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ABSTRACT: 1,2-Diarylation of alkenyl sulfonamides with aryl iodides and aryl boronic esters under nickel catalysis is re-
ported. The developed method tolerates coupling partners with disparate electronic properties and substitution patterns. Di-
and trisubstituted alkenes, as well as alkenes distal from the directing group, are all accommodated. Control experiments are
consistent with a N-Ni coordination mode of the directing group, which stands in contrast to earlier reports on amide-di-
rected 1,2-diarylation that involve carbonyl coordination. The synthetic utility of the method arises from the dual function of
the sulfonamide as both a directing group and masked amine nucleophile. This is highlighted by various product diversifica-
tions where complex amine compounds are synthesized in a two-step sequence of N-functionalization and deprotection of

the sulfonyl group.
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Forging contiguous C-C bonds through 1,2-dicarbofunctionali-
zation of alkenes, also referred to as conjunctive cross-cou-
pling, has blossomed into a vibrant area of catalysis that lever-
ages the unique reactivity of diverse transition metals, includ-
ing Pd, Ni, Co, Cu, and Fe.1ab In this context, nickel provides
unique advantages compared to other transition metals, such
as palladium, by having a higher propensity toward oxidative
addition and 1,2-migratory insertion steps while being more
resilient towards [3-hydride elimination.1c 1,2-Dicarbofunction-
alization of alkenyl amine substrates, wherein a protected
amine directs key steps in the catalytic cycle, is an attractive
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Scheme 1. Previous reports and synopsis of new findings.

approach for selectivity control and offers rapid entry to func-
tionalized alkyl amine product libraries. 1,2-(Fluoroalkyl)ary-
lation and 1,2-diarylation of electronically activated enamides
and ortho-vinyl aniline derivatives have been reported by
Zhang?= and Giri2d, respectively (Scheme 1). More recently the
use of a non-removable pyrimidyl auxiliary that facilitates the
1,2-dicarbofunctionalization of non-conjugated terminal al-
kenes via coordination of Ni with a N(sp2) atom center was re-
ported by Zhao and coworkers.2e Our group has reported the
1,2-diarylation and 1,2-allylmethylation of simple alkenyl am-
ides and N-allyl heterocycles, respectively.3a-b Ni-catalyzed con-
junctive cross-couplings of various classes of non-conjugated
alkenes have been reported by other research groups via dif-
ferent mechanistic paradigms.* This progress notwithstanding,
significant limitations remain in this family of transformations.
In particular, existing methods are incompatible with homoal-
lyl and bis-homoallyl amines as well as internal alkenyl amine
substrates. Moreover, the directing groups employed in earlier
reports are synthetically restrictive in that they cannot be di-
rectly employed in further functionalization. The goal of the
present study was to identify an amine-based directing group
capable of promoting 1,2-diarylation of remote, highly substi-
tuted alkenes and engaging in diverse downstream N-function-
alization chemistry, which would allow alkenyl amines to act as
linchpins in modular synthesis. To this end, herein we report
the identification of sulfonamides as uniquely effective and ver-
satile56 directing groups in 1,2-diarylation of alkenes under
nickel/dimethyl fumarate (DMFU) catalysis.”



Table 1. Optimization of 1,2-diarylation reaction.
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7 conditions from alkenyl carboxylate diarylation® nd.
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aReaction conditions: 1a (0.1 mmol), s-BuOH (0.2 M). bValues
in parentheses are isolated yields. cPercentage yield by 1H
NMR using CH2Br: as the internal standard; n.d. = not detected.
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To commence the study, we selected iodobenzene and 4-tol-
ylboronic acid neopentyl glycol ester (p-tolB(nep)) as model
coupling partners and systematically surveyed homoallyl
amine substrates bearing different protecting groups (Table
1).2e 3ab Benzoylsulfonyl, phthaloyl, pyrimidyl, 2-picolinoyl,
and diphenylphosphinic protecting groups did not promote
1,2-diarylation.8 Carbonyl groups that were previously found
to direct 1,2-diarylation of allylamine substrates, namely Boc-,
Piv-, and Bz-, were ineffective in this case with a more distal
alkene. We next turned to sulfonyl protecting groupsé with the
hypothesis that in this case, the nickel catalyst may bind the
sulfonamide through nitrogen. Gratifyingly, triflyl-protected
homoallyl amine gave the desired product, albeit in low yield.
Moving to a less electron-withdrawing aryl sulfonyl group pro-
vided 1,2-diarylated product 2a in excellent yield and regiose-
lectivity, and its connectivity was confirmed by single-crystal
X-ray diffraction. While various aryl sulfonamide directing
groups were similarly effective (vide infra), the 4-(trifluorome-
thyl)-phenyl group provided a convenient 1°F NMR handle for
reaction analysis and was employed for much of the ensuing
work. The absence of DMFU and employment of the aryl bo-
ronic acid and pinacol ester resulted in diminished yields,
showing the importance of DMFU in facilitating reductive elim-
ination (Entries 1-3).” Bromobenzene was unreactive as an
electrophile, and other nickel precatalysts, such as
Ni(cod)(DQ), NiClz, Ni(acac)z, and NiBrzeglyme, were
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Scope.a

