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ABSTRACT
Scene text recognition is the task of recognizing character sequences
in images of natural scenes. The considerable diversity in the appear-
ance of text in a scene image and potentially highly complex back-
grounds make text recognition challenging. Previous approaches
employ character sequence generators to analyze text regions and,
subsequently, compare the candidate character sequences against a
language model. In this work, we propose a bimodal framework that
simultaneously utilizes visual and linguistic information to enhance
recognition performance. Our linguistically aware learning (LAL)
method effectively learns visual embeddings using a rectifier, en-
coder, and attention decoder approach, and linguistic embeddings,
using a deep next-character prediction model. We present an in-
novative way of combining these two embeddings effectively. Our
experiments on eight standard benchmarks show that our method
outperforms previous methods by large margins, particularly on
rotated, foreshortened, and curved text. We show that the bimodal
approach has a statistically significant impact. We also contribute a
new dataset, and show robust performance when LAL is combined
with a text detector in a pipelined text spotting framework.
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1 INTRODUCTION
Scene text recognition is a research problem that has attracted sig-
nificant interest due to its importance to various tasks, such as as-
sisting the visually impaired, scene understanding for autonomous
cars, and image retrieval. While Optical Character Recognition
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Figure 1: The comparison of the proposed linguistically
aware learning (LAL) method and the rectification based
method ASTER [35]. The second and third columns give
the predictions of ASTER and LAL on the rectified im-
ages respectively. State-of-the-art methods may encounter
difficulties when the appearance of the text is irregular
("CHRISTMAS", "SAW"), the text background is complex
("Safaris"), the characters ("!" vs. "l") are difficult to distin-
guish ("TOFU!"), or the image is blurred ("scream"). Our LAL
approach addresses these problems.

(OCR) techniques work well on printed document images, scene
text recognition remains a challenging problem due to large vari-
ations in text appearance, layout, and background. "Regular text,"
i.e., text with horizontally aligned characters, can be recognized
with convolutional [15] and recurrent neural networks [33]. Recog-
nizing "irregular text" (Fig. 1) is more difficult. This includes rotated
text, i.e., text that is not horizontally aligned with the image rows
(Fig. 1, row 5), and foreshortened text due to perspective projection.
Moreover, the text design itself may not be straight but contain
characters aligned along a curve (Fig. 1, row 4) or have misaligned
characters (Fig. 1, row 1). Images of such text designs may then
also be rotated and foreshortened. Created without the ability to
handle irregular text, the methods mentioned above often struggle
in recognizing irregular text.
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Recognition of irregular text has been addressed by two main
lines of research: (1) rectification based [34, 35] and (2) 2D feature
map based [6, 20] approaches. Rectification based methods [34, 35]
adapt Spatial Transformer Networks (STN) [16] to rectify irregular
text images into regular shapes, and then recognize them with
regular text recognizer. 2D feature map based methods learn 2D
featuremaps from the original input imagewithout any rectification
and generate characters sequentially in 2D space. For example, the
method by Cheng et al. [6] encodes 2D space information from
four directions to transform the 2D image feature maps to a 2D
feature sequence. Li et al. [20] proposed a 2D attention mechanism
that encodes the 2D feature map column by column to yield a
holistic feature vector and then decodes this holistic feature vector
by applying a 2D attention mechanism on the image feature maps.

Most state-of-the-art methods use solely visual information to
recognize irregular text. A character sequence, however, is designed
to convey linguistic information to the observer, and this linguis-
tic information, in addition to the visual information, should be
utilized. Our approach is therefore to fuse visual and linguistic infor-
mation. Inspired by the Transformer method [37], which has made
profound advances in solving various tasks in natural language
processing (NLP), we propose a new, linguistically aware learning
(LAL) approach that incorporates a transformer-based model.

The input of LAL are cropped images of text. In practice, a text
recognizer like LAL must be used together with a text detector
that localizes regions of text, crops them from a full scene image,
and passes them to the text recognizer. The literature calls the
combination of a text detector and a text recognizer a text spotting
system [39]. The performance of text recognizers is typically only
analyzed on perfectly cropped images of text, i.e., ground-truth
bounding boxes or polygons. When text recognizers are combined
with text detectors, however, they encounter more challenging
inputs, i.e., images of text that may not be cropped perfectly or, if
the text detector completely fails, images that do not even contain
text. We propose a two-stage text spotting system, called LAL*,
to show the practicality of LAL and its robust performance when
combined with a text detector.

