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Abstract—Runtime Verification (RV) can help find software
bugs by monitoring formally specified properties during testing.
A key problem when using RV during testing is how to reduce the
manual inspection effort for checking whether property violations
are true bugs. To date, there was no automated approach for
determining the likelihood that property violations were true
bugs to reduce tedious and time-consuming manual inspection.

We present RVPRIO, the first automated approach for prior-
itizing RV violations in order of likelihood of being true bugs.
RVPRIO uses machine learning classifiers to prioritize violations.
For training, we used a labeled dataset of 1,170 violations from
110 projects. On that dataset, (1) RVPRIO reached 90% of the
effectiveness of a theoretically optimal prioritizer that ranks all
true bugs at the top of the ranked list, and (2) 88.1% of true
bugs were in the top 25% of RVPRIO-ranked violations; 32.7 %
of true bugs were in the top 10%. RVPRIO was also effective
when we applied it to new unlabeled violations, from which we
found previously unknown bugs—29 bugs in 7 projects and two
bugs in two properties. Our dataset is publicly available online.

I. INTRODUCTION

Runtime Verification (RV) [15] helps to find bugs that occur
when behavioral properties' are violated. In RV, properties
are expressed in formalisms amenable to efficient monitoring.
Those properties are instrumented into the code, and monitored
during program execution. If an execution does not satisfy
a property, an RV violation (i.e., violation) is generated so
that developers can check whether there is a true bug. RV
improved a lot in recent years [11], [24], [43], [68], [74],
[112], to the point where there are now proposals for using
RV to find bugs during everyday software development and
testing [59]-[63]. RV tools like JavaMOP [40] allow to express
parametric properties [57], use different formalisms to express
those properties, and dynamically monitor these properties
efficiently, e.g., to monitor multiple properties in one test run.

Legunsen et al. [60], [62], [63] recently showed that per-
forming RV during test executions is scalable and helped find
hundreds of bugs that existing tests written by developers
did not find. Legunsen et al. found these bugs from their
large-scale empirical study [62], [63] in which they used
JavaMOP to monitor test executions in hundreds of open-
source projects, using properties of parts of the standard Java
library API [58], [82]. Unfortunately, they also reported that
the developer effort for inspecting violations is very high—RV
during testing produces very many violations that developers
need to manually inspect and there are various potential causes
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for a violation. A property violation could be indicative of a
problem in the property, a bug in the RV tool, or a bug in a
project’s code and tests, i.e., a true bug.

To date, the only way for developers to check whether a
violation indicates a true bug is through tedious and time-
consuming manual inspection. To put the problem in perspec-
tive, Legunsen et al. [63] reported spending 1,200 hours to
inspect, discuss and patch 852 violations. It took us over
9 hours to inspect 90 violations (Section V). These times
are for violations obtained from only one program version.
The problem of high developer manual inspection effort is
(1) worsened as software evolves rapidly and (2) exacerbated
by the fact that, currently, a vast majority of violations (roughly
1,271 of 1,495 in Legunsen et al.’s studies [62], [63]) are due
to problems with existing properties, and are not true bugs.

Although RV was shown useful for finding bugs during test-
ing, there is no automated approach for reducing developer’s
manual inspection effort by determining the likelihood that
violations are true bugs. Automated approaches for reducing
the manual inspection effort will make RV easier to use.

This paper proposes RVPRIO, the first automated approach
for reducing developer manual inspection effort by prioritizing
violations in order of likelihood of being true bugs. Currently,
RVPRIO uses machine-learning classifiers to prioritize vio-
lations. We trained RVPRIO classifiers with 1,170 violations
from Legunsen et al.’s studies [62], [63]. Each violation was
previously labeled as being a true bug or not. The classifier
computes the probability that a violation is a true bug, which
RVPRIO then uses to prioritize new violations. A key benefit of
RVPRIO is that developers can set a time budget for inspection
and still inspect the most likely true bugs. Machine learning
was previously applied to various software engineering prob-
lems, including other prioritization tasks (Section VII). To the
best of our knowledge, RVPRIO is the first approach to use
machine learning to assist developers to use RV during testing.

RVPRIO was effective. On the 1,170 labeled RV violations
in the training dataset, RVPRIO had ~90% -effectiveness,
compared with a theoretically optimal prioritizer that ranks all
true bugs at the top. RVPRIO prioritizes 88.1% of true bugs in
the top 25% and 32.7% of the true bugs in the top 10%. By
prioritizing 88.1% of the true bugs in the top 25%, RVPRIO
could have saved the time for inspecting 75% of the violations
at the expense of missing 11.9% of true bugs. Finally, we
conducted a case study in which we used RVPRIO to prioritize
278 new unlabeled violations from 11 Apache projects. We
manually inspected the top 90 RVPRIO-ranked violations.
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(a) Collections_SynchronizedCollection (CSC) property

(b) Commons Lang Bug found from CSC violation

Fig. 1: A JavaMOP property, CSC, and a bug that RV of CSC helped find

RVPRIO was also effective for prioritizing previously unseen

violations. We found 29 previously unknown bugs in these

projects, and two previously unknown bugs in two properties.
This paper makes the following contributions:

* Approach. RVPRIO is the first automated approach for
determining the likelihood that violations are true bugs, as
way to reduce developer manual inspection effort.

* Evaluation. We evaluate RVPRIO on the largest publicly-
available labeled dataset of violations. RVPRIO ranked
88.1% of true bugs in the top 25% of violations.

* Case Study. In our case study, RVPRIO reduced developer
effort in inspecting RV violations and more efficiently found
previously unknown bugs in projects and properties.

* Data. We made all our data publicly available, including the
newly-labeled violations from our case study.