. 20 mol% Ni(cod),
A=l 15 mol% DMFU

2 2
0,0 R? (3 equiv) NaOH (3 equiv) QP AR
¥
1: 4 /\)\,,.R3 + , —_— R"S‘N R3
RN Ar2-B(nep) s-BuOH (0.2 M) H Ao
1a—o (3 equiv) 1t, 12-40 h ob-ak

electrophile scope

CF3 Me

p-F (2c), 88% 2e, 70%
o-F (2d), 91%

Ar' = p-CF3CgH,
0. 0 Ph

Al
" H

é

2b, 99% (96%)?

Ph z
Q\,,O -1~ OMe \\// \\I/
Ar“ N NS
H
p-OMe (21), 78% p-Cl (2i), 96% 2k, 74%
m-OMe (2g), 99% 0-Cl (2]). 89%
0-OMe (2h), 81%
z
¥ L | \VI /\/K/@ \V’ /\/K/@
AN X CF3 Me
21, 47% 2m, 74% 2n, 90%

nucleophile scope

©
o
P
T
3
=
L
23
=z
7\
hel m
3
20
ZI o
c
)
3

b4
7
I=

Al A
oF (2p), 89% TR
20, 82% m-F (2q), 91%
oF (2r), 99%

2s, 70% 2!, 89%

ﬁ

NHBoc

\\ //

wg®
3
a
: [e]
T (e}
3 ]
b
Pe)
j2X4
3

1 1 N

Ar’ N Ar’ [
2u,91% 2v, 67% 2w 96% 2x 69%
sulfonamide scope
1o

YR @y @y @Y ©‘ﬂ{

Vg’ Me

.S Ph
RS H/\)\/ MeO! Me: NC

2y, 90% 2z, 74% 2aa, 90% 2ab, 79%
alkene scope
0. 0 p-tol p-tol p-tol p-tol

(x)-2af, 71%

\VI /\)\r \ll

(x)-2ae, 86%

z
75
s

I=

(#)-2ac, 70% (+)-2ad, 79%

(>20:1d.r.) [X-ray] (>20:1d.r.) (>20:1d.r.) (>2o1 d.r)
PhO MeQO
-tol Et
O\\s'/o i J 9p R2 9,9 Q\'/O
AN ooy P S P AN
Ph " H AN
(x)-2ag, 73%, >20:1 d.r. 2 = Me: 2ah, 50% 2aj, 26% (£)-2ak, 40%7, >20:1 d.r.

R2 = Et: 2ai, 22%
unreactive substrates

QP e QP §odMe 0\\,,

Ar‘.S\ JW Ar‘.S\NM /Y\ Art /\/\r
aReactions performed on 0.1 mmol scale. PReactions per-
formed on 1 mmol scale. Percentages represent isolated
yields. cProduct was synthesized from (Z)-alkene. 4Product
was synthesized from (E)-alkene.

ineffective (Entries 4-5). Under previously published reaction
conditions for diarylation of alkenyl amide substrates, lower
yield was obtained (Entry 6). No diarylation was observed un-
der conditions for alkenyl carboxylate substrates (Entry 7).3a4
While excellent yields were obtained when lower catalyst load-
ing or equivalents of coupling partners and base were used
with the standard substrate (Entry 8-9), other examples re-
quired higher loading and equivalents to obtain high yields.

