ¼ ð1 − ρÞJ;ρ þ
R

2
ρ2W;ρJ;ρ þ

ρ

2
ð1 − ρþ RρWÞJ;ρρ − 4Jβ;ρ; ðB8Þ

HB1 ¼
Rρ

4
ðð6 − 4ρÞWJ;ρ − 16JWβ;ρ − ðJŪ;ρ − ð̄JU;ρ − 2KðU;ρ − J;ρððŪ þ ð̄UÞ þ Jðð̄U;ρ − ðŪ;ρÞÞ; ðB9Þ

HB2 ¼
Rρ

4
ððŪðJ þ Uð̄JÞðJJ̄;ρ − J̄J;ρÞ − 2ŪðJ;ρ − 2Uð̄J;ρ

þ 2ðKJ;ρ − JK;ρÞðŪðK þUð̄K þ Kðð̄U − ðŪÞ þ Jð̄ Ū−J̄ðUÞÞ; ðB10Þ

HB3 ¼
e2β

2ρ
ðð2þ JJ̄Þðð2β þ ðβ2Þ þ J2ðð̄2β þ ð̄β2Þ − 2JKððð̄β þ ð̄βðβÞ þ JððKð̄β − ðβð̄K þ ðJ̄ðβÞ

þJ̄ðJðβ þ Kðð̄Jðβ − ðJð̄β − 2ðKðβÞÞ; ðB11Þ

HB4 ¼
e−2βR2ρ3

8
ðð2þ JJ̄ÞU2

;ρ þ 2JKU;ρŪ;ρ þ J2Ū2
;ρÞ; ðB12Þ

HC ¼ −
R

2
ð2KðU þ ðJŪ þ ð̄JU − Jð̄U þ JðŪÞ: ðB13Þ

APPENDIX C: PAPER DEFINITION KEY

Here we define the quantities we use in the paper for ease
of reference.

ᾰ: Lapse function in Cauchy metric
βĭ: Shift vector in Cauchy metric
β: Time-time part of metric in Bondi form, Eq. (1)
ð; ð̄: Angular derivative operators, Eqs. (A1)–(A2)
Γ: World tube hypersurface
gμν: Metric in Bondi form, Eq. (1)

ğμ̆ ν̆: Cauchy metric
ĝμ̂ ν̂ ¼ l2gμν: Compactified metric in Bondi form,
Eq. (103)

g̃μ̃ ν̃¼ω2ĝμ̂ ν̂: Conformal metric in Bondi form, Eq. (104)
H: Time derivative of J in Bondi frame, Eq. (13)
hAB: Angular part of metric in Bondi form, Eq. (1)
Iþ: Future null infinity
J ¼ 1

2
hABq

AqB: Spin-weighted angular metric function

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ JJ̄
p

: Auxiliary angular variable

SPECTRAL CAUCHY-CHARACTERISTIC EXTRACTION OF THE … PHYS. REV. D 102, 024004 (2020)

024004-25



l ¼ 1=r: Compactified surface-area coordinate
l
μ̆: World tube null generator, Eq. (22)

λ̄: World tube affine radinull parameter
N: News function, Eq. (114)
nμ̆: Timelike unit vector at world tube, Eq. (21)
n̂μ: Compactified Bondi generator at Iþ, Eq. (111)
ñμ: Conformal Bondi generator at Iþ, Eq. (110)
Φ: Time derivative of J in affine frame, Eq. (101)
QA: Radial derivative of UA, Eq. (2)
Q ¼ QAq

A: Spin-weighted radial derivative of UA

qA: Complex dyad, Eq. (40)
qAB: Unit sphere metric
R ¼ rjΓ: Radius of world tube, Eq. (42)
R: Curvature scalar for angular metric, Eq. (19)
r: Surface-area coordinate
ρ ¼ r

Rþr
: Compactified surface-area coordinate

r̆: Radius of world tube in Cauchy coordinates
sμ̆: Spatial outgoing unit normal to Γ, Eq. (20)
t̆: Time coordinate in Cauchy metric
u: Retarded time coordinate
ũ: Conformal Bondi time coordinate, Eq. (110)
UA: Angular shift part of metric in Bondi form, Eq. (1)
U ¼ UAqA: Spin-weighted angular shift
W: Mass aspect of metric in Bondi form, Eq. (1)
Ω: A conformal factor at Iþ, Eq. (107)
dΩ: Unit sphere area element
ω: A conformal factor at Iþ, Eq. (105)
xα ¼ ðu; r; θ;ϕÞ: Coordinates of gμν, Eq. (1)
x̆ᾰ: Coordinates of Cauchy metric ğμ̆ ν̆
x̄ᾱ: Coordinates of ḡμ̄ ν̄, Eq. (28)
x̂α̂ ¼ ðu;l; θ;ϕÞ: Coordinates of ĝμ̂ ν̂, Eq. (103)
x̃α̃: Coordinates of g̃μ̃ ν̃, Eq. (104)
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