II. FINDING BUGS WITH RV

This section shows how RV helps find bugs during testing,
and describe the inputs and outputs of an RV tool. It exem-
plifies how RV works and the cost of inspecting violations.
RYV Tool Input, Process and Output. Inputs to an RV tool are
formally specified properties, a program and a way to run the
program, e.g., tests. An RV tool instruments the properties into
program. While executing the instrumented program, relevant
events (e.g., method calls or field accesses) are generated and
objects called monitors are created to check whether events
satisfy the properties. The RV tool outputs violations which
inform the tool’s users that some properties were not satisfied
The RV tool that we used. All violations used in this paper
came from an RV tool called JavaMOP [40]. Our choice is
pragmatic—the violations that we use for training classifiers
were generated from Java programs, JavaMOP is quite robust,
easy to integrate with testing frameworks, publicly available,
has been used in recent papers on performing RV during
testing of open-source code [59], [60], [63], and is widely
used in RV research, e.g., [37], [43], [71], [72], [85], [86]. So,
to evaluate RVPRIO on previously unseen violations, we also
used JavaMOP to monitor the same properties from previous
work on a new set of Java projects (Section V).

Properties and Violations. Figure 1a shows a property, Co
llections_SynchronizedCollection (henceforth called
CsC), in JavaMOP syntax [41]. Properties have three parts:
(1) event definitions which specify relevant runtime method
calls or field accesses, (2) a specification, which is a logical

formula over the events, and (3) a handler, which is code that
is run when events violate/match the specification.

csc defines four events (lines 3-10). The sync event
(lines 3-4) is triggered after calling Collections.synch
ronizedCollection to create a synchronized Collection
c. The syncMk event (lines 5-6) is triggered after calling Co
llection.iterator to get an iterator, i, of c in a thread
that locks c. In contrast, asyncMk (lines 7-8) is triggered after
calling Collection.iterator to get i from c in a thread
that does not lock c. Lastly, event access (lines 9-10) is
triggered before accessing i in a thread that does not lock c.

CsC’s specification is defined on line 11 as an Extended
Regular Expression (ERE) which matches if either (1) i is
created from c without locking c, or (2) i is created from
c after locking c but then i is subsequently accessed in a
thread that does not lock c. In addition to EREs, JavaMOP
supports several logical formalisms for expressing property
specifications, e.g., FSM, CFG, LTL. The plugin-based design
of JavaMOP allows one to easily add other formalisms.

If the ERE on line 11 is matched at runtime, then the
code in the handler on line 12 is triggered. Handler code
can be anything the RV tool user wants, such as failure

recovery code. For our Specification

experiments, the handler
simply prints a violation
that warns users that csc

Collections_SynchronizedCollection has
been violated on line CharSet.contains(
CharSet.java:6)

[17]. A synchronized collection was

| accessed in a thread—unsafe manner.

was violated and the pro-
gram may have a bug.
Figure 2 is an example violation. Violations have four parts:
the property name, the line of code where the last event
that violated the property’s specification occurred, a URL to
the property definition (not shown in Figure 2), and a brief
description. Since the same code can be executed multiple
times during test execution (e.g., code in a loop or code
covered by multiple tests), we only consider in this paper the
set of unique violations. We consider two violations of the
same property that occur at the same location to be the same.

Fig. 2: An example property violation

Properties used in this paper. We used parametric multi-
object properties [57] that were manually formalized from the
Javadoc of several Java APIs. Specifically, Lee et al. [58], [68]
read through the Javadoc of a subset of four Java packages
(java.lang, java.io, java.util, and java.net). They
manually identified and formalized, as properties, sentences
that describe “must”, “should” or “is better to” conditions,



using the aforementioned formalisms as appropriate. Lee et
al. assigned one of three severity levels to each property—
(1) error: violations of the property are expected to always
indicate bugs, (2) warning: violations of the property may be
bugs in some scenarios but not in others, and (3) suggestion:
violations of the property merely indicate bad programming
practice. Legunsen et al. [62], [63] found both true bugs and
false alarms from inspecting violations of properties in all
three severity levels. So, we used these severity levels as
features learned by our classifiers (Section III-A). All 182
properties by Lee et al. are publicly available [84], and we
used all but the 21 that Legunsen et al. [63] found defective.
Finding bugs from RV during testing of open-source code.
To see how RV of csc helps find bugs, consider the buggy and
fixed version of the code snippet in Figure 1b. The code shows
a true bug that RV of CSC helped us find in Apache Commons
Lang [4], a widely-used library of utilities for manipulating
core classes in the standard Java library. In Figure 1b, lines that
do not begin with “+” represent the buggy code, and lines that
start with “+” represent the fix. In the buggy version, line 3
creates a synchronized Collection, set, triggering CSC’s
sync event. Line 6 creates a set iterator without locking set,
i.e., CSC’s asyncMk event. This event sequence from the buggy
version matches CSC’s specification, so JavaMOP generates
the violation in Figure 2. Our inspection, prompted by the
violation, confirmed that multiple threads can access line 6 in
Figure 1b and lead to bugs due to non-determinism. We made a
pull request for the fix on lines 5-11, which was accepted [18].
Problems in dealing with violations in practice. Currently,
developers face three major problems when dealing with viola-
tions from RV of test executions. First, very many violations
are generated that developers need to inspect. As examples,
RV on one version of Apache Commons lang produced 61
violations and Legunsen et al. [60] found 643 violations
from 10 open-source projects. Second, inspecting a violation
can be very time consuming, especially if events leading to
the violation happen in parts of code that a developer is
not familiar with or are due to interactions with third-party
libraries. Legunsen et al. [63] estimated that it took 1,200
hours to inspect 852 violations. Third, as many as 85.9%
of violations obtained from monitoring existing properties are
false alarms—they do not help find true bugs in the code under
test [62], [63]. To illustrate, CsC is violated even if the code
in Figure 1b only runs in a single-threaded context; a bad
programming practice that cannot lead to bugs due to non-
determinism. In fact, XxStream developers rejected Legunsen
et al.’s pull request fixing a CSC violation because they argued
that their code is not intended to be thread safe.

Researchers [62], [63], [102] have argued that better proper-
ties will lead to fewer false alarms. But, developers who want
to use RV to find bugs today (because RV helped find many
bugs) will have to deal with false alarms despite tremendous
research progress on mining properties [7], [14], [19], [26],
(541, [56]-{58], [64], [75], [76], [81]-[83], [91], [93], [109],
[113], [118]. Therefore, our goal in this paper is to reduce
developer manual effort for inspecting violations.
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Fig. 3: Overview of RVPRIO’s classification-based prioritization.

