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Abstract

We describe a method of implementing the axisymmetric evolution of general-

relativistic hydrodynamics and magnetohydrodynamics through modification

of a multipatch grid scheme. In order to ease the computational requirements

required to evolve the post-merger phase of systems involving binary compact

massive objects in numerical relativity, it is often beneficial to take advantage of

these system’s tendency to rapidly settle into states that are nearly axisymmet-

ric, allowing for 2D evolution of secular timescales. We implement this scheme

in the spectral Einstein code and show the results of application of this method

to four test systems including viscosity, magnetic fields, and neutrino radiation

transport.Our results show that this method can be used to quickly allow already

existing 3D infrastructure that makes use of local coordinate system transfor-

mations to be made to run in axisymmetric 2D with the flexible grid creation

capabilities of multipatch methods. Our code tests include a simple model of a

binary neutron star postmerger remnant, for which we confirm the formation of

a massive torus which is a promising source of post-merger ejecta.

∗Author to whom any correspondence should be addressed.
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1. Introduction

The detection of the gravitational wave signal resulting from the merger binary black hole

systems by the LIGO and VIRGO collaborations [1–7] along with the detection of simultane-

ous electromagnetic and gravitational wave signals from binary neutron star mergers [8–11],

and the corresponding need for theoretical predictions with which to compare them, has given

renewed urgency to the goal of accurately modeling these systems throughout the merger pro-

cess. For systems involving at least one neutron star, it is the post-merger state that is primarily

responsible for the observable electromagnetic signals. Modeling of these systems through

numerical relativity simulations provides critical insight into the dependencies of the signals

on binary parameters and nuclear physics. Unfortunately, running these simulations in the

high-resolution required to get accurate predictions can present large computational resource

barriers in simulated time or size scales. However, the post-merger environment has a useful

property: by taking advantage of these systems’ tendency to approach an axisymmetric state,

we can ease the computational resources required to simulate these systems over extended

scales of both time and space. Although the dynamical timescales of remnant neutron stars

and accretion disks, of the order ∼ms at most, are reasonably accessible to 3D simulations,

secular effects that drive the subsequent evolution can operate on much longer timescales. Par-

ticularly important are angular momentum transport effects that can act on a wide range of

timescales of up to hundreds of milliseconds [12, 13], and neutrino cooling effects that operate

on timescales of up to several seconds [14].

The use of axisymmetry in numerical relativity simulations has been explored by several

groups. This typically involves evolving Einstein’s equations using the cartoon method [15]

while evolving hydrodynamics by writing the relevant equations in a cylindrical coordinate

system [16–18]. The cartoon method does involve some loss of accuracy due to interpola-

tions required in the method, and some effort has been made to avoid these [19]. Additionally,

evolution problems due to the coordinate singularities that arise from the use of polar coordi-

nate systems have been avoided by use of a reference metric [20–22]. Methods also exist that

help with issues of spatial resolution on large scales, such as adaptive mesh refinement [19,

23], which is able to concentrate resolution where it is most needed, while in most cases still

building the grid fromCartesian domains. Inmultipatchmethods [24–29], one introduces coor-

dinate patches, each with its own local coordinate system in which it takes a simple shape (e.g.

a Cartesian block), but which can be deformed in the global coordinate system and fit together

into a grid to match the geometry of the problem. A number of methods used in numerical

relativity not usually called ‘multipatch’ have local coordinate systems and therefore fit into

this general category, including the multidomain pseudospectral sector of the spectral Einstein

code (SpEC) [30] and the multielement discontinuous Galerkin methods [31, 32] which many

hope will form the basis of the next generation of numerical relativity codes.

In this paper, we describe a method of implementing the axisymmetric evolution of the

general-relativistic equations of ideal radiation hydrodynamics and magnetohydrodynamics

through modification of a multipatch grid scheme, applicable to any method using the local

patch coordinates framework, which we implement in the SpEC [30]. While other codes for
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carrying out axisymmetric relativistic hydrodynamicsevolutions exist, there are several notable

new features of our methods and results. First, using the multipatch framework, we automate

the conversion to an axisymmetry-friendly coordinate system, which we demonstrate by using

the same recipe to make working axisymmetric 2D versions of our relativistic 3D hydrody-

namics, magnetohydrodynamics, neutrino transport, and shear viscosity codes. We point out

that our neutrino transport method, which evolves number density as well as energy density, is

somewhat different from other gray M1 schemes, so this is the first time this particular system

has been converted to 2D axisymmetry. Second, we inherit the flexibility of multipatch meth-

ods to construct grids from patches of different shapes to optimally match the geometry of a

problem. As a demonstration of this, we present the 2D evolution of a viscous differentially

rotating star using a combination of square patches for the stellar interior and circular wedges

for the outflow zone. As well as serving as a code test, this viscous rotating star system is of

great astrophysical interest because it is a reasonable model of the remnant of a binary neutron

star merger. We evolve it using a different subgrid momentum transport model than has been

applied to it in priorwork [33], providing an important qualitative check on the previous results.

Finally, we present several minor enhancements of the SpEC–Hydro code, including a gener-

alization of our auxiliary entropy evolution [29] to the thermal gamma-law class of equations

of state, an altered form of the divergence cleaning magnetohydrodynamics equations, and an

altered treatment of neutrino fluxes in the optically thick limit.

This paper is organized as follows. In section 2, we describe the evolution equations for

our (magneto)hydrodynamic variables and the application of our axisymmetry method to

them. In section 3 several tests of this axisymmetry method are presented: a stationary Tol-

man–Oppenheimer–Volkoff (TOV) star, a viscous differentially rotating star, a magnetized

accretion disk, and neutrino radiation in a spherically symmetric supernova collapse profile,

each showing good agreement with 3D results or previous axisymmetric simulations. Con-

cluding remarks are given in section 4, where we summarize our results and discuss future

plans.

2. Formulation

2.1. Evolution equations

We use SpEC to evolve Einstein’s equations and the general relativistic equations of ideal

radiation (magneto)hydrodynamics. SpEC evolves Einstein’s equations and the general rel-

ativistic hydrodynamics equations on two separate computational grids. A multidomain grid

of colocation points is used to evolve Einstein’s equations pseudospectrally in a generalized

harmonic formulation [34] while the general relativistic (magneto)hydrodynamics equations

in conservative form are evolved on a finite difference grid. The finite difference grid uses

an HLL approximate Riemann solver [35]. Reconstruction of values at cell faces from their

cell-average values is done using a high-order shock capturing method, a fifth-order WENO

scheme [36, 37]. Time evolution is performed using a third-order Runge–Kutta algorithmwith

an adaptive time-stepper which compares integration errors to specified absolute and relative

thresholds, lowering the timestep if errors exceed thresholds, increasing the timestep if they

are all below thresholds. At the end of each time step any necessary source term information

is then communicated between the two grids, using a third-order accurate spatial interpola-

tion scheme [38]. Both grids are forced to evolve with the same timestep, determined by

the grid which requires the shorter step. Interpolation between grids is carried out once per

step, and second-order interpolation in time is used for source terms during Runge–Kutta

substeps.
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The following sections make use of the 3 + 1 decomposition of the spacetime metric

ds2 = gαβ dxα dxβ (1)

= −α2 dt2 + γi j
(
dxi + βi dt

) (
dx j + β j dt

)
, (2)

where α is the lapse, βi the shift, and γ ij is the three-metric on a spacelike hypersurface

of constant coordinate t. The three-metric is the projection onto spatial hypersurfaces of the

four-metric:

γi j = gi j + nin j, (3)

where nμ = (−α, 0, 0, 0) is the unit normal to the t = constant hypersurface. Additionally, we

use the units with G = c = 1 throughout.

2.1.1. Fluid. We begin by treating our fluid as a perfect fluid with the stress–energy tensor

Tμν = ρ0huμuν + Pgμν , (4)

where ρ0 is the baryon density, h = 1+ P/ρ0 + ǫ is the specific enthalpy, P is the pressure, uμ
the four-velocity, and ǫ the specific internal energy.

