BIPARTITE HANSEL RESULTS FOR HYPERGRAPHS
GREGORY CHURCHILL AND BRENDAN NAGLE

ABSTRACT. For integers n > k > 2, let V be an n-element set, and let (‘;) denote the set of all k-
element subsets of V. For disjoint A, B C V, we say {A, B} covers K € (Z) if K C AUB and K meets
each of A and B, i.e., KNA# 0 # KN B. We say that a collection C of such pairs {A, B} covers (‘;)
if every element of (‘]g) is covered by at least one member of C. When k = 2, such a family is called a
separating system of V', where this concept was introduced by Rényi [17] and studied by many authors.

Let h(n, k) denote the minimum value of 2 4 py¢cc(lA|+|B]) among all covers C of (Z) Hansel [6]
determined the bounds [nlogy n] < h(n,2) < nflogy n], and Bollobés and Scott [I] determined an exact

formula for h(n,2). We extend these results to give an exact formula for h(n, k), and to guarantee that

all optimal covers C of (‘;) share a common degree-sequence. Our proofs follow lines of Bollobds and

Scott, together with weight-shifting arguments in a similar vein to some of Motzkin and Straus [12].

1. INTRODUCTION

We consider a hypergraph version of a classical result of Hansel [6], and of a more recent result of
Bollobas and Scott [I]. For that, fix integers n > k > 2 and an n-element vertex set V, and let (‘g)
denote the set of all k-element subsets of V. For disjoint A, B C V, we say {A, B} covers K € (‘;) if
K C AUB and K meets each of A and B, i.e., KN A # () # KN B. We say that a collection C of such
pairs covers (is a cover of) (‘2) if every element of (Z) is covered by at least one member of C. Rényi [17]
introduced covers C of (‘2/) as separating systems of V, where every pair u # v € V is separated by some
{A, B} € C, in the sense that u € A and v € B or vice versa. Separating systems were since well-studied
(see, e.g., [1, 3-11, 13-20]), and the following particular results motivate some of our current work.

Rényi [I7] observed that [log,n] members are necessary and can suffice for C to be a separating
system of V. For necessity, the chromatic number of the union Ky = (A, B}ec K|[A, B] satisfies

n=xtkv)=x( U KB)< [ x(K14B)=2°, (1)
{A,B}eC {A,B}eC
For sufficiency, set m = [log, n] and let v — v be any injection from V to {0,1}™. For each 1 <i <'m,
set A; ={v eV :v(i)=0}and B; = {v € V : v(i) = 1}, where v(i) denotes the i*" coordinate of v.
Then C = {{A1,B1},...,{Am, Bn}} is a separating system of V since, for each u # v € V, the vectors
u # v disagree on a coordinate 1 < i < m, whereby {A;, B;} separates u and v.
Hansel [6] considered a weighted version of Rényi’s result above, where we prepare a definition for
k > 2. For a cover C of (}), define the weight w(C) of C by w(C) = > (a,yec(Al+1B]), and set h(n, k)
to be the minimum weight w(C) among all covers C of (‘,ﬁ) Hansel established the following bounds.
Theorem 1.1 (Hansel (1964), [6]). For all integers n > 2, it holds that [nlogy n] < h(n,2) < n[log,n].

Independently, Krichevskii [I0] proved a result similar to Theorem and Katona and Szemerédi [9]
rediscovered Theorem in the context of a diameter problem in graph theory. Bollobds and Scott [I]
improved Theorem [1.1] to the following exact formula for h(n,2).

Theorem 1.2 (Bollobds and Scott (2007), [I]). For an integer n > 2, set p = |logyn| and R = n — 2P.
Then, h(n,2) = np + 2R.
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Extending Theorem [L.1]to (sharp) bounds for h(n, k) is not difficult (see [4]). Extending Theorem[L.2]
to a formula for h(n, k) seems less straightforward, and this is our current focus.

Theorem 1.3. For integers n > k > 2, set ¢ = |n/(k—1)], r = n—q(k—-1), p = |logyq], and
R=q—2P. Then,
hn,k) = np+ 2R(k — 1) + [g21] (r + k — 1). 2)

Our proof of Theorem gives slightly more information on optimal covers C of (}), i.., those
with w(C) = h(n, k). For that, we define the C-degree deg.(v) of v € V as the number of {4, B} € C
to which v is incident, i.e., v € AUB. Arranging these degrees in non-increasing order, we define
d(C) = (dege(v))vev to be the degree-sequence of C. We prove that all optimal covers C of (Z) share
common degree-sequence D = D,, i, € {p,p + l}V with j*® coordinate, 1 < j < n, given by

D(j)=p+1 =  1<j<2Rk-1)+[5]0r+k-1). (3)

Theorem 1.4. Let C be an optimal cover of (Z) Then, d(C) = D is given by (@)

We now discuss our proofs of Theorems and To begin, the integers k, n, p, ¢, r, and R from
the hypothesis of Theorem are henceforth referenced by

—=a=2"+R, where 0 < r <k —1, and where 0 < R < 2P, (4)

and the n-element set V' is always fixed. To prove Theorem we proceed along the following steps,
not all of which are difficult. In Section [2| we give a straightforward extension of Rényi’s construction
(from earlier in the Introduction) to establish the formula in as an upper bound on h(n, k).

Proposition 1.5 (the upper bound). Let integers k, n, p, q, r, and R satisfy , and let V' be an
n-element set. There exists a cover Cy of (Z) with weight

w(Co) = np+2R(k — 1) + [ 55| (r + k- 1).

For the lower bound on h(n, k), we split the formula in into two cases, depending on whether or
not 7 = 0. In Section [3] we follow an elegant approach of Bollobds and Scott [I] for Theorem [1.2] to
prove the following lower bound on h(n, k).

Theorem 1.6 (a lower bound). Let integers k, n, p, q, v, and R satisfy (4). Then, h(n,k) > np +
2R(k — 1) + 2r, whereby Theorem holds when r = 0. Moreover, Theorem holds when r = 0.

The bound in Theorem is sharp if, and only if, » = 0. The majority of this paper is devoted to
improving the bound of Theorem [I.6] for » > 1, which we ultimately complete in Section

Theorem 1.7 (the lower bound when r > 1). Let integers k, n, p, q, r > 1, and R satisfy . Then,
h(n,k) > np+2R(k — 1) + 1 + k — 1, whereby Theorem[1.3 holds. Moreover, Theorem[1.4] holds.

Our proof of Theorem[I.7] follows lines from the proof of Theorem[I.6] We also use structural results on
optimal covers given in upcoming Lemmas [£.4) and These tools depend on weight-shifting arguments
not unlike some of Motzkin and Straus [12] (see also [2]). Lemmas and may be of independent
interest, but we were unable to avoid their use here.

Acknowledgment. The authors are indebted to the meticulous reading of the Referees, whose invaluable
suggestions lead to an improved presentation of this paper.

2. PROOF OF PROPOSITION

Fix integers k, n, p, q, v, and R satisfying . We extend the approach of Rényi of mapping vertices
v — v to vectors. Fix any partition IT: V = XjU...UXss into 2P many classes, where | X;| = 2(k — 1)
if1<i<R, |Xi|=r+k—1ifi=R+1,and |X;] =k—1if R+2<i < 2?. Since

@Uh—1) xRy +r+k—1+ ((h—1) x (@ — (R+1))) @,
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such a partition IT exists. Fix an arbitrary bijection X; — @; from II to {0,1}?, and define v — v by
setting v = ; if, and only if, v € X;. We next use v — v to define the promised collection Cy.
Foreach 1 <j<p,set Aj ={veV:v(j) =0} and B; = {v € V : v(j) = 1}. Then |A;| + |B;| =n.
For each 1 <i < R+ 1, let X; be subdivided as X; = Y;UZ;, where |Y;| = k — 1. Set
[ Y1U...UYg when R#0, [ Z;U...UZr when R#0,
Ap1 = { 0] when R =0, and - By = 0 when R = 0.
Then |Api1| + |Bpy1] = 2R(k —1). Set

| Ygy1 when r #0, | Zg41 whenr #0,
Apya = { 0  whenr =0, and - By = ®  whenr=0.

