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Abstract 

 

We investigate the use of accurate path integral methods, namely the quasi-adiabatic propagator path 

integral (QuAPI) and the quantum-classical path integral (QCPI), for generating the memory kernel 

entering generalized quantum master equations (GQME).  Our calculations indicate that the length of the 

memory kernel in system-bath models is equal to the full length of time nonlocality encoded in the 

Feynman-Vernon influence functional, and that the solution of the GQME with a QuAPI kernel is identical 

to that obtained through an iterative QuAPI calculation with the same memory length.  Further, we show 

that the memory length in iterative QCPI calculations is always shorter than the GQME kernel memory 

length.  This stems from the ability of the QCPI methodology to pretreat all memory effects of a classical 

nature (i.e. those associated with phonon absorption and stimulated emission), as well as some of the 

quantum memory contributions (arising from spontaneous phonon emission).  Further, trajectory based 

iterative QCPI simulations can fully account for important structural/conformational changes that may 

occur on very long time scales and which cannot be captured via master equation treatments. 
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I.  Introduction 

 Quantum mechanical effects, such as tunneling, zero-point energy and phase interference, play a 

crucial role in the understanding of important processes in biology, catalysis, energy harvesting and 

quantum computation.  In recent years, theoretical efforts for developing simulation methods capable of 

following the dynamics of such processes with sufficient accuracy have intensified.  The dissipative two-

level system (TLS) (or spin-boson) model1 continues to serve as the paradigm of tunneling in the condensed 

phase.  The iterative quasi-adiabatic propagator path integral methodology2-9 (QuAPI), along with its 

various extensions,10-21 enables fully quantum mechanical simulation of dissipative TLS dynamics over 

long propagation times and without restrictions on the frequencies of the harmonic bath degrees of freedom 

and their coupling to the system, and other methods are also available for low temperatures22 or for special 

forms of the bath spectral density.23  By exploiting the Gaussian response approximation (which has been 

put on a rigorous basis through a path integral analysis24), a plethora of processes in complex environments 

have been investigated by simulating system-bath Hamiltonians.    

 In sharp contrast to these advances in system-bath methodology, the quantum dynamics of more 

complex processes continues to remain out of reach.  Even the simple system-bath Hamiltonian has 

parameter regimes that remain challenging, especially when the system involves many quantum states.  

Further, while the harmonic bath mapping is justifiable in many situations, it is hard to know a priori 

whether it provides a faithful description of a particular process with sufficient chemical complexity.  Thus, 

the development of accurate algorithms for simulating the quantum dynamics of condensed phase processes 

is highly desirable. 

 Significant progress has been made in this direction, in particular in the context of quantum-

classical approximations for nonadiabatic dynamics, where a large number of degrees of freedom, which 

correspond to the nuclei of a solvent or biological molecule and which are assumed to follow classical 

dynamics, evolve on discrete Born-Oppenheimer or diabatic states that are coupled to each other.  

Combining quantum and classical mechanics poses severe challenges, owing to the incompatibility between 

local Newtonian trajectories and delocalized wavefunctions.  The oldest mixed quantum-classical treatment 

is the Ehrenfest mean-field model,25 which is practical and appealing, but fails to yield physically correct 

dynamics and product distributions.  Surface hopping methods26, 27 correct the major shortcomings of the 

Ehrenfest model and have been used in many investigations, although they are not capable of capturing 

decoherence and have been shown to lead to large error in some regimes.  The Meyer-Miller (MM) mapping 

Hamiltonian approach28, 29 bypasses the quantum-classical dilemma by replacing the quantum states by 

continuous degrees of freedom, which must then be described (along with the coordinates of the nuclei) by 

linearized semiclassical30 (LSC) trajectory methods.  Methods based on the mixed quantum-classical 

Liouville equation,31, 32 in particular its momentum-jump formulation33, 34 (MJ-QCLE) offers a rigorous 

solution, although the computational demands of the method increase exponentially with propagation time.  

The quantum-classical path integral35-37 (QCPI) methodology, which corresponds to the stationary phase 

limit (with respect to the classical nuclei) of the path integral representation of the propagator in the space 

of all particles, offers a rigorous formulation which – solely through phase interference – correctly captures 

the decoherence induced by the classical degrees of freedom.  The QCPI algorithm scales linearly with 

propagation time and has been shown to be practical for simulating charge transfer processes in the 

condensed phase38 without ad hoc assumptions or adjustable parameters.  Last, our group has recently 

developed a fully quantum mechanical modular decomposition of the path integral39, 40 (MPI), which allows 

simulation of systems characterized by a quasi-one-dimensional topology with linear scaling.  The MPI 
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formulation is ideally suited to exciton energy transfer in systems of many units, each with electronic states 

coupled to arbitrary numbers of vibrational or phonon modes, at zero or finite temperature.41     

 In many situations the object of interest is the reduced density matrix (RDM) of the discrete 

quantum system, or a time correlation function of system operators, and some formulations directly target 

these properties.  In the path integral formulation,42 the effects of the environment are captured through the 

influence functional, which can be evaluated exactly in the case of a harmonic bath (giving rise to the 