The general relativistic hydrodynamics equations are evolved using the conservative vari-

ables

ρ∗ = −√
γnμn

νρ0 = ρ0W
√
γ, (5)

τ =
√
γnμnνT

μν − ρ∗ = ρ∗ (hW − 1)− P
√
γ, (6)

Si = −√
γnμTiμ = ρ∗hui, (7)

whereW =
√
1+ γ i juiu j is the Lorentz factor and γ is the determinant of γ ij. Using conserva-

tion of energy and momentum,∇νT
μν = 0, and baryon number conservation,∇μ (ρ0u

μ) = 0,

we get the evolution equations for the conservative variables:

∂tρ∗ + ∂ j

(
ρ∗v

j
T

)
= 0, (8)

∂tτ + ∂ j
(
α2√γT0i − ρ∗vT

i
)
= −α

√
γTμν∇μnν , (9)

∂tSi + ∂ j
(
α
√
γTi j

)
=

1

2
α
√
γTμν∂igμν , (10)

where the Eulerian velocity vi is related to the fluid transport velocity vT
i by vT

i = αvi − βi.
Additionally, for simulations involving nuclear matter and neutrinos, we evolve the electron

fraction of the fluid, Ye,

∂t (ρ∗Ye)+ ∂ j

(
ρ∗Yev

j
T

)
= 0. (11)

To close these equations we must also supply an equation of state for the pressure and

enthalpy: P = P(ρ∗, T , Ye) and h = h(ρ∗, T , Ye).
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2.1.2. Magnetic fields. To handle magnetic fields, we begin by adding the electromagnetic

contribution, TEM
μν , to the fluid stress–energy tensor, where

TEM
μν

= FμαFνα − 1

4
FαβF

αβgμν , (12)

and Fμν is the Faraday tensor. We treat the fluid as a perfect conductor,Fμνuν = 0, which gives

an electric field which can be computed from velocity and magnetic field.

We use two different methods for evolving the magnetic field, as described in [29]. The

first method evolves the magnetic vector potential Ai and scalar potential Φ. In the gener-

alized Lorentz gauge [39], the most robust gauge choice we have explored, the evolution

equations are

∂tAi + ∂i
(
αΦ− β jA j

)
= ǫi jkv

jBk, (13)

∂t
(√

γΦ
)
+ ∂ j

(
α
√
γA j −√

γβ j
Φ
)
= −ξα

√
γΦ, (14)

where ξ is a specifiable constant of the order of the mass of the system.

The second method evolves the magnetic field using a covariant hyperbolic divergence

cleaning method [40–42] in which an auxiliary scalar evolution variable Ψ is introduced in

order to propagate and dampmonopole formation. In this method, the induction equation takes

the form

∂tB̃
i − ∂i

(
v jB̃i − viB̃ j

)
= αγ i j∂ jΨ̃ + βi∂ jB̃

j, (15)

∂tΨ̃ + ∂i

(
αB̃i − βiΨ̃

)
= B̃i∂iα− α

(
Ki

i + λ
)
Ψ̃, (16)

where B̃i =
√
γBi, Ψ̃ =

√
γΨ, Ki

i is the trace of the extrinsic curvature, and λ is a specifiable

damping constant. Previously [29], we had used Ψ rather than Ψ̃ as an evolution variable, but

we find the new choice to be slightly more robust near excision inner boundaries.

2.1.3. Neutrinos. Neutrino evolution is handled using the gray two-moment scheme as

described in [43, 44]. This method provides evolution of neutrino average energy densities,

flux densities, and number densities. We define three neutrino species that we evolve: electron

neutrinos νe, electron antineutrinos ν̄e, and the heavy lepton neutrinos νx . The heavy lepton

neutrino species groups together the four heavy lepton neutrinos and antineutrinos: νμ, ν̄μ, ντ ,
and ν̄τ .

We can describe each of our three species of neutrinos ν i using each species’ distribution

function fν (x
μ, pμ), where xμ =

(
t, xi

)
gives the time and position of the neutrinos and pμ is

the four-momentum of the neutrinos. fν evolves in phase space according to the Boltzmann

transport equation:

pα
[
∂ f (ν)
∂xα

− Γ
βα
γ pγ

∂ f (ν)
∂pβ

]
= C

[
f (ν)

]
, (17)

where the term C
[
f (ν)

]
includes all collisional processes (emissions, absorptions, and

scatterings).

We simplify the radiation evolution by taking the gray approximation (integrating over the

neutrino spectrum) and evolving the lowest two moments of the distribution functions of each

neutrino species, truncating the moment expansion by imposing the Minerbo closure [45]. Our
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evolved quantities are projections of the stress–energy tensor of the neutrino radiation, Trad
μν .

The decomposition of Trad
μν in the fluid frame is

Trad
μν

= Juμuν + Hμuν + Hνuμ + Sμν (18)

with Hμuμ = Sμνuμ = 0. The energy density J, flux density Hμ, and stress density Sμν of

the neutrino radiation as observed in the frame comoving with the fluid are related to the

distribution functions by

J =

∫ ∞

0

dν ν3
∫∫

dΩ f (ν) (x
α, ν,Ω) , (19)

Hμ
=

∫ ∞

0

dν ν3
∫∫

dΩ f (ν) (x
α, ν,Ω) lμ, (20)

Sμν =

∫ ∞

0

dν ν3
∫∫

dΩ f (ν) (x
α, ν,Ω) lμlν , (21)

where ν is the neutrino energy in the fluid frame,
∫
dΩ denotes integrals over solid angle in

momentum space, and

pα = ν (uα + lα) , (22)

where lαuα = 0 and lαlα = 1.We also make use of the decomposition of the neutrino radiation

stress–energy tensor as observed by a normal observer,

Trad
μν

= Enμnν + Fμnν + Fνnμ + Pμν , (23)

with Fμnμ = Pμνnμ = Ft = Ptν = 0. Additionally, for each species of neutrino we consider

the number current density:

Nμ
= Nnμ + Fμ, (24)

whereN is the neutrino number density, andFμ is the number density flux. The decomposition

ofNμ relative to the fluid frame can be expressed in terms of J,Hμ, and the fluid-frame average

neutrino energy 〈ν〉 as

Nμ
=
Juμ + Hμ

〈ν〉 . (25)

We define a projection operator onto the reference frame of an observer comoving with the

fluid,

hαβ = gαβ + uαuβ. (26)

This allows us to then use the fluid-frame variables to write equations for the energy, flux, and

stress tensor in the normal frame (i.e. the frame with four-velocity equal to the normal vector)

E = W2J + 2WvμH
μ
+ vμvνS

μν , (27)

Fμ = W2vμJ +W
(
gμν − nμvν

)
Hν

+WvμvνH
ν
+
(
gμν − nμvν

)
vρS

νρ, (28)

6
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Pμν = W2vμvνJ +W
(
gμρ − nμvρ

)
vνH

ρ

+
(
gμρ − nμvρ

)
(gνκ − nνvκ) S

ρκ
+W

(
gρν − nρvν

)
vμH

ρ, (29)

by making use of the decomposition of the four-velocity, uμ = W (nμ + vμ).
Evolution equations for Ẽ =

√
γE, F̃i =

√
γFi, and Ñ =

√
γN can then be written in

conservative form:

∂tẼ + ∂ j
(
αF̃ j − β jẼ

)
= α

(
P̃i jKi j − F̃ j∂ j ln α− S̃rad

α
nα

)
(30)

∂tF̃i + ∂ j

(
αP̃i

j − β jF̃i

)
= −Ẽ∂iα+ F̃k∂iβ

k
+

α

2
P̃ jk∂iγ jk + αS̃rad

α
γiα, (31)

∂tÑ + ∂ j
(
α
√
γF j − β jÑ

)
= α

√
γC(0), (32)

where P̃i j =
√
γPi j. Complete treatment of these equations requires prescriptions for the

closure relation that computesPij(E,Fi), the computation ofF j and the collisional source terms

S̃rad
α
andC(0) which couple the neutrinos to the fluid (and introduce correspondingsource terms

to the right-hand side of equations (9)–(11)). Details on the treatment for these are beyond the

scope of this paper, and are available in [43, 44].