Then, |Apta| + |Bp+2| = [r/(k — 1)](r + k — 1). Define Co = {{A41,B1},...,{Apt2, Bp+a}}, where
p+2
w(Co) = Y (|4;] + |Bj|) = np+ 2R(k — 1) + [ 55| (r + k = 1).
j=1

To see that Cy covers (‘;), fix K € (Z) and consider two cases. First, assume K meets distinct X},
and X; from II. Fix u € KN X} and v € KN X;, whereby u # v disagree on some coordinate 1 < j < p.
Then {A;, B;} € Cy separates u and v, and since A;UB; =V D K, the same {A;, B;} € Cy covers K.
Second, assume K C X, for some 1 <14 < 2P. Then 1 <i < R+ 1, since otherwise |X;| = k — 1 is too
small. Then K C X; = Y;UZ;, where |Y;| = k — 1 and |Z;| € {r,k — 1} are each too small for either
Y; D K or Z; O K. Thus, {Y;, Z;} covers K, and hence so do one of {A,11, Bp+1}, {Ap+2, Bp+2} € Co.

Remark 2.1. In the context of Proposition the cover Cg is not unique. For example, when R > 2
replace {Apy1, Bpyi1} with {Y1,Z1},...,{Yr, Zr}.

3. PROOF OF THEOREM

In Section we prove the former conclusion of Theorem [L.6] that h(n, k) > np+2R(k —1)+2r. In
Section [3:2] we isolate some details of this proof that we wish to apply later in this paper. In Section[3.3
we prove the latter conclusion of Theorem [T.6} that Theorem [T.4] holds when r = 0. Throughout this
section, integers k, n, p, q, r, and R satisfy , and V is a fixed n-element set.

3.1. Former conclusion of Theorem We follow an elegant approach of Bollobéds and Scott [I].

Fix an arbitrary cover C of (‘;), and for simplicity of notation in this argument, write d,, = dege(v) for

the C-degree of v € V, and write d = d(C) for the degree-sequence of C. Standard double counting gives
_ _ _ def 1 _ w(C)
Sdo= Y (A+IB)=w@), ad  a=a@ %Y 4= (5)
vEV {A,B}eC veV
denotes the average degree in C. For sake of argument, we assume that
a<p+1, (6)

since otherwise we would have
- (@
wlC) = an > (p+l)n=np+n=np+ 2P+ R)(k—1)+r

>np+ R+1)(k—1)+r=np+2R(k—-1)+r+k—1, (7)
which already exceeds np + 2R(k — 1) + 2r on account of 7 < k — 1 in (4).
The following ideas have roots in [I}, [0, 13]: independently for each {A, B} € C, set
7 [ V\A with probability 1/2, (8)
{AB} =1 v\ B with probability 1/2.
Set Z = ﬂ{A,B}eC Z{a,By, which is a random subset of V' whose expected size we now analyze. On the
one hand, C covers (Z), so no k-tuple K € (‘Ig) can forever survive , i.e., belong to Z. Consequently,
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|Z] < k —1 and thus E[|Z]] < k — 1. On the other hand, linearity of expectation gives E[|Z]|] =
> vev Plv € Z], where the event v € Z holds if, and only if, the independent events v € Z;4 gy (cf. )
hold for each of the d, many elements {A, B} € C to which v is incident. Thus,

BjZ) =3 (;) <k-1 (9)

veV

Applying the Arithmetic-Geometric Mean Inequality to @D yields

_ dv 1/n "
k—1 > 1 Z <1> > (Q_Zvevdv) 9« — a> 10g2( i ) > p. (10)

n n 2 k—1
veV

We continue with a key idea of Bollobds and Scott [1I]: in @, replace d = (d,)yey with a positive
integer sequence e = (e, ),ey satisfying the following properties:
(@) Dpev €o =2 ey dv; d
€y v
() Yoev (3) " < Xuev (3)™
¢) lew —ez] <1forall w,xz V.

To construct e = (ey)yev, fix w,z € V. An easy calculation reveals that

1 dy 1dw 1dx71 ldw+1
dz>dw 1 o “a Z “a “ 9 11
s = () ) 26) () o

where equality holds in one iff equality holds in both. Now, if d, > d,, + 2, we replace d, in d with
d = d, — 1, and we replace d,, in d with d/, = d, + 1. The resulting sequence d' clearly satisfies
Property (a), and by it also satisfies Property (b). Iterating such replacements on d’ eventually
yields a sequence e which also satisfies Property (c).

We claim e assumes only the values p and p + 1. Indeed, Property (c) guarantees e assumes at most
two values e and e + 1 (and e when e is constant). Property (a) gives

1 1
EZev—ﬁZdU—a, (12)
veV veV
soe=[(1/n)> ,cyev] = [a]. Since @ and givep<a<p+l,
e=lal =p. (13)

We now conclude the proof of Theorem[L.6} Set V= ={v eV :e, =p}and V¥ ={v e Ve, =p+1}.
Property (b) and (9) yield

1\” 1\ 7! 1\ %"
vI(3) () =X (3) ske1 = avieptsrte-n

veV
or equivalently (using |V~ =n — [V T|)
[V >2n -2k —1)=2(n—2P(k—1)) = 2(R(k — 1) +7r) = 2R(k — 1) + 2r. (15)

Thus, by and Property (a), we conclude with
(15)
W) = dy=>Y e=pV |+ @+ 1)V =np+[V'] g np + 2R(k — 1) + 2r. (16)
veV veV

3.2. Notes. We have now proven both Proposition[I.5|and the former conclusion of Theorem[I.6] These
combine to say (with k, n, p, ¢, 7, and R satisfying ) that

np+2R(k —1)+2r < h(n,k) <np+2R(k—1)+ [ |(r+k—1). (17)

Recall that C in Section was an arbitrary cover of (Z) Below, we revisit @, 7 and @) when C is
assumed to be optimal (but where &, n, p, ¢, 7, and R remain fixed by )
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Fact 3.1. Let C optimally cover (Z) Then the average degree o of C (cf. @) satisfies p < a < p+ 1.
Moreover,a =p <= r=R =0, anda =p+1 < R=2P—1and h(n, k) = np+2R(k—1)+r+k—1.

Proof of Fact[3.1. We shall often use the identities an = w(C) = h(n, k), which hold by and the
optimality of C. We showed o > p in (10), and & = p <= r = R = 0 is immediate from .
If « > p+1, then @ would contradict. Similarly, if &« = p + 1, then would have equality
throughout, which gives R = 27 — 1 and h(n,k) = w(C) = np + 2R(k — 1) + r + k — 1. Finally, if
R=2"—1and h(n,k) =w(C) =np+2R(k —1)+r+k — 1, then

(a —p)n

from which o = p + 1 follows. O

Fact 3.2. Let C optimally cover (Z) Then,

B ) e (- ())

veV

Proof of Fact[3.34 We separate the cases of & < p + 1 (cf. Fact [3.1] . If a = p+ 1, then Fact [3.1] u says
R =27 —1,and so in (4) we have ¢ = (n —r)/(k — 1) = 2P™1 — 1. Thus (10) yields

2() () ey (G) e (1 ()7) 6

as desired. Henceforth, we assume p < o < p+ 1 (cf. Fact [3.1), but we suppose

1 dy 1 p+1 1 p+1
- <r|= k-1 |1-1(= . 18
() <) +en(-6) o
veV
Construct e = (ey)yecy precisely as in so that e assumes at most two values, which are still p and
p+1 (by Fact [3 . ., and . ). By Property ) and ., we infer

CES B R0 ) e[ ))

or equivalently (cf. (L5)), [V*| > 2R(k — 1) + k — 1 +r. By Property (a) (cf. (16)),
h(n,k) =w(@) =p|lV |+ @+ DIV =np+|VT|>np+2Rk—-1)+k—1+r,
which contradicts (17). O