III. APPROACH

RVPRIO uses binary classifiers to compute probabilities of a
violation being a true bug (respectively, false alarm), and then
uses that information to prioritize previously unseen violations.
Machine Learning was used before for other prioritization
tasks in software engineering, e.g., ranking alarms from static
analysis tools [36], [50]. To the best of our knowledge, this is
the first approach for prioritizing violations from an RV tool;
RV was successfully used to find many bugs [62], [63].

RVPRIO takes a set of violations as input and produces a
ranking of those violations as output. Figure 3 illustrates the
workflow of RVPRIO. The first layer illustrates the learning
(offline) phase that builds a prediction model based on a
training dataset of previously-labeled violations. The model
computes the probability that a violation is a true bug. The
second layer shows the prioritization (online) phase that ranks
unlabeled violations. The following sections describe our
feature extraction process and the RVPRIO phases.

A. Features used in RVPRIO

Selecting informative, discriminating, and independent fea-
tures is an important step when solving a classification prob-
lem. Conceptually, learning methods infer combinations of
features capable of predicting the class of an object under
observation. In our context, the object under observation is the
violation. In RVPRIO, features are characteristics of violated
properties and the code that triggered those violations.
Feature Extraction. We extracted features 1) from the prop-
erty associated with the violation and 2) from the source code
that triggered the violation. From the property, we considered
the name of the violated property and its severity. From the
source code, we considered various metrics related to internal
code quality, obtained using PMD [78]. PMD is a static ana-
lyzer that provides several built-in rules, organized in different
categories. We used the category Error Prone, which is related
to functional behavior. We also used standard metrics of code
quality (e.g., number of lines of code, cyclomatic complexity,
number of tokens, and number of function parameters). Note
that static code attributes were used to solve other classification
problems [28], [53], [70], [87].

Feature Selection. Non-informative and non-discriminating
features can negatively affect prediction quality [20]. There-
fore, we applied a standard method for finding an optimal
selection of features known as Recursive Feature Elimina-
tion with Cross-Validation (RFECV) [29]. In RFECYV, first
the importance of each feature is obtained by training an
estimator on the original set of features. Then, the least



important features are recursively excluded and the model is
re-trained. If model performance becomes worse, the RFECV
process stops and any remaining features are selected. Note
that some of the classification algorithms that we used can
automatically ignore irrelevant features, i.e., they internally
perform feature selection. Nevertheless, Chandrashekar and
Sahin [13] showed that even these algorithms can benefit
from independent feature selection. After applying RFECV,
we reduced the original set of 110 features to 47 features. The
three most important features according to our model were:
1) TOKEN, 2) SPEC_is_ByteArray..._FlushBeforeRetrieve,
and 3) NLOC. TOKEN denotes the number of tokens in the
function that triggered the violation, the second feature refers
to the name of a property frequently violated in the dataset,
and NLOC is the number of lines of code of function. The
complete list of features selected and their importance can be
found online: https://github.com/brenomiranda/rvprio.

B. Learning Phase

Figure 3 shows each processing step in RVPRIO’s workflow
with a numbered arrow. The learning phase starts with feature
extraction (Step 1), which takes a set of labeled violations as
input. For each violation, we extract features from the violated
property and from the code that triggered that violation. The
output of this step is the raw training set, i.e., a table where
rows are violations and columns, except the “class” column
(indicating whether the violation is true bug or false alarm),
are features of that violation. Then, feature selection (Step 2)
eliminates uninformative (i.e., not selected) features from the
input training set. The refined training set is then used for
training the model, which is the output of the last step (Step 3)
of the learning phase.

C. Prioritization Phase

In Step 4, RVPRIO processes new violation to produce a
testing set with the same features selected during the learning
phase. In Step 5, RVPRIO takes the testing set, applies the
learned model to predict the probability that each violation
is a true bug and outputs the list of all violations with
their respective estimated probabilities of being a true bug.
Finally, in Step 6, the violations are ranked by their predicted
probability of being a true bug, from highest to lowest.

1V. EVALUATION

We pose the following research questions.

« RQI1. How good are different binary classifiers for pre-
dicting whether violations are true bugs?
+« RQ2. How good is RVPRIO for prioritizing violations?

The first question measures the performance of classifiers
whereas the second question evaluates the performance of
RVPRIO, which is influenced—but not determined—by the
probabilities that a binary classifier assigns to labels.
Dataset. To train classifiers, we used the dataset from Le-
gunsen et al. [62], [63]. That dataset includes 1,495 labeled
violations. However, 200 violations are from automatically
mined properties from which it is not possible to extract
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all features required by our model (e.g., the severity level
of the property). Also, some projects used to obtain the
original dataset are no longer available on GitHub, so we
could not obtain their source code. After removing violations
of automatically mined properties and unavailable projects,
our final training dataset contained 1,170 labeled violations
from 110 projects and 43 properties. 12 of these 43 properties
produced 165 violations that were labeled as true bugs, i.e.,
14.1% of the training dataset were true bugs. Figure 4 shows
these 12 properties and the number of true bugs and false
alarms from inspecting their violations. The x-axis shows the
total number of violations, whereas the y-axis shows the name
of the violated properties and, inside parentheses, the number
of true bugs and false alarms produced, respectively.

A. Classifiers

RVPRIO prioritizes violations using the probability of each
violation being a true bug, as computed by off-the-shelf binary
classifiers. We evaluated RVPRIO using a variety of classifiers
from Python’s scikit-learn library [77], using representatives of
the main types of algorithms—probabilistic, linear classifiers,
nearest neighbor, decision trees, and ensembles [23], [111].
Column “Classifier” in Table I lists the classifiers we used,
including a random classifier, dubbed DummyClassifier, which
serves as the baseline to measure how other classifiers compare
with random classification—it generates random predictions
with respect to the distribution of labels in the training set.
The DummyClassifier is also available on scikit-learn.

B. Metrics and Methodology

We used standard metrics to evaluate the performance of
binary classifiers and the corresponding prioritizer.