One notable detail of our moment scheme that has to be handled carefully in axisymmetry,

however, it the treatment of high-opacity regions. As written above, the two-moment equations

lead to excessive diffusion in that regime. When the optical depth of a grid cell becomes � 1,

it would be more accurate to switch to a one-moment scheme (‘M0’), with a closure set by the

known value of the momentum density and pressure tensor in that regime:

HM0
μ =

1

3κt
∂μJ

M0; SM0
μν =

1

3
JM0

(
gμν + uμuν

)
(33)

with κt the total opacity of the fluid to neutrinos (absorption and scattering) and

JM0
=

3E

4W2 − 1
. (34)

We follow a slight modification of the scheme proposed in [46], and instead correct the numer-

ical fluxes (divergence terms) in the evolution equations so that Ẽ, Ñ evolve as solutions of the

diffusion equation in the limit of high κt. Let us assume that FM1
Ẽ

,FM1
F̃

,FM1
Ñ

are the numerical

fluxes in the two-moment scheme (calculated using our standard closure P(E,Fi) and the HLL

Riemann solver), and FM0
Ẽ

,FM0
F̃

,FM0
Ñ

are the same fluxes calculated using the ‘M0’ closure (i.e.

calculating F̃, P̃ from JM0,HM0, SM0). We use as numerical fluxes

FẼ,Ñ = aFM1
Ẽ,Ñ

+ (1− a)FM0
Ẽ,Ñ

(35)

with a = min(1, tanhA), A = (κt∆x)
−1, and

FF̃ = Ã2FM1
F̃

+ (1− Ã2)FM0
F̃

, (36)

with Ã = min(1,A).

Numerical implementation of theseM0 fluxes must be donewith care. Our numerical meth-

ods are designed for conservation-type equations, and the evolution of fields at cell centers is

calculated from source terms and from the flux into and out of cells at the faces where they
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intersect adjacent cells. Thus, the numerical fluxes have to be estimated on cell faces (halfway

between grid points). In fact, we reconstruct flux values on each side of a face (to be combined

by the approximate Riemann solver for a shock-capturing scheme). Terms linear in JM0, SM0

are advection and pressure gradient terms that can be computed either using the ‘left’ or ‘right’

state of E on a face. If both states agree on the sign of the advection speed, we use the upstream

value of E to calculate these terms. If they do not, we set all advection/pressure terms to zero.

Terms linear inHM0, on the other hand, are diffusion terms that require the knowledge of ∂μJ
M0

on cell faces. On a cell in direction ‘μ’, this can easily be estimated from the value of JM0 at

neighboringcell centers. For other directions,we (a) calculate ∂μJ
M0 on cell edges by averaging

its value on the neighboring faces where it can be evaluated using simple finite differencing;

and (b) calculate ∂μJ
M0 on the cell faces where the simple finite differencing method does

not work by taking the smallest value of |∂μJM0| on neighboring cell edges (if both neighbors
agree on the sign of the derivative), or setting it to zero (if they do not agree on that sign). This

method is inspired from the treatment of derivatives entering the viscous stress tensor in Parrish

et al [47].

2.1.4. Viscosity. Viscosity is implemented using the approach of [48] that extends the Newto-

nian large-eddy simulation framework to general relativistic systems. In the large-eddy simula-

tion framework, we recognize that although the equations for energy and momentum evolution

allow for evolving modes at all scales, in numerical simulations on a discrete grid we can only

evolve modes for which we have sufficient resolution to cover. Thus each computational cell

deals with averaged values, while any modes smaller than the cell are removed.

We therefore average over and filter out small scales in the velocity field, leaving equations

for the resolved fields:

∂tτ + ∂ j

(
τvT j + P

√
γαv j

)
= α

√
γ
(
Ki jS jk − Si∂i log α

)
(37)

∂tSi + ∂ j

(
SivT j + αP

√
γδi j

)
= α

√
γ

(
1

2
S jk∂iγ jk +

1

α
Sk∂iβ

k

− (τ + ρ∗)√
γ

∂i log α

)
, (38)

where Kij is the extrinsic curvature and Sij = Siv j + Pγij. For our simulations, we will take the

averages to be cell averages. In order to complete this set of mean-field equations, we must

provide a closure condition for the quantity Siv j:

Siv j = Siv j + τi j. (39)

τ ij is the subgrid scale stress tensor, that captures the turbulent modes unresolved by our grid.

We model this tensor using

τi j = −2νTρhW
2

[
1

2

(
∇iv j +∇ jvi

)
− 1

3
∇kvkγi j

]
, (40)

where∇ is the covariant derivative compatible with γ ij. The quantity νT possesses a dimension

of a viscosity, which leads us to the assumption

νT = ℓmixcs (41)

where cs is the sound speed of the local fluid. ℓmix is the characteristic length over which our

8
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subgrid scale turbulence occurs and is known as the mixing length.

As explained in [49], we find that, to maintain the relations equations (5)–(7) for resolved

fields, equation (37) must be altered. In this paper, we use the energy equation with the

correction to 2nd order in v, which is

∂tτ + ∂ j

(
τvT

j
+ P

√
γαv j

)
= α

√
γ
(
Ki jS jk − Si∂i log α

)
− ∂ j

(√
γτ jkvk

)
. (42)

2.2. Multipatch axisymmetry

Multipatch methods work by dividing the computational domain into separate domain patches,

each of which may have its own local coordinate system xiL related to the global coordinate

system xiG by a map which controls the embedding of the domain in global space. In local

coordinates, the patch is (for all applications in this paper) a simple Cartesian grid. The basis

vectors ∂/∂xiL and ∂/∂xiG are then related by the Jacobian transformation matrix of the map.

Importantly, the patches may have differing shapes in the global coordinate system that can be

tailored to better capture the desired features of the simulation. Since our evolution equations

for the conservative variables are generally covariant, evolution can be performed directly in

the local coordinate system of each individual patch and then the result can be transformed

back to the global coordinate system for any necessary communication of information between

patches.

SpEC is parallelized using MPI, and the division of grids into patches is used to divide the

simulationwork. Each domain patch is assigned to a particular processor. For the simulations in

this paper, we choose to assign one fluid patch to each processor and, for runs with concurrent

spectral evolution of the metric, one pseudospectral patch.

Communication between domain patches occurs through synchronizing values in the ghost

zones of each patch at the end of each timestep. In the case that these subdomain patches

overlap but do not have directly matching points we communicate data by interpolating values

between points. When evolving a vector potential Ai, an additional ghost zone synchronization

must be carried out on the magnetic field after it is computed from the curl of Ai. In this case,

only the outermost layer of ghost zone points, not a full stencil, should be synchronized. Our

curl operator is second-order and only uses nearest neighbors, so interpolated synchronization

of additional layers results in magnetic monopole artifacts that grow quickly [29].

Additionally, we create ghost zone points that extend beyond any symmetry boundaries

that we have defined in order to impose boundary conditions.During the communication phase,

these ghost zone points are filled with data from the live points using the appropriate symmetry

conditions. In particular, we must impose symmetry conditions on the symmetry axis. Let us

define basis vectors as follows. Imagine a 2D plane, which will represent the computational

domain, that crosses the symmetry axis and introduce Cartesian coordinates and basis vectors

on the plane. The direction parallel to the axis is ∂z. The cylindrical radius giving the coordinate
distance to the axis is called ̟, and the corresponding Cartesian coordinate on the plane is

̟C. Set ̟C = ̟ when ̟C > 0, but on the other side of the axis, ̟C = −̟. Finally, there

is a third Cartesian axis ∂y points out of the plane and on the plane is related to the azimuthal

direction ∂y = ̟−1
C ∂φ. To impose the axisymmetry condition, we add a stencil of ghost zones

across the axis at negative̟. Note that ∂̟C
and ∂̟ are antiparallel in the ghost zone region,

as are ∂y and ∂φ. We use cell-centered grids in the ̟C direction, so the first live point has

center half a grid spacing offset from the axis, and no point (live or ghost) is centered exactly

on the axis. For scalar quantities, the axisymmetry condition is f(−̟) = f(̟). For vectors,

v̟C (−̟C) = v̟C (̟C), v
z(−̟C) = vz(̟C), v

y(−̟C) = −vy(̟C). Below, we will ignore the

distinction between̟ and̟C, since it is only relevant for ghost zones.