3.3. Latter conclusion of Theorem [I.6] The proof is similar to that of Fact [3:2] Assume now that
r = 0, but that k, n, p, ¢, and R are otherw1se fixed by (4| . We use that h(n,k) = np + 2R(k — 1),
which follows from . Now, let C optimally cover (Z) with degree-sequence d = d(C) = (dy)vev, but
assume for contradiction that d # D (cf. ) Using Fact C has average degree p < a < p+ 1,
where o = p + 1 is forbidden by h(n, k) = np + 2R(k — 1). We again construct e = (e, ),cy precisely as
in , and observe that (once appropriately ordered) e = D. Indeed, revisiting ,

np+2R(k —1) = h(n, k) =w(C) =np+ |V,

so that e € {p,p + 1}V has precisely 2R(k — 1) many (p + 1)-digits. Since d # D = e, there must exist
z,w € V with d, > d,, + 2. As such, strict inequality holds throughout 7 and so strict inequality
holds throughout (14)—(16). Now, w(C) > np + 2R(k — 1) = h(n, k), contradicting the optimality of C.
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4. ToOLS FOR PROVING THEOREM

Our proof of Theorem follows lines from Section |3 where the set Z from continues to play a
critical role. Here, we will work with specialized optimal covers C which admit structural information
on these sets Z. This structure is described formally in upcoming Lemmas [.4] and but we first
describe it informally in (¢) and (i) below. For that, we again consider the context of Section [3] where
Z is from , and where we fix an arbitrary {A, B} € C. Suppose Z meets AUB, i.e., Z N (AUB) # 0.
It is not possible for Z to meet both A and B, but it is possible for AUB to miss some of Z. We prefer
to avoid the concurrence Z N (AUB) # () # Z \ (AUB), and therefore seek optimal covers C whose every
outcome Z from satisfies

(i) for each {A, B} € C, either Z C A, or Z C B, or Z N (AUB) = ).
In this context, deg.(Z) is well-defined, but we wish to say more. We want for C to also satisfy that
(#4) whenever deg.(Z) < a = «(C) is below the average, then |Z] = k — 1.
In Section we restate (7) and (i7) formally in order to prove that such optimal covers exist, and to
apply them to the context of Theorem In Section we give a few other related but easy facts.

4.1. Formalizing (¢) and (7). To develop (i), we fix a cover C of (Z), and describe the sample space
of (8)) as follows. Fix symbols a and b, and let {a,b}¢ denote the set of all functions ¢ : C — {a,b}. For
¥ € {a,b}¢ and {A, B} € C, define

V\NA ifyY({A,B}) =a,
Z?A,B} = { VEB i w((EA,B}i)) _ b, and define Zy = ﬂ Z}(’Z’AB}. (19)
{A,B}eC

Then arises when 1 € {a,b}C is chosen uniformly at random. Below, we consider all such instances.

Definition 4.1 (surviving sets). Let V, C, and {a,b}¢ be given as above. For ¢ € {a, b}, we call Z,
in the surviving set (w.r.t. 1) of C. We call Z = Z(C) = {Zy : ¥ € {a,b}“} the surviving family of
C. Since () € Z is possible, we write Z* = Z \ {f} for the non-empty surviving sets of C.

The following remark suggests some relevance of properties (i) and (i¢) and Definition
Remark 4.2. In the context of (8], we may use the notation from Definition to rewrite (9) as

Ellz)| =27 > [zl =Y (1Za]-P[Z = Zs)), (20)
pef{a,b}C Zy€EZ

where for each Zy € Z, the quantity 2/°/P[Z = Zy] counts the number of functions ¢ € {a,b}¢ for
which Z,, = Zy. Thus, if C satisfies property (i) above, we may further infer

E[|Z|] = Z (|Z\IJ| .2—degc(Z\p))7 (21)
Zy€EZ

because for each Zy € Z, precisely 2/¢1=dec(Z%) many functions ¢ € {a,b}° satisfy Zy = Zy. Note
that (ii) adds that terms Zy € Z of degree below average each contribute [Zy| =k — 1 to (21). O

To continue developing (i), we define the equivalence relation ~¢ on V by setting u ~¢ v if, and only
if, for each {A, B} € C,

u,v € A, or  u,vE€ B, or  {u,v}N(AUB) = 0. (22)
We use the following terminology and notation for the equivalence classes S of ~¢.

Definition 4.3 (bones, skeleton). Let V, C, and ~¢ be given as in . We call the family S = S(C)
of equivalence classes of ~¢ the skeleton of C. We call the elements S € S the bones of C.

The following lemma (proven in Section [6)) implies (i) in the language of Definitions [4.1] and

Lemma 4.4. For every cover C of (Z), there exists a cover C of (‘2) so that the following hold:
(1) for each v € V, we have degs(v) < dege(v), and so w(C) < w(C) (cf. @),
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(2) the skeleton S and surviving family Z of C satisfy Z2* = S.
In light of Lemma we shall call any optimal cover C of ( ) with Z*(C) = S(C) a strong cover.

Remark 4.5. Every finite set V' admits a strong cover C of ( Indeed, applying Lemma H to an

optimal cover C yields a strong cover C since w(é) < w(C) = h(n, k) must have equality. In particular,
C must satisfy degs(v) = deg(v) for each v € V, in which case C and C are degree-equivalent. O

We now restate (ii) in the terminology above (which we prove in Section [9).

Lemma 4.6. For a finite set V, let C be a strong cover of (Z) Then every bone S € S with degy(S) <
a = a(C) below the average has maximum size |S| =k — 1.

4.2. Shifting facts. To prove Theorem we also use the following elementary ‘shifting” mechanisms
(defined for arbitrary covers C), together with some elementary consequences.

Definition 4.7 (shifting). Let V', C, and S be given as in Definition Fix a bone S € S, and fix a
subset U C V'\ S. For {4, B} € C, the following sets are well-defined by (22)):

4 ._fAUU  ifSca, 1 B ._J BUU fSCB
UST\ A\U ifSNA=0, an US=\ B\U ifSNB=0.

Define Cf; g = {{Auv.s, Bus} : {4, B} € C} and Cy,s = {{U, S}} UC g, to be S-shifts of U in C.

Remark 4.8. It may happen that elements {Ay g, By s} € C{y s repeat, making Cf; ¢ a multiset, or that

|Av.s|+|Bu,s| < k (or |[U|+|S| < k), making such elements ineffective toward covering (} ). Nonetheless,
we leave Cf; ¢ and Cy,s as is, and maintain the obvious and herein pervasively used identities

degc;,S(U) = degcé’S(S) = deg¢(9) = dech7S(S) -1= degCU)S(U) -1, (23)
and dege. (v) = dege,, ;(v) = dege(v) for allv € V'\ (UUS). O
Moreover, sometimes we ‘shift’ when the set U (originally disjoint from S) is, in fact, disjoint from V.

Definition 4.9 (immersion). Let V', C, and S be given as in Definition Fix a bone S € S, and let
W be a set which is disjoint from V. For {A, B} € C, define

AUW  ifSCA BUW ifSCB
w,Ss _ = ) w,S _ = )
A —{ A ifSNA=9, and B _{ B ifSnB=0.

Define C>5 = {{W, S}} U {{A™5, BV5} : {A, B} € C} to be the S-immersion of W into C.
The following elementary fact (verified in the Appendix) is easy to prove from the definitions above.

Fact 4.10. Let C, Cy,s, Cfy ¢ and CYS be given as in Deﬁnitions and . The following hold:

(a) Cy,s covers (‘Ig) whenever 1 < |U| <k—1=|5].

(b) When Cy,g covers (Z), it has weight w(C) + [U| + [S] + 3 ,cp (dege(S) — dege(u)).

(c) When Cf; 5 covers (‘Ig), it has weight w(Cp; g) = w(Cu,s) — [U] = |S].