1) RQI: To evaluate the performance of classifiers we used
Precision (Pr), Recall (Re), and the Fl-score (F1) [101].
Precision is a proxy for measuring the amount of false
positives (i.e., false alarms incorrectly classified as true bugs),
recall is a proxy for measuring the amount of false negatives
(i.e., true bugs incorrectly classified as false alarms), and
the Fl-score averages precision and recall. In all cases, the
higher the value the better. Note that it is important to



TABLE I: Performance indicators of classification algorithms ob-
tained with 30 repetitions of 10-fold cross validation.

Classifier  Precision  Recall  Fl-score

Gradient Boosting Classifier 0.74 0.73 0.73
Logistic Regression 0.76 0.70 0.71
Random Forest 0.73 0.70 0.71
AdaBoost 0.74 0.68 0.70

Decision Tree 0.70 0.68 0.69
Gaussian Processes 0.67 0.65 0.66
Neural Net 0.74 0.65 0.64

Nearest Neighbors 0.67 0.63 0.64
Naive Bayes 0.62 0.75 0.55
Linear SVM 0.70 0.54 0.53
DummyClassifier 0.50 0.50 0.50

balance the two metrics—100% precision with 0% recall
can be obtained by not classifying any violation as a true
bug and 0% precision with 100% recall can be obtained
by classifying all violations as true bugs. Neither option is
useful. The following equations define these metrics, where
TP, FP, TN, and FN denote, respectively, the number of
true positives, false positives, true negatives, and false neg-
atives: Pr = TP/(TP + FP), Re = TP/(TP + FN), and
F1 = 2% (Pr=Re)/(Pr+ Re).

We used k-fold (with k=10) cross validation [38] to evalu-
ate classifier performance. This evaluation method randomly
divides the dataset into k groups, or folds, of approximately
equal sizes. Then, for each fold, it treats the selected fold as
the validation set and all remaining k-1 folds as the training
set. After iterating through all folds, it averages the evaluation
metrics. Because our dataset is imbalanced, i.e., the number
of observations with “true bug” labels is significantly lower
than those with “false alarm” labels, we used stratified cross
validation [66] to guarantee that the folds preserve the percent-
age of samples in each class. To perform a more robust model
assessment and to account for the random splitting of data into
folds, we repeated cross validation 30 times, such that the folds
are split differently each time. Table I shows the average across
30 repetitions of stratified 10-fold cross validation. Note that
these are standard machine learning metrics and evaluation
procedures. We did not (re-)implement them; we used the
implementation in the scikit-learn library [77].

2) RQ2: To evaluate prioritization performance, we used a
metric that was originally proposed by Rothermel et al. to eval-
uate performance of test case prioritization techniques [94].
We refer to our metric as Average Percentage of Bugs
Detected (APBD)>. APBD computes the weighted average
of the percentage of true bugs revealed over the list of
violations. APBD values range from 0 to 1 (frequently, they
are also reported as percentage) with high values indicating
faster detection of “true bugs” in the list of violations. For
a given set of violations, the optimal APBD is achieved
when all “true bugs” appear are at the top of the list
followed by all false alarms. The definition of APBD is:
APBD = 1 — VBlJrVByfnJg"'JFVB"” + 21—” Given a set of n vi-
olations V, and a set of m bugs B that can be revealed by
analyzing V, for any possible ordering of V', we call VB; the

2The original name of the metric is APFD, where “F” refers to Faults.

position in the ranked list of the first violation that reveals bug
1. For example, consider the case where we have 3 violations
(n=3) and only one of them reveals a true bug (m=I1). If
RVPRIO ranks the “true bug” violation at the top of the list,
APBD is 1 - 1/3 + 1/6 = 5/6 (~83%). If, on the other hand,
RVPRIO ranks the “true bug” violation at the bottom of the
list, APBD is 1 - 3/3 + 1/6 = 1/6 (~17%).

C. Answering RQI1: How good are different binary classifiers
for predicting whether violations are true bugs?

Table I displays the average precision, recall, and F1-score
for various classifiers. Techniques are sorted by column “F1-
score”, which is the most relevant metric for RVPRIO; it
takes into account false positives and negatives. So, techniques
with higher Fl-score are considered better. DummyClassifier
appears at the bottom of the table with an Fl-score of 50%.

Table I shows that Gradient Boosting Classifier (GBC)
achieved the best overall performance, with an Fl-score of
0.73. Note that precision and recall are well balanced for this
classifier. GBC is closely followed by Logistic Regression,
Random Forest, and AdaBoost. Interestingly, GBC, Random
Forest, and AdaBoost are ensemble techniques that use a
portfolio of methods to compute the prediction model. GBC, in
particular, is an ensemble that builds on weak prediction mod-
els, typically decision trees [25]. This result is consistent with
recent work showing the benefit of using multiple classifiers
in solving various classification problems [111]. Considering
the bottom of the table, Naive Bayes and Linear SVM had
F1-scores similar to DummyClassifier. To sum up:

Binary classification was effective. Four of the
algorithms analyzed produced an F1-score above or
equal 70%. Three of these are ensembles.

GBC had the best overall performance. So, in the rest of this
paper, we instantiate RVPRIO with GBC (i.e., RVPRIO-GBC).

D. Answering RQ2: How good is RVPRIO for prioritizing
violations?

RQ2 evaluates how well RVPRIO prioritizes RV violations.
Figure 5 shows the progress of true bugs revealed as violations
are analyzed. The x-axis indicates the number of violations an-
alyzed; the y-axis shows the percentage of true bugs revealed.
The faster a curve reaches 100 on the y-axis the better.

These curves represent the cumulative percentage of true
bugs revealed for different prioritization strategies. The area
under the curve denotes the weighted average of the percentage
of true bugs revealed over the analysis of the violations, i.e.,
the APBD of the prioritization. The dotted (blue) curve is the
theoretically optimal prioritization order with all true bugs at
the top of the list. Optimal order has an APBD of ~94%. The
other curves show the performance of RVPRIO using GBC
and random prioritization. The solid (green) curve shows the
progress of bugs revealed in RVPRIO-GBC-prioritized order.
There is a sharp growth at the beginning, reaching a peak of
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Fig. 5: Performance of different prioritization strategies.