The main contributions of this paper are:
– We designed the scene text recognition model LAL that learns
a robust text representation by combining image and language
information using an innovative multi-network approach. To the
best of our knowledge, we are the first to propose to leverage word-
analysis techniques from the NLP community in this way to solve
the recognition task studied by the computer vision community.
– Experimental analysis of the efficacy of LAL on eight datasets
and comparison with ten previous methods show that, with help of
linguistic information, LAL outperforms state-of-the-art methods
by large margins. We also show that the use of bimodality has a
statistically significant impact.
– We constructed a text spotting system, called LAL*, by combining
LAL with an existing text detector, which yields robust recognition
performance on a widely used benchmark.

2 RELATEDWORK AND MOTIVATION OF
OUR APPROACH

This section focuses on discussing previous works on recognizing
irregular text. Earlymethods [29, 38, 42] detect and recognize each
individual character and then group characters into words. Mistakes
in character detection and classification led to limited recognition
performance. 1D sequence-to-sequence (seq2seq) approaches [19,
33, 34], inspired by speech recognition, were then introduced, which
extract 1D features and writing direction from the input image and
transform the text into sequences of characters. These methods fail
to recognize rotated or curved text.

The methods by Shi et al. [34, 35] transform the text image into
a canonical shape with a spatial transformer network (STN) and
recognize the rectified text image using a 1D attentional seq2seq
model. Instead of rectifying the original input image, the method by
Liu et al. [23] detects and rectifies the individual characters recur-
rently. Other methods [6, 20, 27, 41] bypass rectification and instead
recognize irregular text directly from the input image. Cheng et
al. [6] adapted the sequence-based model with the image feature
extracted from four directions to recognize arbitrarily-oriented text.
Other methods [20, 27, 41] handle irregular text by applying a 2D
attention mechanism on feature maps.

Scene text recognition methods [6, 20, 27, 34, 35, 41] utilize se-
quence generators that sequentially attend to certain regions on
either 1D or 2D feature maps, following the character order in the
text. They still suffer from losing some visual information due to
pooling in the CNN or attention drift in the RNN, thus being in-
herently biased towards horizontally aligned text. To address this
issue, we propose a bimodal solution that adopts the self-attention
mechanism [37] and applies it to text images. It enables character
features, obtained visually, to also encode the underlying linguis-
tic information and supports the sequence generator to predict
characters without any additional supervision.

The seq2seq model is one of the most common models in NLP
to deal with various text-related tasks. Initially, RNNs were used
for NLP seq2seq modeling [28]; then "Long Short Term Memory"
(LSTM) [14][36] models were preferred. Recently, a seq2seq model
called "Transformer" [37], which involves a self-attention mecha-
nism, has been shown to outperform LSTM models for NLP tasks
such as machine translation.

By connecting the vision system with a seq2seq language model
trained on a large corpus, we discovered that NLP features provide
helpful information that improves the performance of the whole
text recognition system. Specifically, our language model is a model
that predicts every subsequent character of an incomplete word,
given all characters before the one to be predicted. Since we use a
seq2seq framework, we tried all three above-mentioned models for
our task (RNN, LSTM, and Transformer). We chose a Transformer
as our final model, as it provides the lowest perplexity (perplexity
reveals whether a model performs well in certain NLP tasks such
as language modeling).

3 METHOD
We now describe our bimodal scene text recognition model LAL in
full detail, including our next character prediction model. We also
discuss the limitation of training data used by previous works and
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how we modified and supplemented the data, creating the dataset
SynthText*, which boosts the performance of rectification of the
scene text recognizer.

3.1 Architecture of LAL
The architecture of our bimodal feature learning model for text
recognition, LAL, is shown in Fig. 2 (a). It consists of a rectifier,
encoder, attention decoder described in this section and a next-
character prediction (NCP) model described in Section 3.2.

Rectifier: To address the non-linear spatial arrangement of char-
acters and perspective distortion issues in scene text images, we
included a rectification module as the first component in LAL. The
architecture for rectification is inherited by Shi et al. [35]. LAL uses
a 6-layer CNN to predict 20 control points to localize the text on the
input image and attempts to rectify the input images to axis-aligned
form with a Thin-Plate-Spline (TPS) approach [3]. Some distortions
may still remain (e.g., UNITED in Fig. 2). To maximize the efficacy
of the rectification module, we created a new synthetic training
dataset by modifying a widely-used public synthetic dataset, as
discussed in detail in Section 5.1.

Encoder: The encoder (Fig. 2 (b)) processes the rectified im-
age through a 45-layer ResNet [13] that captures local patterns
and textures, followed by two layers of a Bidirectional LSTM (BiL-
STM). Each layer consists of a pair of LSTMs with 256 hidden units.
The BiLSTM captures long-range dependencies of the feature se-
quence in both directions and outputs the new feature sequence
𝐻 = [ℎ1, ..., ℎ𝐿], where 𝐿 is the maximum word length (a fixed
parameter, determined in advance).

