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We present the first numerical relativity waveforms for binary black hole mergers produced using
spectral methods that show both the displacement and the spin memory effects. Explicitly, we use the SXS
(Simulating eXtreme Spacetimes) Collaboration’s SpEC code to run a Cauchy evolution of a binary black
hole merger and then extract the gravitational wave strain using SpECTRE’s version of a Cauchy-
characteristic extraction. We find that we can accurately resolve the strain’s traditional m ¼ 0 memory
modes and some of them ≠ 0 oscillatory memory modes that have previously only been theorized. We also
perform a separate calculation of the memory using equations for the Bondi-Metzner-Sachs charges as well
as the energy and angular momentum fluxes at asymptotic infinity. Our new calculation uses only the
gravitational wave strain and two of the Weyl scalars at infinity. Also, this computation shows that the
memory modes can be understood as a combination of a memory signal throughout the binary’s inspiral
and merger phases, and a quasinormal mode signal near the ringdown phase. Additionally, we find that the
magnetic memory, up to numerical error, is indeed zero as previously conjectured. Last, we find that signal-
to-noise ratios of memory for LIGO, the Einstein Telescope, and the Laser Interferometer Space Antenna
with these new waveforms and new memory calculation are larger than previous expectations based on
post-Newtonian or minimal waveform models.
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I. INTRODUCTION

As has been understood since the early 1970s [1–4], when
gravitational waves (GWs) pass through the arms of a GW
detector, a persistent physical change to the corresponding
region of spacetime is induced as a result of the transient
radiation. Originally, this effect, which is referred to as the
memory effector justmemory, was foundby studying the fly-
by behavior of two compact astrophysical objects that travel
to asymptotic infinity as t → þ∞ on timelike paths [1].
Later, it was realized that the memory effect also occurs
when null radiation travels to asymptotic null infinity as
r; t → þ∞ at a fixed Bondi time u≡ t − r [3]. Originally,
these twounique contributions tomemorywere called linear
memory and nonlinear memory1 because of the order of the
metric’s perturbative expansion that was used to calculate
each of the independent memory contributions.
Recently, the memory effect was realized to be the

element needed to extend the Poincaré conservation laws
to the infinite number of proper Bondi-Metzner-Sachs
(BMS) conservation laws [5–8], which correspond to the

various BMS and extended BMS transformations [9–17],
i.e., supertranslations, superrotations, and superboosts.2

Unlike the ten Poincaré conservation laws, which equate
the change in the Poincaré charges to the corresponding
energy and momentum fluxes, the BMS conservation laws
state that the change in the BMS charges minus the
corresponding fluxes3 is exactly the memory effect, i.e.,

Change in BMS charges − fluxes ¼ Memory: ð2Þ

*kmitman@caltech.edu
1Also known as Christodoulou memory [3,4].

2Formally, superrotations and superboosts, which are the two
types of super-Lorentz transformations, can be realized as the
jmj ≥ 2 elements of the Virasoro algebra (an extension of the
more common Möbius transformations, i.e., PLð2;CÞÞ, just as
supertranslations can be viewed as the l ≥ 2 spherical harmonics.
These super-Lorentz transformations, though, which form the
extended BMS group, do not preserve asymptotic flatness.

3Often, the BMS conservation law is written as

Change in BMS charges − BMS fluxes ¼ 0; ð1Þ

where the “BMS flux” is understood to have two contributions:
“hard” and “soft,” with the hard contribution being the flux in
Eq. (2) and the soft contribution being the memory in Eq. (2).
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Early studies of gravitational memory focused on the
type of memory corresponding to supertranslations and
supermomentum, which is called displacement memory.
We follow [6,7] and refer to the other memory effects,
which are related to superrotations and superboosts, as the
spin and the center-of-mass (CM) memory effects. While
the displacement memory is the most prominent in the
strain of a gravitational wave, the spin and CM memory
effects can most easily be noticed in the time integral of the
strain. Physically, displacement memory is related to a
change in a GW detector’s arm length [1–4], while the spin
memory relates to the relative time delay that would be
acquired by counter-orbiting objects, e.g., the particle
beams in the Large Hadron Collider or a freely falling
Sagnac interferometer [6]. The CM memory, by contrast,
corresponds to the relative time delay that would be
acquired by objects on antiparallel paths [7]. As an
example, for two particles bouncing back and forth in a
Fabry-Perot cavity, if a gravitational wave propagates at an
angle through the cavity, then the particles will acquire a
relative time delay given by the CM memory.
Furthermore, because the various memory effects are

now known to be calculable from BMS flux-balance laws,
both of the previous classifications of linear and nonlinear
contributions have been renamed to be more indicative of
what they represent. Instead, the two contributions to each
of the three memory effects are now referred to as the
ordinary memory and the null memory. Moreover, the
modern nomenclature also avoids potential confusion about
which types of terms should be included in each memory
effect because whether a particular effect appears linearly
or nonlinearly varies with the perturbation theory that is
being considered [18]. As one might expect, for the most
common sources of observable GW radiation, i.e., binary
black holes (BBHs), the displacement memory is the most
prominent, followed by the spin memory, and then the
center-of-mass memory [7].
Over the past few years, there have been many studies of

whether current or future GW detectors could measure the
displacement and the spin memory effects [19–24]. These
previous studies, however, used approximations of the
memory since earlier calculations of the memory in a
BBHmerger have, until now, been incomplete. For one, the
waveforms produced by numerical simulations using
extrapolation techniques have been unable to resolve the
primary m ¼ 0 memory modes and have also failed to
produce the expected memory in certain oscillatory m ≠ 0

memory modes.4 Apart from this, previous calculations of
memory have used post-Newtonian (PN) approximations

or have tried to compute an effective memory using the
available numerical waveforms through various kinds of
postprocessing techniques [19,22,26,27].
So far, PN approximations have been computed for the

modes contributing to the displacement memory through
3PN order, through 2.5PN order for the spin memory, and
even through 3PN for the CMmemory [7,19,20]. However,
the memory effect is predominantly accumulated during the
merger phase of a BBH coalescence, in which most of the
system’s energy and angular momentum are radiated by
GWs. Because PN theory cannot capture the merger phase
of a BBH coalescence, we must instead use numerical
relativity (NR) simulations to calculate the displacement,
spin, and CM memory effects.
As already mentioned, previous numerical relativity sim-

ulations have been unable to extract the three unique memory
effects for a variety of reasons [19]. For one, numerical
relativity simulations of BBH mergers typically compute the
strain on concentric finite-radius spheres and then extrapolate
the strain to future null infinity using a collectionof fits.While
this procedure is adequate for computing the main strain
modes, it unfortunately does not produce waveforms that
accurately resolve the modes responsible for illustrating the
variousmemory effects. As a result, even though approximate
calculations of the memory in the strain can be performed
using waveforms that have been computed thus far, they will
nonetheless be incomplete since they fail to include the next-
order memory contributions from the fluxes induced by the
memory modes themselves. Furthermore, many of these
postprocessing computations of the memory use only the
primary waveform modes—often just the (2, 2) mode—
instead of everymode. This is because, before thiswork, there
has not been a method for fully computing the memory from
every mode of a waveform.5

As a part of this study, we present the first successful
resolution of the modes that contain memory by using the
Simulating eXtreme Spacetimes (SXS) Collaboration’s
older and newer codes, SpEC [28] and SpECTRE [29].
Explicitly, we use Cauchy-characteristic extraction (CCE)
to evolve a world tube produced by a Cauchy evolution to
asymptotic infinity, where we extract many observables,
most importantly the strain [30]. With CCE, we find that we
can resolve many of the m ¼ 0 and m ≠ 0 modes that
contribute to the displacement and spin memories. Through
this, we observe that not only do CCE waveforms surpass
extrapolated waveforms in terms of resolving the displace-
ment memory, but they also exhibit a spin memory that is
roughly twice as much as what is seen in the extrapolated
waveforms [20]. Furthermore,we compare the displacement

4While the strain (2,0) mode, which is the primary contributor
to the displacement memory, has been resolved previously [25],
the code used in this work was much more computationally
expensive and thus could not easily run longer simulations
required to accurately resolve the other memory effects.

5In [22], a procedure using the result of [4] was presented for
computing just the displacement memory using all of the modes
of a strain waveform. However, this method was only used on
extrapolated waveforms, which exhibit no displacement memory,
and thus fails to accurately capture the “memory of the memory,”
i.e., the memory induced by the memory modes.
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and spin memory modes to the memory computed from the
numerical waveforms using the new memory equations
presented in this paper. We find that the two agree excep-
tionally well, which implies that the CCE waveforms obey
the BMS flux-balance laws to a rather high degree of
accuracy. We also briefly discuss the CM memory’s for-
mulation in Sec. II B 3 and its presence in our numerical
results in Appendix C.