Feynman-Vernon expression43).  In the QCPI methodology, a semiclassical approximation of the influence 

functional captures the effects of the nuclei via classical trajectories subject to forces specified by the state 

of the quantum system along a forward-backward path.35  The influence functional contains nonlocal 

interactions, commonly referred to as memory effects, which prevent the subsequent reduction of the 

problem to that of a single quantum particle.  Exploiting the memory-quenching effects of condensed phase 

environments allows an iterative tensor product decomposition of these path integral-based algorithms (i-

QuAPI5 and i-QCPI36), which leads to linear scaling with propagation length.  Since the influence functional 

needs to be included along all path segments within the memory length, the crudest form of these methods 

scales exponentially with the number of time steps necessary to span the memory.  However, dramatic 

savings are possible through additional decompositions44, 45 and path filtering.7, 8, 10, 46  Further, it has been 

shown that the most prominent (“classical memory”) component of the influence functional is automatically 

accounted for in QCPI through the classical trajectories,47 that some of the residual “quantum memory” 

component can also be removed,48 and the time step can be increased,49 thereby significantly shortening the 

memory length.   

 An alternative approach is used in quantum master equation approaches,50, 51 which lump the effects 

of the environment into a two-time memory kernel.  The storage requirements of these approaches are 

considerably lower, as they do not need to store quantum paths over several time steps.  However, obtaining 

the kernel requires knowledge of the system dynamics under the influence of the environment over the 

kernel memory length.  Evaluation of the kernel using perturbation theory and the Markovian 

approximation leads to the well-known Bloch-Redfield equations.52  In the absence of such assumptions, 

Geva and coworkers have shown that the kernel in the Nakajima-Zwanzig generalized quantum master 

equation50, 51 (GQME) can be obtained from time correlation functions.53  Recent work based on either the 

Nakajima-Zwanzig or the Mori formalism54 has demonstrated that the kernel may be obtained from 

knowledge of the RDM for all possible initial conditions.55-58  Thus, if one could reliably obtain the GQME 

kernel over its memory length, solution the GQME would yield the RDM dynamics over longer times.  

Several approximate methods have been investigated toward this goal, including Ehrenfest 

dynamics,59, 60 LSC approximations to the MM mapping Hamiltonian,58 and truncated MJ-QCLE 

methods.61  These methods were found to reproduce the true GQME kernel reasonably well for some spin-

boson models, while the resulting GQME dynamics was very good in some regimes.  The key to the success 

of these approaches may lie in the relatively weak coupling and short memory length of these models, 

which allows approximate methods to yield relatively good results, since errors tend to grow with increasing 

propagation time.  Still, it is not possible to know the accuracy of GQME results with approximate kernels 

unless numerically exact results for the system of interest are available.   

 An intriguing possibility is to compute the GQME kernel using methods capable of producing 

numerically exact or at least highly accurate results.  In some cases of interest, real-time path integral Monte 

Carlo methods can be converged over the time span of the memory kernel.62, 63  In the case of system-bath 

Hamiltonians, numerically exact kernel calculations have been reported based on the correlation function 

approach in conjunction with QuAPI calculations,53 and also with the RDM approach using the 
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multiconfiguration time-dependent Hartree methodology.57  In addition to full-path (non-iterative) QuAPI 

calculations, numerically exact results on system bath Hamiltonians may also be obtained using QCPI 

(which is also exact for a system coupled to a harmonic bath).   While both QuAPI and QCPI can produce 

long-time dynamics, with effort that scales linearly with propagation time, the GQME array storage 

requirements are considerably more modest.  It is thus important to assess the advantages and drawbacks 

of the GQME with path integral-generated kernels, and to compare the effort required for obtaining the 

exact long-time dynamics of a system-bath Hamiltonian via i-QuAPI, i-QCPI, or the GQME approach.  A 

key question in this regard is the memory length required for convergence of the GQME, compared to the 

memory required in each of the two path integral-based methods.  While various conjectures have been 

discussed, it appears that no consensus has been reached on this question.53, 55  Further, in the case of a 

complex anharmonic environment, it appears that QCPI offers the most rigorous and robust formulation 

that converges with relatively modest effort in several regimes of interest, thus it may be the best candidate 

for computing the memory kernel for use in the GQME.   

 In this paper we address these questions by performing QuAPI and QCPI calculations to generate 

the GQME kernel and solving the GQME equation to obtain long-time dynamics on dissipative TLSs in 

several parameter regimes.  We also compare the relevant memory lengths, i.e., the Feynman-Vernon 

influence functional memory that enters the i-QuAPI formulation, the quantum memory length entering the 

QCPI methodology and its dynamically enhanced versions, and the GQME kernel length.  We find that the 

latter is always equal to the full Feynman-Vernon influence functional memory length, but considerably 

longer than the quantum memory length relevant to QCPI.  We also compare the effort required to obtain 

converged long-time dynamics with these methods.   