Next, the scope of electrophilic and nucleophilic aryl cou-
pling partners was investigated (Table 2). Electron-
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Scheme 2. (A) Control experiments to test sulfonamide and
nitrogen importance. (B) Tether length effects on 1,2-dia-
rylation. aPercentage yield by 1H NMR using CH2Br2 as the
internal standard. ’Product isolated as a single regioisomer
(>20:1). <Product connectivity was confirmed by single-
crystal X-ray diffraction. (C) Proposed catalytic cycle hav-
ing directing group with X-type coordination upon migra-
tory insertion. L! and L2 represent neutral donors including
DMFU, alkene substrate, solvent, etc.

withdrawing groups at the para position of the aryl iodides af-
forded the highest product yields (2b-c, 2i), and the product

PPh;, DEAD
4-phenyl-1-butanol

yield decreased with electron-neutral and -donating groups
(2e-f, 2m). It is worth noting that product 2b was synthesized
in an excellent yield on a larger scale (1 mmol, 0.48 g isolated).
Electron-withdrawing groups on the meta position of the aryl
iodides gave no 1,2-diarylated product; however, electron-do-
nating groups (2g, 2n) gave 1,2-diarylation in excellent yields.
Ortho-substituted electron-withdrawing or donating groups on
the aryl iodide had little effect on the product yield in compar-
ison to the para-substituted examples (2d, 2h, 2j). Consistent
with the previously discussed results, electron-deficient 2-
fluoro-4-iodopyridine gave good yield (2k) while 4-iodo-2-(tri-
fluoromethyl)pyridine gave a moderate yield (21). With re-
gards to the nucleophile scope, no apparent trend is observed.
Electron-withdrawing and weakly electron-donating groups
on the para position (20-p, 2t) gave very good yields. Product
yields greatly varied with the use of electron-donating groups
on the para position ranging from moderate to excellent yields
(2s, 2v-w). Aryl boronic esters with electron withdrawing
groups on the meta and ortho positions (2q, 2r, 2u, 2X) re-
sulted in moderate to excellent yields as well.

Next, we varied the aryl sulfonyl group by substitution of the
trifluoromethyl moiety at the para-position and observed good
to excellent yields (2y-aa). Mesyl (Ms) protected homoallyl
amine 2ab is a competent substrate under the reaction condi-
tions. However, product was not detected in the case of a nosyl
protecting group, which we attribute to the potential inhibitory
effect of nitro groups on Ni catalyst activity.” We then examined
alkene substrates that are typically challenging in 1,2-diaryla-
tion. Pleasingly, (Z)- and (E)-internal alkenes were well toler-
ated under the optimized reaction conditions. Diarylated prod-
ucts ((%)-2ac-ad) from two 1,2-disubstituted (Z)-alkenes were
obtained in good yields and as single diastereomers, as con-
firmed by single-crystal X-ray diffraction. Several 1,2-disubsti-
tuted (E)-alkenes were also successfully diarylated in good
yields ((%)-2ae-ag). In addition, various 1,1-disubstituted ter-
minal alkenes were found to afford product in low to moder-
ately good yields under the reaction conditions (2ah-aj). To
our delight, diarylated product (*)-2ak was obtained in mod-
erate yield as a single diastereomer from the trisubstituted (E)-
alkene. With substitution at the a- or -positions, no conver-
sion was observed. A homoprenyl trisubstituted alkenyl sulfon-
amide proved ineffective in 1,2-diarylation.

In a series of control experiments, homoallyl aryl sulfonate
1t and N-methylated sulfonamides 1u and 1v were subjected
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Scheme 3. Diversification of 1,2-diarylated products as a linchpin technology. Percentages represent isolated yields.