A. Overview

We organize our computations and results as follows.
Using Einstein’s field equations, we compute expressions
for the displacement and spin memory in Secs. II A
and II B, which are valid in asymptotically flat spacetimes.
Moreover, we write these expressions in terms of the
observables that are explicitly produced by SXS’s CCE.
We also provide a few brief comments on the CM memory
in Sec. II B 3, but not a complete mathematical expression.
Following this, in Sec. III A, we describe certain aspects of
CCE and outline the choices that we make to produce
memory results that agree with post-Newtonian theory.
Note, we explore the features of CCE further in Sec. III H.
Continuing to our numerical results, in Sec. III B, we then
illustrate how well our extracted observables comply with
the BMS flux-balance laws that we compute in Sec. II B.
Next, in Secs. III C, III D, and III E, we present the results
for five numerical simulations covering combinations of
equal and unequal masses, spinning and nonspinning, and
precessing and nonprecessing, whose parameters are out-
lined in the introduction of Sec. III. We not only show the
success of CCE in resolving the modes that express
memory effects, but also compare them to the memory
that is expected according to our calculations in Sec. II B.
Furthermore, in Sec. III F, we show that during ringdown,
the most prominent memory modes can be accurately
modeled as a sum of the null memory contribution and
the corresponding quasinormal modes (QNMs) of the
remnant BH. Finally, in Sec. III G, with these results we
then compute signal-to-noise ratios (SNRs) for LIGO, ET,
and LISA and thus provide estimates on the measurability
of both the displacement and the spin memory effects. We
also provide computations of the Bondi mass aspect and the
Bondi angular momentum aspect in Appendixes A and B in
terms of the strain and the Weyl scalars Ψ2 and Ψ1.
Appendix C gives an informal presentation of a mode of
the strain that exhibits the CM memory effect.

B. Conventions

We set c ¼ G ¼ 1. When working with complex dyads,
following the work of Moxon et al. [30], we use

qA ¼ −ð1; i sin θÞ and qA ¼ −ð1; i csc θÞ ð3Þ

and denote the round metric on the two-sphere as qAB. The
complex dyad obeys the following properties:

qAq
A ¼ 0; qAq̄

A ¼ 2; qAB ¼
1

2
ðqAq̄Bþ q̄AqBÞ: ð4Þ

We built spin-weighted fields with the dyads as follows. For
a tensor field WA���D, the function

W ¼ WA���BC���Dq
A � � �qBq̄C � � � q̄D ð5Þ

with m factors of q and n factors of q̄ has spin-weight
s ¼ m − n. We raise and lower spins using the differential
spin-weight operators ð and ð̄,

ðW ¼ ðDEWA���BC���DÞq
A � � � qBq̄C � � � q̄DqE; ð6aÞ

ð̄W ¼ ðDEWA���BC���DÞq
A � � �qBq̄C…q̄Dq̄E: ð6bÞ

Here, DA is the covariant derivative on the two-sphere. The
ð and ð̄ operators in spherical coordinates are then

ðWðθ;ϕÞ ¼ −ðsin θÞþsð∂θ þ i csc θ∂ϕÞ

× ½ðsin θÞ−sWðθ;ϕÞ�; ð7aÞ

ð̄Wðθ;ϕÞ ¼ −ðsin θÞ−sð∂θ − i csc θ∂ϕÞ

× ½ðsin θÞþsWðθ;ϕÞ�: ð7bÞ

Thus, when acting on spin-weighted spherical harmonics,
these operators produce

ððsYlmÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sÞðlþ sþ 1Þ
p

sþ1
Y
lm; ð8aÞ

ð̄ðsYlmÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ sÞðl − sþ 1Þ
p

s−1Ylm: ð8bÞ

As a result, for fðθ;ϕÞ an arbitrary spin-weight 0 function,
the spherical Laplacian D2 is then given by

D2fðθ;ϕÞ ¼ ðð̄fðθ;ϕÞ ¼ ð̄ðfðθ;ϕÞ: ð9Þ

Last, for our comparisons to PN computations, we use the
polarization convention that coincides with Kidder [31],
rather than Blanchet [32], since most PN calculations of the
memory make this choice as well [19,20].

II. DESCRIPTION OF MEMORY

We now review the mathematical formulation of the
memory effects and extend previous results to be more
relevant for calculations in numerical relativity.

A. Bondi framework

We begin by reviewing a few of Einstein’s equations for
the asymptotically flat Bondi-Sachs metric to obtain
relationships between conserved charge quantities and
memory-contributing terms. We closely follow the work
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of Flanagan and Nichols [33], but we only consider a
vacuum spacetime. We extend their results by computing
the memory contribution to the gravitational wave strain,
i.e., the quantity that is extracted in numerical relativity and
currently measured by GW detectors.
Consider retarded Bondi coordinates, ðu; r; θ1; θ2Þ, near

future null infinity, where u≡ t − r. For such a system, the
metric of arbitrary asymptotically flat spacetimes can be
written in the form

ds2 ¼ −Ue2βdu2 − 2e2βdudr

þ r2γABðdθ
A − UAduÞðdθB − UBduÞ; ð10Þ

where A; B ∈ f1; 2g are coordinates on the two-sphere, and
U, β, UA, and γAB are functions of u, r, and θA. Here we
apply the four gauge conditions

grr ¼ 0; grA ¼ 0; and detðγABÞ ¼ detðqABÞ; ð11Þ

where gμν is the metric of four-dimensional spacetime. We
now expand these metric functions as series in 1=r to
relevant orders, which gives

U ¼ 1 −
2m

r
−
2M

r2
þOðr−3Þ; ð12Þ

β ¼
β0

r
þ
β1

r2
þ
β2

r3
þOðr−4Þ; ð13Þ

UA ¼
UA

r2
þ

1

r3

�

−
2

3
NA þ

1

16
DAðCBCC

BCÞ

þ
1

2
CABDCCBC

�

þOðr−4Þ; ð14Þ

γAB ¼ qAB þ
CAB

r
þ
DAB

r2
þ
EAB

r3
þOðr−4Þ; ð15Þ

where the various coefficients on the right-hand sides are
functions of ðu; θAÞ only, and qABðθ

AÞ is the metric on the
two-sphere, i.e., qABðθ;ϕÞ ¼ dθ2 þ sin2 θdϕ2 in ordinary
spherical coordinates. The three most important functions
above are the Bondi mass aspect m, the Bondi angular
momentum aspect NA, and the shear tensor CAB, whose
retarded time derivative is the Bondi news tensor
NAB ≡ ∂uCAB. The Bondi mass aspect is related to the
supermomentum charge while the angular momentum,
once a few extra terms are included,6 corresponds to the
super-Lorentz charges [8]. Applying the gauge conditions
in Eq. (11) produces the constraints

qABCAB ¼ 0; ð16Þ

DAB ¼
1

4
qABCCDC

CD þDAB; ð17Þ

EAB ¼
1

2
qABCCDD

CD þ EAB; ð18Þ

where DAB and EAB are two arbitrary traceless tensors.
Finally, we consider Einstein’s equations. By computing

the Oð1=r2Þ terms of the uu part of the evolution equation
for the Bondi mass aspect, we find

_m ¼ −
1

8
NABN

AB þ
1

4
DADBNAB: ð19Þ

Equation (19) is identical to the central result of [9], which
outlines the link between a system’s news and mass loss.7 If
we integrate and reorder this equation, we obtain

1

4
DADBCAB ¼ mþ 4πE; ð20Þ

where

E ¼
1

32π

Z

NABN
ABdu ð21Þ

is just the energy that is radiated per unit solid angle.
Equation (20) represents one of the two BMS flux-balance
laws that we will examine. The first term corresponds to the
memory appearing in the shear. The second term, which
relates to the ordinary memory contribution, can be under-
stood as the change in a BMS charge—specifically, the
supermomentum charge. The third term, which can be
viewed as the null memory contribution, is a flux—
specifically, an energy flux. We now repeat the calculation
performed above, but for the angular momentum aspect.
Computing the Oð1=r2Þ terms of the uA part of the

evolution equation for the angular momentum aspect
produces an equation similar to that of Eq. (19),

_NA ¼ DAmþ
1

4
DBDADCC

BC −
1

4
D2DBCAB

þ
1

4
DBðCACN

BCÞ þ
1

2
CACDBN

BC: ð22Þ

However, the terms in this equation cannot as clearly be
classified as “memory-like,” “ordinary-like,” and “null-
like,” analogous to those appearing in Eq. (19) or (20).
Therefore, before we compute the memory, we must first
rewrite Eq. (22) in terms of the function N̂A, which can be

6Extra terms are needed because the angular momentum aspect
cannot explicitly be related to one of the conserved BMS charges;
see Sec. II A for a further explanation.