9
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Figure 1. Example of a 2D multipatch grid, for use with axisymmetry, composed of
overlapping square (cylindrical-polar) and wedge (spherical-polar) grid shapes. Grid
points are arranged so that the coordinate singularity at the symmetry axis falls between
grid points. Points extending beyond the symmetry axis are ghost zone points used to
impose boundary conditions. Striped regions show portions of the grid where two or
more patches are overlapping with matching points.

When evolving a three-dimensional system using a two-dimensional computational domain,

each gridpoint represents a ring labeled by two nonazimuthal coordinates. Quite general 2D

maps are possible to relate local to global coordinates, but two are particularly useful. A

linear map (xiG = aix
i
L + bi) corresponds to patches that are globally rectangular blocks, cov-

ering cylinders in 3D. A polar map [e.g. x1G = x1L cos(x2L), x
2
G = x1L sin(x2L)] corresponds to

patches that are globally wedges of circles, covering a specified range of polar r, θ. A combi-

nation of wedges covering 0 < θ < π in 2D covers a spherical shell domain in 3D. A general

2D grid can contain arbitrary combinations of rectangular blocks and wedges, as shown in

figure 1.

Although the grid is 2D, the tangent space on which vectors live is still 3D; even axisym-

metric systems can have azimuthal velocity and magnetic field components, for example. The

third coordinate in the local coordinate system is set to be the global azimuthal φ. Then the

local coordinates for a rectangular block will be (up to linear transformation) cylindrical-polar,

while the local coordinates for a wedge patch will be (up to linear transformation) spherical-

polar. By modifying the map Jacobian, we can make the existing transformation between local

and global coordinates handle transforming the third coordinate into an azimuthal coordinate

10
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that can be used to perform axisymmetric evolutions. To do this we expand the elements of the

Jacobian matrix using the chain rule to add in the effects of the polar transformation:

Ji j =
∂xiG
∂x jL

=
∂xiG
∂xnA

∂xnA
∂x jL

, (43)

where xG are the global coordinates, xL are the local coordinates of a given grid patch, and xA
are a set of global polar coordinates. Since the global and polar coordinates only differ in terms

involving the azimuthal direction, the final change from the original Jacobian, Ji j, to the new

axisymmetry Jacobian, Jaxi
i
j, will be straightforward:

Ji j =

⎛
⎜⎜⎜⎜⎝

∂x1G
∂x1L

∂x1G
∂x2L

0

∂x2G
∂x1L

∂x2G
∂x2L

0

0 0 1

⎞
⎟⎟⎟⎟⎠

→ Jaxi
i
j =

⎛
⎜⎜⎜⎜⎝

∂x1G
∂x1L

∂x1G
∂x2L

0

∂x2G
∂x1L

∂x2G
∂x2L

0

0 0 ̟

⎞
⎟⎟⎟⎟⎠

, (44)

where̟ is the coordinate distance from the rotational symmetry axis andwe have chosen coor-

dinate directions 1 and 2 to correspond to the two coordinates defined by our two-dimensional

computational domain and coordinate direction 3 is transformed to the axisymmetric azimuthal

direction φ. We also make use of the Hessian matrix in the transformation of the derivatives of

metric-related quantities to the local coordinates, and must likewise make similar adjustments

to the Hessian:

Hi
jk =

∂

∂x jL

(
∂xiG
∂xkL

)
=

∂

∂x jL

(
∂xiG
∂xnA

∂xnA
∂xkL

)
. (45)

Explicitly,

H3
31 = H3

13 = J21, (46)

H3
23 = J22, (47)

H2
33 = −̟. (48)

Generally the evolution of Einstein’s equations using SpEC’s pseudospectral grid tends to

use much less computing time than the hydrodynamics evolution, so our axisymmetry method

is primarily aimed at implementing axisymmetric evolution on the hydrodynamics grid while

evolvingEinstein’s equations in 3D. For spherical shell pseudospectral domains,whose coloca-

tion points correspond to an expansion of functions in terms of spherical harmonics, azimuthal

information can be reduced by reducing azimuthal resolution, corresponding to a lowering of

the azimuthalmode numberm retained in spectral expansions. It cannot be lowered tommax = 0

because the spectral evolution uses Cartesian components of tensors. We find, however, that

the speed increase from doing so is modest, and the resulting spectral grids are more prone

to constraint-violating instabilities, so we have not used azimuthal resolution reduction on

pseudospectral grids for the simulations in this paper.

Information required by the pseudospectral grid from the hydrodynamics grid is expanded

back to 3D during communication. 2D planar fluid data can be extended to 3D for the metric

source terms by rotating appropriately about symmetry plane. For the metric data needed for

the fluid evolution, as long as the pseudospectrally evolved metric nearly respects the axisym-

metry, it is sufficient to take metric data from the xz plane. Deviations from axisymmetry in the

11



Class. Quantum Grav. 37 (2020) 235010 J Jesse et al

Figure 2. Example of error growth in the evolution of Sφ (after transformation back to
the global coordinate system) near the symmetry axis of a low resolution, differentially
rotating star in a stationary state. Both images plot the difference of Sφ between the initial
state and the end of the first time step, with the same color scale used for both images
chosen to enhance the appearance of errors inside the star. Since the initial conditions
are an equilibrium state, all deviations from zero are due to numerical error. A good
handling of the symmetry axis leads to errors not being particularly large there. The
left image shows the multipatch axisymmetry method applied without factoring of flux
terms, while the right shows the star with factoring enabled.

evolved spacetime functions could arise from three sources. The first is numerical error. We

have found this small enough to be ignorable, but it could artificially be removed when using

spherical shell domains by filtering modes in m. Alternatively, azimuthally-averaged values

could be used for the fluid evolution, but we would find the idea of significant uncontrolled

violation of the axisymmetry assumption troubling. Second, even if the spacetime retains an

azimuthal Killing vector, the coordinate system might evolve in a way that breaks the assumed

coordinate form of axisymmetry. Hopefully, the gauge choice will minimize such effects.

Merger simulations in SpEC use the damped harmonic gauge [50], and we have found that

metric profiles following black hole-neutron star mergers are indeed nearly axisymmetric in

the evolved coordinates. This gauge also maintains axisymmetry for the live-metric single-

star problem described in section 3.3 below. Finally, the metric could conceivably be subject

to some violent non-axisymmetric instability, in which case the methods of this paper are

obviously inappropriate.

The conservative form of radiationmagnetohydrodynamicsevolves variables that are densi-

ties and thus proportional to
√
γ. Under local to global transformation, the metric determinant

transforms as
√
γL = J

√
γG, where J is the determinant of the Jacobian. Note that J is zero on

the axis, and indeed would naturally change sign there because the orientation of the basis vec-

tors switches there. SpEC always takes a positive square root, but the only points on the other

side of the axis are ghost zone points (needed to impose the symmetry boundary conditions),

and non-smooth functions like
√
γ are not interpolated or reconstructed.

12
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Unfortunately, when evolving, this method is prone to producing errors near the symmetry

axis that, without correction, growover time. Vector and tensor valued quantities aremost heav-

ily affected due to direct transformation of components in the azimuthal coordinate direction

introducing singular terms. An example of this type of error is shown in figure 2. Eventually

though, all of our evolved quantities, including scalar quantities, will suffer from errors due to

also picking up a singular term in the determinant of the three-metric.

The problem primarily occurs during the computation of the divergence of the flux term,

FA, in the evolution equation of a given quantity A

∂tA+ ∂iFA
i
= SA (49)

with SA being any source terms appearing on the right-hand side of the equation.

