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As gravitational-wave detectors become more sensitive and broaden their frequency bandwidth, we will

access agreater variety of signals emittedbycompact binary systems, shedding light on their astrophysical origin

and environment. A key physical effect that can distinguish among different formation scenarios is the

misalignment of the spinswith the orbital angularmomentum, causing the spins and the binary’s orbital plane to

precess. To accurately model such precessing signals, especially when masses and spins vary in the wide

astrophysical range, it is crucial to include multipoles beyond the dominant quadrupole. Here, we develop the

first multipolar precessing waveform model in the effective-one-body (EOB) formalism for the entire

coalescence stage (i.e., inspiral, merger and ringdown) of binary black holes: SEOBNRv4PHM. In the

nonprecessing limit, the model reduces to SEOBNRv4HM, which was calibrated to numerical-relativity (NR)

simulations, andwaveforms from black-hole perturbation theory.We validate SEOBNRv4PHM by comparing it

to the public catalog of 1405 precessing NR waveforms of the Simulating eXtreme Spacetimes (SXS)

collaboration, and also to 118 SXS precessingNRwaveforms, produced as part of this project, which spanmass

ratios 1-4 and (dimensionless) black-hole’s spins up to 0.9. We stress that SEOBNRv4PHM is not calibrated to

NR simulations in the precessing sector. We compute the unfaithfulness against the 1523 SXS precessing NR

waveforms, and find that, for94%(57%)of the cases, themaximumvalue, in the totalmass range20− 200 M⊙,

is below 3% (1%). Those numbers change to 83% (20%)when using the inspiral-merger-ringdown, multipolar,

precessing phenomenological model IMRPhenomPv3HM. We investigate the impact of such unfaithfulness

valueswith twoBayesian, parameter-estimation studies on synthetic signals.Wealso compute theunfaithfulness

between those waveform models as a function of the mass and spin parameters to identify in which part of the

parameter space they differ the most. We validate them also against the multipolar, precessing NR surrogate

model NRSur7dq4, and find that the SEOBNRv4PHM model outperforms IMRPhenomPv3HM.

DOI: 10.1103/PhysRevD.102.044055

I. INTRODUCTION

Since the Laser Interferometer Gravitational wave
Observatory (LIGO) detected a gravitational wave (GWs)
from a binary–black-hole (BBH) in 2015 [1], multiple
observations of GWs from BBHs have been made with
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the LIGO [2] and Virgo [3] detectors [4–9]. Two binary
neutron star (BNSs) systems have been observed [10,11],
one of them both in gravitational and electromagnetic
radiation [12,13], opening the exciting new chapter of
multimessenger GWastronomy. Mergers of compact-object
binaries are expected to be detected at an even higher rate
with LIGO and Virgo ongoing and future, observing runs
[14], and with subsequent third-generation detectors on the
ground, such as the Einstein Telescope andCosmic Explorer,
and the Laser Interferometer SpaceAntenna (LISA). In order
to extract the maximum amount of astrophysical and
cosmological information, the accurate modeling of GWs
frombinary systems ismore critical than ever. Great progress
has been made in this direction, both through the develop-
ment of analytical methods to solve the two-body problem in
general relativity (GR), and by ever more expansive numeri-
cal-relativity (NR) simulations.
One of the key areas of interest is to improve the

modeling of systems where the misalignment of the spins
with the orbital angular momentum causes the spins and the
orbital plane to precess [15]. Moreover, when the binary’s
component masses are asymmetric, gravitational radiation
is no longer dominated by the quadrupole moment, and
higher multipoles need to be accurately modeled [16].
Precession and higher multipoles lead to very rich dynam-
ics, which in turn is imprinted on the GW signal (see, e.g.,
[15,17–31]). Their measurements will be able to shed light
on the formation mechanism of the observed systems,
probe the astrophysical environment, break degeneracy
among parameters, allowing more accurate measurements
of cosmological parameters, masses and spins, and more
sophisticated tests of GR.
Faithful waveform models for precessing compact-

object binaries have been developed within the effective-
one-body (EOB) formalism [26,32,33], and the phenom-
enological approach [34–38] through calibration to NR
simulations. Recently, an inspiral-merger-ringdown phe-
nomenological waveform model that tracks precession and
includes higher modes was constructed in Ref. [39] (hence-
forth, IMRPhenomPv3HM)

1
The model describes the six

spin degrees of freedom in the inspiral phase, but not in the
late-inspiral, merger and ringdown stages. In the coprecess-
ing frame [21,23,42–44], in which the BBH is viewed face-
on at all times and the GW radiation resembles the
nonprecessing one, it includes the modes ðl; mÞ ¼ ð2;�2Þ;
ð2;�1Þ; ð3;�3Þ; ð3;�2Þ; ð4;�4Þ and ð4;�3Þ. Here, build-
ing on the multipolar aligned-spin EOBwaveform model of
Ref. [45,46], which was calibrated to 157 NR simulations
[47,48], and 13 waveforms from BH perturbation theory for

the (plunge-)merger and ringdown [49], we develop the

first EOB waveform model that includes both spin-

precession and higher modes (henceforth,SEOBNRv4PHM).

The model describes the six spin degrees of freedom

throughout the BBH coalescence. It differs from the one of

Refs. [26,33], not only because it includes in the coprecess-

ing frame the ð3;�3Þ, ð4;�4Þ and ð5;�5Þ modes, beyond

the ð2;�2Þ and ð2;�1Þ modes, but also because it uses an

improved description of the two-body dynamics, having

been calibrated [45] to a large set of NR waveforms [47].

We note that IMRPhenomPv3HM and SEOBNRv4PHM are

not completely independent because the former is con-

structed fitting (in frequency domain) hybridizedwaveforms

obtained by stitching together EOB and NR waveforms.

We stress that bothSEOBNRv4HM andIMRPhenomPv3HM

are not calibrated to NR simulations in the precessing

sector. Finally, the surrogate approach, which inter-

polates NR waveforms, has been used to construct several

waveform models that include higher modes [50] and

precession [51]. In this paper, we consider the state-of-

the-art surrogate waveform model with full spin precession

and higher modes [52] (henceforth, NRSur7dq4), devel-

oped for binaries with mass ratios 1–4, (dimensionless)

BH’s spins up to 0.8 and binary’s total masses larger than

∼60 M⊙. It includes in the coprecessing frame all modes up

to l ¼ 4. Table I summarizes the waveform models used in

this paper.
The best tool at our disposal to validate waveform

models built from approximate solutions of the Einstein
equations, such as the ones obtained from post-Newtonian
(PN) theory, BH perturbation theory and the EOB
approach, is their comparison to NR waveforms. So far,
NR simulations of BBHs have been mostly limited to mass
ratio ≤ 4 and (dimensionless) spins ≤ 0.8, and length of
15–20 orbital cycles before merger [53–57] (however,
see Ref. [58] where simulations with larger spins and mass
ratios were obtained through a synergistic use of NR
codes). Here, to test our newly constructed EOB precessing
waveform model, we enhance the NR parameter-space
coverage, while maintaining a manageable computational

TABLE I. The waveform models used in this paper. We also
specify which modes are included in the coprecessing frame.

Model name Modes in the coprecessing frame Reference

SEOBNRv3P ð2;�2Þ, ð2;�1Þ [26,33]
SEOBNRv4P ð2;�2Þ, ð2;�1Þ this work
SEOBNRv4PHM ð2;�2Þ, ð2;�1Þ, ð3;�3Þ, ð4;�4Þ

ð5;�5Þ this work
IMRPhenomPv2 ð2;�2Þ [34]
IMRPhenomPv3 ð2;�2Þ [36]
IMRPhenomPv3HM ð2;�2Þ, ð2;�1Þ, ð3;�3Þ, ð3;�2Þ,

ð4;�4Þ, ð4;�3Þ [39]
NRSur7dq4 all with l ≤ 4 [52]

1
During the final preparation of this work, a new frequency-

domain phenomenological model with precession and higher
modes (IMRPhenomXPHM [40]), and a time-domain phenomeno-
logical precessingmodelwith the dominantmode (IMRPhenomTP
[41]) were developed. We leave the comparison to these models for
future work.
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cost, and perform 118 new NR simulations with the pseudo
spectral Einstein code (SpEC) of the Simulating eXtreme
Spacetimes (SXS) collaboration. The new NR simulations
span BBHs with mass ratios 1–4, and dimensionless
spins in the range 0.3–0.9, and different spins’ orientations.
To assess the accuracy of the different precessing waveform
models, we compare them to the NR waveforms of
the public SXS catalogue [57], and to the new 118 NR
waveforms produced for this paper.
The paper is organized as follows. In Sec. IIwe discuss the

new NR simulations of BBHs, and assess their numerical
error. In Sec. III we develop the multipolar EOB waveform
model for spin-precessing BBHs, SEOBNRv4PHM, and
highlight the improvements with respect to the previous
version [26,33], which was used in LIGO and Virgo
inference analyses [5,59,60]. In Sec. IV we validate the
accuracy of the multipolar precessing EOB model by
comparing it to NR waveforms. We also compare the
performance of SEOBNRv4PHM against the one of
IMRPhenomPv3HM, and study in which region of the
parameter space those models differ the most from NR
simulations, and also from each other. In Sec. V we use
Bayesian analysis to explore the impact of the accuracy of
the precessing waveform models when extracting astro-
physical information and perform two synthetic NR injec-
tions in zero noise. In Sec. VI we summarize our main
conclusions and discuss futurework. Finally, in AppendixA
we compare the precessing waveform models to the NR
surrogate NRSur7dq4, and in Table II (in Appendix B) we
list the parameters of the 118 NR simulations done for
this paper.
In what follows, we use geometric units G ¼ 1 ¼ c

unless otherwise specified.

II. NEW NUMERICAL RELATIVITY

SIMULATIONS OF SPINNING, PRECESSING

BINARY BLACK HOLES

Henceforth, we denote with m1;2 the two BH masses

(withm1 ≥ m2), S1;2 ≡m2
1;2χ 1;2 their spins, q ¼ m1=m2 the

mass ratio, M ¼ m1 þm2 the binary’s total mass, μ ¼
m1m2=M the reduced mass, and ν ¼ μ=M the symmetric
mass ratio. We indicate with J ¼ Lþ S the total angular
momentum, where L and S ¼ S1 þ S2, are the orbital
angular momentum and the total spin, respectively.

A. New 118 precessing numerical-relativity

waveforms

The spectral Einstein code (SPEC)
2
of the Simulating

eXtreme Spacetimes (SXS) collaboration is a multi-domain
collocation code designed for the solution of partial differ-
ential equations on domains with simple topologies.
It has been used extensively to study the mergers of

compact-object binaries composed of BH [31,57,61–64]
and NSs [65–68], including in theories beyond GR [69–
72]. SPEC employs a first-order symmetric-hyperbolic
formulation of Einstein’s equations [73] in the damped
harmonic gauge [74,75]. Dynamically controlled excision
boundaries are used to treat spacetime singularities [61,76]
(see Ref. [57] for a recent, detailed overview).
Significant progress has been made in recent years by

several NR groups to improve the coverage of the BBH
parameter space [53–58], mainly motivated by the calibra-
tion of analytical waveform models and surrogate models
used in LIGO and Virgo data analysis. While large strides
have been made for aligned-spin cases, the exploration
of precessing waveforms has been mostly limited to
q ≤ 4; χ1;2 ≡ jχ 1;2j ≤ 0.8, typically 15–20 orbital cycles

before merger, and a large region of parameter space
remains to be explored. Simulations with high mass ratio
(q ≥ 4) and high spin (j χ 1j > 0.5) are challenging, pri-
marily due to the need to resolve the disparate length scales
in the binary system, which increases the computational
cost for a given level of accuracy. Furthermore, for high
spin, the apparent horizons can be dramatically smaller,
which makes it more difficult to control the excision
boundaries, further increasing the computational burden.
Here, we want to improve the parameter-space coverage

of the SXS catalog [57], while maintaining a manageable
computational cost, thus we restrict to simulations in the
range of mass ratios q ¼ 1 − 4 and (dimensionless) spins
χ1;2 ¼ 0.3 − 0.9, with the spin magnitudes decreasing as

the mass ratio increases. In Fig. 1 we display, in the q − χ1
parameter space, the precessing and non-precessing wave-
forms from the published SXS catalogue [57], and the new
precessing waveforms produced as part of this work.