7The reason why the DADBNAB term was not important in [9]
is because they integrated their version of Eq. (19) over the
sphere, which kills this term because its l ¼ 0, 1 modes are zero.
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thought of as an angular momentum that corresponds to the
conserved super-Lorentz charges. We henceforth call N̂A

the angular momentum aspect rather than NA. According to
Flanagan and Nichols’s [33] Eq. (3.11), N̂A is

N̂A ≡ NA − uDAm

−
1

16
DAðCBCC

BCÞ −
1

4
CABDCC

BC: ð23Þ

Using Eq. (22) in the retarded time derivative of Eq. (23)
produces the result

∂uN̂A ¼
1

4
ðDBDADCC

BC −D2DBCABÞ

þ
1

4
DBðCACN

BCÞ þ
1

2
CACDBN

BC

−
1

8
DAðCBCN

BCÞ −
1

4
NABDCC

BC

−
1

4
CABDCN

BC − uDA _m

¼
1

4
ðDBDADCC

BC −D2DBCABÞ

−

��

3

8
NABDCC

BC −
3

8
CABDCN

BC

�

−

�

1

8
NBCDBCAC −

1

8
CBCDBNAC

��

− uDA _m: ð24Þ

For the second equality, we have used

NBCDACBC ¼ NBCDBCAC þ NABDCC
BC; ð25Þ

CBCDANBC ¼ CBCDBNAC þ CABDCN
BC: ð26Þ

Finally, using the angular momentum aspect, we may write
the evolution equation (22) as

1

4
ðDBDADCC

BC −D2DBCABÞ

¼ ∂uðN̂A þ 8πJ AÞ − uDA _m; ð27Þ

where

_J A ≡
1

64π
½ð3NABDCC

BC − 3CABDCN
BCÞ

− ðNBCDBCAC − CBCDBNACÞ� ð28Þ

is the retarded time derivative of the angular-momentum
radiated per unit solid angle. Akin to Eq. (20), we have
written Eq. (27) so that the first, second, and third terms on
the right-hand side of the equation correspond to the
memory that can be found in the shear as well as the

ordinary and null memory contributions. As we will show
next, Eq. (20) produces the displacement memory while its
counterpart, Eq. (27), produces the recently discovered spin
memory. While we do not present an explicit equation for
the CM memory effect, Eq. (20) can be shown to contain
terms that relate to the CM memory (see Sec. II B 3 for
more explanation).

B. Computation of memory

Consider a spacetime in which the flux of energy and
angular momentum to future null infinity vanishes before
some early retarded time u1, so that the news tensor NAB

and the stress-energy tensor vanish there as well. Further,
assume that sometime thereafter there is emission of
gravitational waves, and that these fluxes again vanish
for times after some u2 > u1. The displacement memory is
the effect that a pair of freely falling, initially comoving
observers will then be able to observe a nonzero change in
their relative position. This change is determined by
changes to the spacetime of order 1=r and is given by a
function known as the memory tensor,

ΔCAB ≡ CABðu2Þ − CABðu1Þ: ð29Þ

Here, we use the notation Δf ≡ fðu2Þ − fðu1Þ where f is
some function of Bondi time.
We now write the memory tensor as the sum of an

electric and a magnetic component. Motivated by how one
may write a vector field on the two-sphere as the sum of a
gradient (“electric”) and a curl (“magnetic”),8 we have

ΔCAB¼

�

DADB−
1

2
qABD

2

�

ΔΦþϵCðADBÞD
C
ΔΨ; ð30Þ

where ΔΦ≡Φðu2Þ −Φðu1Þ and ΔΨ≡Ψðu2Þ − Ψðu1Þ
are scalar functions that represent the electric and magnetic
components of the displacement memory and ϵAB is just the
Levi-Civita tensor on the two-sphere.
Because our Cauchy-characteristic extraction extracts

the strain h, we now rewrite the BMS flux-balance laws,
i.e., Eqs. (20) and (27), in terms of this observable. Using
the complex dyad introduced previously in Sec. I B, we
construct the strain as a spin-weight −2 quantity,

h≡
1

2
q̄Aq̄BCAB ¼

X

l≥2

X

jmj≤l

hlm−2Ylmðθ;ϕÞ: ð31Þ

Here we are only considering the 1=r part of the strain.
Generally, the strain is computed using the full metric at
asymptotic infinity—namely, h≡ 1

2
q̄Aq̄BγAB. However, the

1=r part of the strain is the only observable component at
future null infinity and thus all we need to consider.

8i.e., VA ¼ DAΦþ ϵABD
B
Ψ.
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We now use Eqs. (20) and (27) to compute the memory
ΔJ. But, to simplify this work, we first write the memory in
terms of its electric and magnetic components, i.e., ΔJ ¼

ΔJðEÞ þ ΔJðBÞ, where

ΔJðEÞ ≡
1

2
q̄Aq̄BΔC

ðEÞ
AB ðΔΦÞ

¼
1

2
q̄Aq̄B

��

DADB −
1

2
qABD

2

�

ΔΦ

�

¼ þ
1

2
ð̄
2
ΔΦ; ð32aÞ

ΔJðBÞ ≡
1

2
q̄Aq̄BΔC

ðBÞ
AB ðΔΨÞ

¼
1

2
q̄Aq̄B½ϵCðADBÞD

C
ΔΨ�

¼ −
1

2
ið̄2ΔΨ: ð32bÞ

We reserve the letter J to represent observables that we
calculate using functions extracted from our simulations,
such as the strain h, the news _h, or the Weyl scalars.

1. Electric memory

The electric component of the memory is the piece that
arises from the scalar function ΔΦ. Using Eq. (30), the
memory term in Eq. (20) becomes

1

4
DADB

ΔCAB ¼
1

8
ðD4 − 2DA½DA; DB�D

BÞΔΦ

¼
1

8
ðD4 þ 2DAqABD

BÞΔΦ

¼
1

8
D2ðD2 þ 2ÞΔΦ

¼ DΔΦ; ð33Þ

where

D≡
1

8
D2ðD2 þ 2Þ: ð34Þ

In computing Eq. (33), we have used the fact that
½DA; DB�D

B ¼ −qABD
B on the two-sphere and used sym-

metry/antisymmetry to remove the dependence on the
magnetic term ΔΨ. We act on Eq. (33) with D−1 to obtain
an expression for ΔΦ. But, because D maps the l ¼ 0, 1
modes to zero, D−1

’s action on these modes is ambiguous.
Therefore, to avoid this complication, we constructD−1 so
that it maps the l ¼ 0, 1 modes to zero. Note that this
choice has no effect on the strain since it is a spin-weight
−2 function and will thus be independent of these modes.
By acting on Eq. (33) with D−1 and combining the result
with the expression from Eq. (20), we then obtain

ΔΦ ¼ D−1

�

Δmþ 4π

�

1

32π

Z

u2

u1

NABN
ABdu

��

: ð35Þ

Using

CAB ¼
1

2
ðqAqBhþ q̄Aq̄Bh̄Þ; ð36Þ

which follows from the symmetric, trace-free condition of
the shear tensor, we find that we may write Eq. (35) as

ΔΦ ¼ D−1

�

Δmþ 4π

�

1

16π

Z

u2

u1

_h _̄h du

��

: ð37Þ

Thus, the electric component of the memory can readily be
found by combining the results of Eqs. (32a) and (35),

ΔJðEÞ ¼
1

2
ð̄
2D−1

�

Δmþ
1

4

Z

u2

u1

_h _̄h du

�

; ð38Þ

with the Δm term as the ordinary contribution and the _h _̄h
term as the null contribution. Equation (38) could also be
written with ð−2 since this operator is equivalent to 1

8
ð̄
2D−1

when acting on spin-weight 0 functions. But, we choose to
use D for numerical purposes. At this point, it remains to
compute the Bondi mass aspect in terms of the strain and
the Weyl scalar Ψ2. As is shown in Appendix A, by
Eq. (A1), the result one obtains is

m ¼ −Re

�

Ψ2 þ
1

4

_h h̄

�

; ð39Þ

where Re denotes the real part.

2. Magnetic memory

To compute the magnetic memory, we use Eq. (27) and
proceed in a similar manner to the above calculation of the
electric memory. By replacing CAB with ΔCAB, Eq. (27)
can be written as

1

4
ðDBDADCΔC

BC −D2DB
ΔCABÞ

¼ Δ½∂uðN̂A þ 8πJ AÞ − uDA _m�: ð40Þ

Using Eq. (30) in Eq. (40) and making use of the identity
DA½D

4; DA�ΔΨ ¼ D2ð2D2 þ 1ÞΔΨ, which follows from
DA½D

4; DB�fðθ;ϕÞ ¼ DAD
Bð2D2 þ 1Þfðθ;ϕÞ, we obtain

1

4
ðDBDADCΔC

BC −D2DB
ΔCABÞ ¼ ϵACD

CDΔΨ: ð41Þ

Note that the electric component ΔΦ vanishes because of
various commutation relations similar to the one above.
Therefore, we have the relation
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ϵACD
CDΔΨ ¼ Δ½∂uðN̂A þ 8π _J AÞ − uDA _m�: ð42Þ

If we now contract Eq. (42) with the function ϵABDB, since
ϵAB ¼ 1

2
iðqAq̄B − q̄AqBÞ, we obtain

DD2
ΔΨ ¼ ΔϵABDB½∂uðN̂A þ 8π _J AÞ − uDA _m�

¼ ΔIm½ð∂uð
ˆ̄N þ 8πJ̄ Þ�; ð43Þ

where Im denotes the imaginary part and

N̂ ≡ qAN̂
A and J ≡ qAJ

A: ð44Þ

Note that the Bondi mass aspect term drops out because of
the commutativity of the covariant derivatives when acting
on a scalar function and the antisymmetry of the Levi-
Civita tensor. Consequently, by acting on Eq. (43) with
D−1D−2 and using Eq. (28), we have

ΔΨ ¼ D−1D−2
ΔIm½ð∂uð

ˆ̄N þ 8πJ̄ Þ� ð45aÞ

¼ D−1D−2
ΔIm

�

ðð∂u
ˆ̄NÞ þ

1

8
ðq̄A

× ½ð3NABDCC
BC − 3CABDCN

BCÞ

− ðNBCDBCAC − CBCDBNACÞ�

�

: ð45bÞ

Expressing the angular momentum flux quantities on the
right-hand side in terms of the observable h gives