 We follow the direct approach to generate the kernel from information contained in the RDM. 57, 64   

This approach necessitates the numerical evaluation of RDM derivatives, which increases the 

computational effort and in some cases requires some care.  Alternatively, the kernel may be obtained from 

information contained in system-bath correlation functions.53, 55  This approach also requires a substantial 

amount of additional effort, as well as additional work to code the appropriate correlation function 

expressions, and has already been explored in the context of constructing the GQME kernel from Ehrenfest 

dynamics.65   

 In section II we review the two path integral based approaches (QuAPI and QCPI) we employ to 

either obtain the memory kernel for use in the GQME, or to independently propagate the RDM to long 

times, and their computational costs.  In section III we summarize the GQME approach and discuss the 

numerical procedure we employ.  Section IV specializes to the spin-boson model, for which we give the 

kernel elements and discuss computational details.  Our results for four sets of parameters are presented in 

section V, along with a discussion of the convergence characteristics and required effort of the various 

methods.  Our conclusions are discussed in section VI. 

  

 

II.  Real-time path integral methods  

 Our focus is on the dynamical properties of a quantum mechanical system, described by the 

coordinate s and conjugate momentum sp , which is in contact with an environment composed of  d  degrees 

of freedom with phase space variables ,q p .  The total Hamiltonian may be written as 

     sys env int
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,sH H s p H q p V s q                                                   (2.1) 
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where 
sysH  and envH  describe the system and environment, respectively, and intV  describes their 

interaction. 

 In many situations, the Hamiltonian of the environment is (or is assumed to be) quadratic, giving 

rise to the common system-bath Hamiltonian,  

  

2
2

2

sys 2
1

ˆ ˆ1ˆ ˆ ˆ,
2 2

d
j j

s j j j

j j j j

p c s
H H s p m q

m m




 
    

 
 

                                          (2.2) 

where 
j  and 

jc  are the bath frequencies and system-bath coupling coefficients. 

 The dynamical properties of the system can be obtained from the RDM, 

 

     
ˆ ˆ/ /

env
ˆ ˆ, , Tr 0iHt iHts s t s t s s e e s         .                                   (2.3) 

 

In the limit d   the RDM of the system-bath Hamiltonian exhibits dissipative dynamics.  The collective 

parameters of the harmonic bath are captured in the spectral density function,66 

 

    
2

2

j

j

j j j

c
J

m


   


  .                                                      (2.4) 

 The dynamics of the RDM for the system-bath Hamiltonian can be obtained via the numerically 

exact QuAPI algorithm,2-9 which is derived using the quasi-adiabatic splitting of the system-bath 

propagator2 with a time step /t t N  .  The QuAPI expression of the system-bath RDM has the form 

 

 

   

sys sys

sys sys

ˆ ˆ/ /

0 1 1 1 0

ˆ ˆ/ /

0 0 1 1 0 1

;

;0 , , , ;

iH t iH t

N N N N

iH t iH t

N N N

s N t ds ds s e s s e s

s s e s s e s F s s s t





         

 

        



 

 

 
                    (2.5) 

 

where F is the QuAPI-discretized Feynman-Vernon influence functional.43  If the initial density operator is 

a product of system and equilibrium bath components, the influence functional is given by6  

 

  0 1 '

0 ' 0

1
, , , ; exp Re 2 Im

N k

N k kk k kk k

k k

F s s s t s s i s   

  

 

 
      

 
       (2.6)  

where 
k k ks s s     and 1

2
( )k k ks s s    and the superscripts denote forward and backward path 

coordinates.  A bath which initially is in equilibrium with a specific state of the system (e.g. the donor state 

in an electron transfer process) leads to a modified influence functional.67  The kk   coefficients introduce 

time-nonlocal interactions between the k and k  time points, which constitute the path integral 

manifestation of the bath-induced memory.  These coefficients are available in terms of spectral density 

integrals,6 and can also be obtained directly from the force autocorrelation function of the bath.68 

 In real-time path integral calculations  the system coordinate is also discretized into n grid values 

using a system-specific discrete variable representation69  (DVR).  All integrals in Eq. (2.5) are then 

replaced by sums, and the influence functional is evaluated at the DVR eigenvalues.70  For a given initial 

condition, there are Nn  forward paths and an equal number of backward paths, such that evaluation of the 

discretized path integral expression requires summing 2Nn  terms.   
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 The finite memory of dissipative environments allows a tensor decomposition of the path sum, 

which leads to the iterative i-QuAPI scheme.4, 5  The basic i-QuAPI algorithm requires the storage of QuAPI2L
n  

discrete system path segments, where 
QuAPIL  is the maximum value of k k  in Eq. (2.6); this parameter 

equals the number of time steps required to span the influence functional memory length.  Each step in the 

i-QuAPI procedure involves QuAPI2 2L
n


 operations.  For propagation of the RDM to N  path integral steps, 

the i-QuAPI methodology requires a total of QuAPI2 2L
n N


 calculations. 