82% of true bugs revealed after analyzing only 19.82% (268)
of the violations. For comparison, with random prioritization,
a developer would need to analyze 1,202 violations (89%)
to obtain the same results. From that point on, the number
of true bugs revealed by RVPRIO-GBC increases slowly,
achieving a normalized APBD (nAPBD) of ~90% at the
end. We normalized the APBD values—highlighted in the
plot—of RVPRIO-GBC and random prioritization to facilitate
the comparison of the techniques with optimal prioritization.
nAPBD is obtained by dividing the APBD of a technique by
the optimal APBD (~94%). Random prioritization, shown as
a dashed (red) curve, achieves nAPBD of ~52%.

TABLE II: Percentage of true bugs revealed for different fractions of
the violations list.

% of violations 5% 10% 15% 25% 50% 75%
RVPRIO-GBC 17.26% 32.74% 60.71% 88.10% 96.43% 97.62%
Random 4.17% 5.36% 14.29% 24.40% 56.55% 64.29%
Improv.  4.13x 6.11 4.25 3.61 1.71 1.51

Table II shows the percentage of true bugs revealed at
different cutoff points, i.e., for increasing fractions of the
prioritized list of violations. It is noticeable that RVPRIO-
GBC is effective for smaller fractions. This is an important
result with practical implications: the prioritization increases
the likelihood that the most important violations (the ones with
higher probability of being true bugs) will be analyzed first. In
a scenario when only some of the violations can be inspected,
the available analysis time will be spent inspecting the most
critical ones. For comparison, considering the first 15% of the
violations, RVPR1IO-GBC reveals, on average, at least 5 times
more bugs than random prioritization. To sum up:

Classification-based prioritization was effective.
RVPRIO-GBC achieved ~90% of the effectiveness
obtained by the optimal prioritization. Furthermore,

88.10% of the true bugs could be revealed after

analyzing only 25% of the violations.

V. CASE STUDY

This section reports the results of a case study that we
performed to evaluate the benefits of RVPRIO when inspecting
new unlabeled violations. A student (co-author of this paper)
inspected an RVPRIO-prioritized list of new RV violations. We
describe the projects and violations that we used, the procedure
that we followed, and time savings that could be obtained from
inspecting a fraction of prioritized violations. Finally, we show
a sample of the violations that we inspected.

Violations. The violations in this case study are new, unla-
beled, and not used in any prior study. Recall that violations
in the training dataset from Section IV already had “true
bug”/“false alarm” labels assigned, which we used as ground
truth to evaluate the classifier and RVPRIO performance. That
experiment did not involve developer inspection beyond what
Legunsen et al. [62], [63] had done to assign labels.
Projects. We analyzed Apache projects, which we expected
to contain tests and to have developers likely interested in
potential bug reports that we could submit. We started from a
list of 137 Apache Java projects that run builds on the publicly-
viewable Apache Jenkins server [3]. We first removed projects
that were already used in the training dataset (Section IV)
and then selected projects that compile with Java 8§ or higher,
and which use the Maven build system. This resulted in 66
projects. Among these, there were only 11 projects that we
were able to build, test, and monitor with JavaMOP. We used
only these 11 projects in our case study. Table III shows the
projects and their versions (SHAs) that we used.

Procedure. First, we ran JavaMOP on, and collected violations
from, these 11 projects using the properties described in
Section II. Column “Violations” in Table III is the number of
violations per project, “Inspected” is the number of violations
per project that we inspected, and “TB” is the number of true
bugs that we found. Second, we used RVPRIO to prioritize
the violations reported by JavaMOP. Notice that the prioritized
list contains violations from all 11 projects. This reflects what
would happen in ecosystems where multiple projects are built
and tested together, e.g., in monolithic repositories [39], [80].
The student did not inspect all 278 violations, but stopped after
the first 90 ranked violations. Thus, the proportion of inspected
violations is not uniform in Table IIl—some projects had no
violation ranked in the top 90. The false alarm rate observed
in prior studies [62], [63] was around 90%. So we stopped
the inspection after identifying a number of true bugs that
corresponds to nearly 10% of the 278 violations. We found
29 new true bugs—10.4% of the 278 total violations.

A. RVPRIO Performance on Unlabeled Dataset

Figure 6 shows the performance of techniques in terms
of APBD (see Section IV-B2) for the inspected violations.
The solid green line shows the performance of RVPRIO
compared with the optimal prioritization order (dotted blue
line) and a randomized inspection order, averaged over 30
runs (dashed red lines). The plots in Figure 6 are similar
to those in Figure 5—axes description and interpretation are



TABLE III: Case Study Projects and Violations

Apache projects SHA  Violations Inspected TB
santuario-java  3f4f5f40 66 24 10
activemg-artemis €2d6d072 46 12 5
struts  570f8c3e 45 12 2
pdfbox 4c6428d7 31 9 3
juneau 0eOc0OaOa 27 10 2
stanbol  2fcf471b 23 12 0
tika 86325105 18 3 0
ranger f80eeOe7 3 0 0
ambari  b0596110 8 0 0
hive 333264b2 6 6 6
shiro  010e4567 5 2 1
total 278 92 29
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Fig. 6: Performance of RVPRIO on an unlabeled dataset

the same. RVPRIO prioritization resulted in nAPBD of 80%,
while random order resulted in nAPBD of 57%.

Table IVa shows the percentage of true bugs revealed at
different stages of the inspection process. Similar to our ob-
servation on the labeled dataset, these results seem to reinforce
that RVPRIO provides greater benefit after a relatively small
percentage of the violations have been inspected (up to 25%).
Inspecting 5% of the violations in RVPRIO order revealed
~14% of true bugs whereas random order revealed no bug
at that cutoff point. (In practice, a developer using random
order would likely have stopped inspecting randomly-ordered
violations at this point [52]). Inspecting 10% of the violations
in RVPRIO order revealed 24.14% of the true bugs vs. 3.45%
bugs revealed with random order—a 6.9x difference. This dif-
ference reduces to 3.4x after inspecting 25% of the violations.
The percentages of true bugs revealed at different stages in
Table IVa seem lower than at corresponding stages in Table II,
likely because we did not inspect all violations. Although
Table IVa shows good but underestimated performance of
RVPRIO, if we had inspected all violations, the ratio of false
alarms to true bugs would likely have been higher and bring
the results in Table IVa closer to those in Table II.