NABDCC
BC ¼ Re½qA _h ð̄ h̄�; ð46aÞ

CABDCN
BC ¼ Re½qAhð̄

_̄h�; ð46bÞ

NBCDBCAC ¼ Re½qA
_̄h ð̄ h�; ð46cÞ

CBCDBNAC ¼ Re½qAh̄ ð̄ _h�: ð46dÞ

Thus, by combining everything together and using the
result of Eq. (32), we find

ΔJðBÞ ¼
1

2
ið̄2D−1D−2

ΔIm

�

ð̄ð∂uN̂Þ

þ
1

8
½ðð3hð̄ _̄h−3_h ð̄ h̄þ _̄h ð̄ h − h̄ ð̄ _hÞ�

�

: ð47Þ

Next, we need the angular momentum aspect in terms of
the strain and the Weyl scalar Ψ1. As is shown in
Appendix B, by Eq. (B14), the result one obtains is

Im½ð̄ð∂uN̂Þ� ¼ Im

�

2ð̄ _Ψ1 −
1

4
ð̄½∂uðh̄ðhÞ�

�

: ð48Þ

As is illustrated by either Eq. (45a) or (47), the magnetic
component of the memory is the total derivative with
respect to retarded time of some scalar function, whereas
the electric component of the memory contains terms that
are either net changes, i.e., the Δm term, or retarded time

integrals, i.e., the _h _̄h term. Consequently, since the
magnetic memory does not have such terms, one might
presume that the magnetic memory vanishes, i.e., that the
net change in the magnetic component of the strain is zero.
Currently, this is unknown [18,33–35]. But, it is known that
the retarded time integral of the magnetic memory does not
vanish; this is what we refer to as the spin memory effect.
We explore the conjectured vanishing feature of the
magnetic memory in Sec. III D and the spin memory in
Sec. III E.
Equipped with both Eqs. (38) (the electric memory) and

(47) (the magnetic memory), we may now compute the
electric and magnetic memory contributions to the strain by
expressing each of these functions as a sum over spin-
weighted spherical harmonics and acting with the inverse
operators accordingly,

D−2Ylm ¼ ½−lðlþ 1ÞÞ�−1Ylm; ð49aÞ

D−1Ylm ¼

�

1

8
ðl − 1Þlðlþ 1Þðlþ 2Þ

�

−1

Ylm: ð49bÞ

We thus obtain the spin-weighted spherical harmonic
representation of the memory

ΔJðθ;ϕÞ ¼
X

l≥2

X

jmj≤l

ΔJlm−2Ylmðθ;ϕÞ; ð50Þ

which we can use to compare the memory modes to those
of the CCE extracted strain produced in our various
numerical relativity simulations.

3. CM memory

Finally, we now illustrate how one can realize that
Eq. (38) contains terms contributing to the CM memory.
According to Eq. (42), we have

∂uΔN̂A ¼
1

8
ϵACD

CDΔΨ − 8πΔ _J A þ uDAΔ _m: ð51Þ

If we then contract this equation with DA and take the real
part of the entire equation, we obtain

∂uReðð̄ N̂Þ ¼ −8πReðð̄ _J Þ − uD2 _m

¼ −8πReðð̄ _J Þ − ∂uðuD
2mÞ þD2m; ð52Þ

since the Bondi mass aspect term is a purely real quantity.
By rearranging this equation and then entering the results
back into the ordinary part of Eq. (38), we obtain
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ΔJ
ðEÞ
ordinary ¼

1

2
ð̄
2D−1

Δfðmþ u _mÞ

þ ∂uD
−2Re½ð̄ðN̂ þ 8πJ Þ�g: ð53Þ

When written in this manner, it is now clear how the
ordinary part of the electric memory can be realized as
containing terms involving the retarded time derivative of
the real part of the super-Lorentz charges, which are a part
of the N̂ term, and the angular momentum flux. Even
though this is somewhat trivial since we have simply
changed the Bondi mass aspect by a function that is zero,
Eq. (53) nonetheless illustrates how the ordinary part of the
electric memory can be broken up into not only a
displacement contribution (the first two terms), but also
the time derivative of a CM contribution (the terms with the
∂u in front of them). To obtain the full expression for the
CMmemory, the remaining component that is needed is the
null contribution, which can, in principle, be extracted from
the energy flux. Joining this component with the ordinary
CM memory contribution in Eq. (53) gives the full
expression for the CM memory in terms of its ordinary
and null parts. We explore the CM memory further with
numerical results in Appendix C.

III. RESULTS

We now compute the electric and magnetic components
of the memory for various binary black hole simulations
run using the code SpEC. Each of these merger simulations
corresponds to an entry in the public SXS Catalog [28] and
collectively encompasses both equal and unequal masses,
spinning and nonspinning black holes, and configurations
that are either precessing or nonprecessing. We provide the
main parameters of these simulations in Table I.
Each simulation produces a GW strain computed by

Regge-Wheeler-Zerilli (RWZ) extraction at a series of
spheres of finite radius and then extrapolates the strain
to future null infinity [28]. This is the strain that can be
found in the SXS Catalog. Like Pollney and Reisswig [25],
we find, however, that this method for constructing the

strain does not seem to be able to resolve the memory.
Consequently, we instead compute the strain using CCE.
Fortunately, each of our BBH simulations also produces

the metric and its derivatives on a series of world tubes,
where each world tube is a coordinate two-sphere dragged
through time that provides the inner boundary conditions
for the CCE module from the code SpECTRE [30]. We use
this CCE module to explicitly compute the strain h at future
null infinity. Note that we use the variable h to represent the
strain thus obtained from CCE, while the variable J has
been reserved for the strain computed from the BMS flux-
balance laws. These should be identical in the absence of
numerical error. Furthermore, unlike earlier implementa-
tions of CCE that exhibited the resolution of the strain (2,0)
mode [25], the SpECTRE CCE module computes the strain
directly, like [36]. Consequently, there is no need to
compute the news first and then integrate it with respect
to retarded time, which could introduce errors from the
choice of integration constants.
Within the SXS Catalog, most of the BBH simulations

follow only a few tens of binary orbits. PN computations of
memory, however, include effects that are obtained by
integrating over the waveform starting at u → −∞.
Accordingly, we hybridize the numerical strain obtained
from CCE with a PN waveform corresponding to the same
BBH merger (see Sec. III H) using the PYTHON packages
GWFrames and Post-Newtonian [37,38]. When using Post-

Newtonian, we also modified the code to include memory
terms up to 3PN order. With this scheme, we find that we
can resolve the traditional and most prominent m ¼ 0

memory modes, as well as other m ≠ 0 modes that exhibit
both the displacement and spin memory effects.
Last, it should be noted that we primarily use the PYTHON

package SCRI to perform our analysis [39–42].

A. CCE vs extrapolation

We first compare the strain that we compute using two
distinct extraction methods: (1) RWZ extraction followed
by extrapolation to future null infinity and (2) CCE plus a
PN hybridization. In Fig. 1, we compare three different
spin-weight −2 spherical harmonic modes of the strain for
the numerical simulation SXS:BBH:0305, which is a
simulation of GW150914 (see Table I). We compare the
(2,2), (2,0), and (3,0) modes from CCE/PN hybrids to those
from extrapolated RWZ waveforms. Each one of these
modes corresponds to the most prominent mode for the
strain as well as the electric and magnetic memory (see
Secs. III C and III D). We also show an estimate of the error

in the CCE waveform jhCCEðl;mÞ − hCCEðl;mÞj, where h
CCE
ðl;mÞ is the

highest resolution waveform available for SXS:BBH:0305

and hCCEðl;mÞ is the next highest resolution. While there is also

some numerical error that comes from the Cauchy-
characteristic extraction, we find that these errors are of
order 10−10 and thus negligible in comparison to the

TABLE I. Primary parameters of the various BBH mergers
analyzed in this paper. We use the mass and effective spin values
that are obtained at the simulation’s relaxation time [28]. While
these are the runs that we show in this paper, many others have
been used to understand and refine our conclusions. The spin
vectors of 1389 are χ1 ¼ ð−0.2917;þ0.2005;−0.3040Þ and
χ2 ¼ ð−0.01394;þ0.4187;þ0.1556Þ.

SXS:BBH: Classification M1=M2 χeff Norbits

1155 Nonspinning 1.000 þ2.617 × 10−5 40.64
0554 Nonspinning 2.000 þ4.879 × 10−5 19.25
1412 Spinning 1.630 þ1.338 × 10−1 145.1
1389 Precessing 1.633 −1.293 × 10−1 140.4
0305 GW150914 1.221 −1.665 × 10−2 15.17
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Cauchy evolution’s resolution error. Consequently, for all
the plots in this paper, we only present the error that comes
from the Cauchy evolution.
As can be seen in the plots in Fig 1, the CCE and

extrapolated waveforms coincide well for the (2, 2) mode.
However, the extrapolation method fails to capture the
memory contribution to the (2, 0) electric memory mode,
but does recover the quasinormal mode ringdown near the
peak of the waveform. Curiously, the extrapolated wave-
form does contain nontrivial contributions to the imaginary
part of the (3, 0) magnetic memory mode, but does not
determine the time integral of the mode, which is the main
contribution to the spin memory, accurately (∼50% of the
values seen in CCE for the runs we studied). Thus, the
importance of using CCE can readily be seen: while
previous extrapolation-based extraction schemes cannot
accurately resolve memory effects, the current implemen-
tation of SpECTRE’s CCE can.