FIG. 1. Parameter space coverage in q − χ1 space for SpEC
waveforms. For runs from the SpEC catalog [57] the opacity was
changed so that runs with similar parameters are clearly visible.
We indicate with squares precessing BBH runs performed as part
of this paper.

2
www.black-holes.org
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We choose to start all the simulations at the same
(angular) orbital frequency, MΩ0 ≈ 0.0157, where the
value is not exact as it was modified slightly during the
eccentricity-reduction procedure in SPEC [77]. This corre-
sponds to a physical GW starting frequency of 20 Hz at
50 M⊙ and results in the number of orbits up to merger
varying between 15 and 30 in our new catalog.
We parametrize the directions of the spins by three

angles, the angles θ1;2 between the spins and the unit vector

along the Newtonian orbital angular momentum, L̂N, and
the angle Δϕ between the projections of the spins in the
orbital plane. Explicitly,

θi ¼ arccosðχ i · L̂NÞ; ð2:1aÞ

Δϕ ¼ arccos

�

cos θ12 − cos θ1 cos θ2

sin θ1 sin θ2

�

; ð2:1bÞ

where cos θ12 ¼ χ 1 · χ 2. We make the choice that χ 1 lies in

the L̂N − n plane, where n is the unit vector along the
binary’s radial separation, at the start of the simulation.
The angles are chosen to be θi;0 ∈ f60°; θmaxg, and

Δϕ0 ∈ f0; 90°g. Here θmax is the angle that maximizes
the opening angle of LN around the total angular momen-
tum J and is computed assuming that the two spins are
colinear, giving

cos θmax ¼ −
jSj

jLNj
¼ −

m2
1χ1 þm2

2χ2

jLNj
; ð2:2Þ

with jLNj ¼ μM2=3
Ω

−1=3 for circular orbit, being Ω the
orbital angular frequency. For each choice of fq; χg we
choose 10 different configurations divided into two cat-
egories: (i) χ1¼χ2¼χ, θi;0 ∈ f60°; θmaxg, Δϕ0 ∈ f0; 90°g
giving eight runs, and (ii) χ1¼χ, χ2 ¼ 0, θ1;0 ∈ f60°; θmaxg
giving two runs. The detailed parameters can be found in
Appendix B.
These choices of the spin directions allow us to test the

multipolar precessing model SEOBNRv4PHM in many
different regimes, including where the effects of precession
are maximized, and where spin-spin effects are significant
or diminished.

B. Unfaithfulness for spinning, precessing waveforms

The gravitational signal emitted by noneccentric
BBH systems and observed by a detector depends on 15
parameters: the component masses m1 and m2 (or equiv-
alently the mass ratio q ¼ m1=m2 ≥ 1 and the total mass
M ¼ m1 þm2), the dimensionless spins χ1ðtÞ and χ2ðtÞ,
the direction to observer from the source described by the
angles ðι;φ0Þ, the luminosity distance dL, the polarization
ψ , the location in the sky ðθ;ϕÞ and the time of arrival tc.
The gravitational strain can be written as:

hðtÞ≡ Fþðθ;ϕ;ψÞhþðι;φ0; dL; ξ; tc; tÞ

þ F×ðθ;ϕ;ψÞh×ðι;φ0; dL; ξ; tc; tÞ; ð2:3Þ

where to simplify the notation we introduce the function
ξ≡ ðq;M; χ 1ðtÞ; χ 2ðtÞÞ. The functions Fþðθ;ϕ;ψÞ and
F×ðθ;ϕ;ψÞ are the antenna patterns [78,79]:

Fþðθ;ϕ;ψÞ ¼
1þ cos2ðθÞ

2
cosð2ϕÞ cosð2ψÞ

− cosðθÞ sinð2ϕÞ sinð2ψÞ; ð2:4aÞ

F×ðθ;ϕ;ψÞ ¼
1þ cos2ðθÞ

2
cosð2ϕÞ sinð2ψÞ

þ cosðθÞ sinð2ϕÞ cosð2ψÞ: ð2:4bÞ

Equation (2.3) can be rewritten as:

hðtÞ≡Aðθ;ϕÞ½cos κðθ;ϕ;ψÞhþðι;φ0; dL; ξ; tc; tÞ

þ sin κðθ;ϕ;ψÞh×ðι;φ0; dL; ξ; tc; tÞ�; ð2:5Þ

where κðθ;ϕ;ψÞ is the effective polarization [80]
defined as:

eiκðθ;ϕ;ψÞ ¼
Fþðθ;ϕ;ψÞ þ iF×ðθ;ϕ;ψÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
p ; ð2:6Þ

which has support in the region ½0; 2πÞ, while Aðθ;ϕÞ
reads:

Aðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
q

: ð2:7Þ

Henceforth, to ease the notation we suppress the depend-
ence on ðθ;ϕ;ψÞ in κ.
Let us introduce the inner product between two wave-

forms a and b [78,79]:

ða; bÞ≡ 4Re

Z

fmax

fin

df
ãðfÞb̃�ðfÞ

SnðfÞ
; ð2:8Þ

where a tilde indicates the Fourier transform, a star the
complex conjugate and SnðfÞ is the one-sided power
spectral density (PSD) of the detector noise. We employ
as PSD the Advanced LIGO’s “zero-detuned high-power”
design sensitivity curve [81]. Here we use fin ¼ 10 Hz and
fmax ¼ 2 kHz, when both waveforms fill the band. For
cases where this is not the case (e.g., the NR waveforms)
we set fin ¼ 1.05fstart, where fstart is the starting frequency
of the waveform.
To assess the closeness between two waveforms s (e.g.,

the signal) and τ (e.g., the template), as observed by a
detector, we define the following faithfulness function [46]:
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F ðMs; ιs;φ0s; κsÞ≡ max
tc;φ0τ ;κτ

"

ðs; τÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs; sÞðτ; τÞ
p

�

�

�

�

�

ιs¼ιτ
ξsðts¼t0s

Þ¼ξτðtτ¼t0τ
Þ

#

:

ð2:9Þ

While in the equation above we set the inclination angle ι
of signal and template waveforms to be the same, the
coalescence time tc and the angles φ0τ and κτ of the
template waveform are adjusted to maximize the faithful-
ness. This is a typical choice motivated by the fact these
quantities are not interesting from an astrophysical per-
spective. The maximizations over tc and φ0τ are performed
numerically, while the maximization over κτ is done
analytically following the procedure described in Ref. [80]
(see Appendix A therein).
The condition ξsðts ¼ t0sÞ ¼ ξτðtτ ¼ t0τÞ in Eq. (2.9)

enforces that the mass ratio q, the total mass M and the
spins χ 1;2 of the template waveform at t ¼ t0 (i.e., at the

beginning of the waveform) are set to have the same values
of the ones in the signal waveform at its t0. When
computing the faithfulness between NR waveforms with
different resolutions this condition is trivially satisfied by
the fact that they are generated using the same initial data.
In the case of the faithfulness between NR and any model
from the SEOBNR family, it is first required to ensure that t0
has the same physical meaning for both waveforms. Ideally
t ¼ t0τ in the SEOBNRwaveform should be fixed by

requesting that the frequency of the SEOBNR (2,2) mode
at t0τ coincides with the NR (2,2) mode frequency at t0d .

This is in practice not possible because the NR (2,2)
mode frequency may display small oscillations caused

by different effects—for example the persistence of the
junk radiation, some residual orbital eccentricity or
spin-spin couplings [77]. Thus, the frequency of the
SEOBNR (2,2) mode at t ¼ t0τ is chosen to guarantee

the same time-domain length of the NR waveform.
3
In

practice, we require that the peak of
P

l;m jhlmj
2, as

elapsed respectively from t0s and t0τ , occurs at the same

time in NR and SEOBNR. For waveforms from the
IMRPhenom family we adopt a different approach, and
following the method outlined in Ref. [36], also optimize
the faithfulness numerically over the reference frequency of
the waveform.
The faithfulness defined in Eq. (2.9) is still a function of

4 parameters (i.e., Ms, ιs, φ0s, κs), therefore it does not
allow to describe the agreement between waveforms in a
compact form. For this purpose we define the sky-and-

polarization-averaged faithfulness [33] as:

F ðMs; ιsÞ≡
1

8π2

Z

2π

0

dκs

Z

2π

0

dφ0sF ðMs; ιs;φ0s; κsÞ:

ð2:10Þ

Despite the apparent difference, the sky-and-polarization-

averaged faithfulness F defined above is equivalent to the
one given in Eqs. (9) and (B15) of Ref. [33]. The definition in
Eq. (2.10) is less computationally expensive because, thanks
to the parametrization of thewaveforms in Eq. (2.5), it allows
one to write the sky-and-polarization-averaged faithfulness
as a double integral instead of the triple integral in Eq. (B15)
of Ref. [33]. We also define the sky-and-polarization-
averaged, signal-to-noise (SNR)-weighted faithfulness as:

F SNRðMs; ιsÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

2π
0

dκs
R

2π
0

dφ0sF
3ðMs; ιs;φ0s; κsÞSNR

3ðιs;φ0s; κsÞ
R

2π
0

dκs
R

2π
0

dφ0sSNR
3ðιs;φ0s; κsÞ

3

s

: ð2:11Þ

where the SNRðιs;φ0s; θs;ϕs; κs; DLs
; ξs; tcsÞ is defined as:

SNRðιs;φ0s; θs;ϕs; κs; DLs
; ξs; tcsÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhs; hsÞ
p

: ð2:12Þ

This is also an interesting metric because weighting the
faithfulness with the SNR takes into account that, at fixed
distance, the SNR of the signal depends on its phase and on
the effective polarization (i.e., a combination of waveform
polarization and sky-position). Since the SNR scales with
the luminosity distance, the number of detectable sources

scale with the SNR3, therefore signals with a smaller SNR

are less likely to be observed. Finally, we define the
unfaithfulness (or mismatch) as

M ¼ 1 − F : ð2:13Þ

C. Accuracy of new numerical-relativity waveforms

To assess the accuracy of the new NR waveforms, we
compute the sky-and-polarization-averaged unfaithfulness
defined in Eq. (2.10) between the highest and second
highest resolutions in the NR simulation.
Figure 2 shows a histogram of the unfaithfulness,

evaluated at ιs ¼ π=3 maximized over the total mass,
between 20 and 200 M⊙. It is apparent that the unfaithful-
ness is below 1% for most cases, but there are several cases
with much higher unfaithfulness. This tail to high unfaith-
fulness has been observed previously, when evaluating the

3
The difference between the NR (2,2) mode frequency and the

SEOBNRv4PHM (2,2) frequency chosen at t ¼ t0 is never larger
than 5%.
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accuracy of SXS simulations in Ref. [52]. Therein, it was
established that, when the nonastrophysical junk radiation
perturbs the parameters of the simulation sufficiently, the
different resolutions actually correspond to different physi-
cal systems. Thus, taking the difference between adjacent
resolutions is no longer an appropriate estimate of the error.
We also find that the largest unfaithfulness occurs when

the difference in parameters is largest, thus confirming that
it is the difference in parameters that dominates the
unfaithfulness.