Kremenek and Engler [52] report four practical concerns
that are important to developers when prioritizing source-
code analysis (SCA) tool warnings; two may be relevant to
RVPRIO: (1) the top three ranked warnings must not contain
false alarms; otherwise a developer is likely to discard the tool
and (2) after the top three, if the developer sees a sequence of
10-20 false alarms, they are likely to stop inspecting. For (1),
the first four violations that RVPRIO ranked in our case study
were true bugs. For (2), in our case study, stopping inspection

TABLE IV: Inspection progress.

% of violations 5% 10% 15% 25% 50% 75%
RVPRIO-GBC 13.79% 24.14% 34.48% 58.62% 72.41% 86.21%
Random 0.00% 3.45% 6.90% 16.24% 37.93% 65.52%
Improv. n/a  6.99x 4.99 3.40 1.91 1.32
(a) True bug % revealed at different fractions of the list of violations.
% of true bugs 25% 50% 75% 100%
RVPRIO-GBC 111 175 292 543
Random 125 269 423 541

(b) Time required (in minutes) to reveal true bugs.

after the first 10 consecutive false alarms would have resulted
in missing 9 of 29 true bugs. Stopping after the first 20
consecutive false alarms would have resulted in missing 3 of
29 true bugs. A developer who stops as Kremenek and Engler
say would have done so before inspecting 90 violations—there
was a sequence of 20 consecutive false alarms before the 90-
violation mark in our case study.

During the case study, the co-author kept track of time spent
inspecting each violation. It took 549 minutes to inspect all 90
violations—this includes neither time for a second co-author to
double-check inspection results nor time to discuss and prepare
pull requests. Average inspection time for true bugs was not
much different from time for false alarms, as shown in the box
plots in Figure 7. The average time to inspect true bugs was
6.4 mins (median=6); false alarms took 5.9 mins (median=4).
In general, the amount of

time required to inspect a

C .. TB ++——3---------- ’ °
violation is influenced by

the inspection order. For ex- FA - ro—=---------- 10

ample, when multiple viola- T | T
tions of the same property, S 10 15 20
or from the same source file Fig. 7: Inspection time in mins
are clustered together (i.e., (TB: true bugs, FA: false alarms)
appear back-to-back in the prioritized list), developer’s context
switching is reduced and inspection times progressively get
shorter. For illustration, if we assume that the time to inspect
a violation is independent of inspection order, an optimal
ordering (all true bugs at the top of the list) would have
required 187 minutes to inspect all the true bugs, saving 362
minutes of developer time. Of course, in real world, it is
impossible to know if all true bugs have been found until
all violations are inspected. Hence we measured percentage
of true bugs found at different stages (Table I'Va).

Table IVb shows the time for the student to find 25%,
50%, 75%, and 100% of the true bugs in our case study.
As a baseline for comparison, we also simulated how much
time it would have taken to reveal the same number of true
bugs if random order had been followed (averaged over 30
runs). For the first 50% of true bugs revealed, RVPRIO-
GBC was at least twice as fast as the random order, but
its rate of revealing true bugs is slower after the 50% point.
This result matches our expectations. RVPRIO-GBC ranks all
likely true bugs at the top of the list, followed by likely
false alarms. When RVPRIO-GBC mis-classifies a violation,
it is possible that human inspection will find a true bug



towards the very end of the prioritized order. This undesirable
behavior reduces the performance of RVPRIO in the second
half of Table IVb, and can be minimized only by further
improving the classifier, i.e., training the model with more
data, exploring other features, improving feature selection,
etc. The performance of the random order in Table IVb is
more stable; it eventually converges after averaging multiple
repetitions, to a uniform distribution of true bugs.

B. Sample of Inspected Violations

This section discusses some violations that we inspected in
our case study. Specifically, we discuss two true bugs and two
false alarms as examples. It is worth noting that inspecting the
violations for the two false alarms discussed helped us find a
previously unknown bug in two JavaMOP properties.

1) Examples of True Bugs: Apache Hive Bug. Fig-
ure 8 shows code snippet for a true bug in Apache Hive.
Lines in the original code do not start with “+4”; line 7
is our fix, starting with a “+”. The property violated is B
yteArrayOutputStream_FlushBeforeRetrieve [12],
or BAOS; it checks that an OutputStream built on a
ByteArrayOutputStream is flushed or closed before call-
ing ByteArrayOutputStream.toByteArray (), to avoid
incomplete data in the resulting byte array. When testing the
original code in Figure 8, BAOS is violated on line 8. The fix
(line 7) flushes the DataOutputStream object to ensure that
complete data is written from the ByteArrayOutputStream.
Legunsen et al. [62], [63], found BAOS to be one of the more
effective properties, with relatively low false alarm rates and
dozens of BAOS-related bugs accepted by developers.

1| void doTestWriteReadFields (Random r, BigDecimal b)...{
2 HiveDecimal dec = HiveDecimal.create (b);

3| ByteArrayOutputStream baos = new ByteArrayOutputStream();
4 DataOutputStream out = new DataOutputStream(baos);

5 HiveDecimalWritable dwo = new HiveDecimalWritable (dec);

6 dwo.write (out) ;

7| tout.flush();

8

byte([] valueBytes = baos.toByteArray(); ... }

Fig. 8: True Bug found in Apache Hive.

Apache Juneau Bug. Figure 9 shows a code snippet for a true
bug in Apache Juneau. Original code lines do not start with
“+7; lines for our proposed fix start with “+”. The property
violated is CSC (described in Section II), which checks that
code that iterates over a synchronizedList, s1, must do so
from within a thread that locks s1, to avoid non-deterministic
failures. The fix (lines 4 and 7) first locks the listeners
synchronizedList before iterating over it. CSC helped find
several confirmed bugs [60], [63].

listeners =
Collections.synchronizedList (new LinkedList<CL>());...
void onConfigChange (ConfigEvents events) {
+synchronized(listeners) {
for (CL 1 : listeners)
1l.onConfigChange (events) ;
+}

}

® 9 o o W N e

Fig. 9: True Bug found in Apache Juneau.