AttentionDecoder:The decoder (Fig. 2 (c)) retrieves the feature
sequence from the encoder to generate a sequence of characters. We
propose a linguistically-aware attentional sequence-to-sequence
model [2, 7] to align target and label. It works iteratively for 𝐿 steps,
producing a character sequence of length 𝐿, denoted by (𝑐1, ..., 𝑐𝐿).
At time step 𝑡 , the output character 𝑐𝑡 is

𝑐𝑡 = softmax(𝑊𝑜𝑢𝑡𝑠𝑡 + 𝑏𝑜𝑢𝑡 ), (1)

where 𝑠𝑡 is the hidden state at time step 𝑡 , and𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are
trainable weights. A Gated Recurrent Neural Network (GRU) [8]
computes the hidden state

𝑠𝑡 = 𝐺𝑅𝑈 (concatenate(𝑔𝑡 , 𝑙𝑡 ), 𝑠𝑡−1), (2)

based on the previous state 𝑠𝑡−1 and a concatenation of two embed-
dings 𝑔𝑡 and 𝑙𝑡 , which encode the visual and linguistic information,
respectively. The "glimpse vector" 𝑔𝑡 is calculated by

𝑔𝑡 =

𝐿∑
𝑖=1

exp(𝛼𝑡,𝑖 , ℎ𝑖 ), (3)

where 𝛼𝑡 is the vector of attentional weights:

𝛼𝑡,𝑖 = exp(𝑒𝑡,𝑖 )/
𝑛∑

𝑖
′
=1

exp(𝑒𝑡,𝑖′ ),

with 𝑒𝑡,𝑖 = 𝑤𝑇 tanh(𝑊𝑠 𝒔𝑡−1 +𝑊ℎ𝒉𝑖 + 𝑏),

(4)

where 𝑤,𝑊𝑠 ,𝑊ℎ , and 𝑏 are trainable weights. Using the embed-
ding 𝑙𝑡 to encode linguistic information is our innovative contri-
bution. State-of-the-art methods [20, 34, 35] embed the previous
output 𝑐𝑡−1 when computing state 𝑠𝑡 , but we found that this is

Table 1: NCP model predictions of the next character given
prefixes of the word "united" (only the 5 most likely predic-
tions are shown here). Row 1 shows that the letter "u" is typ-
ically followed by a consonant in the English language, and
most likely by the letter "n." The correct letter "n" is ranked
first (correct predictions are shown in bold). ⟨eos⟩ is an indi-
cator symbol meaning "end of sequence."

NCP NCP Ranked Predictions
Input Prefix 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ
u n s p k .
un i d t c l
uni v t o q f
unit e s ⟨eos⟩ y .
unite d ⟨eos⟩ s r m
united ⟨eos⟩ . , ’ :

insufficient to represent language priors. To capture the dependen-
cies between output characters from a linguistic view, LAL uses a
next-character prediction (NCP) model, described in section 3.2, to
compute the linguistic embedding

𝑙𝑡 = 𝑁𝐶𝑃 (𝑐0, ..., 𝑐𝑡−1), (5)

taking a character sequence 𝑐0, ..., 𝑐𝑡−1 as input, which is a prefix
in a word detection model that processes characters from the left
of the text to its right.

3.2 Next-Character Prediction Model
We here describe how we designed the next-character prediction
model (NCP) of our LALmethod to effectively and efficiently extract
linguistic information from sequential characters. The input that
LAL first passes into NCP is a prediction of the first character of
the text 𝑐0, which LAL makes solely based on its visual analysis.
Given this first character 𝑐0, NCP can then predict a ranked list
of characters 𝑐1st1 , 𝑐2nd1 , . . . that most likely follow as the second
character of the text (see Table 1). NCP passes an embedding, i.e.,
the vector 𝑙1, which represents the various choices of the second
character 𝑐1, to the attention decoder of LAL, where it is combined
with visual information to recognize 𝑐1 in the prefix (𝑐0, 𝑐1). As
more and more characters are given as input, NCP is able to obtain
more information about the word and becomes more accurate in
predicting the next character. Because of this increase of prediction
accuracy, NCP provides the attention decoder of the LAL model
increasingly helpful information through its hidden state 𝑙𝑡 . NCP
accepts 70 different characters (letters, digits, special symbols) as
possible next characters. At the end of the word, NCP suggests an
⟨eos⟩ character for "end of sequence" or a punctuation mark. NCP
also accepts a "padding" symbol ⟨pad⟩ that allows the model to be
trained with fixed-length inputs.