(d) ¢™'% covers (VL,JCW) whenever 1 < |W| < k—1 = |S|, and has weight w(C)+|W|(1+deg(5))+S].

5. PROOF OF THEOREM

Let integers k, n, p, ¢, » > 1, and R satisfy , and let V be a fixed n-element set. We prove
Theorem by induction on 2P — R > 1, and begin with the base case.
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5.1. base case: 2P — R = 1. In Proposition below, we prove all conclusions of Theorem si-
multaneously for 2P — R = 1 and r > 1. For this, all optimal covers C of (‘Ig) have common weight
w(C) = h(n,k), and thus common average degree a = a(n, k) = (1/n)h(n,k) (cf. (5)). Fact gives
that p < a <p+1, and that « = p+ 1 implies h(n,k) = np + 2R(k — 1) + r + k — 1. Thus, we prove
that & = p + 1 necessarily holds when R =2P — 1 and r > 1, and in the following strong form.

Proposition 5.1. Letk, n, p,q,7>1, R=2P -1, and V be given as above. Then, all optimal covers
C of (Z) are (p + 1)-regular, i.e., dege(v) =p+1 for allv e V.

Proposition [5.1] gives all conclusions of Theorem when R = 2P — 1 and r > 1. Indeed, the first
conclusion h(n, k) = np+ 2R(k — 1) +r + k — 1 is guaranteed (via Fact by @ = p+ 1. The latter
conclusion (on the number of (p + 1)-digits of d(C)) is trivial since gives precisely

SR(k— 1) +r+k-1=Q2QR+1)(k-1D4r=2P+R)(k-1)+rZn

many (p + 1)-digits of D € {p,p+ 1}V (when R =27 —1 and r > 1).

Proof of Proposition . Assume, on the contrary, that there exist optimal covers C of (‘g) which are
not (p + 1)-regular. From this hypothesis, we shall derive a contradiction proving Proposition For
this, observe that we may restrict our attention to strong covers C of (‘;) Indeed, if C is an optimal
cover of () which is not (p + 1)-regular, then the strong cover C of (}) guaranteed by Lemma [4.4| is
optimal and also not (p + 1)-regular, because C and C are degree-equivalent (cf. Remark . Thus,

we assume that there exist strong covers C of (‘Ig) which are not (p + 1)-regular. (24)

Below in , we choose a particular such strong cover C® with which to derive the promised contradic-
tion, but for this we require several preparations.

First, Fact ensures that an optimal cover C has (common) average degree p < o = a(C) < p+ 1,
where o = p is forbidden by r > 1 and by R = 2P — 1. Second, for an optimal cover C of (‘2), define

V_(C) = {v:degec(v) <p}, W(C)={v:dege(v)=p+1}, Vi(C)={v:dege(v)>p+2}. (25)
Note that
V_(C) # 0, (26)

since otherwise a < p + 1 then requires V. (C) = @), while we focus on optimal covers C which are not
already (p + 1)-regular. Third, observe that

when C is strong, every bone S € S(C) of C with S C V_(C) has size |S| =k — 1. (27)

Indeed, when S C V_(C) is a bone, then deg(S) < p < a = «(C) holds in a strong cover C, and so
Lemma [4.6] ensures |S| = k — 1. (In particular, every v € V_(C) # 0 (cf. (26)) belongs to a bone S = S,
of size |S| = k — 1.) Finally,

we choose C = C° to minimize |V (C)| among all

strong covers C of (Z) which are not (p + 1)-reqular (cf. ) (28)

We proceed with the following claim.
Claim 5.2. The strong cover C® chosen in (28) satisfies |V,.(C°)| < k — 1.

Proof of Claim[5.9 Assume, on the contrary, that [V, (C®)| > k. Fix any subset U C V. (C°) of size
|U| = k — 1, and fix any additional vertex vy € V,.(C°) \ U. Since V_(C°) # 0 by (26), fix any bone
S € §(C°) of C* satisfying S C V_(C®). Then gives |S| = k — 1, and so Statements (a) and (b) of
Fact say that Cf; ¢ covers (‘;) with weight

w(Chs) = w(C) + U+ S|+ Y (deges (S) — deges () < h(n, k) + |U| +|S| = 2|U| = h(n, k),
uelU
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where we used dege.(S) < p (from S C V_(C®)), degeo(u) > p+ 2 for each u € U C V. (C°), and
|U| =|S| =k — 1. Then Cf; ¢ is an optimal cover of (‘2), where gives

(25)
degcgys (U) = degcgﬁs(S) =1+4dege.(S) < p+1, while degcgys(v) = dege. (v) (29)

holds for each v € V'\ (UUS). (In particular, degeo (v0) = degeo (vo) > p + 2 holds for the fixed vertex
vo € V4 (C°) \ U, which will be important in a moment.) Thus,

Vi(Chs) = Vi(C)\U = Vi (Cs)l = V4 (CO)| = (k= 1) < [V4.(C7)I- (30)

To the optimal cover Cy; g of (‘2), we apply Lemmato obtain the strong cover CAES of (‘]:) Remark

says that (:'f, s and Cf; ¢ are degree-equivalent, and so

Vi(Chs) = Vi(Chs) = Vi (Cs)l = Vi (Ch )l < VA (CO)- (31)

Now, CA[O] g is a strong cover of (Z) satisfying l) which is also not (p+ 1)-regular, since the fixed vertex
vo € V4 (C®)\ U still satisfies (cf. Remark and (29))

degég,s(vo) = degey _(vo) = degeo(vo) = p+2.
Now, strict inequality in contradicts our choice of C° in . O

For the remainder of the proof, we consider no further alterations to the strong cover C° of (‘g) chosen

in (28), so we relax the notation C® to C. We then relax the notation in (25 to Vo = V_(C), Vo = Vo(C),
and Vi =V, (C), and we write S = S(C) for the skeleton of C. Since each of V_, Vj, and V. is defined
in terms of C-degrees, each of these sets is a union of bones S € S. Analogously to , define

S_={SeS: SCV_}, So={5e€S: SCVW}, Sy ={5eS: SCV,;}, (32)
where we claim the following inequality.
Claim 5.3. |Sp| > 2Pt —|S_| — 1.

Proof of Claim[5.3 Indeed, gives |[V_| = (kK — 1) - |S_]|, and since every bone S € S has size
|S| < k—1, we similarly have |Vg| < (k—1)-|Sp|. As such, and to n = [V_|+|Vy|+ |V4 |, Claim[5.2] adds

(k=1)-[Sol = [Vo| =n— [V_| = V4| =2 n— V| = (k= 1)
—n— (k=S |~ (k-1 >n—r—(k—1)[S_| - (k—1),

where the strict inequality holds from r > 1. Thus, with R =27 — 1 in , the inequality above gives

[Sol > 22— IS 1@y R s —1mt s -2,
and Claim follows from the strict inequality above. O

We now conclude the proof of Proposition Since C is a strong cover of (Z), its surviving family
Z = Z(C) consists of the skeleton S, together with possibly the empty set. Now, consider the random
surviving set Z = Z,, € Z obtained by selecting ¥ € {a,b}¢ uniformly (cf. Remark . Then

1=P[Z=0]+P[ZeS|=P[Z=0]+P[ZeS_|+P[ZecS|+P[ZeS,]

=PZ=0]+P[ZeS]+ > PZ=S]+> PZz=5]. (33)
SeS_ SeSy
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For each bone S € S = Z*, we have that P[Z = S] = 1/29°8c(5) (cf. ), and so we infer from ,
, , and Claim that

1\? 1\
1>PZ=0+P[ZeS:]+|S_]| (2) + |Sol (2>

2 P2 = 0] +P[Z € S4] 415 <;>p+ (241~ |5 | - 1) @)pﬂ

:P[Z:(Z)}+1P’[Ze$+]+1+2p%(|8_|—1). (34)

Now, it is necessarily the case |S_| < 1, where [S_| = 0 isn’t possible by (26)). Thus, |S_| = 1 and so
P[Z = 0] = P[Z € S4] = 0, in which case Sy = 0. Now, |S_| = 1 implies that S_ consists of a single
(k — 1)-tuple (cf. ([27)) of vertices of (common) degree at most p, and all other vertices have degree
precisely p + 1. As such,

hin,k) =w(C) < (k—1)p+(n—(k—-1)p+1)=n(p+1)—(k—1)=np+2Rk—-1)+r

because n(p+ 1) = np+2R(k — 1) +r+k —1 when R = 2° — 1 (cf. ({@)). Since r > 1, the bound
h(n,k) <np+2R(k — 1) + r contradicts the bound h(n, k) > np + 2R(k — 1) 4+ 2r of Theorem

5.2. inductive step: 2P — R > 1. For the inductive step, we verify the former and latter conclusions
of Theorem [I.7] separately, and begin with the former.