D. Effect of mode asymmetries

in numerical-relativity waveforms

The gravitational polarizations at time t and location
ðφ0; ιÞ on the coordinate sphere from the binary can be
decomposed in −2–spin-weighted spherical harmonics, as
follows

hþðφ0; ι; tÞ − ih×ðφ0; ι; tÞ

¼
X

l¼2

X

m¼þl

m¼−l

−2Ylmðφ0; ιÞhlmðtÞ: ð2:14Þ

For nonprecessing binaries, the invariance of the system
under reflection across the orbital plane (taken to be the

x − y plane) implies hlm ¼ ð−1Þlh�
l−m. The latter is a very

convenient relationship—for example it renders unneces-
sary to model modes with negative values of m. However,
this relationship is no longer satisfied for precessing
binaries.
As investigated in previous NR studies [25,82], we

expect the asymmetries between opposite-m modes to be
small as compared to the dominant (2, 2)-mode emission (at
least during the inspiral) in a corotating frame that max-
imizes emission in the ð2;�2Þ modes, also known as the
maximum-radiation frame [42,83]. However, while the

asymmetries are expected to be small during the inspiral,
the difference in phase and amplitude between positive and
negative m-modes might become non-negligible at merger.
As we discuss in the next section, when building

multipolar waveforms (SEOBNRv4PHM) for precessing
binaries by rotating modes from the coprecessing [21,23,
42–44] to the inertial frame of the observer, we shall
neglect the mode asymmetries. To quantify the error
introduced by this assumption, we proceed as follows.
We first take NR waveforms in the coprecessing frame and
construct symmetrized waveforms. Specifically, we con-
sider the combination of waveforms in the coprecessing
frame defined by (e.g., see Ref. [52])

h�
lm ¼

hP
lm � hP�

l−m

2
: ð2:15Þ

Note that if the assumption of conjugate symmetry holds
(i.e., if hP

l−m ¼ ð−1ÞlhP�
lm), then for even (odd) l modes,

FIG. 2. The sky-and-polarization-averaged unfaithfulness be-
tween the highest and second highest resolutions in the NR
simulation maximized over the total mass for the new 118 NR
precessing waveforms. The inclination used is π=3. The vertical
dashed line shows the median.

FIG. 3. Top: the behavior of h�
lm in the NR simulation

PrecBBH000078. Note that especially during the inspiral, jhþ22j
is much larger than jh−22j while jh−33j is much larger than jhþ33j.
Bottom: an example of waveform symmetrization for the same
NR case, shown in the coprecessing frame. The symmetrized
waveform obeys the usual conjugation symmetry as expected,
and represents a reasonable average to the behavior of the
unsymmetrized modes.

SERGUEI OSSOKINE et al. PHYS. REV. D 102, 044055 (2020)

044055-6



hþ
lm (h−

lm) is nonzero while the other component vanishes.

If the assumption does not hold, it is still true that at given
l, one of the components is much larger than the other, as
shown in top panel of Fig. 3. Motivated by this, we define
the symmetrized modes (for m > 0) as [52]

hP
lm ¼

�

hþ
lm if l is even;

h−
lm if l is odd:

ð2:16Þ

The other modes are constructed as hP
lm ¼ ð−1ÞlhP�

l−m for

m < 0, and we set m ¼ 0 modes to zero. The bottom panel
of Fig. 3 shows an example of asymmetrized waveform for
the case PrecBBH000078 of the SXS catalogue, in the
coprecessing frame. It is obvious that the asymmetry
between the modes has been removed and that the sym-
metrized waveform does indeed represent a reasonable
“average” between the original modes. The symmetrized
waveforms in the inertial frame are obtained by rotating the
coprecessing frames modes back to the inertial frame.
In Fig. 4, we show the sky-and-polarization averaged

unfaithfulness between the NR waveforms and the sym-
metrized waveforms described above, maximized over the
total mass, including all modes available in the NR
simulation, that is up to l ¼ 8. For the vast majority of
the cases, the unfaithfulness is ∼0.5%, and all cases have
unfaithfulness below 2%. This demonstrates that the effect
of neglecting the asymmetry is likely subdominant to other
sources of error such as the modeling of the waveform
phasing, although the best way of quantifying the effect is
to perform a Bayesian parameter-estimation study, which
we leave to future work.

III. MULTIPOLAR EOB WAVEFORMS FOR

SPINNING, PRECESSING BINARY BLACK HOLES

We briefly review the main ideas and building blocks of
the EOB approach, and then describe an improved spinning,

precessing EOBNR waveform model, which, for the first
time, also contains multipole moments beyond the quad-
rupolar one. The model is already available in the LIGO
Algorithm Library [84] under the name of SEOBNRv4PHM
We refer the reader to Refs. [26,33,46,85,86] for more
details of the EOB framework and its most recent waveform
models.Herewe closely followRef. [33], highlightingwhen
needed differences with respect to the previous precessing
waveform model developed in Ref. [33] (SEOBNRv3P

4
).

A. Two-body dynamics

The EOB formalism [87–90] can describe analytically
the GWemission of the entire coalescence process, notably
inspiral, merger and ringdown, and it can be made highly
accurate by including information from NR. For the two-
body conservative dynamics, the EOB approach relies on a
Hamiltonian HEOB, which is constructed through: (i) the
Hamiltonian Heff of a spinning particle of mass μ≡

m1m2=ðm1 þm2Þ and spin S� ≡ S�ðm1; m2; S1; S2Þ mov-
ing in an effective, deformed Kerr spacetime of mass M≡

m1 þm2 and spin SKerr ≡ S1 þ S2 [91–93], and (ii) an
energy map between Heff and HEOB [87]

HEOB ≡M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ν

�

Heff

μ
− 1

�

s

−M; ð3:1Þ

where ν ¼ μ=M is the symmetric mass ratio. The defor-
mation of the effective Kerr metric is fixed by requiring that
at any given PN order, the PN-expanded HamiltonianHEOB

agrees with the PN Hamiltonian for BBHs [16]. In the EOB
Hamiltonian used in this paper [92,93], the spin-orbit
(spin-spin) couplings are included up to 3.5PN (2PN)
order [92,93], while the nonspinning dynamics is incorpo-
rated through 4PN order [46]. The dynamical variables
in the EOB model are the relative separation r and its
canonically conjugate momentum p, and the spins S1;2.

The conservative EOB dynamics is completely general
and can naturally accommodate precession [26,33] and
eccentricity [94–96].
When BH spins have generic orientations, both the

orbital plane and the spins undergo precession about
the total angular momentum of the binary, defined as
J ≡ Lþ S1 þ S2, where L≡ μr × p. We also introduce the
Newtonian orbital angular momentum LN ≡ μr × _r, which
at any instant of time is perpendicular to the binary’s orbital
plane. Black-hole spin precession is described by the
following equations

FIG. 4. The sky-and-polarization-averaged unfaithfulness be-
tween NR and symmetrized NR waveforms, maximized over the
total mass for the new 118 NR precessing waveforms. The
inclination used is π=3. The vertical dashed line shows the median.

4
We note that whereas in LAL the name of this waveform

approximant is SEOBNRv3, here we add a “P” to indicate
“precession,” making the notation uniform with respect to the
most recent developed model SEOBNRv4P [33].
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dS1;2

dt
¼

∂HEOB

∂S1;2
× S1;2: ð3:2Þ

In the EOB approach, dissipative effects enter in the
equations of motion through a nonconservative radiation-
reaction force that is expressed in terms of the GW energy
flux through thewaveformmultipolemoments [22,97–99] as

F ≡
Ω

16π

p

jLj

X

8

l¼2

X

l

m¼−l

m2jdLhlmj
2; ð3:3Þ

where Ω≡ jr × _rj=jrj2 is the (angular) orbital frequency,
dL is the luminosity distance of the BBH to the observer, and
the hlm’s are the GW multipole modes. As discussed in
Refs. [45,46], the hlm used in the energy flux are not the same
as those used for building thegravitational polarizations in the
inertial frame, since the latter include the nonquasicircular
corrections, which enforce that the SEOBNR waveforms at
merger agree with the NR data, when available.

B. Inspiral-plunge waveforms

For the inspiral-plunge waveform, the EOB approach
uses a factorized, resummed version [46,97–99] of the
frequency-domain PN formulas of the modes [100,101]. As
today, the factorized resummation has been developed only
for quasicircular, nonprecessing BBHs [98,99], and it has
been shown to improve the accuracy of the PN expressions
in the test-particle limit, where one can compare EOB
predictions to numerical solutions of the Regge-Wheeler-
Zerilli and Teukolsky equations [32,49,102,103].
The radiation-reaction force F in Eq. (3.3) depends on

the amplitude of the individual GW modes jhlmj, which, in
the nonprecessing case, are functions of the constant

aligned-spin magnitudes χ1;2 · L̂. In the precessing case,

these modes depend on time, as χ1;2ðtÞ · L̂ðtÞ, and they

depend on the generic, precessing orbital dynamics through
the radial separation r and orbital frequency Ω, which carry
modulations due to spin-spin couplings whenever preces-
sion is present. However, we stress that with this choice of
the radiation-reaction force and waveform model, not all
spin-precession effects are included, since the PN formulas
of the modes [100] also contain terms that depend on the
in-plane spin components.
For data-analysis purposes, we need to compute the GW

polarizations in the inertial-frame of the observer (or simply
observer’s frame). We denote quantities in this frame with
the superscript I. The observer’s frame is defined by the

triad fêIðiÞg (i ¼ 1, 2, 3), where êIð1Þ ≡ r̂ð0Þ, êIð3Þ ≡ L̂Nð0Þ

and êIð2Þ ≡ êIð3Þ × êIð1Þ. Moreover, in this frame, the line

of sight of the observer is parametrized as N̂ ≡

ðsin ι cosϕo; sin ι sinϕo; cos ιÞ (see Fig. 5). We also intro-
duce the observer’s frame with the polarization basis

fêrð1Þ; ê
r
ð2Þg such that êrð1Þ ≡ ðêIð3Þ × N̂Þ=jêIð3Þ × N̂j and

êrð2Þ ≡ N̂ × êrð1Þ, which spans the plane orthogonal to N̂.

To compute the observer’s-frame modes hI
lm during the

inspiral-plunge stage, it is convenient to introduce a non-
inertial reference frame that tracks the motion of the orbital
plane, the so-called coprecessing frame (superscript P),

described by the triad fêPðiÞg (i ¼ 1, 2, 3). At each instant,

its z-axis is aligned with L̂: êPð3Þ ≡ L̂ðtÞ.5 In this frame, the

BBH is viewed face-on at all times, and the GW radiation
looks very much nonprecessing [21,23,42–44]. The other
two axes lie in the orbital plane and are defined such as
they minimize precessional effects in the precessing-

frame modes hP
lm [21,42]. After introducing the vector

Ωe ≡ L̂ × dL̂=dt, we enforce the minimum-rotation con-

dition by requiring that dêPð1Þ;ð2Þ=dt ¼ Ωe × êPð1Þ;ð2Þ and

êPð1Þ;ð2Þð0Þ ¼ êIð1Þ;ð2Þ (see also Fig. 5). As usual, we para-

metrize the rotation from the precessing to the observer’s
frame through time-dependentEuler angles ðαðtÞ; βðtÞ; γðtÞÞ,
which we compute using Eqs. (A4)–(A6) in Appendix A of
Ref. [33].We notice that theminimum-rotation condition can
also be expressed through the following differential equation
for γ: _γ ¼ − _α cos β with γð0Þ ¼ −αð0Þ ¼ π=2.
We compute the precessing-frame inspiral-plunge modes

just like we do for the GW flux, namely by evaluating the
factorized, resummed nonprecessing multipolar waveforms
along the EOB precessing dynamics, and employing the
time-dependent spin projections χ1;2ðtÞ · L̂ðtÞ. Finally, the
observer’s-frame inspiral-plunge modes are obtained by

FIG. 5. Frames used in the construction of the SEOBNRv4PHM
model: the observer’s frame (blue), defined by the directions of the
initial orbital angular momentum L̂ð0Þ and separation rð0Þ, and

coprecessing frame (red), instantaneously aligned with L̂ðtÞ and
described by the Euler angles ðα; β; γÞ (see text below for details).