2) Examples of False Alarms: Apache PDFBox. Figure 10
shows code snippet for false alarms from PDFBoxthat led us
to discover a previously unknown bug in two properties: T
reeSet_Comparable [103] and SortedSet_Comparabl
e [97]. These properties check that non-comparable elements
are not added to a SortedSet or TreeSet via the respective
add () or addall () methods. An element is comparable if it
implements the Comparable interface or uses a Comparator.
However, in the event definition for add (), both properties
were written to check for calls to add* (), which also matches
calls to addal1l (). For example, on line 4 in Figure 10, when
the call to addall () is made with a Set as argument, that call
matches the erroneous event that is defined as add” (). Since
Set objects are non-comparable, the properties are (wrongly)
violated. We have reported this bug in both properties to the
JavaMOP developers [98]. Interestingly, RVPRIO classified
these violations as true bugs, with very high probability. Our
conjecture is that the erroneous classification is influenced by
the fact that both properties have severity level of error.

class TTFSubsetter { ...
SortedSet<Integer> glyphIds = new TreeSet<>();
void addGlyphIds (Set<Integer> allGlyphIds) {
glyphIds.addAll (allGlyphIds) ;
bo.o.
}

o U W N e

Fig. 10: Simplified Code for Apache PDFBox False Alarm

VI. DISCUSSION

Lessons Learned. The main lesson we learned is that priori-
tization of RV violations is effective for significantly reducing
developer manual effort for inspection. Regarding the use of
machine learning in RVPRIO, our results show that features
computed from static code and property characteristics are
useful for prioritizing warnings from a dynamic analysis tech-
nique (RV in this case). Although we chose a machine-learning
based approach in RVPRIO, we do not think that machine
learning is the only way to approach the problem. RVPRIO
merely opens a line of research on RV violation prioritization,
and alternative approaches should be explored in the future.
For example, it may be possible to develop program-analysis
based techniques for prioritization and use them together with
machine-learning based techniques like RVPRIO.

Our case study shows that it is important for future machine-
learning based RV violation prioritization techniques to not
just measure precision, recall and performance on labeled data
sets, but to also evaluate how well they help developers who
may be tasked with inspecting new, unlabeled violations. For
example, had we not performed a case study we would not
have been able to measure time savings that a developer can
obtain. We would also not have experienced for ourselves the
perspectives that potential users of RVPRIO may have. Unless
individual software projects have many more violations than
the ones in our case study, classifiers such as RVPRIO will
likely become more accurate when there is more data available
for training and testing. Thus, RVPRIO will likely be useful in



software ecosystems where many projects are tested together
(and RV of those test executions is performed). Lastly, given
the good results achieved by Logistic Regression (shown in
Table I and discussed in Section IV-C), we expect it to perform
similarly as GBC in practice, where Logistic Regression could
be more attractive than ensembles due to its simplicity.
Limitations. As with any machine-learning based approach,
RVPRIO evaluation is limited by the amount of labeled RV
violations available for training and testing. We used all
labeled RV violations that we could find from the literature. As
more labeled violations become available, it will be interesting
to see how the performance of RVPRIO improves. RVPRIO
cannot rank violations of a newly-written property that it was
not previously trained on. Such property would first have to be
monitored in several projects and then its violations inspected,
labeled and used for re-training RVPRIO’s model.

Future Work. This paper opens up a new research direction
on performing RV during software development. As recent
research [60]-[63] showed that the overhead of performing RV
during testing is becoming more tolerable, we believe that now
is the time for more research on reducing manual developer
effort for inspecting RV violations.

We highlight here some future work that we are interested
in: (1) Investigating RVPRIO performance on project-specific
properties, not just standard Java API properties, like we used
in this paper. For example, the Apache Software Foundation
has many projects whose APIs are well documented and which
are widely-used as third-party libraries in other open-source
projects. It may be possible to come up with properties from
the API of these Apache projects, and investigate the effec-
tiveness of RVPRIO for prioritizing violations that occur when
running their tests and the tests of the projects that depend
on them. (2) Enriching the features in RVPRIO classifiers.
For example, in this paper, we only considered features from
the method in which the last event occurred that led to a
violation. Other features may be obtained from all methods
in which all events occurred that led to each violation. Also,
features may also be obtained from dynamic execution, e.g.,
how many times a violation occurred, or the number of tests
during whose execution the same violation occurred. It would
be interesting to see if and how much these additional features
improve RVPRIO performance and accuracy. (3) We observed
during our experiments that there may be room to make the
violation inspection task even less burdensome for developers
by combining prioritization with clustering. Violations of the
same property often occur in code that have similar API
usage patterns. (4) Incorporating information about software
evolution into RVPRIO, both for obtaining more features for
training and testing classifiers, and for utilizing decisions that
developers made in the past to classify and prioritize future
violations. In particular, it will be interesting to see how to use
RVPRIO together with evolution-aware RV techniques [60].
Threats to Validity. Construct validity. To answer RQ1 and
RQ2 we adopted standard metrics and techniques from the
literature to evaluate classifiers and prioritizers. Internal va-
lidity. Developers can mis-classify violations. To mitigate this

threat, we double checked every true bug reported. External
validity. As usual, results may not generalize to other programs
and properties. To mitigate this threat, we evaluated RVPRIO
on a public dataset with 110 projects and 11 more projects in
a case study. Lastly, the student who inspected the violations
in our case study is a co-author on this paper, which may bias
the results. To mitigate this, multiple co-authors rigorously
double-checked the inspection process and results.

VII. RELATED WORK

We describe related work on RV, machine learning in soft-
ware engineering, and on using machine learning for dealing
with warnings from static code analysis (SCA) tools.

A. Runtime Verification

The research on RV has been around for decades, and the
kind of RV that we focus on in this paper—monitoring for-
mally specified properties during program execution without
requiring programmers to annotate their code—kicked off with
seminal papers in the early 2000s [22], [32], [33]. Although
it was previously recognized that RV can help find bugs
during software development [15], [47], it was only recently
that RV during software testing was feasible, thanks to the
research and development of algorithms and techniques to
make RV scale [1], [5], [6], [8]-[11], [21], [24], [31], [43]-
[45], [68], [71], [72], [74], [85], [86], [112]. Specifically,
Legunsen et al. recently started to explore the opportunities,
benefits and challenges of performing RV during testing [59]—
[63]. Although Legunsen et al. [62], [63] were the first to
quantify the severity of the problem of false alarms that result
from monitoring existing properties during software testing,
RVPRIO is the first automated approach for determining the
likelihood that violations are true bugs.