 However, a large fraction (and often the majority) of the QuAPI2L
n  paths make an exponentially small 

contribution and may be dropped.  There are several ways of filtering out unimportant path segments.7, 8, 10, 

46  One very efficient such scheme is based on ‘blips’,1 i.e. 0ks   terms.  In fact, a restructuring of the 

forward-backward sum in Eq. (2.5) in terms of blips and sojourns (time points where the coordinates of 

forward and backward paths are identical) leads to an exponential reduction of the number of operations 

even without dropping any paths, and the contribution of path pairs with many blips is exponentially small 

in the incoherent regime, allowing elimination of multi-blip segments.44  The blip-summed path integral 

(BSPI) reduces the number of integrand evaluations of the full path sum to QuAPI2L
M n , allowing efficient 

evaluation of the path integral in cases of very long memory.  A very efficient, iterative version of the BSPI 

algorithm is also available.45 

 In the case of anharmonic environments, the evolution of the RDM may be obtained using the QCPI 

formulation.35-37  The QCPI expression is identical to Eq. (2.5), but the influence functional is now evaluated 

within a stationary phase approximation to the forward-backward bath propagator.71-73  This procedure leads 

to an expression that involves classical trajectories and thus may be used with general, anharmonic 

environments.  In the special case of a harmonic bath, stationary phase procedures are exact and reproduce 

the Feynman-Vernon influence functional.35, 71, 72  After rearranging the path sum and the integral with 

respect to the phase space variables that specify trajectory initial conditions, the QCPI expression takes the 

form 

 

     

     

 
 0 0 0 1

0 0 0 0 0 1 ref 1

†

1 ref 0 0 0 ref 1

, ; , , ,†

1 ref

ˆ; , ,( 1)

ˆ ˆ,0 ;0 ,0

ˆ ,( 1)
i

N

N N N N

q p s s s

N N

s N t d d P ds ds s U N t N t s

s U t s s s U t s

s U N t N t s e





  

    

 

    

 



    

 

  

   q p q p

                   (2.7) 

 

where  0 0,P q p  is the phase space distribution of the environment (i.e. either the classical Boltzmann 

factor or the quantized Wigner distribution74), 
refÛ  is the time evolution operator for a time-dependent 

system Hamiltonian augmented by the system-environment interaction along a chosen reference 

trajectory,49  and   is the difference of action integrals along the forward and backward system paths.  

This phase contains all dynamical effects due to the interaction of the system with its environment.  The 

numerical evaluation of the Wigner distribution involves a multidimensional Fourier-type integral, but 

several approximations as well as path integral-based methods are available for this task.75-81 

 A classical trajectory in the QCPI expression is integrated subject to the sequence of forces exerted 

by the system along each discrete path.  This dependence leads to exponential proliferation of classical 

trajectories with the number of path integral time steps.  This seemingly peculiar feature is the quantum-

classical manifestation of influence functional memory.35, 82  Just as in the case of the QuAPI expression, 

the memory quenching effects of the environment may be exploited to obtain at the i-QCPI decomposition, 

which maintains a constant number of trajectories.36   
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 The incorporation of the action along reference trajectories in the system propagator49 is equivalent 

to including the real part of the influence functional, that is, the reference propagators completely account 

for the “classical” memory.47  Thus, the path-specific “back-reaction”   needs to capture only the 

“quantum” memory,82 which is often considerably shorter than the classical memory.  Further, the reference 

propagator is accurate over larger time steps.  The combination of a shorter memory length and a larger 

time step enables convergence of the i-QCPI expression with L values that are considerably shorter than 

those in an i-QuAPI calculation.   

 Further, the reference trajectory is allowed to hop between the system states at each successive time 

step by a dynamically consistent state hopping (DCSH) scheme.48  This procedure captures some of the 

quantum memory into the effective system propagators, rendering the i-QCPI memory length L t  even 

shorter.   

 

III.  Generalized quantum master equation  

 The Nakajima-Zwanzig50, 51 GQME for propagation of the RDM is formally exact and is given by 

 

 sys
0

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
td

i t t i dt t t t i t
dt
       L K I ,                                     (3.1) 

 

where the system Liouvillian superoperator is defined as sys ,sysH    L , K  is the memory kernel which 

contains all the effects arising from the system-environment interaction, and the inhomogeneous term I  

vanishes for a separable initial condition env(0) (0) (0)   .  Since the kernel generally tends to be short-

lived in comparison with the desired dynamics, Eq. (3.1) offers an avenue for obtaining the evolution of the 

RDM over time lengths much longer than the environment-induced memory.  However, the memory kernel 

generally is not known.  Here we explore the use of real-time path integral methods to generate the short-

time kernel, for use in the GQME. 

 Since the system is described in terms of discrete states, we switch to matrix notation.  We observe 

that 

 

 

ˆ ˆ/ /

env

ˆ ˆ/ /

env env

,

,

ˆ( ) Tr (0)

ˆ ˆTr (0) (0)

( ) (0)

iHt iHt

jk

iHt iHt

l m

jklm lm

l m

t j e e k

j e l l m m e k

t

 

 















U

                                    (3.2) 

 

where ( )tU  is the 
2 2n n  time evolution matrix for the RDM, with elements 

 
ˆ ˆ/ /

env env
ˆ( ) Tr (0)iHt iHt

jklm t j e l m e kU ,                                          (3.3) 

 

i.e., ( )jklm tU  is the RDM element ( )jk t  for the initial condition (0)l m ll mm      .  The RDM evolution 

matrix may be used as input for obtaining the memory kernel according to the equation 57, 64 
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          sys
0

t

i t i t t i t t t dt        K U U L U K .                                 (3.4) 

 

 If the kernel memory is equal to 
GQME , the lower limit in the time integral of Eq. (3.1) may be 

replaced by 
GQMEt  , and the GQME for the RDM becomes 

 

        
GQME

sys

t

t

d
i t t i dt t t t

dt 
      ρ ρ ρL K  .                                       (3.5) 

 

Thus the RDM evolution operator  tU , along with its first and second derivatives, can be used to construct 

the GQME kernel over the memory time length, which can subsequently be used within the GQME to 

generate the long-time evolution of the RDM.  