to the optimized conditions, which resulted in no product for-
mation (Scheme 2A). This indicates that the N-H moiety is im-
portant in the transformation. While we were successful in de-
veloping a remote alkene 1,2-diarylation reaction, we were cu-
rious about the effect of alkene distance on reactivity (Scheme
2B). Both electrophile and nucleophile scopes were examined
for the aryl sulfonyl protected allyl and pentenyl amines under
the optimized reaction conditions. Electron-deficient aryl io-
dides gave low yields but good regioselectivity (2al) while elec-
tron-neutral and donating aryl iodides gave higher yields but
lower regioselectivity (2am-n) for the protected allyl amine
starting material. Both electron-deficient and electron-donat-
ing aryl iodides gave moderate to good yields with excellent re-
gioselectivity for the protected pentenyl amine starting mate-
rial (2ao-ar). For the nucleophile scope, electron-deficient bo-
ronic esters gave the desired product in good yields with excel-
lent regioselectivity (2as-at), while electron-neutral and elec-
tron-donating nucleophiles resulted in lower yields with lower
regioselectivity (2au-av) for the protected allyl amine sub-
strate. Moderate to excellent yields and exceptional regioselec-
tivity were obtained with the protected pentenyl amine sub-
strate (2aw-2az). Extension of the alkenyl chain to aryl sul-
fonyl protected hexenyl amine gave no product. We hypothe-
size that these alkenyl amine substrates proceed through 4-6-
membered N-boundnickelacycles,’c-d where a 7-membered
nickelacycle is unfavorable (Scheme 2B). Though the interme-
diacy of 6-8-membered O-bound nickelacycles cannot be ruled
out, we view this possibility as less likely since tertiary sulfon-
amides are unreactive in this system. This stands in contrast to
our previous report3a in which tertiary amides were competent
substrates and O-bound intermediates were proposed based
on experimental and computational data.

Me
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Scheme 4. HLF cyclization of a representative product.

Although this reaction may proceed via a N-Ni coordination
mode,10 the general catalytic cycle likely follows a similar
mechanism as that of alkenyl amide and carboxylate diaryla-
tion (Scheme 2C).3a4 The proposed catalytic cycle starts with
nickel undergoing oxidative addition into the aryl-iodide bond,
followed by alkene coordination of the protected alkenyl
amine. Migratory insertion proceeds with the formation of a
Nill(alkyl)(sulfonamido) metallacycle. Subsequent transmeta-
lation!! affords a Nill(alkyl)(aryl) species which would finally
undergo reductive elimination to give the 1,2-diarylated prod-
uct.’c-e It should be noted that this catalytic cycle may also op-
erate with the sulfonamide directing group as an L-type ligand
upon migratory insertion and this pathway cannot be ruled out
at this time.

We next envisioned that this method could have synthetic
applicability as a linchpin technology where the diarylated
products could engage in N-functionalization followed by
deprotection to form highly functionalized secondary amines
that would otherwise be difficult to construct. The 4-cyano-
phenyl sulfonyl (4-Cs) protecting group was utilized in scale-
up and diversification efforts due to its precedented ease of re-
moval by use of 1-dodecanethiol.5 With this in mind, we then

synthesized diarylated product 2ba in 87% yield (1 mmol, 0.40
g isolated) (Scheme 3). This product was then subjected to
Mitsunobu coupling, propargylation, benzylation, SnAr, and
Boc protection reactions, which proceeded in moderate to good
yields providing a diverse set of N-functionalized products
(3a-e). Subsequent treatment with 1-dodecanethiol and DBU
led to the removal of the aryl sulfonyl protecting group afford-
ing dialkyl, alkyl propargyl, alkyl benzyl, alkyl aryl, and alkyl
Boc-protected amines in low to excellent yields (4a-e). Lastly,
aviolet-light-initiated Hofmann-Loffler-Freytag (HLF) cycliza-
tion of a representative product, 2z, furnished 4-Cs-protected
pyrrolidine (+)-3f in good yield, with the two aryl groups in a
trans configuration (Scheme 4).12

In summary, a Ni-catalyzed 1,2-diarylation of aryl sulfonyl
protected alkenyl amines with aryl iodides and aryl boronic es-
ters was developed. This method tolerates electronically varied
aryl coupling partners. Electronics on the aryl sulfonyl protect-
ing group is indiscriminate of its directing capabilities with the
exception of nosyl substitution. Internal and 1,1-disubstituted
alkenes are competent substrates, affording the desired prod-
ucts in moderate to high yields with excellent regio- and dia-
stereoselectivity. Control experiments showed that the free
sulfonamide N-H is essential in the reaction. The alkenyl chain
length was determined to tolerate dicarbofunctionalization
with aryl sulfonyl protected allyl, butenyl, and pentenyl amines.
Finally, this methodology may be implemented as a linchpin
technology where aryl sulfonyl protected alkenyl amines could
engage in 1,2-diarylation, then N-functionalization, and lastly
deprotection to afford trifunctionalized secondary amines al-
lowing leeway for facile complex amine synthesis.
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