B. Checking the flux-balance laws

As shown in Sec. II B, using Eqs. (38) and (47), one can
compute the memory ΔJðθ;ϕÞ, which is the change in the
strain between the retarded times corresponding to the
nonradiative9 regimes that exist before and after the passage
of radiation. However, the flux-balance laws—Eqs. (20)
and (27)—from which the memory effects are computed
should be true for any given retarded time. This version of

these BMS flux-balance laws is called the finite time
version, rather than the global version. Thus, to see if
our Cauchy-characteristic extraction is performing as we
expect it to for the strain as well as the Weyl scalars Ψ1 and
Ψ2, we can compare the strain h as obtained from CCE to
the “flux-balance strain,”

J ≡
X

l≥2

X

jmj≤l

Jlm−2Ylmðθ;ϕÞ

¼
X

l≥2

X

jmj≤l

ðJ
ðEÞ
lm þ J

ðBÞ
lmÞ−2Ylmðθ;ϕÞ; ð54Þ

where JðEÞ
lm and JðBÞ

lm take on the same functional form as the
spin-weighted spherical harmonic decompositions of ΔJðEÞ

andΔJðBÞ coming from Eqs. (38) and (47), but are now also
functions of the retarded time u, i.e., the operator Δ from
Eqs. (38) and (47) is removed. Put differently, we wish to
check the consistency of

h ¼ JðEÞ þ JðBÞ ð55Þ

up to the error of the corresponding Cauchy evolution.
In Fig. 2, we compare the strain obtained from CCE to

the strain computed from the BMS charges and fluxes. As
in the comparison shown in Fig 1, we show results for the
(2,2), (2,0), and (3,0) modes for the same NR simulation as
before: SXS:BBH:0305. As can be seen, the two coincide
with each other rather well, with the (2,2) mode being the
best, followed by the (2,0) mode, and then the (3,0) mode.
Most important, though, one can observe through the (2,0)

FIG. 1. Comparison of the strain computed by CCE versus RWZ extraction followed by extrapolation to future null infinity, for several
spin-weight −2 spherical harmonic modes of the SXS simulation SXS:BBH:0305. On each plot, we show the interval over which the
hybridization between CCE and PN is performed, i.e., before this interval the waveform is purely from a post-Netwonian calculation
while after this interval the waveform is purely from numerical computations. In the bottom row of each plot, we provide the residuals

and an estimate of the error in the CCE waveform, jhCCEðl;mÞ − hCCEðl;mÞj, where h
CCE
ðl;mÞ is the highest resolution waveform of SXS:BBH:0305

and hCCEðl;mÞ is the next highest resolution waveform for the same binary system. We align the waveforms in both time and phase around

upeak, which is where the L2 norm of the strain achieves its maximum. See Table I for the parameters of SXS:BBH:0305.

9A BBH coalescence is never truly nonradiative at future
infinity; here we assume that future infinity is approximately
nonradiative at both early and late retarded times.
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and (3,0) modes that the memory primarily comes from
the null contribution, while the ordinary contribution
appears to only capture the quasinormal mode behavior.
Nevertheless, this is perhaps as expected because the
majority of the simulations in the SXS Catalog experience
little to no supertranslations or super-Lorentz transforma-
tions [43]. Consequently, there will be little to no BMS
charges for the radiation to carry to future null infinity,
which will make the contribution from the ordinary
memory small compared to that of the null memory, i.e.,

ΔJðEÞ ≈þ
1

8
ð̄
2D−1

�
Z

u2

u1

_h _̄h du

�

; ð56aÞ

ΔJðBÞ ≈þ
1

16
ið̄2D−1D−2

ΔIm

× ½ðð3hð̄ _̄h−3_h ð̄ h̄þ _̄h ð̄ h − h̄ ð̄ _hÞ�: ð56bÞ

In this work, our primary objective is to provide a
statement on the measurability of the memory rather than
any other phenomenon, such as quasinormal modes. Thus,
we need to consider the function that represents the
instantaneous memory effect as a function of time. As
can be seen in Fig. 2 and as was just discussed, the
observable that serves as a reasonable proxy for this is the
null contribution to the flux-balance strain. Therefore, in
the following sections, we will only examine the null

contribution to the flux-balance strain and henceforth refer
to this contribution as the system’s overall memory.

ΔJðuÞ≡
X

l≥2

X

jmj≤l

ΔJlmðuÞ−2Ylmðθ;ϕÞ: ð57Þ

From an observational standpoint, a GW observatory
will only be able to measure the complete memory mode,
i.e., a superposition of memory and quasinormal modes.
Thus, to measure the memory effect, one needs to be able to
filter the quasinormal mode frequencies so that only the
frequencies corresponding to the memory remain. As we
thoroughly explore in Sec. III G, performing such a post-
processing analysis of LIGO observations should indeed be
feasible, thereby allowing for the measurement of the
memory induced by a GW within an interferometer. As
a result, since the null memory contribution contains no
quasinormal mode contribution, this is a fair proxy for what
LIGO would see once the quasinormal modes have been
filtered out of the strain memory modes.
Note that we are free to change the null contributions to

the electric and spin memories by constants, since they
depend on certain energy and angular momentum fluxes
that are computed by performing retarded time integrals.
The need for these angle-dependent constants is a result of
not knowing the past history of the numerical waveforms.
Unless stated otherwise, we choose these constants so that

FIG. 2. Comparison of the strain extracted using CCE from SXS simulation SXS:BBH:0305 versus the strain computed using the
BMS flux-balance laws, Eqs. (38) and (47), without the Δ operator. Each column shows a particular spin-weight −2mode. The top row
shows the extracted strain (black/solid), the strain computed from the BMS flux-balance laws (red/dashed), and its corresponding
electric (blue/dotted) and magnetic (green/dashed/dotted) components coming from Eqs. (38) and (47). The middle row shows the
contributions from the mass aspect (black/solid), the angular momentum aspect (red/dashed), the energy flux (blue/dotted), and the
angular momentum flux (green/dashed/dotted). Because the energy flux contribution to the electric component of the strain is an integral
over retarded time, we are free to change the electric component by a constant. We take this angle-dependent constant to be the final
value of the extracted strain.
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the flux-balance strain has the same initial value as the
CCE/PN hybrid strain.

C. Electric memory modes

We now analyze the main memory modes obtained from
numerical relativity by comparing them to PN theory and
ΔJðuÞ via the functional forms of Eqs. (56a) and (56b), i.e.,
Eqs. (38) and (47) but without the contribution coming
from the negligible ordinary memory.10 According to
Favata [19,26,27], the bulk of the electric memory should
be in the real component of the nonoscillatory (2,0) mode,
with other contributions primarily persisting in the other
l ¼ even, m ¼ 0 modes. But, as was also noted by Favata,
there may be memory contributions from m ≠ 0 oscillatory
modes, e.g., the ð3;�1Þ modes. Consequently, we examine
results for not only the usual m ¼ 0 memory modes, but
also a few of the potential m ≠ 0 oscillatory memory
modes. We begin by first illustrating the agreement
between our (2,0) mode and what is expected according
to PN theory.
For this PN comparison, we consider SXS:BBH:0305.

As in Fig. 1, in Fig. 3, we show the agreement between
CCE and PN in the top plot and provide a rough estimate of
the numerical error in the bottom plot. As expected, the
numerical waveform and the PN waveform coincide well
during the inspiral, but then diverge from one another as the
binary system approaches the merger phase.
Next, to illustrate the variation of the memory across

various BBH parameters, we examine an equal mass and
nonspinning system: SXS:BBH:1155. We again find that
the main memory modes are them ¼ 0modes, with both of
the (2,0) and (4,0) modes taking on values that are larger
than the corresponding numerical error. However, the other
m ¼ 0 modes acquire values that are smaller than can be
resolved at this run’s numerical resolution. Moreover, we
find that both of the (2,0) and (4,0) modes coincide rather
well with the instantaneous memory from Eqs. (56a) and
(56b), as illustrated in Fig. 4.
For the other types of binary black hole systems that we

examined, the results are very similar to what we have
presented thus far except for the following observations.
For a nonequal mass, nonspinning system, we find that the
total accumulated memory is not as large as that occurring
in an equal mass system of the same total mass.
Furthermore, for a spinning system, we find that the total
accumulated memory is constant as a function of spin for
antialigned spins, but increases with the total spin for
aligned spin systems, which agrees with Ref. [25]. Also, for
a precessing system, we observe mode mixing which
causes the electric memory to leak into certain unexpected

modes, such as the (2,1) and (3,0) modes. Last, we find that
for nonequal mass systems there appears to be memory
accumulated in the ð3;�1Þ modes, which serves as an
example of memory being accumulated in one of the
oscillatory modes. We illustrate this effect using SXS:
BBH:0554 in Fig. 5. Although this memory is indeed
resolvable relative to numerical error, the value acquired is
roughly a third of the total memory that is found in the (4,0)
mode and is thus inconsequential when compared to the
(2,0) mode’s memory, which is nearly 2 orders of magni-
tude more than the (4,0) mode’s.
Finally, we present Table II which contains the memory

computed using Eqs. (56a) and (56b) and the memory
accumulated in the strain modes, with rough estimates of
the corresponding numerical error obtained by comparing
the two highest resolution waveforms.