5
Note that in Ref. [33], the z-axis is alignedwith L̂N instead of L̂.
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rotating the precessing-frame inspiral-plunge modes using
Eq. (A13) in Appendix A of Ref. [33].
Following Ref. [46], where an EOBNR nonprecessing

multipolarwaveformmodelwas developed (SEOBNRv4HM),
here we include in the precessing frame of the
SEOBNRv4PHM model the ð2;�2Þ; ð2;�1Þ; ð3;�3Þ;
ð4;�4Þ and ð5;�5Þ modes, and make the assumption

hPl−m ¼ ð−1ÞlhP�lm . As shown in Sec. II D, we expect that

inaccuracies due to neglecting mode asymmetries should
remain mild, or at most at the level of other modeling errors.

C. Merger-ringdown waveforms

The description of a BBH as a system composed of two
individual objects is of course valid only up to the merger.
After that point, the EOB model builds the GW emission
(ringdown stage) via a phenomenological model of the
quasinormal modes (QNMs) of the remnant BH, which
forms after the coalescence of the progenitors. The QNM
frequencies and decay times are known (tabulated) func-
tions of the mass Mf and spin Sf ≡M2

fχ f of the remnant
BH [104]. Since the QNMs are defined with respect to the
direction of the final spin, the specific form of the ringdown
signal, as a linear combination of QNMs, is formally valid
only in an inertial frame whose z-axis is parallel to χ f.

A novel feature of the SEOBNRv4PHM waveform model
presented here is that we attach the merger-ringdown
waveform (notably each multipole mode h

mergr-RD
lm ) directly

in the coprecessing frame, instead of the observer’s frame.
As a consequence, we can employ here the merger-
ringdown multipolar model developed for nonprecessing
BBHs (SEOBNRv4HM) in Ref. [46] (see Sec. IV E therein
for details). By contrast, in the SEOBNRv3P waveform
model [33], the merger-ringdown waveform was built as a
superposition of QNMs in an inertial frame aligned with the
direction of the remnant spin. This construction was both
more complicated to implement and more prone to numeri-
cal instabilities.
To compute the waveform in the observer’s frame, our

approach requires a description of the coprecessing frame
Euler angles ðα; β; γÞ that extends beyond the merger. To
prescribe this, we take advantage of insights from NR
simulations [24]. In particular, it was shown that the
coprecessing frame continues to precess roughly around
the direction of the final spin with a precession frequency
approximately equal to the differences between the lowest
overtone of the (2,2) and (2,1) QNM frequencies, while the
opening angle of the precession cone decreases somewhat
at merger. We find that this behavior is qualitatively correct
for the NR waveforms used for comparison in this paper.
To keep our model generic for a wide range of mass

ratios and spins, we need an extension of the behavior
noticed in Ref. [24] to the retrograde case, where the
remnant spin is negatively aligned with the orbital angular
momentum at merger. Such configurations can occur for
high mass-ratio binaries, when the total angular momentum

J is dominated by the spin of the primary S1 instead of the
orbital angular momentum L. This regime is not well
explored by NR simulations, and includes in particular
systems presenting transitional precession [15]. In our
model we keep imposing simple precession around the
direction of the remnant spin at a rate ωprec ≥ 0, but we

distinguish two cases depending on the direction of the
final spin χ f (approximated by the total angular momentum

J ¼ Lþ S1 þ S2 at merger) relative to the final orbital
angular momentum Lf:

_α¼ωprec¼

(

ω
QNM
22 ð χfÞ−ω

QNM
21 ð χfÞ if χ f ·Lf>0

ω
QNM
2−1 ð χfÞ−ω

QNM
2−2 ð χfÞ if χ f ·Lf<0

ð3:4Þ

where χf ¼ jχ fj, and the zero-overtone QNM frequencies

for negative m are taken on the branch ω
QNM
lm > 0 that

continuously extends the m > 0, ω
QNM
lm > 0 branch [104]

(the QNM refers to zero overtone). In both cases, _α ≥ 0. We
do not attempt to model the closing of the opening angle of
the precession cone and simply consider it to be constant
during the post-merger phase, β ¼ const. The third Euler
angle γ is then constructed from the minimal rotation
condition _γ ¼ − _α cos β. The integration constants are deter-
mined by matching with the inspiral at merger. We find that
the behavior of Eq. (3.4) in the case χ f · Lf < 0 is qualita-

tively consistent with an NR simulation investigated by one
of us [105]. However, we stress that this prescription for the
retrograde case ismuch less tested than for the prograde case.
Furthermore, one crucial aspect of the above construction

is the mapping from the binary’s component masses and
spins to the final mass and spin, which is needed to compute
the QNM frequencies of the merger remnant. Many groups
have developed fitting formulae based on a large number of
NR simulations (e.g., see Ref. [106] for an overview). To
improve the agreement of our EOBmerger-ringdownmodel
with NR, and to ensure agreement in the aligned-spin limit
with SEOBNRv4 [45] and SEOBNRv4HM [46], we employ
the fits from Hofmann et al. [107]. In Fig. 6 we compare the
performance of the fit used in the previous EOB precessing
model SEOBNRv3P [26,33,86] to the fit from Hofmann
et al. that we adopt for SEOBNRv4PHM. It is clear that
the new fit reproduces NR data much better. This in turn
improves the correspondence between NR and EOB QNM
frequencies.
For the final mass we employ the same fit as in previous

EOB models, and we provide it here since it was not given
explicitly anywhere before:

Mf

M
¼ 1 −

�

½1 − EISCOðaÞ�νþ 16ν2
�

0.00258

−
0.0773

½að1þ 1=qÞ2=ð1þ 1=q2Þ − 1.6939�

−
1

4
ð1 − EISCOðaÞÞ

�	

; ð3:5Þ
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where a ¼ L̂ · ð χ 1 þ χ 2=q
2Þ=ð1þ 1=qÞ2, and EISCOðaÞ is

the binding energy of the Kerr spacetime at the innermost
stable circular orbit [108].
Finally, for precessing binaries, the individual components

of the spins vary with time. Therefore, in applying the fitting
formulae to obtain final mass and spin, one must make a
crucial choice in selecting the time during the inspiral stage at
which the spin directions are evaluated. In fact, even if one
considers a given physical configuration, evaluating the final
spin formulaewith spin directions fromdifferent times yields
different final spins and consequently different waveforms.
We choose to evaluate the spins at a time corresponding to
the separation of r ¼ 10M. This choice is guided by two
considerations: by the empirical finding of good agreement
withNR (e.g., performing better than using the time at which
the inspiral-plunge waveform is attached to the merger-
ringdown waveform [46]), and by the restriction that the
waveform must start at r > 10.5M in order to have small
initial eccentricity [33]. Thus, our choice ensures that a given
physical configuration always produces the same waveform
regardless of the initial starting frequency.
To obtain the inspiral-merger-ringdown modes in the

inertial frame, hI
lm, we rotate the inspiral-merger-ringdown

modes hP
lm from the coprecessing frame to the observer’s

frame using the rotation formulas and Euler angles in
Appendix A of Ref. [33]. The inertial frame polarizations
then read

hIþðφ0; ι; tÞ− ihI×ðφ0; ι; tÞ¼
X

l;m

−2Ylmðφ0; ιÞh
I
lmðtÞ: ð3:6Þ

D. On the fits of calibration parameters

in presence of precession

The SEOBNRv4PHM waveform model inherits the EOB
Hamiltonian and GW energy flux from the aligned-spin
model SEOBNRv4 [45], which features higher (yet

unknown) PN-order terms in the dynamics calibrated to
NR waveforms. These calibration parameters were denoted
K, dSO and dSS in Ref. [45], and were fitted to NR and
Teukolsky-equation–based waveforms as polynomials in ν,
χ where χ ≡ SzKerr=ð1 − 2ν) with SKerr ¼ S1 þ S2 the spin

of the EOB background spacetime. In contrast to the
SEOBNRv3P waveform model, which used the EOB
Hamiltonian and GW energy flux from the aligned-spin
model SEOBNRv2 [86], the fits in Ref. [45] include odd
powers of χ and thus the sign of χ matters when the BHs
precess.
The most natural way to generalize these fits to the

precessing case is to project SKerr onto the orbital angular

momentum L̂ in the usual spirit of reducing precessing
quantities to corresponding aligned-spin ones. To test the
impact of this prescription, we compute the sky-and-
polarization-averaged unfaithfulness with the set of 118
NR simulations described in Sec. II, and find that while the
majority of the cases have low unfaithfulness (∼1%), there
are a handful of cases where it is significant (∼10%), with
many of them having large in-plane spins.
To eliminate the high mismatches, we introduce the

augmented spin that includes contribution of the in-plane
spins:

χ̃ ¼
SKerr · L

1 − 2ν
þ α

ðS⊥1 þ S⊥2 Þ · SKerr
jSKerrjð1 − 2νÞ

: ð3:7Þ

Here S⊥i ≡ Si − ðSi · LÞL and α is a positive coefficient to be
determined. Note that the extra term in the definition of the
augmented spin≥ 0 for any combination of the spins.We set
χ̃ ¼ 0 when SKerr ¼ 0. Fixing α ¼ 1=2 insures that the
augmented spin obeys the Kerr bound. Using the augmented
spin eliminates all mismatches above 6%, and thus greatly
improves the agreement of the model with NR data.

IV. COMPARISON OF MULTIPOLAR

PRECESSING MODELS TO NUMERICAL-

RELATIVITY WAVEFORMS

To assess the impact of the improvements incorporated
in the SEOBNRv4PHM waveform model, we compare this
model and other models publicly available in LAL (see
Table I) to the set of simulations described in Sec. II, as well
as to all publicly available precessing SPEC simulations.

6

We start by comparing in Fig. 7, the precessing NR
waveform PrecBBH00078 with mass ratio 4, BH’s spin
magnitudes 0.7, total mass M ¼ 70 M⊙ and modes l ≤ 4

from the new 118 SXS catalog (see Appendix B) to the
precessing waveforms IMRPhenomPv3 and SEOBNRv4P
with modes l ¼ 2 (upper panels), and to the precess-
ing multipolar waveforms IMRPhenomPv3HM and

FIG. 6. Comparison of the magnitude of the final spin between
the SEOBNRv3P and SEOBNRv4P models and NR results. For
simplicity, the fits are evaluated using the NR data at the relaxed
time. The black line is the identity. It is obvious that SEOBNRv4P
gives final-spin magnitudes much closer to the NR values.