 Earlier work53 showed that the GQME kernel can be obtained in terms of self-consistent equations 

that involve time correlation functions of the system-bath coupling operator, and several other similar 

expressions are possible.55  The approach given by Eq. (3.4) is simpler and convenient, as it requires only 

RDM elements, which are the target of all dynamics methods.  However, Eq. (3.4) requires the numerical 

calculation of first and second derivatives, which requires a dense time grid and can be problematic if the 

RDM values contain statistical noise.   

 The RDM elements required to obtain the exact GQME kernel at the time points t , 2 t ,…,  

GQMEL t  using a path integral method (without path filtering and without utilizing symmetry properties) 

with time step t  involve the following calculations:  Generating the 2n  elements of the RDM at the time 

t  requires 2n  terms from each initial condition; obtaining the RDM elements at the time 2 t  requires 

summing the amplitudes along 4n  paths; for the final time point 
GQMEL t  one needs to sum GQME2L

M n  

path amplitudes.  Thus, obtaining all elements of the RDM up to the GQME kernel memory length 

GQME GQMEL t    for the 2n  possible initial conditions involves evaluating a total of 
GQME GQME2 22 2 4 4 2( ) ( 1) / ( 1)

L L
n n n n n n n        integrand terms.    

 The time derivatives are evaluated numerically.   However, since the path integral time step t  is 

chosen as large as possible, a much finer spacing of the data values is required to ensure smooth and stable 

first and second derivatives of the RDM evolution matrix.  For this reason, path integral calculations must 

be run to generate 10r  data points per path integral time step.  Thus, a total of GQME24 2( 1) / ( 1)
L

r n n n   

integrand evaluations must be performed to obtain the GQME kernel matrix over the necessary memory 

length. 

 

 

IV.  Application to dissipative two-level systems and numerical procedures   

  We apply the QuAPI and QCPI methods to obtain the memory kernel and GQME dynamics for 

two-level systems coupled to harmonic dissipative baths.  The system Hamiltonian is 

 

    sysĤ R L L R R R L L                                             (4.1) 

where ,R L are the ‘right’ and ‘left’ TLS states.  For notational clarity, we unfold the RDM developing 

from a specific initial condition to a 4-component vector.  The system Liouvillian becomes 
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sys

0 0

2 0

0 2

0 0





   
 

   
    
 

   

L                                                         (4.2) 

The memory kernel for the dissipative TLS satisfies the symmetry relations51 *

RLRR LRRRK K , 
*

RLRL LRLRK K  , *

RLLR LRRLK K  and *

RLLL LRLLK K .  Further, 
RR LL 0ij ij K K , thus there only four 

independent kernel elements: 
RLRR RLRL RLLR RLLL, , ,K  K K K . 

 The TLS RDM propagator U  is given by the 4 4 matrix, 

 

 

RR RL LR LL

RR RR RR RR

RR RL LR LL

RL RL RL RL
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U                                                  (4.3) 

 

where the subscripts on the RDM elements correspond to the states at the final time, while the superscripts 

label the initial conditions, i.e., 

 

    †

env
ˆ ˆˆTr ( ) (0) ( )ij

ab t a U t i i j j U t b  .                                        (4.4) 

 

 In order to compare results obtained with QuAPI and QCPI, we employ harmonic baths described 

in terms of spectral densities that have the common Ohmic form,66 

 

   c/1
2

J e
    

                                                            (4.5) 

where the dimensionless Kondo parameter   quantifies the TLS-bath coupling strength and c  is the cutoff 

frequency.  We evaluate the kernel for the four possible initial conditions by performing non-iterative 

QuAPI or QCPI calculations.  Each of these involves summing the path integral amplitudes over the GQME 

memory length, and (in the case of QCPI) integrating classical trajectories with initial conditions sampled 

by a Monte Carlo process.  Implementation of the QCPI methodology requires discretization of the bath in 

terms of d frequencies and coupling constants.  We have followed the logarithmic discretization83 with 

60d  .  The QCPI results presented in the next section were performed with solvent-driven reference 

propagators,49 utilizing the DCSH branching scheme,48 and employed a total of 60,000 initial conditions 

sampled by Monte Carlo84 from the thermal Wigner distribution of the harmonic bath (which is available 

analytically).  We have found that using 10r  RDM values within each path integral time step generates 

a sufficient number of data points for derivative evaluation.  Thus the total number of amplitudes over the 

GQME memory length is GQME160(4 1) / 3
L

 .   