D. Magnetic memory modes

There has been much speculation regarding whether the
magnetic part of the displacement memory vanishes, i.e., if

FIG. 3. Comparison between the (2,0) mode obtained from
numerical relativity to that which is computed using PN theory.
For reference, in the bottom plot, we provide an estimate of the

error in the CCE waveform, jhCCEð2;0Þ − hCCEð2;0Þj, where h
CCE
ð2;0Þ refers to

the highest resolution waveform of SXS:BBH:0305 and hCCEð2;0Þ

refers to the next highest resolution. The reason why the hybrid
and the PN waveform are not identical before the hybridization
interval is because there is numerical error that is introduced
when aligning the two waveforms.

10While the ordinary contribution to the strain is not negligible,
seeing as it contains information about the quasinormal modes,
the memory part of this contribution can indeed be considered to
be negligible, as we argued through the results shown in Fig. 2.
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ΔJðBÞ ¼ 0 [18,33–35].11 As proved by Bieri and Garfinkle
[18], at linear order, the magnetic part vanishes provided
that the news vanishes: _h → 0 for u→ þ∞. We similarly
find that our nonlinear expression as the magnetic memory
in terms of the strain’s 1=r part, i.e., Eq. (47), also is zero
for cases with vanishing news. Unfortunately, confirming
that the magnetic component of the memory vanishes in
complete generality is not as analytically simple; so, we
instead turn to the results of our numerical computations of
the magnetic memory.
Unlike the electric memory, which as illustrated earlier is

primarily amassed during just the merger phase of a BBH
system’s coalescence, the magnetic memory as a function
of time also acquires meaningful contributions throughout
the system’s inspiral phase. These contrasting accumulation
rates are because of the electric memory’s relation to the
binary system’s energy flux, while the magnetic memory,
by contrast, is instead related to the angular momentum
flux. As a result, we find that to study accurate magnetic
memory effects and observe reasonable agreement between
the strain spin memory modes and the spin memory
computed from the flux-balance laws, i.e., by calculating
R

ΔJðBÞðuÞdu, we need to examine numerical simulations

with roughly 100 orbits or more. Unfortunately, such
simulations are fairly sparse in the SXS Catalog. But as
outlined in Table I, there are a few of these ∼100 orbit
mergers that we examine now.
By computing the magnetic memory using Eq. (56b), we

find that the maximum value of magnetic memory as a
function of the angle in the sky for SXS:BBH:1412 is

R=M maxðjΔJðBÞjðθ;ϕÞÞ ¼ 2.31 × 10−7 � 2.60 × 10−2:

It is often speculated that a superkick system12 may be the
best candidate for producing magnetic memory [35]. For
the superkick waveform SXS:BBH:0963,13 we find

R=M maxðjΔJðBÞjðθ;ϕÞÞ ¼ 9.37 × 10−5 � 1.75 × 10−2:

Therefore, the magnetic memory is consistent with zero
[18,33–35].

FIG. 4. Comparison of the (2,0) mode with the memory for an
equal mass, nonspinning system (SXS:BBH:1155, see Table I). FIG. 5. Comparison of the ð3;�1Þ modes with the memory for

a nonequal mass, nonspinning system (SXS:BBH:0554, see
Table I).

11While the magnetic memory ΔJðBÞ may indeed vanish, this
does not mean that JðBÞðuÞ—the magnetic component of the
strain—or even ΔJðBÞðuÞ—the magnetic memory as a function of
time—must be zero, but rather that their overall net change is
zero.

12A system with initially antiparallel spins in the orbital plane.
13The relevant parameters of this system are

M1=M2 ¼ 1.0; Norbits ¼ 19;

χinitial
1

¼ ðþ0.18;−0.78;−1.2 × 10−3Þ;

χinitial
2

¼ ð−0.16;þ0.78;þ1.2 × 10−3Þ: ð58Þ
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Because the magnetic memory effect for each system we
have looked at is much smaller than the corresponding
numerical error, we believe that we are most likely
overestimating the magnetic memory’s numerical uncer-
tainty. While the magnetic component of the memory
appears to be zero, we expect the spin memory, i.e., the
retarded time integral of the magnetic memory, to take on
some nonzero final value in a manner similar to that of the
electric memory. Because of this, we only provide one
example of a magnetic memory mode and reserve a more
exhaustive presentation for the nonzero spin memory,
which we examine in Sec. III E.
From earlier comparisons with PN approximations [20],

we expect the primary magnetic memory contributions to
be from the imaginary part of the l ¼ odd, m ¼ 0 modes,
with the most pronounced mode being the (3,0) mode. In
Fig. 6, we compare the most prominent strain magnetic
memory mode to the computed magnetic memory. Notice,
not unlike the electric memory, the magnetic memory tends
to act as the average of the more oscillatory strain. While
the (3,0) mode may seem to be poorly resolved near the
system’s merger phase, this is merely a consequence of
examining SXS’s ∼100 orbit runs, whose available numeri-
cal resolutions tend to be poorer than the other runs in the
SXS Catalog. One can easily observe this by examining the
(3,0) mode shown in Fig. 1, which shows this mode for
SXS:BBH:0305: a run with a much more accurate and
precise Cauchy evolution.

E. Spin memory modes

We now evaluate the spin memory
R

ΔJðBÞðuÞdu, which
we compute by taking the time integral of Eq. (56b).
Because the spin memory, as with the magnetic memory,
corresponds to the angular momentum flux, we expect the
spin memory to closely resemble the electric memory, but
with a considerably larger build-up during inspiral. As we
show in Fig. 7, this is the case as nearly the same amount of
spin memory is accumulated throughout the system’s
inspiral phase as there is in the merger phase. Further,
like the electric memory and its (4,0) mode, we find that we
can also resolve the next most prominent spin memory
mode—namely, the (5,0) mode—to within numerical error,
but not the other m ¼ 0 modes.

Last, we present Table III, which is of the same form as
Table II, but contains the values of the spin memory
computed by integrating Eq. (56b) and the spin memory
found in the retarded time integral of the strain modes.

F. Fitting ringdown to QNMs

We now investigate the oscillatory ringdown part of
the (2,0) and (3,0) modes, which otherwise correspond to
the electric and magnetic memory. We wish to explain the
ringdown part of these modes with perturbation theory, i.e.,
by fitting them to the expected quasinormal modes. As was
recently explored by Giesler et al. [44], once a BBH system
has merged into a single black hole, the resulting black hole
ringdown is well described by a linear superposition of
quasinormal modes even from as early as the peak of the
waveform, provided that the overtones are included. These

TABLE II. Memory values that are obtained by combining Eqs. (56a) and (56b) and those obtained from the overall net change in the
extracted strain memory modes. Again, the error that we provide in the final column is simply the residual between the two highest
resolution waveforms.

SXS:BBH: hð2;0ÞðufinalÞ ΔJð2;0ÞðufinalÞ Error hð4;0ÞðufinalÞ ΔJð4;0ÞðufinalÞ Error

0305 9.00 × 10−2 8.97 × 10−2 1.02 × 10−5 1.61 × 10−3 1.46 × 10−3 4.71 × 10−5

1155 9.14 × 10−2 9.06 × 10−2 5.60 × 10−6 1.63 × 10−3 1.54 × 10−3 2.44 × 10−6

0554 7.16 × 10−2 7.11 × 10−2 6.91 × 10−6 8.35 × 10−4 7.18 × 10−4 1.48 × 10−5

1412 9.34 × 10−2 9.13 × 10−2 2.48 × 10−4 1.30 × 10−3 1.31 × 10−3 9.51 × 10−6

1389 6.83 × 10−2 6.67 × 10−2 5.42 × 10−3 7.71 × 10−4 7.10 × 10−4 2.69 × 10−4

FIG. 6. Comparison of imaginary part of the (3,0) mode with
the magnetic memory for a Norbit ≈ 150 system. (SXS:
BBH:1412, see Table I).
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quasinormal modes can be used to find the mass and spin
angular momentum of the final black hole [44–46]. Thus
far, though, only the (2,2) mode has been thoroughly
examined. Consequently, while we do not attempt to
estimate the final black hole’s characteristics using our
fits to the (2,0) and (3,0) modes, we nonetheless present the
accuracy of our fits, saving the parameter estimation and
analysis for a future work.
Like previous work on quasinormal modes [47–50], we

model the radiation occurring during ringdown as a sum of
damped sinusoids with complex frequencies ωlmn ¼
ωlmnðMf; χfÞ which can be computed by using perturba-
tion theory [51]. But, because the strain now exhibits
memory effects that are not captured by the usual quasi-
normal mode expression, we instead perform a super-
position of the memory and the quasinormal modes,

hNlm ¼ ΔJðuÞ þ
X

N

n¼0

Clmne
−iωlmnðu−u0Þ u ≥ u0; ð59Þ

where N is the number of overtones used in our fitting and
u0 is a specifiable “start time” for the model, with any times
that occur before u0 not being included in the fits. Recall
that in this paper we approximate ΔJðuÞ with only the null
memory, ignoring the ordinary memory; this may introduce
some error in our fits to Eq. (59). However, since the
ordinary part’s contribution is fairly minor—roughly 0.3%
that of the null part’s contribution—our fits to the QNMs
should be reasonably accurate. Further, because the QNM
expressions tend to zero as u → þ∞, rather than making
the strain and the memory be equal at their initial values, we
instead make them coincide at the time ufinal. With our
adjusted waveforms, we then fit Eq. (59) to the (2,0) and
(3,0) modes.
We construct fits for the simulation SXS:BBH:0305. We

find the mismatch

M ¼ 1 −
hhlm; h

N
lmi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhlm; hlmihh
N
lm; h

N
lmi

p ð60Þ

between our fits and the memory modes are minimized for
u0 ≈ 0M for the (2,0) mode, while an initial time of u0 ≈
10M is needed to minimize the mismatch for the (3,0)
mode. We believe that the (3,0) mode likely needs a larger
value of u0 because the error in that mode is larger than that
of the (2,0) mode, so the magnetic memory is not as
accurate and thus the QNM model needs to start further on
in the ringdown phase to minimize the effect of this
inaccuracy. In Fig. 8, we present the fit results for the
simulation SXS:BBH:0305 at the optimal fit times u0 as
found by minimizing the corresponding mismatch between
the strain and the fit. The final mismatches for these modes
are then