Former conclusion of Theorem , To prove h(n,k) > np+2R(k—1)+r+k — 1, we use the following
recurrence, which holds when 0 < R < 2P — 1, and whose proof we give in a moment:

h(n,k) > hin+k—1,k) — (k—1)(2+p). (35)

Now, recall from that n = q(k— 1)+ 7, where 1 <r <k-1,¢=2"4+ R, and 0 < R < 2P — 1.
Thus, n + k —1 = (¢4 1)(k — 1) + r has the same modular remainder r, and ¢ + 1 = 27 + (R + 1)
has the same exponent p, but ¢ + 1 has remainder 1 < R+ 1 < 2P — 1 w.r.t. base 2 expansion. Thus,
1<2P — (R4 1) < 2P — R, and we may apply induction to h(n + k — 1, k) to conclude from that

h(n,k) > (n+k—-1)p+2(R+1)(k—-1)+r+k—-1—-(k—1)2+p)=np+2Rk—-1)+r+k—1

To prove , let C be a strong cover of (‘;) (cf. Lemma, and let C have average degree o = «(C).
Fact ensures that p < a < p+ 1, where o = p is forbidden by > 1, and o = p + 1 is forbidden by
R < 2P — 1. Thus, some bone S € § = §(C) satisfies deg.(S) < p < « in the strong cover C, and so
Lemma ensures that |S| = k — 1. Let W be a set of [IW| = k — 1 new vertices, and let C""*% be the
S-immersion of W into C. Then Fact (Statement (d)) ensures that C"¥ covers (Viw) with weight

w(€™®) = w(C) + (k = 1)(2 + degc(S)) < h(n, k) + (k= 1)(2 +p), (36)
where we used deg(S) < p. Since w(C™¥) > h(n + k — 1, k) holds by definition, (35) follows.

Latter conclusion of Theorem[I.7. We continue with the considerations above, where C is a strong cover
of (‘,ﬁ), S €8 =38(C)is a (k—1)-bone of C with degree deg.(S) < p, and C"*° is the S-immersion of a
set of k — 1 new vertices W into the cover C. In , we observed that

Bn+ k= 1K) < w(C%) = w(C) + (k — 1)(2 + dege(S)) < h(n, k) + (k—1)(2+p),  (37)

where n + k£ — 1 has the same modular remainder r, where ¢ + 1 has the same exponent p, but where
¢ + 1 has remainder 1 < R+ 1 < 2P — 1 w.r.t. base 2 expansion. Since Theorem [I.3]is now proven in
full, we apply it to both sides of to obtain

(n+k—1p+2R+1)(k—1)+r+k—1<wC"%) <np+2R(k—1)+r+k—1+(k—1)(2+p), (38)
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and so equality holds throughout and . Thus, C"+* is an optimal cover of (V%W), and it is

necessarily the case that deg.(S) = p. Since CW+* is optimal with 22 — (R + 1) < 2P — R, induction

guarantees that its degree sequence d(C"*%) is the unique D, x—1x € {p,p + 1}VY" with precisely
2R+1)(k—1)+r+k—1=2Rk—-1)+r+k—-14+2(k—-1)

many (p + 1)-digits (cf. ) We now compare the sequences d(C">*) and d(C), which by Definition
differ only on the |W U S| = 2(k — 1) many coordinates corresponding to W U S. First, each (W U S)-
coordinate of C"*° is a (p + 1)-digit, since we observed that deg.(S) = p, where Definition gives
degow.s (WU S) =1+ dege(S). Second, the |[W| = k — 1 many W-coordinates of d(C"+¥) don’t appear
in d(C) at all. Third, the |S| = k — 1 many S-coordinates of d(C""¥) do appear in d(C), but as p-digits
(as noted above). Thus, d(C) consists of precisely
SR(k—1)+r+k—1+2k—1)—2k—1)=2R(k —1) +r+k—1

many (p + 1)-digits, and all remaining coordinates are p-digits, making d(C) = D,, . € {p,p + 1}V the
unique sequence described in .

6. PROOF OoF LEMMA [ 4]

Let V' be a finite set, and let C cover (Z) with surviving family Z and skeleton S, as described in

Definitions [£.1] and The following two observations will initiate the proof of Lemma [£.4]

Observation 6.1. Every surviving set Zy € Z is a union of bones S € S.

Proof. For sake of argument, assume Z, # () and fix v € Zw = ﬂ{A’B}EC Z?’A gy Fix {A,B} € C, and
let S, € S be the unique bone containing v (cf. (2 ) By (1 , {A,B} is V\ A (resp. V\ B) iff ¢»({A, B})
is a (resp. b). Definition then ensures S, C Z{A’B}, and hence S, € (4 pyec Z?’A’B} = Zy. O
Observation 6.2. If Z* C S, then in fact Z* = S.
Proof. Fix S € S, and define v5 € {a,b}° by ¥s({A4, B}) = a if, and only if, SN A = (). We will show
SC Zy.. (39)
If true, S is a bone and Z;, € Z* C S is also a bone, so as overlapping equivalence classes S = Zy,.
To see , fix {A, B} € C. If Y5({A, B}) = a, then SN A =0 and (|19) gives Z{AB} =V\ADS. If
Ys({A4, B}) = b, then SNA # () and so gives S C A and SNB = (), and ([19)) gives Z{A B} = =V\B2S&.
Either way, S C Z{A’B} and hence S C ﬂ{A,B}eC {A,B} = Zys. |
Observations [6.1] and [6.2] allow a sketch of the main idea for proving Lemma [£4} Indeed, if Z* C S,
then we set € = C and Observation [6.2| says we are done. For sake of argument, lct Zo = Zy, € Z*\'S

be a surviving set which is itself not a bone. Then Observation [6.1] says that Z, is a union of at least
two bones S € S, so we choose Sy € S to satisfy

So € Zy, where degq(Sy) = rgneig {dege(S): S C Zp}, and weset Uy= Zy\ So # 0. (40)
Let Co = Cpy, 5, = Cuy.5, \{Uo, So} be the Sy-shift of Uy in C (cf. Deﬁnition. We claim the following.

Proposition 6.3. The family Cy covers (‘g) Moreover, the skeleton Sy of Co satisfies |Sp| < |S].

Proposition upon possible iteration, will give Lemma To see this, we first note that Cy
from Proposition satisfies dege, (v) < dege(v) for each v € V. Indeed, fix u € Uy and v € V' \ Uk.
By , Co = Cfy, 5, admits the identities dege, (v) = dege(v) and dege, (u) = dege, (So) = dege(So),
where 1.) adds that degco( u) = dege(Sp) < degc( ). Second, we consider the surviving family Z; of
Co. If 2§ C Sp, then set C= Co and Observation |6.2] says we are done. Otherwise, Z5 \ So # 0, and we
repeat . By Proposition u we can’t repeat l.b indefinitely, and so Lemma |4.4] E follows.
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6.1. Proof of Proposition [6.3} first assertion. To verify the first assertion of Proposition [6.3] we
fix K € (‘Ig) and consider three cases. (Recall Sy and Uy from (40)).)