6
The list of all SXS simulations used can be found in https://

arxiv.org/src/1904.04831v2/anc/sxs_catalog.json
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SEOBNRv4PHM (lower panels). This NR waveform is the
most “extreme” configuration from the new set of wave-
forms and has about 44 GW cycles before merger, and the
plot only shows the last 7 cycles. More specifically, we plot
the detector response function given in Eq. (2.5), but we
leave out the overall constant amplitude. We indicate on the
panels the unfaithfulness for the different cases. We note
the improvement when including modes beyond the quad-
rupole. SEOBNRv4PHM agrees particularly well to this NR
waveform, reproducing accurately the higher-mode fea-
tures throughout merger and ringdown.
We now turn to the public precessing SXS NR catalog of

1404 waveforms. First, to quantify the performance of the
new precessing waveform model SEOBNRv4Pwith respect
to previous precessing models used in LIGO and Virgo
inference studies, we compute the unfaithfulness

7
against

the precessing NR catalog, including only the dominant
l ¼ 2multipoles in the coprecessing frame. Figure 8 shows
the histograms of the largest mismatches when the binary
total mass varies in the range ½20; 200� M⊙. Here, we
also consider the precessing waveform models used in the
first GW Transient Catalog [5] of the LIGO and Virgo
collaboration (i.e., SEOBNRv3P and IMRPhenomPv2).
Two trends are apparent: first, SEOBNRv3P and

IMRPhenomPv2 distributions are broadly consistent, with
both models having mismatches which extend beyond 10%,
although SEOBNRv3 has more cases at lower unfaithful-
ness; second, SEOBNRv4P has a distribution which is
shifted to much lower values of the unfaithfulness and
does not include outliers with the largest unfaithfulness
below 7%.

FIG. 7. Time-domain comparison of state-of-the art waveform models to the NR waveform PrecBBH00078 with mass ratio 4, BH’s
spins 0.7 and total massM ¼ 70 M⊙. The source parameters are ιs ¼ π=3, ϕs ¼ π=4, κs ¼ π=4. The NR waveform includes all modes
up to and including l ¼ 4, and extends for 44 GW cycles before merger. For models that include only l ¼ 2 modes, the unfaithfulness
are several percent 8% for IMRPhenomPv3 and 6% for SEOBNRv4P. Meanwhile, adding the higher mode content drastically improves
the agreement, with mismatches going down to 2% for IMRPhenomPv3HM and 1% for SEOBNRv4PHM. The agreement is particular
good for SEOBNRv4PHM, which reproduces the higher mode features at merger and ringdown faithfully.

FIG. 8. Sky-and-polarization averaged,SNRweightedunfaithful-
ness for an inclination ι ¼ π=3 between NRwaveforms with l ¼ 2

and SEOBNRv4P, and also SEOBNRv3P and IMRPhenomPv2,
which were used in LIGO/Virgo publications. The vertical dashed
lines show the medians. It is evident the better performance of the
newly developed precessing model SEOBNRv4P.

7
We always use the sky-and-polarization averaged, SNR-

weighted faithfulness or unfaithfulness MSNR unless otherwise
stated.
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Next, we examine the importance of higher modes.
To do so, we use SEOBNRv4PHM with and without the
higher modes, while always including all modes up to
l ¼ 5 in the NR waveforms. As can be seen in Fig. 9,
if higher modes are omitted, the unfaithfulness can be
very large, with a significant number of cases having
unfaithfulness >7%, as has been seen in many past
studies. On the other hand, once higher modes are included
in the model, the distribution of mismatches becomes much
narrower, with all mismatches below 9%. Furthermore,
the distribution now closely resembles the distribution of
mismatches when only l ¼ 2 modes were included in
the NR waveforms. Thus, we see that higher modes

play an important role and are accurately captured by
SEOBNRv4PHM waveform model.
Moreover, in Fig. 10 we display, for a specific choice of

the inclination, the unfaithfulness versus the binary’s total
mass between the public precessing SXS NR catalog and
SEOBNRv4PHM and IMRPhenomPv3HM. We highlight
with curves in color the NR configurations having worst
maximum mismatches for the two classes of approximants.
For the majority of cases, both models have unfaithfulness
below 5%, but SEOBNRv4PHM has no outliers beyond 10%
and many more cases at lower unfaithfulness (<2 × 10−3).
We find that the large values of unfaithfulness above 10% for
IMRPhenomPv3HM come from simulationswith q≳ 4 and
large antialigned primary spin, i.e., χz1 ¼ −0.8. An exami-
nation of the waveforms in this region reveals that unphys-
ical features develop in the waveforms, with unusual
oscillations both in amplitude and phase. For lower spin
magnitudes these features are milder, and disappear for spin
magnitudes ≲0.65. These features are present also in
IMRPhenomPv3 and are thus connected to the precession
dynamics, a region already known to potentially pose a
challenge when modeling the precession dynamics as
suggested in Ref. [109], and adopted in Ref. [39].
We now focus on the comparisons with the 118 SXS NR

waveforms produced in this paper. In Fig. 11 we show the
unfaithfulness for IMRPhenomPv3(HM) andSEOBNRv4P
(HM) in the left (right) panels. We compare waveforms
without higher modes, to NR data that has only the l ¼ 2

modes, and the other models to NR data with l ≤ 4 modes.
The performance of both waveform models on this new NR
data set is largely comparable towhatwas found for thepublic
catalog. Both families perform well on average, with most
cases having unfaithfulness below 2% for models without
higher modes and 3% for models with higher modes.
However, for some configurations IMRPhenomPv3(HM)
reaches unfaithfulness values above 3% for total masses
below 125 M⊙. Once again, the overall distribution is shifted
to lower unfaithfulness values for SEOBNRv4P(HM).

FIG. 9. Sky-and-polarization averaged, SNR weighted unfaith-
fulness for an inclination ι ¼ π=3 between NR waveforms and

SEOBNRv4PHM, including and omitting higher modes. The
vertical dashed lines show the medians. Not including higher
modes in the model results in high unfaithfulness. However, when
they are included, the unfaithfulness between SEOBNRv4PHM and
NR is essentially at the same level as when only l ¼ 2 modes are
compared (see Fig. 8).

FIG. 10. The sky-and-polarization averaged, SNR-weighted unfaithfulness as a function of binary’s total mass for inclination ι ¼ π=3,
between IMRPhenomPv3HM and NR (left) and SEOBNRv4PHM and NR (right) for 1404 quasi-circular precessing BBH simulations in
the SXS public catalog. The colored lines highlight the cases with the worst maximum mismatches for both models. Note that for the
majority of cases, both models have unfaithfulness below 5%, but SEOBNRv4PHM has no outliers beyond 10% and many more cases at
lower unfaithfulness.
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When studying the distribution of unfaithfulness for
these 118 cases across parameter space, it is useful to
introduce the widely used effective χeff [90,110,111] and
precessing χp [112] spins. These capture the leading order

aligned-spin and precession effects respectively, and are
defined as

χeff ¼
ðm1χ 1 þm2χ 2Þ

m1 þm2

· L̂N ; ð4:1aÞ

χp ¼
1

B1m
2
1

maxðB1m
2
1χ1⊥; B2m

2
2χ2⊥Þ; ð4:1bÞ

where with B1 ¼ 2þ 3m2=m1, B2 ¼ 2þ 3m1=m2 and we
indicate with χi⊥ the projection of the spins on the orbital
plane. We find that the unfaithfulness shows 2 general
trends. First, it tends to increase with increasing χeff and χp.

Second, that cases with positive χeff (i.e., aligned with
Newtonian orbital angular momentum) tend to have larger
unfaithfulness. This is likely driven by the fact that inspiral
is longer for such cases and the binary merges at higher
frequency. We do not find any other significant trends
based on spin directions. It is interesting to note that the
distribution of mismatches from the 118 cases is quite
similar to the distribution from the much larger public
catalog. This suggests that the 118 cases do indeed explore
many different regimes of precession.
To further quantify the results of the comparison between

the precessing multipolar models SEOBNRv4PHM and
IMRPhenomPv3HM and the NR waveforms, we show
in Figs. 12 and 13 the median and 95%-percentile of all
cases, and the highest unfaithfulness as function of the total
mass, respectively. These studies also demonstrate the
better performance of SEOBNRv4PHM with respect to
IMRPhenomPv3HM.
To summarize the performance against the entire SXS

catalog (including the new 118 precessing waveforms) we
find that for SEOBNRv4PHM, out of a total of 1523 NR
simulations we have considered, 864 cases (57%) have a
maximum unfaithfulness less than 1%, and 1435 cases
(94%) have unfaithfulness less than 3%. Meanwhile for
IMRPhenomPv3HM the numbers become 300 cases (20%)
below 1%, 1256 cases (83%) below 3%.

8
The accuracy of

the semianalytical waveform models can be improved in

FIG. 11. The sky-and-polarization averaged, SNR-weighted unfaithfulness as a function of binary’s total mass for inclination ι ¼ π=3,
between IMRPhenomPv3 and SEOBNRv4P and NR (left), and IMRPhenomPv3HM and SEOBNRv4PHM and NR (right) for the
118 SXS NR waveforms described in Appendix B. The NR data has l ¼ 2modes for the left panel, while all modes up to and including
l ¼ 4 in the right panel. The unfaithfulness is low using both waveform families, however, SEOBNRv4P(HM) has fewer cases above
3%, and the distribution is consistently shifted to lower values of unfaithfulness.

FIG. 12. Summary of unfaithfulness as a function of the total
mass, for all NR simulations considered as shown in Fig. 10 and
Fig 11. The solid (dotted) line represents the median (95%-
percentile) of all cases. For all total masses, we find that the
median mismatch with SEOBNRv4PHM is lower than 1%, about a
factor of 2 lower than IMRPhenomPv3HM. The 95th-percentile
shows a stronger dependence on total mass for SEOBNRv4PHM,
with mismatches lower than IMRPhenomPv3HM at low and
medium total masses, becoming comparable at the highest total
masses.

8
Due to technical details of the IMRPhenomPv3HM model,

the total number of cases analyzed for this model is 1507 instead
of 1523.
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the future by calibrating them to the precession sector of the
SXS NR waveforms.
An interesting question is to examine the behavior

of the precessing models outside the region in which
their underlying aligned-spin waveforms were calibrated.
To this effect we consider 1000 random cases between
mass ratios q ∈ ½1; 20� and spin magnitudes χ1;2 ∈ ½0; 0.99�

and compute MSNR between SEOBNRv4PHM and
IMRPhenomPv3HM. Figure 14 shows the dependence
of the unfaithfulness on the binary parameters, in particular
the mass ratio, and the effective and precessing spins. We
find that for mass ratios q < 8, 50% of cases have
unfaithfulness below 2% and 90% have unfaithfulness
below 10%. The unfaithfulness grows very fast with mass
ratio and spin, with the highest unfaithfulness occurring at
the highest mass ratio and precessing spin. This effect is
enhanced due to the fact that we choose to start all the

waveforms at the same frequency and for higher mass
ratios, the number of cycles in band grows as 1=νwhere ν is
the symmetric mass ratio. These results demonstrate the
importance of producing long NR simulations for large
mass ratios and spins, which can be used to validate
waveform models in this more extreme region of the
parameter space. To design more accurate semi-analytical
models in this particular region, it will be relevant to
incorporate in the models the information from gravita-
tional self-force [113–115], and also test how the choice
of the underlying EOB Hamiltonians with spin effects
[116,117] affects the accuracy.
Finally, in Appendix Awe quantify the agreement of the

precessing multipolar waveform models SEOBNRv4PHM

and IMRPhenomPv3HM against the NR surrogate model
NRSur7dq4 [52], which was built for binaries with mass
ratios 1–4, BH’s spins up to 0.8 and binary’s total masses
larger than ∼60 M⊙. We find that the unfaithfulness
between the semianalytic models and the NR surrogate
largely mirrors the results of the comparison in Figs. 12 and
13. Notably, as it can be seen in Fig. 17, the unfaithfulness
is generally below 3% for both waveform families, but
SEOBNRv4PHM outperforms IMRPhenomPv3HM with

the former having a median at 3.3 × 10−3, while the latter

is at 1.5 × 10−2.