MðReðh2;0ÞÞ ¼ 4.01 × 10−7;

MðImðh3;0ÞÞ ¼ 6.57 × 10−4:

FIG. 7. Comparison of the retarded time integral of the
imaginary part of the (3,0) mode with the spin memory for a
Norbit ≈ 150 system (SXS:BBH:1412, see Table I).

TABLE III. Spin memory values obtained by computing the retarded time integral of Eq. (56b) and those obtained from the overall net
change in the retarded time integral of the extracted strain spin memory modes. Again, the error that we provide in the final column is
simply the residual between the two highest resolution waveforms.

SXS:BBH:
R

ufinal hð3;0ÞðuÞdu
R

ufinal ΔJ
ðBÞ
ð3;0ÞðuÞdu Error

R

ufinal hð5;0ÞðuÞdu
R

ufinal ΔJ
ðBÞ
ð5;0ÞðuÞdu Error

0305 4.05 × 10−1 3.61 × 10−1 7.24 × 10−5 8.56 × 10−4 9.53 × 10−4 1.22 × 10−5

1155 4.32 × 10−1 3.55 × 10−1 1.53 × 10−4 1.09 × 10−3 1.03 × 10−3 5.85 × 10−6

0554 3.28 × 10−1 2.85 × 10−1 1.21 × 10−5 1.80 × 10−4 2.15 × 10−4 1.70 × 10−5

1412 3.62 × 10−1 3.58 × 10−1 1.42 × 10−4 7.06 × 10−4 7.46 × 10−4 1.39 × 10−6

1389 2.79 × 10−1 2.88 × 10−1 4.13 × 10−2 3.12 × 10−4 3.64 × 10−4 6.92 × 10−5
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G. Signal-to-noise ratios

We now investigate the measurability of the memory by
calculating the signal-to-noise ratios for the displacement
and spin memory effects in a few of the current and planned
GW detectors. We compute the SNR ρ using

ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

Z

fmax

fmin

jh̃ðfÞj2

SnðfÞ
df

s

; ð61Þ

where h̃ðfÞ is the Fourier transform in frequency of the
detector response hðuÞ [see Eq. (62)], SnðfÞ is the noise
power-spectral density (PSD), and fmin and fmax are
frequency limits that are regulated by the chosen PSD.
We construct hðuÞ as

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðu; ι;ϕ0Þ

þ F×ðθ;ϕ;ψÞh×ðu; ι;ϕ0Þ ð62Þ

where Fþ and F× are the antenna response patterns,

Fþ ¼
1

2
ð1þ cos2 θÞ cosð2ϕÞ cosð2ψÞ

− cos θ sinð2ϕÞ sinð2ψÞ; ð63aÞ

F× ¼
1

2
ð1þ cos2 θÞ cosð2ϕÞ sinð2ψÞ

þ cos θ sinð2ϕÞ cosð2ψÞ; ð63bÞ

with θ and ϕ being the spherical coordinates relative to the
observatory’s axes and ψ the angle between the two usual
polarization components hþ and h× and the observatory’s
two axes. The angles ι and ϕ0 are the spherical coordinates
relative to the BBH’s source frame. While these angles
could take on a variety of values, to simplify our compu-
tations, we choose the values that maximize the SNR for the
respective memory observables.
We examine SNRs for LIGO, the Einstein Telescope,14

and LISA using the simulation SXS:BBH:0305, which for
the values M ¼ 65 M⊙ and R ¼ 410 Mpc resembles the
first event that was observed by LIGO:GW150914 [52].
When computing the LISA SNRs, though, we instead use
the mass M ¼ 105 M⊙ to mimic the mass of supermassive
black hole binaries, which places the memory signal near
the bucket of the LISA noise curve. For LIGO SNRs, we
use the updated Advanced LIGO sensitivity design curve
[58], while for the ET and LISA SNRs we use the

FIG. 8. Comparison between the numerical relativity waveform and the N ¼ 7 “QNMþmemory” model for the primary electric and
magnetic memory modes of SXS:BBH:0305. We start the QNM model at u0 ≈ 0M for the (2,0) mode and at u0 ≈ 10M for the (3,0)
mode. The top row shows the strain and its corresponding fit, while the bottom row shows the residual. We also show an estimate of the

error in the CCE waveform, jhCCEðl;mÞ − hCCEðl;mÞj, where h
CCE
ðl;mÞ refers to the highest resolution waveform of SXS:BBH:0305 and hCCEðl;mÞ refers

to the next highest resolution.

14Specifically, the single-interferometer configuration (ET-B).
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sensitivity curve approximations that are shown in Eq. (19)
of [53] and Eq. (1) of [54]. For our SNRs, we only examine
the primary electric and magnetic modes because the other
modes’ contributions are negligible. Furthermore, we find
that it is important to only consider the null memory when
computing SNRs, rather than the strain, because the QNM
frequencies in the strain can contaminate and thus obscure
the memory SNRs, as is illustrated in Fig. 9. In other words,
the hð2;0Þ mode contains higher frequencies due to QNM
oscillations than the ΔJð2;0Þ mode, which just describes the
growth of the memory, and will thus yield a larger memory
SNR than the true memory SNR.
In Table IV, we present the results that we find for these

orientation-optimized SNRs. Alongside the SNRs for the
(2,0) and (3,0) modes, we also provide the SNR for the
(2,2) mode computed using the same orientation that was
chosen for the specific memory mode.
The SNRs that we find are larger, even if only slightly,

than previous calculations that have taken advantage of

either PN or postprocessing methods. Because of this, we
conclude that the memory effect will most likely only be
measured in future observatories or by stacking signals
recorded by LIGO for ∼100 events, which should take
about five years [21,23].

H. Cauchy-characteristic extraction

Finally, we discuss some of the important features of
SpECTRE’s Cauchy-characteristic extraction that need to be
dealt with to successfully extract memory effects. As has
been remarked by Favata and others [19,20,27], as well as
in Fig. 1, numerical relativity simulations that employ
Reggi-Wheeler-Zerilli perturbative extraction or Newman-
Penrose (NP) extraction have so far been unable to resolve
the m ¼ 0 modes, which contain the majority of the
memory effect induced by a BBH merger. Currently, the
reason for this issue is not known. Fortunately, though,
Cauchy-characteristic extraction [55] can succeed.
Unlike the RWZ and NP extraction schemes, CCE takes

the finite-radius world tube information created by a
Cauchy evolution as the inner boundary data for an
evolution of Einstein’s field equations on hypersurfaces
constructed by constant retarded time. Consequently,
gravitational waves can then be computed directly from
Einstein’s equations at future null infinity. Further, since
SpECTRE’s CCE extracts the strain independently of the
news, unlike previous works that have used CCE [25], there
is no need to integrate the news with respect to retarded
time, which introduces ambiguities because of an unknown
integration constant.
Despite the improved precision of the CCE waveforms,

there is a degree of freedom in the procedure that needs to
be dealt with. The characteristic evolution within CCE
allows one field, the strain h, to be (almost) freely chosen
on the initial null hypersurface, and the choice of that field
then influences the waveform at future null infinity.
Consequences of this choice manifest as transient effects
that appear at early retarded times. We can eliminate these
effects by choosing a late enough transition time when
hybridizing the CCE strain with the PN waveform. The
transient effects caused by the choice of h on the initial null
hypersurface were previously explored in [56]. For this
paper, we choose initial data to match the value and first
radial derivative of h from the Cauchy data on the world
tube, using the simple ansatz

hðu ¼ 0; r; θAÞ ¼
AðθAÞ

r
þ
BðθAÞ

r3
: ð64Þ

The two coefficients AðθAÞ and BðθAÞ are fixed by the
Cauchy data on the world tube. The form of Eq. (64) is
chosen to maintain regularity of the characteristic system,
which requires a careful choice of gauge and initial data in
which the ∝1=r2 part vanishes at future null infinity.

FIG. 9. Both of LIGO’s and the Einstein Telescope’s (ET)
amplitude spectral densities (ASD) compared to the strain (2,2)
(black/solid) and (2,0) (black/dashed) modes as well as the
memory’s (2,0) mode (red/dashed).