The architecture of NCP is a Transformer model [37]. It contains
four major components (Fig. 2(d)) that are described next:

Embedding Layer. This first layer of NCP receives a character
sequence from the attention decoder of LAL as its input, and con-
verts it into a 70-element sequence of indices, where each index
represents a specific character. This is done with a look-up table
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Figure 2: (a) Overview of the proposed LAL method. (b) Encoder. (c) Attention Decoder. (d) Next-Character Prediction Model.
⊕ - addition operator.

that is represented as a trainable weight matrix. The resulting index
sequence can be considered as a character embedding vector.

Positional Encoding Layer. The second layer of NCP adds in-
formation of the absolute and relative position of a character in the
embedding. We use the sinusoidal position encoding proposed by
Vaswanit et al. [37]. The resulting vector is added to the embedding
vector and passed into the Transformer Encoder.

Transformer Encoder. The transformer encoder is a stack of
6 identical layers, each having one multi-head attention sublayer,
followed by another sublayer, which is a feed-forward network
[37]. In our example of the embedding vector of the character se-
quence "united" (Fig. 2(d)), the attention sublayers evaluate, based
on embedding vectors that represent characters, how important
each of the characters in "unite" is to predict possible subsequent
characters, including "d." The multi-head attention sublayers com-
pute attentions in parallel𝑚 = 8 times, each time with different
parameters, then concatenate them and linearly transform them
into a representation that is passed to the feed-forward network,
which produces the embedding vector 𝑙𝑡 (Eq. 5).

The methodological contribution of our work is to have envi-
sioned that the embedding vector 𝑙𝑡 , which represents linguistic
information in the text image, can be passed into the GRU of the

Attention Decoder (Fig. 2(d)), which processes the visual informa-
tion of the text image. We have thus found an innovative way to
compute a bimodal analysis of the text image at each step 𝑡 through
the character sequence.

Fully-connected layer. This layer transforms the embedding
vector 𝑙𝑡 linearly into a 70-element output vector, where each ele-
ment represents the probability that a particular character is present
at step 𝑡 in the character sequence. This layer is not employed when
LAL is in use mode (i.e., when we test LAL) because LAL directly
works with the embedding 𝑙𝑡 . It is only needed for training the NCP
model, as the probabilities are used to compute the loss between
prediction and ground truth in backpropagation.

Training NCP. The NCP model is pretrained and frozen during
the training of LAL. To train NCP, we used the cross-entropy loss
and stochastic gradient decent (SGD) with a learning rate of 0.05.
The batch size for training is 32. NCP is trained on a subset of words
in the "enwiki" Wikipedia dataset [10]. We chose a subset to reduce
the training time. We only train on words that occur in the collected
enwiki corpus at least 240 times (for comparison, the word "coffee"
appears 2,341 times, the word "is" 1,474,645 times). We consider
240 to be suitable cutoff of infrequent words, yielding a size of the
training set that is small enough to ensure that the training process
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can converge in a reasonable time. In particular, it took 6 hours to
train NCP with a RTX 2080 TI GPU.

Testing NCP. To evaluate how well NCP predicts a character
sequence 𝐶 = 𝑐0, . . . , ⟨eos⟩, we used the

perplexity = 𝑒𝐻 (𝐶𝑔𝑡 ,𝐶) , (6)

where 𝐻 (𝐶𝑔𝑡 ,𝐶) is the cross-entropy between the ground truth
character sequence 𝐶𝑔𝑡 and predicted sequence 𝐶 . Perplexity can
be considered to measure the inverse of the probability of predicting
the next character. Since the number of characters that can be pre-
dicted is 70, i.e., 26 letters, 10 digits, and various special characters,
an inverse of the uniform probability would be 70. We thus aim for
a perplexity that is lower than 70. We randomly chose 1,000 words
from "enWiki" as testing data. We repeated the testing process 10
times and computed the average perplexity of each character in a
word. The testing result shows that the average perplexity of our
trained NCP model is 2.57, which is favorably much lower than our
bound of 70.

4 DATASET: SYNTHTEXT*
Supervised training of scene text recognition models based on deep
CNNs or RNNs requires a very large number of labeled training
data since these models contain millions of parameters. Not only
are inadequate numbers of data insufficient to train deep learning
models, they also limit how variations in text font, size, and position
in natural images can be represented. Consequently, two large
datasets have been created synthetically and become widely used
by researchers to train text recognizers: Syn90k [15] is a 9-million
synthetic dataset generated based on 90k generic English words. It
has a large vocabulary but the images are monochrome (Fig. 3 top),
so it is used with SynthText [12] to provide realistic colored scene
images (Fig. 3 middle).

Figure 3: Samples from Syn90k [15] (top row), Synth-
Text [12] (middle) and our SynthText* (bottom). For Synth-
Text and SynthText*, text images are cropped from a syn-
thetic background image with text.