In the case of QuAPI, one could alternatively interpolate the RMD results to obtain r points in each 

t  interval, avoiding additional QuAPI runs.  We have found interpolation procedures can introduce some 

error, in particular in cases where the RDM exhibits oscillatory behavior, which is undesirable when using 

an exact method.  Since such error would depend on the choice of interpolation function (as well as the 

spacing of the input RDM data), checking the accuracy of the results would require additional effort.   
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Once the path integral results for all initial conditions have been obtained, we further fit them to 

cubic splines, to generate time points on a still finer time grid, with a time spacing of 10.0005  , for 

derivative evaluation.  In the case of QCPI, smoothing the RDM results is necessary because of the 

unavoidable Monte Carlo error.  Generally, we find that obtaining QCPI RDM derivatives requires some 

care: different choices of the smoothing algorithm affect the accuracy of the kernel, and can even alter the 

GQME results in some regimes.  Finally, we integrate the GQME using a first order forward finite 

difference procedure to obtain the RDM elements for longer times.  To this end, we approximate the 

derivative of   as its first order forward finite difference.  Our integration procedure is different from the 

self-consistent scheme employed in Ref. 64. 

 For each of the calculations, numerically exact results were obtained using the i-QuAPI (or its blip 

decomposition, i-BSPI) and the i-QCPI methods.  We present the population dynamics and report the time 

step and memory length required for convergence of each method (to within 0.01 in the monitored state 

population).  We also compare these results to those obtained by integrating the GQME with a memory 

kernel obtained using QuAPI and, when possible, QCPI.   

 

 

V.  Results 

(a)  Model 1: Symmetric TLS with moderate dissipation at low temperature 

 The first model involves a symmetric TLS linearly coupled to a harmonic bath with c 5   ,  

0.3    at a low temperature corresponding to 5  .  The bath is initially in Boltzmann equilibrium, 

isolated from the TLS.   With these parameters the population of the initial state exhibits strongly damped 

oscillations.35  Numerically exact results were obtained using the i-QuAPI method (without path filtering) 

with a time step of 0.2t   and 
QuAPI 6L  , thus the QuAPI memory (i.e. the span of the Feynman-

Vernon influence functional nonlocality) is  
QuAPI 1.2  .  Our i-QCPI calculations with 0.25t   and 

QCPI 3L   reproduced (within 0.01) the converged i-QuAPI results, so the QCPI memory length is 

QCPI 0.75  .  The reason for the much shorter memory requirements of i-QCPI is the incorporation of 

bath dynamics into effective system propagators, which automatically capture at the very least all classical 

memory (the real part of the exponent of the influence functional), and (through DCSH branching) even a 

portion of the quantum nonlocality, leaving just the remaining quantum memory to be accounted for via 

the path integral.  The use of reference propagators also allows a larger time step in QCPI.  In fact, QCPI 

calculations with 
QCPI 0.3t   produced indistinguishable results.   Through a combination of shorter 

memory and larger time step, the i-QCPI calculations converged with a much smaller value of  L compared 

to that required in i-QuAPI, which employs the full Feynman-Vernon influence functional. 
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Fig 1.   Population dynamics of model 1.  Green hollow circles: unconverged i-QuAPI results with 

0.4  .  Green line: unconverged QuAPI-GQME results with 0.4  .  Red filled squares: 

converged i-QuAPI results with QuAPI 1.2  , 
QuAPI 6L  .  Red line: converged QuAPI-

GQME results with 
GQME 1.2  .  Black hollow squares: i-QCPI results with 

QCPI 0.75  ,

QCPI 3L  .  Blue line: QCPI-GQME results with 
GQME 1.2  . 

 

 Figure 1 shows the converged population dynamics of an initially right-localized state, along with 

shorter memory results.  The memory length required to converge the GQME calculation with the QuAPI 

kernel, GQME 1.2  , is exactly the same as the memory required in the i-QuAPI calculation for the same 

accuracy.   Further, we find that the results obtained from the GQME using the exact kernel with any chosen 

memory length are identical to those of the i-QuAPI calculation with the same memory length.  Also shown 

in Fig. 1 are GQME results with a memory kernel generated from the QCPI calculations with 
GQME 1.2 

.  While these results are converged with respect to the GQME memory, small deviations from the exact i-

QCPI and i-QuAPI results are seen.  These arise from numerical error in the smoothing procedure and 

derivative evaluation. 

 Figure 2 shows the independent elements of the GQME kernel obtained from our QuAPI 

calculations.  Some numerical noise is observed, which arises (even in the absence of Monte Carlo error) 

from the numerical derivative evaluations and is most pronounced in the imaginary part.  Still, the imaginary 

part is rather small, and this noise does not prevent the integration of the GQME.  It is seen that the kernel 

elements decay to almost zero within the memory time interval.  Extending the memory time in order for 

the kernel to attain values closer to zero does not lead to a noticeable change of the population dynamics. 
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Fig. 2.  Real (red) and imaginary (blue) parts of the kernel elements for model 1.     