Some early 2D general relativistic hydrodynamic simulations stabilized the axis evolution

using dissipation [51, 52]. Our solution, inspired by [22], is to factor out singular terms that

have been introduced to FA during the transformation to the local coordinates prior to comput-

ing the divergence. Depending on the specific component of the flux FA corresponding to A,

there may be multiple factors of̟ that need to be removed:

FA
i
= ̟nF̃A

i
, (50)

where F̃A is just the ̟-factored form of the flux, and the integer n will depend on A. We can

now instead take the divergence of this factored form of the flux and apply the chain rule, which

gives

∂i(̟
nF̃A

i
) = ̟n∂iF̃A

i
+ n̟n−1 ∂̟

∂xiL
F̃A

i
. (51)

We can also take advantage of the property that if the coordinate specified by̟ corresponds

to one of the directions in the global coordinate system, for example if the global coordinates

are Cartesian, the derivatives of ̟ with respect to the local coordinates can be directly taken

from components of the Jacobian dealing with the direction associated with ̟. With this, all

of the singular terms introduced from the polar Jacobian are removed from the divergence.

Importantly though, the divergence of F̃A in the first term on the right side of this equation will

need to be computed using the value of F̃A at cell faces using the Riemann solver, while F̃A in

the second term on the right side will use the value at cell centers.

Additionally, since all components have now been transformed into a polar coordinate

system, from the definition of axisymmetry we have

∂φFA
φ
= 0, (52)

where the φ-index indicates the coordinate of the axisymmetric azimuthal direction. This

allows us to ignore the azimuthal portion of the divergences so that we only need to apply

the factoring to the two components of the flux that lie in the plane of the computational grid

(i = 1 and 2 in the below factoring).

All of our evolved quantities carry a factor of
√
γ, which will also acquire a singular term,

from the transformation of γij to the local coordinate system, that also needs to be handled

analytically. The flux factoring thus falls into three broad categories for our current evolution

equations. Factoring of fluxes for scalar density quantities [equations (8), (9), (11), (14), (16),

(30) and (32), and the added term in (42)], takes the form

FA
i
= ̟F̃A

i, (53)
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∂iFA
i
= ̟∂iF̃A

i
+

∂̟

∂xiL
F̃A

i. (54)

Factoring for covariant vector density quantities [equations (10), (13) and (31)], takes the

form

F i
A j

=

{
̟F̃ i

A j
, for j 
= φ

̟2F̃ i
A j

, for j = φ,
(55)

∂iF
i

A j
=

⎧
⎪⎨
⎪⎩

̟∂iF̃
i

A j
+

∂̟

∂xiL
F̃ i
A j

, for j 
= φ

̟2∂iF̃
i

A j
+ 2̟

∂̟

∂xiL
F̃ i
A j

, for j = φ.
(56)

Factoring for contravariant vector density quantities [equation (15)], takes the form

F i
A j

=

{
̟F̃ i

A j
, for j 
= φ,

F̃ i
A j

, for j = φ,
(57)

∂iF
i

A j
=

⎧
⎨
⎩
̟∂iF̃

i
A j

+
∂̟

∂xiL
F̃ i
A j

, for j 
= φ,

∂iF̃
i

A j
, for j = φ.

(58)

In each of these, the index i only covers coordinates 1 and 2 due to equation (52). SpEC and

most other relativistic hydrodynamics codes use conservative shock capturing techniques with

approximate Riemann solvers. For codes of this type, a convenient way to implement this

factoring program is to use a different coordinate basis, with 1
̟

∂
∂xφ

instead of ∂
∂xφ

, on cell faces

than on cell centers. That is, one simply reconstructs factored quantities.

When evolving amagnetic vector potential, it is also necessary to factorAφ when computing

Bi.

∂iAφ = ̟∂iÃφ + Ãφ
∂̟

∂xi
, (59)

where Ãφ = Aφ/̟
6.

In their factored form, the principle part of the fluid equations matches 2D Cartesian

hydrodynamics (with both sides of the equations divided by a ̟ factor) and so should have

similar stability properties. A similar factoring scheme has been extensively tested in 3D

[20–22].

The neutrino variables in the M1 scheme are handled in the same way. Even in axisym-

metry, the first moment F̃i is three-dimensional, and for any transport scheme axisymmetry

imposes no constraint on the momentum-space dependence of the distribution function at any

spatial point. Factoring of scalar and vector densities is carried out as above. This requires

the weighted averages of M1 and M0 fluxes from equations (35) and (36) computed at cell

centers. The value of ∂μJ
M0 on cell centers is estimated by a centered second-order finite

6 In fact, only factoring for the coordinate i nearly parallel to ̟ on the axis is necessary.
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difference using center values of neighboring cells. Since the sign of each component of the

advection speed at a cell center is always unambiguous (as opposed to cell faces, for each

of which there are two reconstructions), we always add the advective and pressure gradient

components of M0 fluxes at cell centers. In fact, this contribution is needed to avoid axis arti-

facts. The P̃ jk∂iγ jk source term in equation (31) contains a singular term (from the ̟2 factor

in γ33) which is canceled by a matching term in the flux from αP̃i j evaluated at cell centers. In
the optically thick limit, this matching term is formally in the advective and pressure gradient

part of the M0 flux of F̃i. If over an extended optically thick region of the grid the advec-

tion speeds on the left and right of cell faces either vanish or differ in sign, then there can

be an inconsistency between how the flux is computed at cell faces (for which the advective

term would be absent) and cell centers (for which it would be present), which we find also

creates axis artifacts when using non-rectangular grids. Such a situation is not likely to occur

in realistic simulations, but it does occur in the test problem in section 3.5 below, in which

velocities are set to zero. It can be dealt with in a number of ways. One simple way is to add

advective fluxes and radiation pressure gradient terms, or at least the latter, on faces even when

advective speeds are zero, in that case using the average of values calculated from the two

reconstructions. Another simple way is to fall back to M1 fluxes for F̃i and handle these as

in [43].

Metric-related quantities (γij, α, β) are evolved on their own separate spectral grid in

3D and are communicated to the hydrodynamics grid at the end of each time step. Spatial

derivatives of these metric quantities are computed while on the metric grid and then com-

municated to the hydrodynamics grid, at which point they can be transformed into the local

coordinate system as needed. The transformation to local coordinates uses the analytic Jaco-

bian and Hessian, so metric derivatives automatically have their singular factors treated ana-

lytically. The transformation equations for global to local components of metric derivatives

are

βL
j
,i = (J−1) j jJ

i
iβG

j
,i − βL

k(J−1) j jH
j
ik, (60)

γL
i j
,k = (J−1)ii(J

−1) j jJ
k
kγG

i j
,k

− Hm
kn[γL

n j(J−1)im + γL
in(J−1) jm]. (61)

2.3. Auxiliary entropy variable

After each substep, the evolved variables (ρ∗, τ , Si, ρ∗Ye, B̃i) must be used to recover the prim-

itive variables (ρ0, T, Ye, ui,B
i), a process that involves multi-dimensional root-finding. In

particular, if the internal energy is small compared to kinetic or magnetic energy, the tem-

perature recovered from total energy and momentum densities will be unreliable. Due to

numerical error, recovered T and ui, especially at very low densities, may be unphysical, or

there may not even be a set of primitive variables corresponding to the evolved variables at a

point.

As in [29, 53], we introduce an auxiliary entropy density evolution variable ρ∗S, where S
is the specific entropy. The variable ρ∗S obeys a continuity equation (viscous and neutrino

source terms being unimportant for its purpose) which can be treated in axisymmetry like the

other scalar density evolution equations. After each substep in time, SpEC first attempts to

recover primitive variables using the standard evolution variables. If this is not possible, or

if the recovered specific entropy decreases by more than a fixed percentage compared to its
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advected value7, primitive variables are recovered disregarding τ and using ρ∗S. At the end

of each substep, the primitive variables are used to reset all evolution variables, so that τ and

ρ∗S are synchronized to each other. The entropy variable allows more reasonable recovery of

fluid internal energy at points where this component of the energy is a subdominant contri-

bution to τ and Si. A particularly challenging problem is accurate primitive variable recov-

ery in magnetically dominated regions like jets. (See [54–56] on inversion methods for this

case).