We found that SynthText has a relative paucity of curved text
instances. Our solution is to use the SynthText generating engine
and the same background images alongwith their segmentation and
depth masks provided by Gupta et al. [12] and generate additional,
realistic curved text images. We refer to the enhanced dataset as
SynthText* (Fig. 3 bottom). The modifications are as follows:

(1) We increased the proportion of curved text to about 50%
by combining non-curved and curved text images after synthesis.
We estimate that the portion of curved words of SynthText ranges
between 20%–25%, given that the engine only renders a sample of
text containing single words with less than 10 characters as a curve.

(2) To render text as a curve, SynthText places characters one by
one symmetrically around the original point following a parabolic

trajectory. To give us more flexibility in creating curved words
that appear in real-word text designs (e.g., half-circle designs), we
replaced the parabolic trajectory with an elliptic trajectory.

(3) We randomly added some motion blur since we found that
motion blur is common in the training data of the scene text recog-
nition benchmark datasets (see Section 5).

5 EXPERIMENTS
To verify the effectiveness of the proposed method, we conducted
experiments on seven widely-used benchmarks. We also performed
a detailed analysis of the ability of LAL to process linguistic in-
formation provided by NCP. We conducted an ablation study to
evaluate the design choice we made for LAL to process text solely
in the left-to-right direction (as opposed to bidirectional). Finally,
we report the results of our text spotting system LAL*.

5.1 Implementation Details
We trained LAL on Synth90K and SynthText* jointly from scratch.
Images were resized to 64 × 256 before entering the rectification
network, which outputs images of size 32 × 100 as the input to the
recognition network. We used ADADELTA [43] to optimize our
model with a batch size of 512 for 200K iterations. Empirically, we
set the initial learning rate to 1 and decreased it to 0.1 and 0.01 at
iteration 100K and 150K, respectively. No dropout was used. The
decoder can recognize 70 character classes, including 10 digits (0–9),
26 lower-case English characters (a–z, the case is ignored), 32 ASCII
punctuation marks, and the symbols ⟨eos⟩ and ⟨pad⟩. Since LAL
recognizes 70 distinct characters, we set the input and output sizes
of the NCP model to 70 to match. The maximum length of words to
be trained is 𝐿 = 20 (for longer words, only the first 20 characters
are kept).

We implemented our method under the framework of PyTorch
[30]. The model was trained on two NVIDIA 1080 ti graphics cards
with 12 GB memory. The training speed is about 1.4 iterations/s,
taking less than 40 hours to reach convergence. The inference speed
is 26.7 frames per second.

5.2 LAL Performance on 7 Benchmark Datasets
Compared to 10 State-of-the-Art Methods

Seven benchmark datasets are widely used for evaluation of scene
text recognition models. According to recognition difficulty and
geometric layout, we divide them into two groups, “Regular” and
“Irregular.”

Regular: IIIT5K-Words (IIIT5K) [29] is a dataset for scene text
recognition. It consists of 5,000 images, of which 3,000 images are
used for the test. Each image associates with a 50-word lexicon
and a 1,000-word lexicon respectively. Street View Text (SVT) [38]
consists of 647 word images cropped from Google Street View for
testing. Each image associates with a 50-word lexicon. ICDAR2003
(IC03) [26] contains 867 cropped text images taken in a mall. ICDAR
2013 (IC13) [18] has 1,015 cropped word images for testing. No
lexicon is provided.

Irregular: ICDAR 2015 (IC15) [17] has 2,077 cropped word im-
ages for test. No lexicon is provided. CUTE80 (CT) [32] contains 288
high-resolution curved word images. Street View Text Perspective
(SVTP) [31] contains 238 street images, which were cropped to
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Table 2: Scene text recognition accuracy (%) on seven benchmark datasets, as reported in the literature. These are lexicon-free
results which means the predicted words were not corrected by dictionary matching. “Regular” means the datasets consist of
horizontally aligned text, and “irregular” means they include foreshortened, rotated, and curved text.

Method Dimension of
Feature Map

Rectification Regular Irregular
IIIT5K SVT IC03 IC13 IC15 SVTP CT

CRNN [33] 1D no 78.2 80.9 - 86.7 - - -
RARE [34] 1D no 81.9 81.9 - - - 71.8 59.2

STAR-Net [24] 1D no 83.3 83.6 - 89.1 - 73.5 -
FAN [5] 1D no 87.4 85.9 94.2 93.3 - - -

ASTER [35] 1D yes 93.4 89.5 - 91.8 76.1 78.5 79.5
ESIR [44] 1D yes 93.3 90.2 - - 76.9 79.6 83.3

Attentive Text Recognition [41] 2D no - - - - - 75.8 69.3
AON [6] 2D no 87.0 82.8 91.5 - 68.2 73.0 76.8

CA-FCN [22] 2D no 92.0 82.1 - 91.4 - - 79.9
SAR [20] 2D no 91.5 84.5 - - 69.2 76.4 83.3

LAL without NCP 1D yes 94.4 87.5 92.5 93.8 76.4 79.5 84.7
LAL 1D yes 95.0 89.8 94.3 95.1 79.0 82.9 87.8

yield 645 word images with a great variety of viewpoints. SVTP is
specifically designed for perspective text recognition.