 

 

(b)  Model 2: Symmetric TLS with strong dissipation at high temperature 

 The second model employs a symmetric TLS coupled to a strongly dissipative bath with c 2.5    

and 1.2   at a high temperature corresponding to 0.2  .  In this regime, the coherent oscillations of 

the bare system are completely quenched and the populations show monotonic relaxation.35  The TLS is 

initially in the R state, while the bath is in thermal equilibrium, isolated from the system. 

 Figure 3 shows the population of the R state as obtained through i-QuAPI calculations with 

QuAPI 0.15t   and also from the GQME with the QuAPI kernel.  Again, unconverged i-QuAPI and 

QuAPI-GQME results with 0.3   are practically indistinguishable, and the GQME kernel memory 

GQME 1.2   is equal to the converged i-QuAPI memory (i.e. the influence functional nonlocality), 

QuAPI 1.2  , which spans 
QuAPI 8L   path integral time steps.   

      For this model, in which the population follows a simple, monotonic decay, we found it easier to 

obtain stable GQME results with a kernel computed via QCPI calculations.  While the i-QuAPI and QuAPI-

GQME formulations require the same memory to converge, i-QCPI calculations are again seen to converge 

considerably faster.  This trend is illustrated in Figure 4, which shows the memory requirements of i-QCPI 

in comparison to the GQME.  It is seen that the i-QCPI results with memory length equal to 
QCPI 0.3   

are in quantitative agreement with the converged i-QuAPI results.  Again, the reason for the much shorter 

memory requirements of i-QCPI is the need to account for only some of the quantum memory.  The 
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reduction of required memory length in the i-QCPI calculation is even more pronounced in the case of 

model 2, because the quantum memory is less significant in the incoherent regime.  The QCPI-GQME 

results with the same memory length are rather poor, as a fourfold increase in memory is required to 

converge the GQME.   Further, the inclusion of much of the bath dynamics into reference QCPI propagators 

allows again a twofold increase of the path integral time step, and results obtained with 
QCPI 0.3t   are 

indistinguishable.  The i-QCPI results obtained with 
QCPI 1L   are indistinguishable from the converged i-

QuAPI results.  Thus, the use of QCPI leads to a dramatic gain in convergence in this regime compared to 

i-QuAPI.  However, the QCPI advantage is lost when the method is combined with the GQME, as the 

GQME kernel spans the full influence functional memory. 
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Fig 3.   Population dynamics of model 2.  Green hollow circles: unconverged i-QuAPI 

results with 0.3  .  Green line: unconverged QuAPI-GQME results with 

0.3  .  Red filled circles: converged i-QuAPI results with QuAPI 0.15t  ,

QuAPI 8L  , QuAPI 1.2  .  Red line: converged QuAPI-GQME results with 

GQME 1.2  .   

 

 

 The independent elements of the memory kernel obtained from the QuAPI calculations are 

presented in Figure 5.  
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Fig 4.   Population dynamics of model 2.  Black line: converged i-QuAPI results.  The full memory is 

QuAPI GQME 1.2    .  Red filled circles: converged i-QCPI results with 
QCPI 0.3  , 

QCPI 1L  .  Red dashed line: unconverged QCPI-GQME results with 0.3  . 
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Fig. 5.  The independent elements of the kernel for model 2. Red lines: real part. Blue lines: imaginary part. 
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(c)  Model 3: Asymmetric TLS weakly coupled to high-frequency bath at low temperature 

 The third model is an asymmetric TLS with    , weakly coupled to a fast bath with c 7.5    

and 0.1  .  This regime shows pronounced quantum mechanical behavior characterized by persistent 

oscillations in the populations.36  The bath is initially in thermal equilibrium at a very low temperature of 

5  .  Since c 37.5   , this bath is highly quantum mechanical.   

 Figure 6 shows population dynamics for an initially right-localized state obtained by i-QuAPI, as 

well as using the GQME with QuAPI kernels.  The converged i-QuAPI results with 
QuAPI 0.2t   and 

QuAPI 10L  , i.e., 
QuAPI 2  , are identical with the QuAPI-GQME results obtained with the same memory 

length, 
GQME 2  .  Also, unconverged i-QuAPI and QuAPI-GQME results using a much shorter memory 

length  0.4   are indistinguishable, confirming once again that memory dependence of the GQME is 

exactly the same as in the i-QuAPI algorithm.  Also shown are results obtained through i-QCPI calculations, 

which converge with the time step 
QCPI 0.25t   and a shorter memory, 

QCPI 1.25  .  The QCPI 

reduction of memory length is less dramatic in this case compared to that observed in model 2, because the 

highly quantum mechanical nature of the bath implies that the quantum mechanism of decoherence is quite 

significant.  Yet, through the increased time step and shorter memory, the QCPI calculations converged 

with 
QCPI 5L  , reducing the number of forward-backward paths required to span the memory length from 

10 64 10  in i-QuAPI to 5 34 10 .  In this case we were unable to obtain stable and accurate GQME kernels 

from QCPI calculations, because the oscillatory nature of the populations complicated the smoothing 

procedure.  However, we note again that QCPI calculations to generate the GQME kernel would require 

the 8L   to span the full GQME memory.  Representative kernel elements for this model are given in 

Figure 7. 
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Fig 6.   Population dynamics of model 3.  Green hollow circles: unconverged i-QuAPI results 

with 0.4  .  Green line: unconverged QuAPI-GQME results with 0.4  .  Red 

filled squares: converged i-QuAPI results with QuAPI 0.2t  , 
QuAPI 10L  , 

QuAPI 2  .  Red line: converged QuAPI-GQME results with gQME 2  .  Black 

hollow triangles: i-QCPI results with QCPI 1.25  ,
QCPI 5L  . 
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Fig. 7.  The elements of the memory kernel for model 3. Red line: real part. Blue line: imaginary part. 