Case 1 (K NUy =0). Let {A, B} € C cover K. Then
{Auv,, 50, Buy,s, } € Co also covers K, (41)
because Definition [£.7) gives K N Ay, s, = K N A and K N By, s, = K N B.

Case 2 (K NSy # (). For our most delicate case, let {4, B} € C cover K. Since K meets Sy, then Sy
meets AUB, and so by we take, w.l.o.g., Sy C A. Now, Deﬁnitionensures Avy,so =AUU D A
and By, s, = B\ Uy, and so we will infer if we can prove that

Buy,,s, = B, which holds if BN U = 0. (42)

To see , recall that Zy = Z,, € Z* \ S is a surviving set, where ¢y € {a,b}¢ (recall ) de-
notes that function for which Zy = Zy, = (¢ pyec Z?g py- Thus, for the element {4, B} € C fixed

above, we have that Zy = Sy U Uy satisfies So C Zg C Z?’;’l B} Since we know Sy C A, it can only be

(recall ) that Z?X,B} =V\B,andso Uy C Zy C Z?X,B} = V'\ B is disjoint from B, as desired in .

Case 3 (KNUy # 0 and KNSy =0). Fixu € KNUy and fix v € Sy, where we necessarily have
v & K. Define K,,, = (K \ {u}) U {v}, which as a k-tuple of V' is covered by some fixed {4, B} € C.
Applying Case 2 to K, ,, we infer that K, , is also covered by {Ay,,s,, Bu,,s, } € Co, and moreover and
w.l.o.g. that So C A, Ay,,s, = AUUy and By, s, = B. As such, to see , we simply note that

KAKu,v = {U7U} g AUO,Soa (43)
and so K N BU07SO - Ku;u N BUQ,SO 7é 0, and u € KN AUO»SO 7& @

6.2. Proof of Proposition|6.3} second assertion. It remains to verify the second assertion of Propo-
sition [6.3] For that, we make a natural but important observation.

Observation 6.4. Zy = UyUSy is a Cy-bone, i.e., a bone of Cy = Cl*Ju,So'

Proof. Definition forces all vertices of Zy = UyUSy to be Cy-equivalent in Cy = Cl*Jo,Sov and so a
unique Co-bone (Co-equivalence class) T' € Sy of Cy contains Zy. If Zy C T isn’t already that bone, then
fix any v € T\ Zo. Now, recall that Zy € Z* is a surviving set of C, where 1y € {a,b}¢ (recall )
satisfies Zo = Zy, = (¢ prec Z?CO',D}‘ Since v ¢ Zy, there exists {A, B} € C for which v ¢ Z?X,B}’ and
here we take Z?X,B} =V\A (wlo.g. (cf. )) Thus, v € A while Sy C Zy = Zy, C Z?X)B} =V\A4
entirely misses A. Since Sy N A = (), Definition gives Ay,,s, = A\ Uy, which still contains v because
ve Abut v ¢ Zy D Up. At the same time, Sy entirely misses Ay, g, = A\ Uy, and so v and Sy do not
agree on {Ay, s, Buy.so} € Co = Clry.5,- Thus, v can’t be Co-equivalent to Sy, and so v € T \ Zp can’t
be part of the Cp-bone T' € Sy of Cy which contains Z. O

The remaining assertion of Proposition [6.3]is a formal corollary of Observation Indeed, write
Uy = S1U...US; as a union of ¢ > 1 many C-bones, in which case Zy = SoUUy = SoUS;U...US; is the
union of t+1 > 2 many C-bones. Define the relation f : S\ {So, S1,...,5t} = So\{Zo} by f(S) =T if,
and only if, S C T. We claim that f is a well-defined surjection, which would conclude Proposition [6.3]

S| = (t+1) =[S\ {S0,51,..., S} 2 [So \ {Zo} = [Sol =1 = [So| <[S] -t <[S[-1<]S].

To see that f is well-defined, fix S € S\ {So,51,...,S5:}. Since S, S, S1,...,S: are all C-bones, it
follows that SN Uy = SN (S1U...US;) = 0, in which case no part of S movezﬂ upon shifting Uy to Sy
in Cy = Cpy, g,- As such, the vertices of S are Cp-equivalent, and so a unique Co-bone 1" € Sy contains

IThat is, for each {4, B} € C, we have, e.g., S C A (SN A = () if, and only if, S C Ayg,so (SN Ay,,s, =0).
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S. Since S was disjoint from Z; = SoUS1U...US;, this unique Cyg-bone T is not the Cy-bone Zy of
Observation [6.4] Thus, the unique containment S C T € So\{Zo} verifies that f(S) = T is well-defined.

To see that f is surjective, fix T € Sy \ {Zp}. Moreover, fix any v € T, and let S, € S be the unique
C-bone containing v. Since T, Zg € Sy are distinct Cg-bones, it must be the case that T N Zy = (), and
so v € T satisfies v & Zg = SoUS1U...US;. As such, the C-bone S, can’t overlap any of the C-bones
So,51,...,8;, which places S, in the domain of f. In particular, S, can’t overlap Uy = S1U...US;, and
so S, doesn’t move upon shifting Uy to Sy in Cy. Thus, vertices of S, are Cp-equivalent, where v € S, NT
belongs to the Co-bone T'. Thus, S, C T', and so S, satisfies f(S,) =T.

7. A SPECIAL CASE OF LEMMA [£.6] AND A TOOL FOR THE GENERAL CASE

We prove a special case of Lemma [£.6] and we also establish a tool critical for the general case. Fix
a set V of size n and fix a strong cover C of (‘2) with skeleton & = Z*, where p, ¢, r, and R satisfy .
Lemma asserts that every bone S € § = Z* with deg.(S) < a = a(C) below the average has
maximum size |S| =k — 1. For r = 0, we use Theorem to prove this assertion in strong form.

Fact 7.1. When r =0, every bone S € S = Z* of the strong cover C satisfies |S| = k — 1.

Theorem [I.6] is valid to apply because we established it in Section [3] Moreover, Theorem [I.6] says that,
since C is optimal and r = 0, the degree sequence d(C) is given uniquely by D = D, € {p,p+ 1}V
from , with precisely 2R(k — 1) many coordinates of p + 1.

Proof of Fact[7d] As in Section [3] consider again the random surviving set Z of C from (8], and recall
from @) that E[|Z]] = Y,y 27 9°8c(®). Applying Theorem [L.6{ according to the discussion above,

k-1 @EHZH B ork -1 (;)pﬂﬂn—?R(lﬂ—l)) <;)p= (;)p(k—l) (knl —R) B

Thus, the random surviving set averages the maximum size of k — 1, and so all surviving sets of Z €
Z = Z* achieve |Z| = k — 1. Since C is strong, i.e., S = Z*, all bones S € S satisfy |S| =k — 1. O

The proof above used Theorem E which established (in Section [3) the case r = 0 of Theorem
For r > 1, we must proceed more carefully because Theorem [I.4]for » > 1 depends on Theorem[I.7] which
depends on Lemma [1.6] for 7 > 1, whose establishment won’t be complete until Section [0} Nonetheless,
we can still apply some ideas from Section [3| to the strong cover C for general r > 0, and this will in fact
make a critical step in the desired direction.

Proposition 7.2. Forr > 0, every bone S € S = Z* of the strong cover C with deg(S) < a = a(C)
below the average has size |S| > (r +k —1)/2 (which is at least half of what Lemmal[{. promises).