For physical equations of state (e.g. finite-temperature nuclear-theory based EoS), the actual

statistical mechanical entropy per baryon can be used to define S. However, in numerical

relativity, equations of state are commonly used which have no uniquely defined entropy or

temperature, although with absolute zero specified from outside (e.g. for gamma-law EoS, a

value of the polytropic constant is defined to be ‘cold’). A common case is an EoS with nuclear

physics-motivated cold component plus a simple thermal gamma-law component added on. In

terms of baryonic number density n = ρ0/mamu and internal energy density u,

P(n, u) = Pc(n)+ (Γth − 1)(u− uc), (62)

where

Pc(n) = n2
d[Uc/n]

dn
. (63)

The first law gives

nT dS = −(u+ P)dn+ n du. (64)

Combining the three above equations yields, after a short calculation,

nT dS = ρΓth
0 d

[
(u− uc)ρ0

−Γth
]
, (65)

so (u− uc)ρ0
−Γth advects for adiabatic change, indicating that this is an acceptable S variable.

For gamma-law EoS, one can set uc = 0, yielding the standard auxiliary entropy variable (up

to a scaling factor) for this case.

2.4. Low-density treatment

We impose a density floor in low-density regions outside stars, which is necessary to avoid

division by zero in our finite difference solver. Also, for densities ∼2 decades above the floor

and below, we impose limits on temperature and velocity; see [57] for details. In the presence

of a magnetic field, we do not limit the components of the velocity normal to the field lines

even at the lowest densities, to avoid altering the electric field [58]. Test problems with low-

density regions also use the auxiliary entropy variable to assist recovery of primitive variables

from conservative variables.

7The rationale is that shocks, magnetic reconnection, and viscosity can only increase entropy. If the loss of a signif-

icant percentage of the entropy at a gridpoint in one timestep by neutrino cooling is considered plausible in a given

simulation, this condition would have to be relaxed, for instance to require only that the entropy remain positive. For

this paper, we allow the entropy to decrease to 0.97 times its value advected from the previous timestep for problems

without neutrino radiation. The 3% buffer lets us avoid only allowing heating errors, which could lead to a systematic

drift of temperature. For the neutrino transport problem (section 3.5), the entropy variable was not used.
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Table 1. Change in rest mass during evolution of density pulse propagation for pure
wedge (W) and wedge plus block (W + B) grids.

Grid W Res1 W Res2 W Res 3 W + B Res1 W + B Res2 W + B Res3

104∆M0/M0 19 2.3 0.27 26 1.6 0.085

Figure 3. Fractional error in rest mass M0 as a function of time for 3 resolutions of
wedge grids for the outgoing density pulse problem. Inset: the equatorial profile of the
pulse at t = 19 for the lowest and highest resolution wedge (W) and wedge plus block
(W+ B) grids. Our integration routine does not handle overlapping grids accurately, so
we do not plot the time evolution of M0 for W + B grids, but the final mass error (after
the pulse leaves the overlap region) is reported in table 1.

3. Tests

3.1. Mass conservation of an advected pulse

Factoring the continuity equation does lead to truncation error in rest mass conservation. So

too does the interpolation needed to fill ghost zones at non-matching patch boundaries for

grids like that shown in figure 1. For our applications, we have found these errors to be quite

small, but we quantify them here for a simple test. We introduce a density pulse e(r−5)2(cos2 θ
+ 1) moving radially outward at 0.5c in Minkowski spacetime. We evolve until the center of

the pulse reaches r = 14. For a first set of runs (W), we use spherical-polar wedges covering

1 < r < 20. The lowest resolution has 100 radial points and 40 polar points; each subsequent

resolution has double the points in each direction as the previous one. For a second set of runs

(W+B), we use rectangular blocks surroundedbywedges, with the interface in the 7 < r < 10

region. The lowest resolution has 100 radial points and 40 polar points in the wedges and

100× 50 points in the blocks; each subsequent resolution doubles the points in each direction

in each patch.

The patch is able to propagate through the interpolation regionwithout picking up noticable

artifacts or deviation from the purely wedge grid. This is not surprising, since in an earlier

paper we were able to propagate a shock through a similar grid in 3D [29]. In table 1 we report

the change in rest mass between initial and final times. We see roughly 3rd-order convergence

thanks to our 5th-orderWENO reconstruction scheme, 3rd-order ghost zone interpolation, and

3rd-order time differencing. This is also demonstrated in figure 3.
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Figure 4. Percent error in the maximum density for the TOV star. Error is shown for
grid resolutions of 50× 50, 100 × 100, and 200 × 200. The error for the 100 × 100 and
200 × 200 resolutions have been scaled up by the square of the change in resolution
from the 50× 50 case.

3.2. TOV star

Initial stability testing was performed using a TOV star in a stationary state. The star

was created using a polytropic equation of state with polytropic index Γ = 2, poly-

tropic constant κ = 100G3c−4M2
⊙ = 1.82× 1010 cm5 g−1 s−2, and a central density of

7.72× 1014 g cm−3. This resulted in a gravitational mass of 1.38M⊙, a baryonic rest mass

of 1.49M⊙ and a circumferential radius of 14.22 km. The star was evolved for 2.46 ms in

2D, using both axisymmetry and equatorial symmetry. This is 20 dynamical timescales, using

for the dynamical timescale the free-fall time
√
R3/(GM). The computational domain was a

square grid 14.7 km × 14.7 km in size, and was evolved using four different resolutions with

uniform grid spacing: 50× 50, 100× 100, and 200× 200 grid points. For this test, we evolve

using the Cowling approximation, meaning the metric is held fixed.

In figure 4 we plot the percent error in the maximum density of the star over time for

each resolution, rescaled. We see an initial spike in density at the center of the star. This

is caused by relaxation of the surface of the star, creating a disturbance that moves inward.

Density is continuous but not smooth at the surface, so this feature exhibits approximately

first-order convergence. After this initial peak settles, we see second-order convergence. Rest

mass error converges away with resolution and is conserved to ∆M0/M0 ≈ 5× 10−6 for the

highest resolution.

3.3. Differentially rotating star

We choose a star with very similar profiles and global properties as the differentially rotating

star used in Shibata et al [33] and likewise use this star to test the evolution of a system under

the influence of an effective viscosity. We point out that this system is not only a useful test

of the effective viscosity code, but is designed to resemble the outcome of a binary neutron

star merger. Global quantities such as mass, compaction, and spin resemble such a system,

although the form of the rotation profile differs from what is found by merger simulations

[59–66]. Thus, the simulations in [33] indicate that the interior of the post-merger remnant

approaches uniform rotation on a timescale of milliseconds, with the outer layers expanding

to form a torus around the central star. Over the next ∼ 102 ms, viscous effects acting on the
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outer star and torus drive an outflow of ∼ 10−2M⊙ (for sufficiently strong viscosity). Below,

we demonstrate stable hydrodynamic evolution for 100 ms, and we confirm the formation of

the envelope and massive torus structure able to give rise to outflows using an independent

code and different viscosity treatment than [33].

The star has an initial baryonic rest mass of 2.64M⊙ and an equatorial radius Re = 10.2 km.

We use a piecewise polytropic equation of state, in two pieces, of the form

P =

{
κ1ρ

Γ1 , ρ � ρt

κ2ρ
Γ2 , ρ � ρt,

(66)

where κ1 and κ2 are polytropic constants, Γ1 and Γ1 are the polytropic indices, and ρt is the
density at which we transition between the two pieces. For this star, we choose the polytropic

indices to be Γ1 = 4/3 and Γ2 = 11/4; we set the transition density between the two to be

ρt = 1.91× 1014 g cm−3 and the low-density polytropic constant to κ1 = 0.15GM⊙
2/3.

The initial rotation profile for the star is given by utuφ = Â(Ω0 − Ω) where Ω0 is the angu-

lar velocity along the rotation axis and we choose Â = 0.8Re. The initial equilibrium state is

supplied by the code of Cook, Shapiro, and Teukolsky [67].