V. BAYESIAN ANALYSIS WITH MULTIPOLAR

PRECESSING WAVEFORM MODELS

We now study how the accuracy of the waveform model
SEOBNRv4PHM (and also IMRPhenomPv3HM), which we
have quantified in the previous section through the unfaith-
fulness, affects parameter inference when synthetic signal
injections are performed. To this end, we employ two mock
BBH signals and do not add any detector noise to them (i.e.,
we work in zero noise), which is equivalent to average over
many different noise realizations. This choice avoids
arbitrary biases introduced by a random-noise realization,

FIG. 13. The highest unfaithfulness over total mass for all cases
shown in Fig. 12. The median of unfaithfulness is around 1% for
SEOBNRv4PHM and 2% for IMRPhenomPv3HM (shown as
dashed vertical lines). Note that for SEOBNRv4PHM, the worst
unfaithfulness is below 10% and the distribution is shifted to
lower values.

FIG. 14. Sky-and polarization-averaged unfaithfulness between SEOBNRv4PHM and IMRPhenomPv3HM for 1000 random
configurations. Notice that the unfaithfulness grows both with the mass ratio and the spin and can reach very large values for
q ≈ 20 and high χp. It is also clear that for cases with smaller spins the unfaithfulness remains much lower.
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and it is reasonable since the purpose of this analysis is to
estimate possible biases in the binary’s parameters due to
inaccuracies in waveform models.
We generate the first precessing-BBH mock signal with

the NRSur7dq4 model. It has mass ratio q ¼ 3 and a total
source-framemass ofM ¼ 70 M⊙. The spins of the twoBHs
are defined at a frequency of 20 Hz, and have components
χ 1 ¼ ð0.30; 0.00; 0.50Þ and χ 2 ¼ ð0.20; 0.00; 0.30Þ. The
masses and spinsmagnitudes (0.58 and 0.36) of this injection
are compatible with those of BBH systems observed so far
with LIGO and Virgo detectors [4–8]. Although the binary’s
parameters are not extreme, we choose the inclination with
respect to the line of sight of the BBH to be ι ¼ π=3, to
emphasize the effect of higher modes. The coalescence and
polarization phase, respectively ϕ and ψ , are chosen to be
1.2 rad and 0.7 rad. The sky-position is defined by its right
ascension of 0.33 rad and its declination of -0.6 rad at a GPS-
timeof 1249852257 s. Finally, the distance to the source is set
by requesting a network-SNR of 50 in the three detectors
(LIGO Hanford, LIGO Livingston, and Virgo) when using
the Advanced LIGO and Advanced Virgo PSD at design
sensitivity [81]. The resulting distance is 800 Mpc. The
unfaithfulness against this injection is 0.2% and 1% for
SEOBNRv4PHM and IMRPhenomPv3HM, respectively.
Although the value of the network-SNR is large for this
synthetic signal, it is not excluded that the Advanced LIGO
and Virgo detectors at design sensitivity could detect such
loudBBH.With this studywewant to test howourwaveform
model performs on a system with moderate precessional
effectwhendetectedwith a large SNRvalue, considering that
it has an unfaithfulness of 0.2%.
For the second precessing-BBH mock signal, we

use a binary with larger mass ratio and spin magnitude
for the primary BH. We employ the NR waveform
SXS:BBH:0165 from the public SXS catalog having
mass ratio q ¼ 6, and we choose the source-frame total
mass M ¼ 76 M⊙. The BH’s spins, defined at a frequency
of 20 Hz, have values χ 1 ¼ ð−0.06; 0.78;−0.47Þ and χ 2 ¼
ð0.08;−0.17;−0.23Þ. The BBH system in this simulation
has strong spin-precession effects. We highlight that this
NR waveform is one of the worst cases in term of
unfaithfulness against SEOBNRv4PHM, as it is clear from
Fig. 10. For this injection we choose the binary’s inclina-
tion to be edge-on at 20 Hz to strongly emphasize higher
modes. All the other binary parameters are the same of the
previous injection, with the exception of the luminosity
distance, which in this case is set to be 1.2 Gpc to obtain a
network-SNR of 21. The NR waveform used for this mock
signal has unfaithfulness of 4.4% for SEOBNRv4PHM and
8.8% for IMRPhenomPv3HM, thus higher than in the first
injection.
For the parameter-estimation study we use the software

PyCBC’s pycbc_generate_hwinj [118] to prepare the
mock signals, and we perform the Bayesian analysis with
parallel Bilby [119], a highly parallelized version of

the parameter-estimation software BILBY [120]. We choose
a uniform prior in component masses in the range
½5; 150� M⊙. Priors on the dimensionless spin magnitudes
are uniform in [0, 0.99], while for the spin directions we use
prior isotropically distributed on the unit sphere. The priors
on the other parameters are the standard ones described in
Appendix C.1 of Ref. [5].
We summarize in Fig. 15 the results of the parameter

estimation for the first mock signal for SEOBNRv4PHM

(blue), IMRPhenomPv3HM (red), and NRSur7dq4

(cyan). We report the marginalized 2D and 1D posteriors
for the component masses m1 and m2 in the source frame
(top left), the effective spin parameters χeff and χp (top

right), the spin magnitude of the more massive BH a1 and
its tilt angle θ1 (bottom left) and finally the angle θJN
and the luminosity distance (bottom right). In the 2D
posteriors, solid contours represent 90% credible intervals
and black dots show the value of the parameter used in the
synthetic signal. In the 1D posteriors, they are represented
respectively by dashed lines and black solid lines. As it is
clear from Fig. 15, when using the waveform models
SEOBNRv4PHM and NRSur7dq4, all the parameters of
the synthetic signal are correctly measured within the
statistical uncertainty. Moreover, the shape of the posterior
distributions obtained when using SEOBNRv4PHM are
similar to those recovered with NRSur7dq4 (the model
used to create the synthetic signal). This means that the
systematic error due to a non perfect modeling of the
waveforms is negligible in this case.
For the model IMRPhenomPv3HM while masses and

spins are correctly measured within the statistical uncer-
tainty, the luminosity distance DL and the angle θJN are
biased. This is consistent with the prediction obtained using
Lindblom’s criterion in Refs. [109,121–123].

9
In fact,

according to this criterion, an unfaithfulness of 1% for
IMRPhenomPv3HM would be sufficient to produce biased
results at a network-SNR of 19. Thus, it is expected to
observe biases when using IMRPhenomPv3HM at the
network-SNR of the injection, which is 50. In the case
of SEOBNRv4PHM the unfaithfulness against the signal
waveform is 0.2% and according to Lindblom’s criterion
we should also expect biases for network-SNRs larger than
42, but in practice we do not observe them. We recall that
Lindblom’s criterion is only approximate and it has been
shown in Ref. [124] to be too conservative, therefore the
lack of bias that we observe is not surprising.
In Fig. 16 we summarize the results of the second mock-

signal injection. The plots are the same as in Fig. 15 with
the only exception that we do not have results for the

9
The criterion says that a sufficient, but not necessary con-

dition for two waveforms to become distinguishable is that the
unfaithfulness ≥ ðNintr − 1Þ=ð2SNR2Þ, where Nintr is the number
of binary’s intrinsic parameters, which we take to be 8 for a
precessing-BBH system. Note, however, that in practice this
factor can be much larger, see discussion in Ref. [124].
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NRSur7dq4 model since it is not available in this region
of the parameter space. In this case the unfaithfulness
between SEOBNRv4PHM (IMRPhenomPv3HM) and the
NR waveform used for the mock signal is 4.4% (8.8%).
According to Lindblom’s criterion, at the network-SNR
of this mock signal we should expect the bias due to
non-perfect waveform modeling to be dominant over the
statistical uncertainty for an unfaithfulness≳1%. Therefore
we might expect some biases in inferring parameters
for both models. Lindblom’s criterion does not say
which parameters are biased and by how much. The
results in Fig. 16 clearly show that both models have
biases in the measurement of some parameters, but
unfaithfulness of 4.4% and 8.8% induce different amount
of biases and also on different set of parameters (intrinsic
and extrinsic).
In particular for the component masses (top left panel

of Fig. 16), the 2D posterior distribution obtained with
SEOBNRv4PHM barely include the value used for the mock
signal in the 90% credible region. This measurement looks
better when focusing on the 1D posterior distributions for

the individual masses for which the injection values are
well within the 90% credible intervals. The situation is
worst for the IMRPhenomPv3HMmodel, for which the 2D
posterior distribution barely excludes the injection value
at 90% credible level. In this case also the true value of
m1 is excluded from the 90% credible interval of the
marginalized 1D posterior distribution. Furthermore, χeff
and χp (top right panel of Fig. 16) are correctly measured

with SEOBNRv4PHM while the measurement with
IMRPhenomPv3HM excludes the true value from the
2D 90% credible region. From the 1D posterior distribu-
tions it is clear that the source of this inaccuracy is the
incorrect measurement of χp, while χeff is correctly recov-

ered within the 90% credible interval. A similar situation is
observed in the measurement of a1 the spin magnitude of
the heavier BH and θ1 its tilt angle (bottom left panel of
Fig. 16). Also in this case SEOBNRv4PHM correctly
measures the parameters used in the mock signal, while
IMRPhenomPv3HM yields an incorrect measurement due
to a bias in the estimation of a1. Finally, we focus on the
measurement of the angle θJN and the luminosity distance

FIG. 15. 2D and 1D posterior distributions for some relevant parameters measured from the first synthetic BBH signal with mass ratio
q ¼ 3, total source-frame mass of M ¼ 70 M⊙, spins of the two BHs χ 1 ¼ ð0.30; 0.00; 0.50Þ and χ 2 ¼ ð0.20; 0.00; 0.30Þ defined at a
frequency of 20 Hz. The inclination with respect to the line of sight of the BBH is ι ¼ π=3. The other parameters are specified in the text.
The signal waveform is generated with the waveform model NRSur7dq4. In the 2D posteriors, solid contours represent 90% credible
intervals and black dots show the value of the parameter used in the synthetic signal. In the 1D posteriors they are represented
respectively by dashed lines and black solid lines. The parameter estimation is performed with the waveform models SEOBNRv4PHM
(blue), NRSur7dq4 (cyan), and IMRPhenomPv3HM (red). Top left: component masses in the source frame, Top right: χeff and χp,

Bottom left: magnitude and tilt angle of the primary spin, Bottom right: θJN and luminosity distance.
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DL (bottom right panel of Fig. 16). In this case the value of
these parameters used in the synthetic signal is just slightly
measured within the 90% credible region of the 2D
posterior distribution obtained with SEOBNRv4PHM.
As a consequence the luminosity distance is also barely
measured within the 90% credible interval from the
marginalized 1D posterior distribution and the measured
value of θJN results outside the 90% credible interval of the
1D posterior distribution. The posterior distributions
obtained using IMRPhenomPv3HM are instead correctly
measuring the parameters of the mock signal. We can
conclude that even with an unfaithfulness of 4.4%
against the NR waveform used for the mock signal the
SEOBNRv4PHMmodel is able to correctly measure most of
the binary parameters, notably the intrinsic ones, such as
masses and spins.