To reduce RV overhead, Legunsen et al. [59], [60] pro-
posed to prioritize properties used in RV during software
evolution. RVPRIO is the first to use the likelihood of being
true bugs to prioritize RV violations, which is orthogonal
and complementary to prioritizing properties. The evolution-
aware RV techniques proposed by Legunsen et al. [59], [60]
can reduce developer manual inspection effort but only work
across multiple program versions. RVPRIO does not require
multiple program versions and is complementary to evolution-
aware RV techniques. Lastly, coming up with better properties,
either manually or automatically, remains an active research
topic. We expect the benefits of RVPRIO to be applicable
until perfect properties (those for which every violation is
guaranteed to be a true bug) are available.

B. Machine Learning in Software Engineering

The research on using machine learning in software engi-
neering has a rich history. Examples of software engineering
problems to which machine learning was applied include
(1) predicting fault-prone or costly-to-maintain software sys-
tem components based on historical information [42], [79],
[96], (2) classifying field executions as passing or failing
runs [30], [116], (3) duplicate bug report detection [99], [100],



[108], (4) bug localization [48], [67], (5) code search, code
completion, code mining, code clone detection and code syn-
thesis [27], [55], [65], [89], [90], [110], [115], (6) learning how
to apply patches [105], [106], (7) prioritizing test programs
for compilers [16], and (8) classifying warnings from SCA
tools [2], [34]-[36], [46], [49]-[52], [69], [73], [88], [92], [95],
[104], [107], [114], [117]. We are the first to apply machine
learning to prioritizing and classifying violations from RV
of test executions, for reducing developer manual inspection
effort. Among the prior work on machine learning in software
engineering, RVPRIO is most related to the work on classifying
warnings from static analysis tools, which we discuss next.

C. Classifying Static Analysis Warnings

There is a long line of work on using machine learning to
classify warnings from Static Code Analysis (SCA) tools.

Koc et al. [50], [51] empirically evaluated the effectiveness
of four families of machine-learning approaches for classifying
SCA tool warnings from 14 programs, using hand-crafted
features. They found that recurrent neural networks performed
best. In contrast, we found ensemble techniques worked best
for classifying RV violations, in line with future work that
Koc et al. proposed [50]—they conjectured that ensemble
techniques may achieve better accuracy.

Kim and Ernst [49] used the fix history of SCA tool
warnings to prioritize new warnings; if more warnings of a
particular kind were usually fixed quickly in the past, then new
warnings of that kind are ranked higher. Also, in comparing
algorithms that rank warnings, Allier et al. [2] found that
the best ranking algorithms are based on the history of past
warning and their location in the code. Our results with
locations of violations in the code are already promising, and
it would be interesting to see how violation history would
improve the precision of RVPRIO.

Xypolytos et al. [114], Meng et al. [69] and Ribiero et
al. [92] proposed approaches for combining output from
multiple SCA tools when prioritizing SCA tool warnings. We
only prioritize warnings from one RV tool, JavaMOP, and
leave as future work to investigate the impact of combining
output from multiple RV tools. In their work, Ribiero et al. [92]
trained an ensemble classifier (they used AdaBoost) because
they neither considered project history nor performed deep
code analysis when selecting features. Interestingly, we also do
not consider project history, and the classifiers that performed
best were based on ensemble techniques (Section IV-C).

Wang et al. [107] studied whether there is a “golden set” of
features that make classifiers effective in classifying SCA tool
warnings. By investigating 116 features used in 10 papers that
used machine learning to classify SCA tool warnings, they
found a set of 23 golden features that were commonly used,
and which were effective for warning classification. Some of
the features that we used are in the final set of 23 golden
features that they identified. As the research on classifying
RV violations progresses, it will be interesting to see whether
a corresponding set of golden features emerges.

Several techniques for classifying warnings of SCA tools are
user guided, leveraging prior decisions to improve precision
of reports [88], [104]. The labels of violations in our dataset
reflect the decisions that real RV tool users made in prior work.
An interesting future direction is to use RVPRIO together
with evolution-aware RV techniques [59], [60], so that user
decisions from prior versions are taken into account when
prioritizing and classifying violations in future versions.

Jung et al. [46] proposed Airac, to classify as true bugs
alarms whose true-bug probability was above a threshold, and
prioritize the warnings presented to the user in order of their
true-bug probability. We have implemented the same ideas for
classification and prioritization in RVPRIO, but for classifying
violations from RV. We also performed a case study with
RVPRI10O, which was not done for Airac, as far as we know.

Concerning using only a subset of possible features when
building classifiers for warnings from SCA tools, Ruthruff et
al. [95] used a screening methodology to remove features with
low predictive power. They found that classifiers built with
the reduced set of features were comparable to classifiers built
with the full set of features in terms of accuracy, and were less
expensive to use on large systems. Their result gives us more
confidence in the performance of the classifiers we obtained
after feature selection (Section III-A).

VIII. CONCLUSIONS

Runtime Verification (RV) during testing was recently
shown to be effective for detecting many more bugs than test-
ing alone. But, using RV is laborious and time-consuming—
RV tools often generate many violations that developers have
to manually inspect.

We presented RVPRIO, the first automated approach to
reduce developer manual inspection effort by ranking viola-
tions in order of likelihood of being true bugs. RVPRIO uses
machine-learning classifiers to prioritize violations. We trained
RVPRIO on the largest publicly-available dataset containing
1,170 previously labeled RV violations. Results on the labeled
dataset show that RVPRIO ranked 88.10% of true bugs in
the top 25% of the prioritized list. We also conducted a case
study to apply RVPRIO to unlabeled violations and obtained
similarly good results. From inspecting these new violations,
we found 29 previously unknown bugs in 7 projects and
two bugs in the formally specified properties that we used.
RVPRIO opens a new research direction on reducing developer
manual inspection effort for performing RV during testing, and
we highlighted some possible future work in this direction
(see Section VI). Our data is publicly available online at
https://github.com/brenomiranda/rvprio.
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