LAL Performance.We report the performance of LAL and 10
existing methods, listed in Table 2, on the above described 7 datasets.
We divided the methods into two groups based on the dimensional-
ity of feature maps and report whether a method uses rectification.
To evaluate the impact of our bimodal approach, we also tested
LAL without NCP (i.e., processing only visual information). LAL
obtains the highest accuracy numbers compared to the ten existing
methods on six of seven benchmarks. For three of the four datasets
with regular text, our model achieves accuracy levels above 94%,
improving over the state-of-the-art. On the three datasets with
irregular text, LAL improves upon the best existing method with
a margin of 3.3 percentage points (pp) on average. LAL without
NCP is consistently less accurate than LAL (2 pp on average). Since
the size of the datasets varies from 288 to 3,000 samples, to analyze
whether the difference between LAL with and without NCP is sta-
tistically significant, we used the N-1 Chi-Squared test [4, 11] and
report p-values (Table 3). Applying the conventional threshold for
declaring statistical significance to be a p-value of less than 0.05,
we found that using the bimodal approach is statistically significant
on the larger datasets IIIT5k and IC15 (over 2,000 samples).

5.3 Experiments with Highly Challenging Data
Given the high accuracy rates for recognizing regular text, ongoing
research efforts should focus on irregular text. However, the bench-
marks for irregular text have only about a total of 3,000 samples
(while regular text data sets have about 5,500 samples), and include
only machine-printed text. To increase the number of challeng-
ing images and the level of difficulty, we looked for a dataset that
included hand-written text, which commonly occurs in daily life.
We decided to focus on the 11,532-image "Text-containing Protest
Image Dataset" (TPID) [45], which is based on a subset of the UCLA
Protest Image Dataset [40], a collection of social media images that
can be used to analyze protest activities in street scenes. The 816
scene images used to create TPID containmostly hand-made protest
signs with text that is hand-written. TPID contains 11,532 cropped

Table 3: P-value (×10−2) on seven benchmark datasets, com-
puted for LAL with and without NCP to show that NCP sig-
nificantly improves recognition accuracy. The same training
procedures were used.

Dataset IIIT5K SVT IC03 IC13 IC15 SVTP CT
P-value 2.59 9.45 6.06 10.42 2.21 5.84 13.81

word images and annotations with ground-truth polygons and tex-
tual representations of all the words on every protest sign. Figure 4
shows a random sample of these hand-written word images, as well
as as examples from the "irregular text" datasets.

Figure 4: Top: selected samples of IC15, SVTP and CT. Bot-
tom: selected samples of TPID, most text is hand-written.

We compare LAL against two representative models from two
main lines of research, ASTER [35] (a rectification based model) and
SAR [20] (a 2D featuremap basedmodel), whichwe re-implemented.
To enable fair comparisons, we used the same optimization and
pre-processing procedures and the same training dataset (Syn90k
and SynthText* combined). The results on four test datasets are
given in Table 4.

A comparison of the accuracy values on the three benchmarks
reported in Table 2 (last three columns) and Table 4 show that
we must have successfully re-implemented ASTER and SAR, since
our implementation yields higher accuracy values than the values
reported in the literature. The higher accuracy values also indicate
that Synthtext* boosts the performance of ASTER and SAR on
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Table 4: Text recognition results of LAL on three irregular
text benchmarks and TPID (accuracy percentage). All mod-
els were trained using Syn90k and SynthText* jointly.

Model IC15 SVTP CT TPID
ASTER 76.4 79.5 84.7 68.3
SAR 75.7 78.0 84.7 68.4
LAL 79.0 82.9 87.8 70.3

Table 5: Recognition accuracy of LAL without NCP on eight
benchmarks. Optimization and pre-processing as before.

Regular Text Datasets IIIT5K SVT IC03 IC13
Syn90k+SynthText 93.9 89.8 92.5 94.1
Syn90k+SynthText* 94.4 87.5 92.5 93.8

Irregular Text Datasets IC15 SVTP CT TPID
Syn90k+SynthText 76.0 78.3 79.5 66.6
Syn90k+SynthText* 76.4 79.5 84.7 68.3

irregular text. LAL improves the accuracy on TPID by 1.9 pp (last
column of Table 4), with a p-value of 9 × 10−4, which indicates we
are 99.91% confident that this improvement of LAL on TPID over
the other models has statistical significance.