Proof of Proposition[7.4 Fix a bone Sy € & = Z* of the strong cover C with degq(Sy) < a = a(C)
below the average. Since C is optimal, Fact [3.I] gives a < p+ 1, and so
degc(S0) < p. (44)

Since C is a strong cover, the bone Sy € § = Z* is a surviving set, and therefore has the form Sy = Zy,
for some function vy € {a, b}¢ (cf. Deﬁnition. Thus, Sy = Zy, is a possible outcome of the random
surviving set Z from , which is obtained when ¢ € {a, b} is chosen uniformly. As such, we pivot the
size |So| = | Zy, | against the expected size E[|Z]] given in (20):

E(IZ]] = > (1Zs| P[Z = Zs)). (45)
Z\pEZ
Since Sy € S = Z* C Z appears in , and all surviving sets Zg € Z satisfy |Zg| < k — 1, we infer

E(|Z]] =S| - P[Z=Sol+ > (1Ze|-PIZ=Zy]) <|So| P[Z=5So]+(k—1) >  P[Z=Zqy]
SoAZuEZ So#£Zy€Z
= 1So| - P[Z = So] + (k— 1) (1 —P[Z = So]) =k — 1 — P[Z = So](k — 1 — |So]). (46)
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Again, since Sy € § = Z* is a surviving set, we recall from that

1 degc(SQ) " 1
P[Z = S()] == (2> g 27,
({@o) 1 1 1
B2 < -1 g (b= 1= I5o) = (6= 1) (1= 55 ) + il (47)

On the other hand, Fact [3.2] yields

dy p+1 p+1
1 1 1
Bz @ 3 <2> > (2) (k- 1) (1 - (2> ) . (48)
veV
Comparing and yields 2|Sp| > k — 1 + r, which gives Proposition O

8. SHIFTING CONSIDERATIONS FOR PROVING LEMMA

It remains to prove Lemma [£.6] which we do in Section [J] using shifting. This section develops a few
helpful considerations on shifting which are motivated by the following basic questions. Fix an arbitrary
cover C of (‘Ij), bone S € S, and subset U CV \ S of size 1 < |U| < k —1:

Does Cy,s cover (})? If so, does Cf; g cover (})? (49)

Sections || and |§| featured the following conditions sufficient for confirming parts of First, Section
used the condition |S| = k& — 1, which Fact proved is sufﬁcien for Cy,s to cover ( k) However, this
condition matches the conclusion of Lemma [4.6| Second, Section [6[ used the condition that U U S was a
surviving set of C which was specifically not a bone, which Proposition proved is sufficient for Cj; ¢

to cover (‘]2) However, Lemma assumes C is strong, where (non-empty) surviving sets and bones are
indistinguishable concepts. We can’t use these earlier conditions in Section [9}

We now initiate further insights on (49) that we use in Section @ In fact, it will be enough for our
purposes to resolve (49)) (see Propositio below) under the following restrictions:

(1) we always assume |S| < k —1;
(#7) we only consider when U = {u} C V' \ S is a singleton;
(#11) we only consider C7,, .

By the discussion above, (%) is necessary for further investigation on . From (ii), we abbreviate Cy,y,g
to Cy, s and C%‘u} g to Cy ¢, and we abbreviate each {Aruy,s: Biuy,s} € Cu,s to {Au,s, Bu,s}. Finally, (i)

and (#¢) warrant (4i7), because {u, S} € C, g covers none of (Z)
8.1. Observations on (49) under (7) — (443). We start with the following very easy observation.
Observation 8.1. With [S| < k — 1, the family C;, 5 covers all K € (‘g) for whichu & K or S\ K # 0.

Proof. Indeed, if u & K, then {A, s, By,s} € C,, g covers K whenever {A, B} € C does, which happens
at least once in the cover C. If u € K but v € S\ K, then {A, s, By s} € C,.s covers K whenever it
covers Ky, , = (K \ {u}) U{v}, which happens at least once by the previous case. O

Observation prompts that we investigate the coverage of a fixed element K satisfying
: v
{ulUS C K € (},), (50)

where C holds by |S| < k — 1. Note that L = K \ {u} is not a bone of C, because it properly contains
the bone S. The following curious concept will characterize all K in not covered by Cj .

Definition 8.2 (limb). A (k—1)-set L C V is a limb of C if L ¢ S is not a bone, but V{A, B} € C,
LCAUB — LCA or LCB. (51)

2 The same condition prevents Cl; ¢ from covering (‘;), since then (UES) # 0 requires {U, S} € Cy,s for coverage.
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Remark 8.3. Every bone S € § satisfies as an equivalence class of ~¢ (cf. ) The condition
is weaker than that of , since for a fixed limb L and a given {A, B} € C, condition allows for

LN(AUB)#0+#L\(AUB). (52)
In fact, must hold for some {A, B} € C. Indeed, Definition insists that L € S is not a bone of
C, whence u ¢ v holds for some u,v € L. By , there exists {A, B} € C so that, w.l.o.g.,

(i) ue¢ AUBbut v¢ AU B, or

(ii) u € A but v € B.
In (i), u € LN(AUB) and v € L\ (AU B), so {A, B} satisfies (52). In (ii), u,v € LN (AU B), but
if L C AUB, then u € A and v € B contradict . Let us also note at this time that a limb L is of
maximum size w.r.t. (51)), since |L| = k would require some {A, B} € C to cover it. 0

We proceed with the promised characterization, which is crucial in Section [0}
Proposition 8.4. With |S| <k —1 andu € V\ S fized, every K € (Z) satisfies
K is not covered by C; g <= K satisfies (50) and L = K \ {u} is a limb of C.

Proof. Let K satisfy where L = K \ {u} is a limb of C. To see that K is not covered in C; g, fix
{Aus, Bus} € Cy g with K C A, sUB, 5. Since A, s € AU{u} and B,, 5 € BU{u} (cf. Deﬁnition,

L= K\ {u} € (AusUBus) \ {u} = (Aus\ {u)U(Bus \ {u}) € AUB.

Since L is a limb of C, L C A or L C B, and w.l.o.g. we assume the former. Now, S C K\ {u} =L C A,
so Definition [4.7| guarantees A, s = AU {u}. Now, K \ {u} = L C A implies K C AU{u} = A, s.

Conversely, let K be uncovered in Cj 5. Observation guarantees K satisfies , so L =K\ {u}
is a (k — 1)-set properly containing S and can’t be a bone of C. To see that L is a limb of C, let
{A, B} € C satisfy L C AUB. Now, S C L C AUB, so we take w.l.o.g. S C A. Deﬁnitionguaran‘cees
Ays = AU{u} and B, s = B\ {u}, so K = LU{u} C A, sUB, s. Now, K meets A, s in v and S,
but {Ay,s, Bu,s} € C,, g does not cover K, so K C A, s = AU{u} and L = K \ {u} C A. O

Proposition [8.4] shows that limbs resolve under the restrictions (7)—(iii). However, Section [9] will
need to understand limbs beyond just this context, and for this we collect a few more observations.

8.2. Observations on limbs. Our remaining observations relate the limbs of a cover C to its bones.
To maintain neutrality from (and S € § in particular), we write an arbitrary bone of C as T € S.

Observation 8.5. Every limb L of C is a union of at least two bones of C. In particular, if L is a limb
of C and T € S is any bone of C,

TNL#D = TCL. (53)
Proof. Indeed, let v € T'N L, but suppose w € T'\ L. Then K,, 1, = {w} UL is a k-tuple of V covered
by some {A, B} € C. Now, L = K,, 1. \ {w} C AUB, and so by definition L satisfies, w.l.o.g., L C A.

This forces v € Ky, NA=LNA and K, , N B = {w}, contradicting that v,w € T are ~¢-equivalent.
Now, L is a union of bones, and by definition necessarily more than one. O

Our final observation is critical in Section [0 and will relate closely to our earlier Proposition [7.2
Proposition 8.6. Fvery bone T € S of C of size |T'| > k/2 is contained within at most one limb L of C.