TABLE IV. LIGO, ET, and LISA SNRs for the most prominent
electric and magnetic memory modes from SXS:BBH:0305. The
LIGO and ET SNRs are for a total mass ofM ¼ 65 M⊙, while for
LISA we use M ¼ 105 M⊙.

Detector Δhð2;0Þ hð2;2Þ Δhð3;0Þ hð2;2Þ

LIGO 2.12 × 10þ0 2.03 × 10þ1 6.36 × 10−2 5.06 × 10þ1

ET-B 3.48 × 10þ1 3.14 × 10þ2 1.05 × 10þ0 7.83 × 10þ2

LISA 1.44 × 10þ2 2.98 × 10þ2 3.16 × 10þ0 7.49 × 10þ2
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As we illustrate in Fig. 10, the initial behavior of the (2,0)
mode of the strain is dependent upon the choice of theworld
tube radius that one makes: a smaller radius results in the
strain becomingmore negative once the junk passes. Similar
to the junk radiation seen around −3700M in Fig. 10, the
initial transient radiation in CCE is a result of numerical
relativity not possessing a complete past history of the binary
system’s evolution. Fortunately, we find that we can remedy
this junk effect by constructing a numerical relativity and PN
hybrid, which starts at a time that corresponds to 4 times the
world tube radius, e.g., u ≈ 400M for rW:R: ¼ 100M, and
extends throughout ∼20% of the numerical waveform. For
the results we presented earlier, we chose to hybridize the
second smallest world tube radius waveform, seeing as this
waveform produced the best agreement between the strain
and the BMS flux-balance strain.

IV. CONCLUSION

When a binary black hole merger emits radiation that
propagates through spacetime toward asymptotic infinity,
persistent physical changes known as memory effects
occur. These changes are induced as a consequence of
BMS flux-balance laws that extend the Poincaré balance
laws. Because these BMS flux-balance laws physically
relate to supertranslations, -rotations, or -boosts, these
changes are called displacement, spin, or center-of-mass
memories. Measuring these memory effects will be an
important test of Einstein’s theory of general relativity.
However, computing the memory produced in a binary
black hole merger requires numerical relativity. Before this
work, studying memory using numerical relativity has been
challenging because many of the memory contributions to
the metric could not be properly resolved.

Using a collection of energy and angular momentum flux
equations, we computed the memory that is induced in
vacuum spacetimes as a function of the radiated strain,
thereby allowing for the complete calculation of both the
electric and magnetic components of the memory effect.
We then verified that the strain and the two Weyl scalars
from SpECTRE’s Cauchy-characteristic extraction obey the
two BMS flux-balance equations that we used to calculate
the memory. While performing this check, we saw that the
primary contribution to the memory comes from the null
contribution, because the simulations in the SXS Catalog
tend to experience no supertranslations or super-Lorentz
transformations. We derived an expression for the null
memory contribution that depends on every one of the
strain modes and on some of the Weyl scalars. We
compared this expression with the well-understood
m ¼ 0 memory modes of the strain, for many simulations
of BBH mergers spanning a variety of input parameters.
Overall, this new expression for the memory effect agrees
with the strain very well, and our comparison works even
for the conjectured oscillatory m ≠ 0 memory modes.
Furthermore, we found that the magnetic component of
the memory, which is believed to be zero, indeed vanishes
to the precision of the corresponding Cauchy simulation.
In addition, we found that we can rather accurately

model the various memory modes as the combination of a
memory signal during the inspiral and merger phases and a
quasinormal mode signal during the ringdown phase. Our
best fits to the two primary electric and magnetic memory
modes offer the possibility that memory modes could
participate in constraining the remnant black hole’s mass
and spin. However, the extent to which the inclusion of the
memory modes can improve parameter estimation remains
a subject for a future investigation.
Last, we found that the memory SNRs for LIGO, the

Einstein Telescope, and LISA are slightly better than
previous expectations. Consequently, memory should be
observable with future detectors or once a big enough
catalog of merger events is obtained by LIGO.
During the past few years, the memory effect was shown

to be equivalent to Weinberg’s soft theorem through a
Fourier transform in time [5,6], thus forming a curious
connection between memory, asymptotic symmetries, and
soft theorems. Because of this, memory can perhaps serve
as an important physical realization of these abstractly
formulated results, and thus may one day help realize the
holographic structure of quantum gravity in arbitrary four-
dimensional spacetimes.
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APPENDIX A: BONDI MASS ASPECT

As was shown in Sec. II B 1, the ordinary contribution to
the electric component of the memory is a function of the
Bondi mass aspect m. Consequently, to compute the
electric memory from numerical relativity waveforms,
one needs to know the Bondi mass aspect in terms of
the strain and the Weyl scalar Ψ2. Using the results that
were obtained by Moxon et al. [30], by rearranging their
Eq. (94e) and converting their notation to ours, we find

m ¼ −Re

�

Ψ2 þ
1

4

_h h̄

�

: ðA1Þ

The notation changes that are needed to convert from

Moxon’s work to ours areW
∘ ð2Þ
→ −2m and J

∘ ð1Þ
→ h̄, since

Moxon takes J
∘ ð1Þ

to have spin-weight þ2 rather than spin-
weight −2, which is our convention.

APPENDIX B: BONDI ANGULAR

MOMENTUM ASPECT

As was shown in Sec. II B 1, the ordinary contribution to
the magnetic component of the memory is a function of the
angular momentum aspect N̂A. Thus, to compute the
magnetic memory from numerical relativity waveforms,
one needs to know the angular momentum aspect in terms
of the strain and the Weyl scalarΨ1. We start by contracting
the Oðr−3Þ part of Eq. (13) with qA, from which we obtain

Uð3Þ ¼ −
2

3
N þ

1

16
ððCABC

ABÞ þ
1

2
qAC

ABDCCBC: ðB1Þ

Using CABC
AB ¼ 2hh̄ and CABDCCBC ¼ Re½qAhð̄ h̄�

[from Eq. (46b)], we can then rewrite Eq. (B1) as

Uð3Þ ¼ −
2

3
N þ

1

8
ððhh̄Þ þ

1

2
h̄ðh: ðB2Þ

According to Bishop et al. [57], Eqs. (8) and (A2),

∂rU ¼
e2β

r2
ðKQ − h̄ Q̄Þ ðB3Þ

for

K ≡
1

2
qAq̄BγAB and Q≡ qAr

2e−2βγAB∂rUB: ðB4Þ

Thus, by examining the Oðr−3Þ part of Eq. (B3), we find

−3Uð3Þ ¼ Kð0ÞQð2Þ − h̄Q̄ð1Þ þ 2β0K
ð0ÞQð1Þ

¼ Qð2Þ − h̄Q̄ð1Þ; ðB5Þ

seeing as β0 ¼ 0 by Flanagan and Nichols’s Eq. (2.9b) [33].
Also, by explicit calculation and Flanagan and Nichols’s
Eq. (2.9a), since qADBC

AB ¼ ð̄ h̄, we can write Q̄ð1Þ as

Q̄ð1Þ ¼ −2Ū ¼ ðh: ðB6Þ

Futhermore, by Moxon et al.’s [30] Eq. (94c),

Ψ1 ¼ −
3

2
ðβ1 þ

1

8
h̄Q̄ð1Þ þ

1

4
Qð2Þ: ðB7Þ

But, since Flanagan and Nichols’s [33] Eq. (2.9c) implies

β1 ¼ −
1

32
CABC

AB ¼ −
1

16
hh̄; ðB8Þ

we then have

Qð2Þ ¼ 4Ψ1 −
3

8
ððhh̄Þ −

1

2
h̄Q̄ð1Þ: ðB9Þ

Combining Eq. (B6) and Eq. (B9), we obtain

−3Uð3Þ ¼ 4Ψ1 −
3

8
ððhh̄Þ −

3

2
h̄Q̄ð1Þ

¼ 4Ψ1 −
3

8
ððhh̄Þ −

3

2
h̄ðh: ðB10Þ

Therefore,

N ¼ 2Ψ1: ðB11Þ

Finally, since contracting Eq. (23) produces

N̂ ¼ N − uðm −
1

8
ððhh̄Þ −

1

4
h̄ðh; ðB12Þ

we can write the angular momentum aspect as

N̂ ¼ 2Ψ1 − uðm −
1

8
ððhh̄Þ −

1

4
h̄ðh: ðB13Þ

As is shown in Secs. II B 2 and II B 3, we primarily care
about real and imaginary components of this function,
which are easily found from Eq. (B13) to be

Reðð̄ N̂Þ ¼ Re
h

2ð̄Ψ1 −
1

4
ð̄ðh̄ðhÞ

i

−D2

	

umþ
1

8
hh̄




; ðB14aÞ

Imðð̄ N̂Þ ¼ Im
h

2ð̄Ψ1 −
1

4
ð̄ðh̄ðhÞ

i

: ðB14bÞ
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APPENDIX C: CM MEMORY

When calculating our expressions for the total memory,
we briefly mentioned in Sec. II B 3 how the electric
memory can be seen to contain terms relating to the CM
memory. Currently, we are unaware of an explicit formula
for the CM memory. For now, though, we present evidence

for the CM memory effect in the waveforms produced by
numerical relativity. As can be seen in Fig. 11, while there
is no displacement memory present in the mode shown, the
energy flux term indicates that when integrated with respect
to retarded time this contribution will produce a memory
effect, which is exactly the CM memory effect.
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