VI. CONCLUSIONS

In this paper we have developed and validated the first
inspiral-merger-ringdown precessing waveform model in

the EOB approach, SEOBNRv4PHM, that includes multi-
poles beyond the dominant quadrupole.

Following previous precessing SEOBNR models

[26,33,86], we have built such a model twisting up the

aligned-spin waveforms of SEOBNRv4HM [45,46] from the

coprecessing [21,23,42–44] to the inertial frame, through

the EOB equations of motion for the spins and orbital

angular momentum. With respect to the previous precess-

ing SEOBNR model, SEOBNRv3P [33], which has been

used in LIGO/Virgo data analysis [5,59,60], the new model

(i) employs a more accurate aligned-spin two-body dynam-

ics, since, in the nonprecessing limit, it reduces to

SEOBNRv4HM, which was calibrated to 157 SXS NR

simulations [47,48], and 13 waveforms [49] from BH

perturbation theory, (ii) includes in the coprecessing frame

the modes ð2;�2Þ; ð2;�1Þ; ð3;�3Þ; ð4;�4Þ and ð5;�5Þ,
instead of only ð2;�2Þ; ð2;�1Þ, (iii) incorporates the

merger-ringdown signal in the coprecessing frame instead

of the inertial frame, (iv) describes the merger-ringdown

stage through a phenomenological fit to NR waveforms

FIG. 16. 2D and 1D posterior distributions for some relevant parameters measured from the first synthetic BBH signal with mass ratio
q ¼ 6, total source-frame mass ofM ¼ 76 M⊙, spins of the two BHs χ 1 ¼ ð−0.06; 0.78;−0.47Þ and χ 2 ¼ ð0.08;−0.17;−0.23Þ defined
at a frequency of 20 Hz. The inclination with respect to the line of sight of the BBH is edge-on, i.e., ι ¼ π=2. The other parameters are
specified in the text. The signal waveform is generated using the NR waveform from the SXS public catalog SXS:BBH:0165. In the
2D posteriors solid contours represent 90% credible intervals and black dots show the value of the parameter used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and black solid lines. The parameter estimation is performed with
the waveform models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red). Top left: component masses in the source frame, Top right:
χeff and χp, Bottom left: magnitude and tilt angle of the primary spin, Bottom right: θJN and luminosity distance.
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[45,46], and (v) uses more accurate NR fits for the final spin
of the remnant BH.
The improvement in accuracy between SEOBNRv4 and

SEOBNRv3P (i.e., the models with only the l ¼ 2 modes)

is evident from Fig. 8, where we have compared those

models to the public SXS catalog of 1405 precessing NR

waveforms, and the new 118 SXS NR waveforms produced
for this work. The impact of including higher modes in

semianalytical models to achieve higher accuracy to multi-

polar NR waveforms is demonstrated in Fig. 9. Figures 10,

11, 12 and 14 quantify the comparison of the multipolar
precessing SEOBNRv4PHM and IMRPhenomPv3HM to all

SXS NR precessing waveforms at our disposal. We have

found that for the SEOBNRv4PHM model, 94% (57%) of

the cases have maximum unfaithfulness value, in the total

mass range 20− 200 M⊙, below 3% (1%). Those numbers
change to 83% (20%) when using the IMRPhenomPv3HM.

We have found several cases with large unfaithfulness

(>10%) for IMRPhenomPv3HM, coming from a region of

parameter space with q≳ 4 and large (≃0.8) spins anti-

aligned with the orbital angular momentum, which appear
to be connected to unphysical features in the underlying

precession model, and cause unusual oscillations in the

waveform’s amplitude and phase. The better accuracy of

SEOBNRv4PHM with respect to IMRPhenomPv3HM is
also confirmed by the comparisons with the NR surrogate

model NRSur7dq4, as shown in Fig. 17. We have

investigated in which region of the parameter space the

unfaithfulness against NR waveforms and NRSur7dq4

lies, and have found, not surprisingly, that it occurs where

both mass ratios and spins are large (see Fig. 18). When

comparing SEOBNRv4PHM and IMRPhenomPv3HM out-

side the region in which the aligned-spin underlying model
was calibrated, we have also found that the largest

differences reside when mass ratios are larger than 4 and

spins larger than 0.8 (see Fig. 14). To improve the accuracy

of the models in those more challenging regions, we would

need NR simulations, but also more information from
analytical methods, such as the gravitational self-force

[113–115], and resummed EOB Hamiltonians with spins

[116,117].
To quantify how the modeling inaccuracy, estimated by

the unfaithfulness, impacts the inference of binary’s param-
eters, we have performed two parameter-estimation studies
using Bayesian analysis. Working with the Advanced LIGO
and Virgo network at design sensitivity, we have injected
in zero noise two precessing-BBH mock signals with
mass ratio 3 and 6, having SNR of 50 and 21, with
inclination of π=3 and π=2 with respect to the line of sight
respectively, and recovered them with SEOBNRv4PHM and
IMRPhenomPv3HM. The unfaithfulness values of those
models against the synthetic signals considered (i.e.,
NRSurd7q4 and SXS:BBH:0165) range from 0.2% to
8.8%. The results are summarized in Figs. 15 and 16.
Overall, we have found that Lindblom’s criterion [109,

121–124] is too conservative and predicts visible biases at
SNRs lower than what we have obtained through the
Bayesian analysis. In particular, we have found, when doing
inference with SEOBNRv4PHM, that an unfaithfulness of
0.2% may produce no biases up to SNR of 50, while an
unfaithfulness of 2.2% can produce biases only for some
extrinsic parameters, such as distance and inclination, but
not for binary’s masses and spins at SNR of 21. A more
comprehensiveBayesian studywill be needed to quantify, in
a more realistic manner, the modeling systematics of
SEOBNRv4PHM, if this model were used during the fourth
observation run of Avanced LIGO and Virgo in 2022 (i.e.,
the run at design sensitivity).
The newly produced 118 SXS NR waveforms extend the

coverage of binary’s parameter space, spanning mass ratios
q ¼ 1 − 4, (dimensionless) spins χ1;2 ¼ 0.3 − 0.9, and

different orientations to maximize the number of preces-
sional cycles. As we have emphasized, the waveformmodel
SEOBNRv4HM is not calibrated to NR waveforms in the
precessing sector, only the aligned-spin sector was cali-
brated in Refs. [45,46]. Despite this, the accuracy of the
model is very good, and it can be further improved
in the future if we calibrate the model to the 1404 plus
118 SXS NR precessing waveforms at our disposal. This
will be an important goal for the upcoming LIGO and Virgo
O4 run in early 2022. Furthermore, SEOBNRv4HM assumes

the following symmetry among modes hlm ¼ ð−1Þlh�
l−m

in the coprecessing frame, which however no longer holds
in presence of precession. As discussed in Sec. II D, forcing
this assumption causes unfaithfulness on the order of a few
percent. Thus, to achieve better accuracy, when calibrating
the model to NR waveforms, the mode-symmetry would
need to be relaxed.
Finally, SEOBNRv4HM uses PN-resumed factorized

modes that were developed for aligned-spin BBHs
[98,99], thus they neglect the projection of the spins on
the orbital plane. To obtain high-precision waveform
models, it will be relevant to extend the factorized modes
to precession. Considering the variety of GW signals that
the improved sensitivity of LIGO and Virgo detectors is
allowing to observe, it will also be important to include in
the multipolar SEOBNR waveform models the more
challenging (3,2) and (4,3) modes, which are characterized
my mode mixing [125–127]. Their contribution is no
longer negligible for high total-mass and/or large mass-
ratio binaries, especially if observed away from face-on
(face-off).
Lastly, being a time-domain waveform model generated

by solving ordinary differential equations, SEOBNRv4HM
is not a fast waveform model, especially for low total-mass
binaries. To speed up the waveform generation, a reduced-
order modeling version has been recently developed [128].
Alternative methods that employ a fast evolution of the
EOB Hamilton equations in the postadiabatic approxima-
tion during the long inspiral phase have been suggested
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[129], and we are currently implementing them in the
simpler nonprecessing limit in LAL.
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APPENDIX A: COMPARISON OF MULTIPOLAR

PRECESSING MODELS TO NUMERICAL-

RELATIVITY SURROGATE WAVEFORMS

In this Appendix we compare directly SEOBNRv4PHM

and IMRPhenomPv3HM to the NR surrogate model
NRSur7dq4. We choose a starting frequency correspond-
ing to 20 Hz at 70 M⊙ (this is essentially the limit of
the length for NR surrogate waveforms). We generate
1000 random configurations, uniform in mass ratio q ∈

½1; 4� and in spin magnitudes ∈ ½0; 0.8�, and with random

FIG. 17. The summary of the sky-and-polarization averaged, SNR-weighted unfaithfulness as a function of binary’s total mass for
inclination ι ¼ π=3, among the NRSur7dq4 model and the IMRPhenomPv3HM and SEOBNRv4PHM models. Left: The solid (dashed)
lines show themedian (95th percentile) as a functionof totalmass, cf Fig. 12.Right:maximumunfaithfulness over all totalmasses, cf. Fig. 13.
The unfaithfulness is low using both waveform families, however, SEOBNRv4P(HM) has lower median unfaithfulness by a factor of 4.3.

FIG. 18. The maximum sky-and-polarization averaged, SNR-weighted unfaithfulness as a function of binary’s total mass for
inclination ι ¼ π=3, between the models IMRPhenomPv3HM (top) and SEOBNRv4PHM (bottom), and the NR surrogate, cf. Fig. 14.
The unfaithfulness is strongly dependent on the intrinsic parameters, especially the spins.
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directions uniform on the unit sphere. The left panel of
Fig. 17 shows the summary of the unfaithfulness as a
function of total mass for all the cases considered, for
IMRPhenomPv3HM and SEOBNRv4PHM. We see that the
median and 95th percentile values for both models are close
to the values in Fig. 12, with SEOBNRv4PHM having a
median unfaithfulness below 1% and IMRPhenomPv3HM

about a factor of 3 larger. The right panel of Fig. 17 shows the

maximum unfaithfulness distribution and the same
trends are also observed. SEOBNRv4PHM outperforms
IMRPhenomPv3HM, with the median of the former being
4 times smaller than the one of the latter. Finally, to gain
further insight into the behavior of the waveform models
across the parameter space,we show in Fig. 18 themaximum
unfaithfulness as a function of mass ratio and the effec-
tive spin.

APPENDIX B: PARAMETERS OF THE NEW 118 NR SIMULATIONS

TABLE II. The parameters of the runs in the new precessing catalog. Note that all the parameters are provided at the relaxed time and
in the LAL source frame [131].