5.4 Detailed Analysis of LAL: Ablation Studies
Sections 5.2 and 5.3 show that LAL outperforms prior scene text
recognition methods on eight public benchmarks. In this section,
we study (1) the contribution of the NCP model through a thorough
quantitative comparison against LAL without NCP, (2) the effect
of SynthText* on rectification, and (3) the left-to-right order of
character processing by the attention decoder.

LAL with NCP vs. LAL without NCP: Unlike prior state-of-
the-art methods [34, 35], which use embeddings of single charac-
ters, NCP embeds sequential characters using linguistic knowledge
learned from a large-scale text dataset, such as enWiki. This addi-
tional linguistic information is valuable since it extends the recog-
nition ability from visual-only to visual-&-linguistic. With the help
of this bimodal information, the performance of the text recognizer
is significantly improved. An example is shown in Fig. 5.

When predicting "e" in "hotel" in the image in Fig. 5, due to
perspective distortion and shadows, LAL with CV only, i.e., LAL
that only uses visual information, predicts "i" with a low probability
of 38.15%. However, NCP predicts "e" with a probability of 51.89%.
With this additional linguistic information, LAL (CV+NCP) is able
to predict the correct character with a probability of 58.83%, which
is a 20.68 pp increase over LAL with CV only.

Another observation is that at early time steps, NCP predicts
characters with a low probability. This is reasonable since the be-
ginning of a word could be followed by various characters, and so
the visual information plays a more important role to determine the
character. At later time steps, NCP predicts characters with a high
probability, and so NCP contributes more to predict the character.

Effect of SynthText* on Training LAL’s Rectifier. We cre-
ated the dataset SynthText* so we can train the neural net in the
LAL rectifier module on curved text instances (see section 4). We

Figure 5: Visualization of the 1D attention weights (left) and
probabilities (%) of the top three predicted characters for 3
versions of LAL at each time step. "CV" means the predicted
character is based on visual information only. "NCP" means
the predicted character is based on previous sequential char-
acters. "CV+NCP" represents the predicted character based
on the combination of visual and linguistic information.

were motivated to create SynthText* because previous training
datasets, Syn90k and SynthText, contain few curved text instances.
To disentangle the effects of rectification and linguistic information
and enable a fair comparison of training with our new SynthText*
versus the existing SynthText, we used LALwithout NCP.We tested
on eight benchmarks and report superior performance of training
the SynthText* in six of eight benchmarks in Table 5. Specifically,
we make two observations from Table 5: First, the recognition accu-
racy of LAL when trained on SynthText and SynthText* is similar
for tests on regular text datasets (IIIT5K, SVT, IC03, IC13) with few
curved text instances. This finding is reassuring because the design
goal of SynthText* was to improve the training of the rectification
module, and so, for regular datasets (that do not require rectifica-
tion), there should not be a large recognition difference between
using Synthtext* and Synthtext. Second, SynthText* boosts the per-
formance on irregular text data (IC15, SVTP, CT, TPID) as much as
1.7 pp over 11,532 samples (we report the improvement with 99.7%
confidence).

The increase of recognition accuracy on irregular text between
Tables 2 and 4 suggests that previous state-of-the-art methods could
also benefit from training on SynthText*.

Ablation Studies on Attention Decoder. The decoder of LAL
captures output dependencies in the left-to-right (L2R) order. We
observed that the NCP model can have difficulties deciding on the
first few characters of a word (see section 5.4). It is worth checking if
this problem could be alleviated by including a decoder that works
in the right-to-left (R2L) order, which would capture dependencies
in the opposite direction and presumably become more accurate in
predicting the leftmost characters of a word. To compare the impact
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Table 6: Recognition accuracy of LAL with decoders in dif-
ferent directions.

Direction IIIT5K SVT IC03 IC13 IC15 SVTP CT
L2R 95.0 89.8 94.3 95.1 79.0 82.9 87.8
R2L 94.5 87.5 91.9 94.6 76.7 78.7 85.1

L2R+R2L 94.5 88.1 93.5 93.9 77.3 80.9 85.4

of processing direction on the decoder, inspired by Shi et al. [35], we
built threemodel variants: (1) L2R recognizes text in the left-to-right
order; (2) R2L recognizes text in the right-to-left order; (3) L2R+R2L
consists of both and outputs the result with the highest recognition
probability from L2R or R2L. All models, including reverse NCP,
which was trained on reverse words in "enwiki," were trained from
scratch with the same protocol, described in sections 3.2 and 5.1.
Recognition accuracy is shown in Table 6.