Proof. Suppose, on the contrary, that Ty € S is a bone of C of size |Ty| > k/2, and suppose Ly # Lo are
distinct limbs of C for which Ty C L; N Ly. By , the union L U Ly = ToUT U. .. UT} is partitioned
into bones, which necessarily includes Ty, and where necessarily ¢t > 1. Observe that ¢t < k — 2, since

t < |(LyU L)\ To| < [Ly \ To| + | L2 \ To| = |L1| + |La| = 2|To| = 2(k — 1) = 2|Tp| < k — 2.
Now, choose any k-tuple K C L; U Ly (noting Ly # Lo implies |L1 U Ly| > k) meeting each of

To,T1,...,T;. Let {A, B} € C cover K. Since K meets each bone T, Ty, ...,T; of Ly U Lo, and since
K C AUB, we have from that Ly U Ly C AUB. Since L; C AUB is a limb, take (w.l.o.g.) L; C A
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so that Ty € A. Then @ # Ty C Ly N A, and since Ly C AUB is a limb, it must be that Ly C A. Now,
K C Ly ULy C A, contradicting that {A, B} covered K. O

9. PrROOF oF LEMMA [4.6]

Let V be an n-set, let C be a strong cover of (‘;) with skeleton & = Z*, and let p, ¢, 7, and R

satisfy (4). We prove that every bone S € S with deg.(S) < a = a(C) below the average has maximum
size |S| = k — 1. When r = 0, Fact already proved this assertion, so it suffices to take r > 1. We
proceed indirectly: suppose that there exists a bone Sy € S with

deg-(Sp) < a = a(C) but |Sol < k—1. (54)
Proposition [7.2] and r > 1 guarantee that Sy is large:
|Sol > (r +k —1)/2 > k/2. (55)

Using and , we will find a vertex ug € V' \ Sy satisfying both

(1) dege(ug) > «, and
(I) C;, s, covers (Z)
When so, (I) and (IT) immediately contradict the optimality of C, because Fact guarantees

* () (b) 69, (1)
w(Cy 5,) = W(Cug,s,) — 1 —[So| = w(C) +dege(So) — dege(ug) < w(C). (56)

o,

In other words, is incorrect, which would prove Lemma[d.6] It remains only to guarantee (I) and (II).

With (II), we are in precisely the context of Section [8| with restrictions (i)—(iii). Indeed, to the bone
So of satisfying |So| < k —1 (as in (7)), we seek to shift a single vertex u = ug € V'\ Sy (as in (44)),
and we want C; 5 to cover (‘Ig) (as in (#44)). For the moment, fix an arbitary u € V'\ Sp. Observation
guarantees C;; ¢ covers all K € (Z) for which u & K or K\ Sy # 0, and Proposition guarantees that
a remaining K is not covered in C; g if, and only if, L = K \ {u} is a limb of C. In summary,

every element K € (Z) which is uncovered in C;, o = contains the verter u
and bears a limb L = K \ {u} necessarily containing the bone Sy from . (57)

Since Sy satisfies |So| > k/2 from (5E)), Proposition guarantees that Sy is contained within at most
one limb. We therefore consider the following two cases:

Case 1 (S is contained within no limbs L of C). Choose any ug € V '\ Sy with dege(ug) > «, which
exists by dege(S) < a from (54). Then (I) is satisfied by ug, and (II) is satisfied by Case 1 and (57).

Case 2 (Sy is contained within precisely one limb Lo of C). Observation guarantees that Ly =
SoUS1U. .. US; is a union of t+1 > 2 bones, one of which is Sy. Observe that deg.(S1), ..., degs(S:) >
for if S; € {S1,...,S:} would be otherwise, Propositionwould apply to S; precisely as it did with Sy
in (55), yielding k — 1 = |Lo| > |So| + [Si| > (k/2) + (k/2) = k. Now, choose ug € Ly \ So arbitrarily so
that (I) is satisfied with degq(ug) > a. With ug now chosen, (II) is necessarily satisfied: if K € (z) is
uncovered in Cy; g , then guarantees Ly = K \ {ug} is a limb of C containing Sy, but ug € Lo and
ug & Ly ensure that L; # Lg are distinct limbs containing Sy, contradicting Case 2. O

ApPPENDIX: PrOOF oF Fact [4.10]

We prove Fact [£.10] by elementary arguments using Definitions [£.7] and [£.9] Throughout this section,
V,C, S, 5, U, W, Cus, Cfj g, and CW:S are given as in Definitions and
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9.1. Statement (a) of Fact For 1 < |U| <k —1=[S]|, we show that Cy s covers an arbitrary
K e (‘g) For sake of argument, assume that {U, S} € Cy s does not already cover K, and proceed by
induction on |[K NU|. For KNU = 0, let {A, B} € C cover K. Then {Ay s, Bu,s} € Cuy,s also covers K,
because Definition ensures K N Ay s = KN A and KN By g = KNB. Inductively, let w € K NU
and let v € S\ K, where v exists by |S| = k — 1 = |K| — 1 and our assumption that {U, S} does not
cover K. Set K, = (K \ {u}) U {v}, which like (43) satisfies K A K,,, = {u,v}. Observe that K,
is not covered by {U, S} € Cy g, since otherwise either K would be too (contrary to our assumption),
or K C U (contrary to |U| < k —1 < |K]|). Thus, by induction, some {Ay g, By,s} € Cu,s covers K, ,,
and we claim the same {Ay g, Bys} € Cy,s covers K. Indeed, since v € K, ,, which is covered by
{Au,s,Bus} € Cug, we take wlo.g. v € Ay s. Now, v € Ay s NS, and so Definition ensures that
Ays = AUU 2 UUS. Now, KAK,, = {u,v} CUUS C Ay gives that K C Ay sUBy,g, where
u € KﬁAUﬂg #@ and KNBys=K,,NBygs 750

9.2. Statements (b) and (c) of Fact m. For each v € V, recall from that dege,  (v) =
1+ degc(S) if v € UUS, and dege,,  (v) = degc(v) otherwise. Thus,

w(Crs) =Y dege, ,(v) =D dege, (v) + > dege, () + Y. dege, . (v)

veV velU vES veV\(SUU)

=|U|(1+dege(9) + > (L+dege(v)) + Y dege(v)
vES veV\(SUU)

= U+ 8]+ ) dege(S) + Y dege(v) =w(C) + U] +1S| + Y (dege(S) — dege (u)).

velU veV\U velU

Now, Statement (c) of Fact Is trivial, since if Cj; g covers (Z), then so does Cy,s, and whatever its
weight, we have w(Cf; 5) = w(Cy,s) — |U| — [S| by construction.

9.3. Statement (d) of Fact Statement (4) can be similarly established directly from Defini-
tion but we infer it from Statements (a) and (b). For that, we construct C">S (the S-immersion
of W in C) indirectly as follows. Set X = W UV and CX = {{W,V}} UC so that C¥ covers ()k() by
construction, and Cjy, ¢ (the S-shift of W in C*) covers ()k() by Statement (a) of Fact We claim

Cfv)s ={{0,X}}U e, or equivalently, WS = C%(,)S \ {{0, X}}, (58)

which would imply that C">% covers ()k( ), because 65([/, g covers ()k( ) while {0, X} € C‘f(v, g covers nothing.
To see 1' note first that {W,V} € C¥X corresponds to {§), X} € Cé&s, since SNW =0, S CV, and
Definition 4.7] give

WW75:W\W:® and Vws=VUW = X.
Otherwise, for each {4, B} € C, we have ANW = () and so Definitions and agree that either
Aws=AUW = AMS or Aws=A\W = A= A"5,
and similarly, By,s = BY5. Now, Statement (b) of Fact [4.10| gives
w(Ciy,s) = w(C) + W[+ S|+ > (degex (S) — degex (w)), (59)
weWw

where by construction w(CX) = w(C) + |W| + |V| = w(C) + | X|, degex (S) = degq(S) + 1, and where
degex (w) =1 holds for each w € W. Returning to (59)), we infer

w(Ciy,s) = w(C) + X[ +[S] + W[ (1 + dege(S)), (60)
and applying to 7 we infer
w(C"®) +|X| = w(Ciy,s) = w(C) + [ X| + |S| + [W| (1 + dege(S))

which implies the desired formula for w(C">5).
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