ID q χ1 χ2 MΩ # of orbits

PrecBBH000001 1.2499 (−0.272, −0.628, 0.414) (−0.212, −0.653, 0.41) 0.01632 21
PrecBBH000002 1.2500 (−0.629, 0.202, 0.451) (−0.13, −0.708, 0.348) 0.01645 20
PrecBBH000003 1.2499 (0.68, −0.104, 0.408) (0.71, −0.153, −0.335) 0.01616 19
PrecBBH000004 1.2501 (0.309, −0.593, 0.439) (0.611, 0.325, −0.401) 0.01627 18
PrecBBH000005 1.2500 (0.269, −0.684, −0.317) (0.393, −0.57, 0.4) 0.01626 18
PrecBBH000006 1.2500 (0.561, −0.488, −0.293) (0.37, 0.611, 0.361) 0.01623 18
PrecBBH000007 1.2499 (−0.671, 0.287, −0.328) (−0.694, 0.205, −0.339) 0.01651 16

PrecBBH000008 1.2501 (−0.7, 0.269, −0.277) (−0.133, −0.669, −0.418) 0.01653 16
PrecBBH000009 2.4998 (0.279, 0.579, 0.387) (0.138, 0.631, 0.381) 0.01604 24
PrecBBH000010 2.5000 (−0.577, 0.26, 0.403) (−0.021, −0.679, 0.317) 0.01633 24
PrecBBH000011 2.4999 (−0.604, 0.23, 0.381) (−0.608, 0.096, −0.428) 0.01631 23
PrecBBH000012 2.4998 (−0.587, 0.238, 0.402) (−0.014, −0.576, −0.48) 0.01630 23
PrecBBH000013 2.4998 (−0.531, 0.349, −0.399) (−0.65, −0.043, 0.371) 0.01636 19
PrecBBH000014 2.4998 (−0.554, 0.332, −0.382) (0.012, −0.683, 0.309) 0.01638 19
PrecBBH000015 2.4998 (0.052, 0.633, −0.399) (−0.096, 0.62, −0.411) 0.01605 18
PrecBBH000016 2.4997 (0.615, 0.166, −0.396) (−0.326, 0.497, −0.457) 0.01606 18
PrecBBH000017 3.4997 (0.421, 0.298, 0.306) (0.301, 0.417, 0.309) 0.01598 27
PrecBBH000018 3.4992 (0.464, 0.218, 0.312) (−0.348, 0.402, 0.277) 0.01599 27
PrecBBH000019 3.4996 (0.242, 0.455, 0.307) (0.127, 0.471, −0.349) 0.01598 26
PrecBBH000020 3.4999 (0.514, −0.006, 0.31) (−0.139, 0.451, −0.371) 0.01602 26
PrecBBH000021 3.4993 (−0.4, 0.297, −0.335) (−0.518, −0.054, 0.298) 0.01631 22
PrecBBH000022 3.4995 (0.464, 0.18, −0.335) (−0.358, 0.395, 0.275) 0.01605 22
PrecBBH000023 3.4991 (0.414, −0.273, −0.338) (0.472, −0.09, −0.358) 0.01606 21
PrecBBH000024 3.4997 (0.256, −0.431, −0.329) (0.225, 0.401, −0.385) 0.01609 21
PrecBBH000025 1.2501 (−0.661, 0.193, 0.407) (0.0, −0.0, 0.0) 0.01645 19
PrecBBH000026 1.2501 (−0.466, −0.618, −0.2) (0.0, −0.0, 0.0) 0.01638 17
PrecBBH000027 2.4999 (0.099, 0.637, 0.383) (0.0, −0.0, 0.0) 0.01601 23
PrecBBH000028 2.5003 (0.557, 0.357, −0.354) (0.0, 0.0, −0.0) 0.01609 19
PrecBBH000029 3.5006 (0.458, −0.242, 0.302) (0.0, 0.0, 0.0) 0.01603 27
PrecBBH000030 3.4996 (−0.397, −0.32, −0.316) (0.0, −0.0, 0.0) 0.01619 22
PrecBBH000031 1.0001 (−0.752, 0.179, 0.461) (−0.0, −0.0, 0.0) 0.01646 19
PrecBBH000032 1.0002 (−0.836, 0.259, −0.206) (−0.0, −0.0, 0.0) 0.01649 17
PrecBBH000033 2.0000 (−0.709, 0.269, 0.445) (−0.0, −0.0, 0.0) 0.01638 22
PrecBBH000034 2.0004 (0.027, 0.793, −0.379) (−0.0, 0.0, −0.0) 0.01605 18
PrecBBH000035 3.2002 (0.681, 0.112, 0.405) (0.0, 0.0, 0.0) 0.01599 26
PrecBBH000036 3.1995 (0.162, 0.597, −0.507) (−0.0, −0.0, 0.0) 0.01600 20
PrecBBH000037 3.9994 (0.596, −0.106, 0.352) (−0.0, −0.0, −0.0) 0.01598 29
PrecBBH000038 4.0003 ð−0.146, −0.481, −0.487) (−0.0, 0.0, −0.0) 0.01613 22
PrecBBH000039 1.0000 (−0.542, 0.137, 0.332) (−0.0, −0.0, −0.0) 0.01646 19

(Table continued)
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TABLE II. (Continued)

ID q χ1 χ2 MΩ # of orbits

PrecBBH000040 1.0000 (−0.614, 0.183, −0.108) (−0.0, −0.0, −0.0) 0.01649 17
PrecBBH000041 2.0001 (−0.48, 0.195, 0.303) (0.0, −0.0, 0.0) 0.01639 21
PrecBBH000042 2.0003 (−0.509, 0.261, −0.181) (0.0, −0.0, −0.0) 0.01644 19
PrecBBH000043 2.5002 (0.349, 0.252, 0.254) (0.0, 0.0, −0.0) 0.01606 22
PrecBBH000044 2.5000 (0.456, 0.13, −0.158) (−0.0, −0.0, −0.0) 0.01607 20
PrecBBH000045 3.9999 (−0.265, 0.146, 0.176) (0.0, 0.0, −0.0) 0.01621 27
PrecBBH000046 4.0003 (0.25, −0.213, −0.122) (−0.0, −0.0, −0.0) 0.01603 25

PrecBBH000047 2.9997 (0.249, 0.072, 0.152) (0.0, −0.0, −0.0) 0.01604 23
PrecBBH000048 3.0000 (0.228, −0.183, −0.067) (−0.0, −0.0, −0.0) 0.01610 22
PrecBBH000050 1.0001 (−0.709, 0.187, 0.522) (−0.18, −0.79, 0.391) 0.01644 21
PrecBBH000051 1.0000 (−0.768, 0.118, 0.453) (−0.747, 0.299, −0.402) 0.01646 18
PrecBBH000053 1.0000 (−0.747, 0.299, −0.402) (−0.768, 0.117, 0.453) 0.01646 18
PrecBBH000054 1.0001 (−0.79, 0.265, −0.339) (−0.161, −0.801, 0.377) 0.01648 18
PrecBBH000055 1.0000 (−0.748, 0.286, −0.41) (−0.748, 0.286, −0.41) 0.01651 16
PrecBBH000056 1.0001 (−0.791, 0.266, −0.335) (−0.207, −0.71, −0.514) 0.01655 15
PrecBBH000057 1.9997 (−0.715, 0.242, 0.452) (−0.757, 0.023, 0.448) 0.01634 23
PrecBBH000058 2.0000 (−0.681, 0.276, 0.484) (−0.061, −0.797, 0.368) 0.01636 23
PrecBBH000059 1.9997 (−0.725, 0.222, 0.447) (−0.706, 0.16, −0.499) 0.01634 21
PrecBBH000060 2.0001 (−0.695, 0.242, 0.482) (−0.059, −0.655, −0.584) 0.01636 21
PrecBBH000061 1.9998 (0.674, 0.294, −0.483) (0.529, 0.539, 0.451) 0.01611 18
PrecBBH000062 1.9999 (−0.441, −0.618, −0.444) (0.762, −0.218, 0.381) 0.01632 18
PrecBBH000063 1.9998 (−0.628, 0.392, −0.475) (−0.7, 0.137, −0.514) 0.01643 16
PrecBBH000064 2.0000 (−0.188, 0.727, −0.458) (−0.608, −0.3, −0.561) 0.01604 16
PrecBBH000065 3.1997 (−0.633, 0.268, 0.409) (−0.689, −0.046, 0.403) 0.01622 27
PrecBBH000066 3.1998 (−0.611, 0.292, 0.426) (0.012, −0.728, 0.331) 0.01623 27
PrecBBH000067 3.1996 (0.606, 0.327, 0.408) (0.436, 0.335, −0.581) 0.01598 26
PrecBBH000068 3.1998 (−0.624, 0.27, 0.421) (0.018, −0.487, −0.634) 0.01623 25
PrecBBH000069 3.1995 (−0.444, 0.373, −0.551) (−0.692, −0.085, 0.391) 0.01634 20
PrecBBH000070 3.1992 (−0.51, −0.29, −0.544) (0.632, −0.342, 0.35) 0.01627 20
PrecBBH000071 3.1991 (0.4, 0.409, −0.559) (0.228, 0.504, −0.577) 0.01611 18
PrecBBH000072 3.1994 (0.245, 0.527, −0.549) (−0.51, 0.053, −0.613) 0.01600 18
PrecBBH000073 4.0002 (0.604, 0.004, 0.354) (0.559, 0.214, 0.363) 0.01597 30
PrecBBH000074 3.9992 (−0.004, −0.595, 0.369) (0.573, 0.241, 0.322) 0.01607 30
PrecBBH000075 4.0000 (−0.549, 0.252, 0.354) (−0.441, 0.048, −0.542) 0.01616 28
PrecBBH000076 3.9993 (−0.538, 0.262, 0.363) (0.034, −0.402, −0.572) 0.01618 28
PrecBBH000077 4.0003 (−0.361, 0.309, −0.513) (−0.6, −0.101, 0.345) 0.01623 22
PrecBBH000078 4.0001 (0.466, 0.089, −0.515) (−0.366, 0.503, 0.321) 0.01604 22
PrecBBH000079 4.0003 (−0.435, 0.179, −0.518) (−0.416, −0.118, −0.55) 0.01624 21
PrecBBH000080 4.0000 (0.139, 0.456, −0.513) (−0.422, −0.03, −0.557) 0.01599 21
PrecBBH000081 1.0000 (−0.545, 0.12, 0.333) (−0.545, 0.12, 0.333) 0.01643 20

PrecBBH000082 1.0000 (−0.519, 0.141, 0.365) (−0.132, −0.565, 0.293) 0.01645 20
PrecBBH000083 1.0000 (−0.549, 0.107, 0.33) (−0.581, 0.198, −0.213) 0.01646 18
PrecBBH000084 1.0000 (−0.52, 0.126, 0.369) (−0.163, −0.574, −0.258) 0.01648 18
PrecBBH000085 1.0000 (−0.582, 0.197, −0.213) (−0.55, 0.106, 0.33) 0.01646 18
PrecBBH000086 1.0000 (−0.596, 0.188, −0.176) (−0.123, −0.57, 0.286) 0.01648 18
PrecBBH000087 1.0000 (−0.582, 0.192, −0.215) (−0.582, 0.192, −0.215) 0.01650 17
PrecBBH000088 1.0000 (−0.6, 0.181, −0.172) (−0.151, −0.573, −0.266) 0.01651 16
PrecBBH000089 1.9999 (0.513, −0.058, 0.305) (0.511, 0.046, 0.311) 0.01615 22
PrecBBH000090 2.0003 (−0.467, 0.197, 0.322) (−0.039, −0.537, 0.264) 0.01638 22
PrecBBH000091 2.0001 (0.278, 0.433, 0.308) (0.238, 0.5, −0.231) 0.01604 21
PrecBBH000092 1.9999 (−0.47, 0.186, 0.323) (−0.041, −0.533, −0.273) 0.01638 21
PrecBBH000093 1.9999 (−0.495, 0.257, −0.221) (−0.518, 0.005, 0.302) 0.01639 19
PrecBBH000094 1.9999 (0.553, −0.092, −0.214) (−0.063, 0.531, 0.272) 0.01612 19
PrecBBH000095 1.9999 (−0.494, 0.258, −0.221) (−0.544, 0.074, −0.242) 0.01641 18
PrecBBH000096 1.9998 (−0.532, −0.185, −0.206) (0.332, −0.419, −0.273) 0.01637 18

(Table continued)
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