It is notable that the NCP model can learn the patterns of the
English language in different ways, L2R, R2L, or bidirectional. How-
ever, L2R outperforms the other models on all the datasets. For the
English language, linguistic form and structure provide the key
linguistic information for text recognition, and L2R can represent
English better than R2L.

In the bidirectional approach, the result with the highest proba-
bility returned by L2R or R2L is selected. However, both L2R and
R2L could produce incorrect results with higher probabilities than
the correct result. There is no guarantee that such a bidirectional
approach could outperform either L2R or R2L because it actually
learns two kinds of linguistic information in two directions instead
of a unified one.

5.5 Results of Text Spotting System LAL*
We constructed a two-stage text spotting (TS) system, called LAL*.
"Two-stage" means that the system consists of a detector and a
recognizer in a pipeline. For LAL*, we use LAL as the text recognizer
and CRAFT [1], obtained from its official Github repository [9], as
the text detector. CRAFT effectively detects arbitrarily-oriented,
curved, or deformed text in scene images. We compare LAL* to two
text spotting systems, which are representative for different types
of text spotting systems, FOTS and ASTER* (Table 7). FOTS [25] is
an end-to-end trainable model that can detect and recognize text by
sharing convolutional features. ASTER* is a two-stage text spotting
system constructed with TextBoxes [21] and ASTER [35].

We trained and tested LAL*, FOTS, and ASTER* on the ICAR
2015 dataset [17], a common benchmark for text spotting, which
includes 1,000 training and 500 testing images. More specifically,
for LAL*, we only fine-tuned the detection component, CRAFT,
with the ICDAR 2015 data, keeping our recognition component,
LAL, fixed (after training on Syn90k and SynthText*). Both FOTS
and ASTER*, however, used the 1,000 ICDAR 2015 training images.
The ICDAR 2015 dataset provides four difficulty levels for testing,
defined by lists of words (lexica) that the text spotting system can
use for reference in the test phase: “Strong” (100 words per-image
including all words that appear in the image), “Weak” (all words
that appear in the entire test set), “Generic” (Syn90k), and "No"
(no lexicon). It also identifies two testing protocols (word spotting
and end-to-end). From the results shown in Table 7, we conclude

Table 7: Text spotting (TS) results (F-measure %) on ICDAR
2015 for two evaluation protocols “Word Spotting” and “End-
to-End” and four testing levels, “Strong” (S), “Weak” (W),
“Generic” (G), and "No lexicon" (N).

TS
System

Word Spotting End-to-End
S W G N S W G N

FOTS 84.7 79.3 63.3 - 81.1 75.9 60.8 -
ASTER* 75.2 71.3 67.6 - 70.6 67.3 64.0 -
LAL* 85.6 81.6 64.2 73.4 81.6 78.3 61.9 71.3

that our text spotting system, LAL*, beats the results reported in
the literature for FOTS and ASTER* in 4 of 6 cases. Notably, LAL*
without lexicon lookup at test time beats LAL* with lookup in the
generic lexicon by 9.4 pp. The lookup, designed by the ICDAR 2015
challenge organizers to simplify the spotting task, here fails to
help and instead has the opposite effect on recognition accuracy.
We found that some correctly recognized words were changed to
incorrect words that appear in the lexicon.

6 CONCLUSIONS
Recognition of irregularly shaped text in scene images has been
addressed in the computer vision community mostly as a single-
modality problem, processing visual information only. The paper
instead proposes the scene text recognition method LAL with an
explicit linguistic-based approach. By utilizing visual and linguistic
dependencies through a self-attention mechanism, LAL is able to
sequentially predict characters. If the networks in LAL that pro-
cess visual information struggle to predict correct characters, the
networks that process linguistic information make up for it. We
showed that this effect of bimodality has statistical significance.

LAL sets a new bar for state-of-the-art performance on text
recognition benchmarks, achieving accuracy levels that are sub-
stantially higher than those of previous methods (an average of
3.3 percentage points on irregular text datasets). LAL also shows
better performance on the highly challenging TPID than previous
methods.

The strong performance of our text spotting system LAL*, when
tested on data unseen to LAL, shows that LAL is robust and gener-
alizes well without any fine-tuning, and can be effectively included
in a two-stage text spotting system.

Our finding that training with our new downloadable dataset
SynthText* has the potential to increase the recognition accuracy
of previous methods on irregular text is important because our new
dataset could propel the research efforts by other teams. Similarly,
to support others in benefiting from using our approach to combine
processing bimodal information, we open-source our code and
SynthText* at https://github.com/ivc-yz/LAL.
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