In order to handle outflows that will occur when viscosity is enabled, we create a computa-

tional grid better suited for resolving both the central star and low density outflowing material.

Since any outflows that occur will rapidly drop in density and are not expected to have any

small detail features of concern after they leave the region of the star, we leverage the utility

of the multipatch technique to apply differing grid structures to each zone of interest. In the

central region containing the star we employ the same rectangular grid structure as seen in

the previous TOV star test, with a resolution of 100 × 100 grid points. In the outflow region

we switch to a polar grid with constant latitude resolution (so that the proper spacing between

angularly adjacent points increases with distance from the star). The polar grid has 50 points in

the angular direction (covering 0 < θ < π/2) and 400 points in the radial direction. We apply

a map to the entire grid that allows us to reduce radial resolution at large distances:

R = r + 2 e−γβ sinh(γr), (67)

where r is the radius in grid coordinates (the coordinates in which radial grid spacing is uni-

form), and R is the radius in the original quasi-isotropic, asymptotically-Minkowski coordi-

nates. The map provides an approximately linear grid spacing for radii less than β, which we

have chosen to be at 25.85 km, and then switches to an exponential grid spacing based on γ,
which is chosen such that router = 73.5 km is mapped to Router = 2205 km. The pseudospectral

grid used for the evolution of Einstein’s equations is composed of an inner ball at the center of

the star surrounded by a series of spherical shells extending to a distance of 2940 km. For the

gauge choice, we freeze the generalized harmonic gauge function Hα to minimize coordinate

dynamics.

In this test, we have modified the density floor from our previous implementations to use a

floor dependent on radius:

ρ0 >
A

1+ R2
+ B, (68)

where we have chosen A = 1.62× 104 g cm−3 and B = 1.62× 10−2 g cm−3.

For this test, we employ the viscosity treatment described in section 2. To make a com-

parison with the results of the α-viscosity model used in [12], we devise a mixing length

ℓmix corresponding to the same kinematic viscosity as a constant α. The α-viscosity model

is generalized to differentially rotating stars in [12] by setting
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να =
αc2s
Ωe

, (69)

where cs is again the local sound speed and Ωe is the angular velocity of the star at the surface

on the equator. Equating this to equation (41), we can get an approximate relation between the

strength of a given mixing length to that of an α-viscosity parameter:

ℓmix =
αcs
Ωe

. (70)

For the current test we set the viscous mixing length to ℓmix = 147 m, giving a comparable

viscous strength to α ≈ 0.01 in the interior of the star. (For constant ℓmix, α as defined in

equation (69) is not exactly constant.) The timescale for viscous angular momentum transport

is approximately R2/ν. Using equation (41) gives a timescale on the order of

tvisc ∼ 10 ms
( r

10 km

)2
(

ℓmix

147 m

)−1( cs

0.3c

)−1

. (71)

As evolution begins the star quickly begins to transport angular momentumoutward causing

the rotational velocity profile to become flatter. Although the rotation profile does flatten, we

see fromfigure 6 that the profile never completely settles into a rigidly rotating state, and retains

some differential rotation. This is a feature of this viscosity method [49].

Qualitatively the outflow near the star produces the expected distribution of material pro-

ducing a short, low density burst of material as viscosity is enabled, and at later times as more

material leaves the star a disk begins to form. Other material blows farther outward, indicating

the beginnings of a viscous-driven outflow noted in [33] which we do not follow. The density

profiles in figure 5 are to be compared to figure 4 in Shibata et al [33]. We note that even the

qualitative agreement we see in the density plots is nontrivial; it requires the correct treatment

of the energy equation described in section 2.1.4. Subgrid momentum transport is modeled in

[33] via an Israel–Stewart-type formulation of the relativistic Navier–Stokes equations, which

is analytically quite different from our treatment. Our qualitative agreement with this previous

work gives confidence that its results will not prove very sensitive to details of the momentum

transport modeling. As a further check, we supply convergence tests of the spacetime and fluid

evolution in figure 7.

3.4. Magnetized disk

We evolve a standard axisymmetric MHD test problem: a magnetized torus around a Kerr

black hole. The initial conditions for this test are matched to the ‘fiducial model’ of McKin-

ney and Gammie [68]. A black hole with dimensionless spin J/M2 = 0.938 is surrounded

by a Fishbone–Moncrief torus [69] with inner edge at rBL = 6M and specific angular

momentum determined by utuφ = 4.281. The torus has initial maximum density ρ0 = 1 and

a Γ = 4/3 equation of state. The torus initially has pressure P = κρΓ, with κ = 0.004 25,
Γ = 4/3. A confined poloidal seed field is introduced via the initial vector potential one-form

Ã = A0 max(ρ0 − 1, 0)d̃φ, with A0 chosen to make the maximum ratio of magnetic to gas

pressure be around 0.01. We evolve for 3000M on a spherical-polar grid with inner radius at

rBL = 1.32M and maximum radius at 60M. We evolve with 1702, 2562, 3842, and 5122 grids,

for which the initial fraction of the magnetic energy at points where the fastest-growing MRI

mode is resolved by at least 10 points is 0.194, 0.44, 0.66, 0.79, respectively.
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Figure 5. Evolution of density profiles of the differentially rotating viscous star with
mixing length ℓmix = 147 m. The first panel shows the outlines of each of the overlapping
subdomain patches used to construct the computational domain.

Figure 6. Rotational velocity profile of the viscous differentially rotating star in the
equatorial plane at multiple times. We see the rotation profile begin to flatten as viscous
effects redistribute angular momentum inside the star.

The Kerr spacetime is written in in Kerr–Schild coordinates. We make the standard change

of variables for spherical-polar disk simulations:

r =
√
x2 + z2 = ex1 , (72)

θ = πx2 +
1

2
(1− h) sin(2πx2). (73)
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Figure 7. Global quantities for three resolutions during the first 10 ms, the most dynamic
phase of the differentially rotating star evolution due to effective viscosity. Each resolu-
tion has 30% more points in each direction on each subdomain patch of the fluid grid
and one extra radial colocation point, two extra angular colocation points for each sub-
domain of the spectral grid. Top: the total internal energy normalized to its initial value.
The two highest resolutions nearly coincide. Overall, the star heats due to viscosity, but
adiabatic fluctuations due to oscillations of the star are also visible. These modes are
excited by a combination of imperfection of the numerically-generated initial data and
because the dynamical and viscous timescales are only separated by a factor of ∼ 102.
Bottom: the normalized generalized harmonic constraint violation.

Setting a uniform grid in x1, x2 concentrates resolution near the black hole and on the equator.

We set h = 0.5. Finally, because r 
= rBL we compose with a final coordinate map to map the

coordinate spheres (x2 + z2)1/2 = C to surfaces of constant Kerr radius rBL = C. This allows

an excision inner boundary inside the horizon rBL = r+ that conforms better to the horizon

shape.

For this run, we use a position-dependent density floor ρ0 > 10−5r−3/2(κ/0.00425)−3c6.

We also increase ρ0 and P in the magnetically-dominated region as needed to maintain

b2/ρ0 < 10 and b2/P < 500, which significantly improves the step size chosen by the adaptive

timestepper. We evolve both with hyperbolic divergence cleaning and vector potential evolu-

tion. For the vector potential evolution, we use the generalized Lorentz gauge [39]. Simpler

gauges, such as the algebraic ∂tÃ = �v · B̃ and advective ∂tÃ = −LvÃ give the same evolution

of gauge-invariant quantities but, after a while, at a drastically reduced timestep, presumably

because the vector potential does not remain as smooth.

The vector potential evolution benefits from added explicit dissipation. We apply

Kreiss–Oliger dissipation [70] to the evolution of Ai and Φ with a coefficient of 0.001. (Our

dissipation operator is defined as a sum of fourth derivatives with respect to local coordinates

but applied to global components of the relevant evolved variables.) Without dissipation, grid-

scale ripples appear in the magnetic field atop an otherwise reasonable field structure. If the

coefficient is increased to 10−2, the main difference is a slightly lower asymptotic speed in

the polar jets. Kreiss–Oliger dissipation is not needed for divergence cleaning runs; in fact, it

destabilizes the magnetic field evolution near the excision zone. Instead, extra dissipation for

divergence cleaning simulations is obtained by setting the maximum signal speeds in our HLL

Riemann solver for the evolution of B̃ and Ψ to the null speeds.

The qualitative expectations for this problem are well-known and are reproduced for our

runs for both types of B field evolution. Magnetic winding generates a toroidal magnetic field,
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Figure 8. Magnetized disk with field lines (for field with toroidal component projected
out) at time t = 1500M, withM the mass of the black hole (which we set equal to one),
for evolution on a 2562 grid. Note that the grid extends slightly to the left of the axis
because of the symmetry ghost zones. The right panel shows the region highlighted by
the white box in the left panel. Magnetic field and velocity fields are averaged over the
time 1000 < t/M < 1500. The initialmaximum density in the torus is chosen to be unity.
Profiles are plotted in Kerr–Schild coordinates. The longest velocity vector arrows close
to the poles far from the black hole correspond to speed very close to 1 = c.

while the magnetorotational instability triggers turbulence in the disk. Matter falls into the

black hole at an average rate of about Ṁ ≈ 10−1c3/G. The poles become magnetically domi-

nated. An outgoing Poynting flux can be found in this region, and gas accelerates to near the

speed of light on the poles away from the black hole. In parts of the polar jet region, b2/P and

the Lorentz factor grow to the limits imposed by our atmosphere algorithm (500 and 20, respec-

tively). The magnetic field energy grows for the first 1000M, then saturates, then begins to die

away at a steady rate. This decrease of the magnetic field is not physical but it is expected in

any axisymmetric simulation (at least one not enhanced by dynamo-modeling additions to the

induction equation [71]) because of the anti-dynamo theorem. Outside the region close to the

poles, a mildly relativistic wind is seen. The configuration of the system at t = 1500M is shown

in figure 8. All resolutions produce essentially this same configuration. However, because the

MRI is resolved in more of the disk, the effect of increasing resolution is to enhance turbulence,

in that eddies appear more distinctly and at finer scales for higher resolutions and the accretion

rate increases. Also, while the total magnetic energy is initially resolution-independent (when

it is dominated by magnetic winding and linear MRI growth), it saturates at a higher level at

higher resolution. (The lowest resolution saturates at a factor of two lower energy than the

highest resolution; the other resolutions are, of course, closer to the highest, with saturation

energy increasing monotonically with resolution, although because it is a turbulent problem

no clear order of convergence can be identified).

None of this is newsworthy, although it is reassuring to confirm for the first time that SpEC

can produce magnetically-dominated jets when they are expected. For our purposes, the main

value of this test is that we can check, for a complex, astrophysically interestingMHD problem,

that our code produces no unphysical axis artifacts in any quantity we have checked (ρ0, v
i,

Bi, b2/P). Of course, the axis actually is a special region in this problem, which is clearly seen

in the solution, but this can easily be distinguished from artifacts of the coordinate singularity

because the latter, when they appear (as they do not in this case), have grid-spacing width.

The absence of such glitches is, in fact, a nontrivial accomplishment. For divergence cleaning

evolutions without factoring of the evolution equations, grid-scale axis artifacts in the velocity
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Figure 9. Comparison of neutrino energy density along the z-axis for the 2D and 3D
spherically symmetric supernova collapse profile at t = 1.5 ms. νe, νa, and ν x represent
the electron neutrinos, electron antineutrinos, and heavy lepton neutrinos respectively.

Figure 10. Comparison of neutrino number density along the z-axis for the 2D and 3D
spherically symmetric supernova collapse profile at t = 1.5 ms. νe, νa, and ν x represent
the electron neutrinos, electron antineutrinos, and heavy lepton neutrinos respectively.

are easily seen, although they can be suppressed by using low-order reconstruction (MC2 [72])

near the axis. For vector potential evolutions without factoring the computation of B̃ from Ã,

axis glitches become so severe that simulations crash shortly after accretion onto the black hole

begins.

Although the results are qualitatively similar, we consider the vector potential method

superior for this problem, at least with our current implementations. In divergence cleaning

methods, Ψ builds up at boundaries, particularly the excision boundary. The amount tends to

growwith time and we fear would eventually endanger the simulation. Because of it, magnetic

energy fluxes are not reliable in the inner layer of points (while in vector potential evolutions,

the inner layer shows no problems). Presumably the solutionwould be to improve the treatment

of the magnetic variables at boundaries.
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Figure 11. Luminosity in electron neutrinos for 3D and 2D evolutions at various res-
olutions. The luminosity is calculated by integrating the energy flux through the outer
boundary. Thus, the 3D curve reaches its peak slightly later, since the outer corner of the

3D grid is at
√
3×300 km as opposed to the 2D corner at

√
2×300 km.

3.5. Neutrino radiation

Initial testing of the axisymmetric neutrino code was performed by comparing the results

obtained from the spherically symmetric post-bounce supernova profile used in [44] in both 2D

axisymmetry with equatorial symmetry and in 3D using octant symmetry. The density ranges

from 4 ×1014 g cm−3 at the center of the protoneutron star to 107 g cm−3 at the outer bound-

ary. The temperature peaks at 22 MeV at a radius of 13 km. The profile covers a wide range

of neutrino opacity from very opaque to very transparent; the neutrinosphere is at a radius of

around 30 km. In this test we evolve the moments of the neutrino distribution function, fluid

temperature, and fluid composition (the electron fraction Ye) for a 1D profile constructed as a

spherical average of a 2D core collapse simulation 160 ms after bounce. The velocity of the

fluid is set to zero.

We perform this test in 2D on a square grid with length 300 km and a resolution of

200× 200 grid points. In 3D, we use a cube with the same length of 300 km and a resolution of

200× 200× 200 grid points. Both systems were evolved for 1.5 ms using a fixed timestep of

4.9× 10−3 ms to ensure that no error was introduced from possible differences between 2D

and 3D in the adaptive timestepper. The 2D test used 24 processing cores and required 2.41

core-hours of run time, whereas the 3D test on 48 cores required 470.27 core-hours, achieving

a speed up factor of ∼195. We see very strong agreement in results between the 2D and 3D

results, as seen in figures 9 and 10. We also see acceptable agreement in the neutrino luminos-

ity; for the electron neutrinos (the neutrino flavor whose luminosity shows a clearest settled

value), both 2D and 3D settle to within about a percent of each other at Lνe = 3× 1052 erg s−1.

By carrying out 2D simulations at other resolutions, we confirm that the 2D vs 3D agreement

is within the truncation error, as shown in figure 11. Although Lνe is consistent between res-

olutions up to differences under 10%, demonstrating a clear order of convergence is difficult.

This is because of the very sharp behavior of the neutrino fluxes near the neutrinosphere, for

which one would require extremely high resolution to be in the convergence regime.

The agreement between 2D and 3Dmight seem trivial since the 2D and 3D grids are closely

matched, but the polar transformation significantly alters the flux divergence andmetric deriva-

tive source terms considered separately. Also, factoring is essential for avoiding strong axis

artifacts.
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4. Conclusion

We have implemented an axisymmetric evolution of the general relativistic hydrodynamics

equations throughmodification of the local coordinate transformations of a multipatch scheme.

Without the appropriate factoring of singular terms from spatial derivatives near the symmetry

axis, we find that unphysical errors grow in evolved quantities. Testing of this method, with

factoring of singular terms applied, produces results that compare favorably to full 3D simu-

lations at a fraction of the required computational time. Since only minimal modification of

the implementation of the evolution equations in 3D was required, this method provides a path

for a quick application of axisymmetric evolution to codes that make use of computational

domains with local coordinate transformations.

We plan to move forward using this method in order to study the effects of a wide variety

of physical parameters on binary post-merger environments that require evolution on secular

timescales that we have been unable to explore in the past. Additionally, although our method

currently evolves Einstein’s equations in 3D using spectral methods, we would also like to

extend axisymmetry to the evolution of those equations as well.
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