 

(d)  Model 4:  Symmetric TLS strongly coupled to slow bath at an intermediate temperature 

  

 The last model uses a symmetric TLS coupled to a strongly dissipative, sluggish bath with c   

and 2   at an intermediate temperature corresponding to 1  .48  The TLS is initially in the R state, 

while the bath is equilibrated with respect to the initial TLS state.  These parameters correspond to a 

challenging regime, and calculations require small time steps as well as a long memory.   

 Figure 8 displays the time evolution of the population.  Converged i-QCPI results are shown with 

QCPI 0.25t   and 
QCPI 8L  , i.e. the QCPI memory length is 

QCPI 2  .  QuAPI calculations converged 

with a similar time step, 
QuAPI 0.125t  ; however, the full memory exceeds the time length displayed in 

Fig. 8, 
QuAPI 3  , thus raw i-QUAPI calculations are comfortably feasible for about half of the time 

shown.  The blip decomposition extends the feasibility of path integral calculations with the full Feynman-

Vernon influence functional to much longer times, reproducing the QCPI results.  It is again seen that the 

unconverged GQME results are identical to the i-QuAPI results with the same memory length.   Also shown 

in Fig. 8 are GQME results with the kernel generated from QCPI calculations with 
QCPI 2  .  The small 

deviations from the exact results even before the memory time is exceeded are the results of the smoothing 

procedures to compute derivatives. 

 The independent elements of the memory kernel obtained by QuAPI are presented in Figure 9. 
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Fig. 8.  Population dynamics of model 4.  Red filled markers: converged i-QCPI results with 
QCPI 0.25t  , 

QCPI 8L   (
QCPI 2  ).  Black circles: full QuAPI results (no memory truncation) with 

QuAPI 0.125t  .  Hollow squares: full BSPI results (no memory truncation) with three blips and 

0.125t  .  Dashed green and blue lines and solid black line: unconverged GQME results with 

QuAPI kernels, 6L  ,8 and 11.  Orange line: QCPI-GQME results with 
QCPI 8L  (

GQME 2  ). 
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 Fig. 9.  Memory kernel elements for model 4. Red line: real part. Blue line: imaginary part. 
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 The findings of our calculations on models 1-4, i.e. the memory times and numbers of path integral 

time steps required to span the memory time in each case, are summarized in Table 1.  In all cases, we 

found that the GQME solution based on a numerically exact memory kernel reproduces the converged 

iterative path integral results with the same memory length.  Further, we found that when the kernel memory 

is prematurely truncated, the unconverged GQME results agree exactly with the unconverged i-QuAPI 

results.  This observation is another manifestation of the exact manner in which both formulations handle 

the dissipative effects of a bath on a quantum system.  It is also in line with one’s expectation of the 

properties of the GQME solution with a numerically exact kernel.56   

 We also found that the memory required to converge i-QCPI calculations is always shorter than the 

GQME kernel memory.  This is a consequence of the ability of the QCPI methodology to incorporate the 

classical memory in its entirety, and also some of the remaining quantum memory, into effective system 

propagators that satisfy the closure property and need no path integral slicing.  Because the classical 

memory is the dominant component of the influence functional nonlocality, its removal from the explicit 

path integral operations implies dramatic savings.  However, these savings cannot be transferred to the 

GQME solution with a QCPI kernel.  To use the GQME, one would need to run QCPI calculations with 

path segments longer than necessary in order to obtain the GQME kernel over its full memory length.  The 

direct application of the i-QCPI algorithm is thus much more efficient.  The i-QCPI propagator for each 

trajectory initial condition (the “quantum influence function”) is also norm conserving36 and thus stable 

over long propagation lengths.   

 

 

Table 1.  Summary of results for models 1-4. 

 Parameters 
GQME QuAPI    

GQME QuAPIL L  
QCPI  

QCPIL  

Model 1 
c0, 5, 5 , 0.3           1.2 6 0.75 3  

Model 2 
c0, 0.2, 2.5 , 1.2          1.2 8 0.3 1 

Model 3 
c, 5, 7.5 , 0.1           2 10  1.25  5  

Model 4 
c0, 1, , 2         >3 >24 2  8  

 

 

VI.   Discussion and concluding remarks 

 The numerical calculations presented in section V indicate that in the case of system-bath 

Hamiltonians, the memory length of the GQME kernel is the same as the full memory required to converge 

i-QuAPI calculations with the same parameters.  Setting 
GQME QuAPIL L L  , the number of integrand 

evaluations required to generate the GQME memory kernel from full path integral calculations is 
4 2 2 2 2( 1) / ( 1) 10L Lr n n n n   .  The procedure of interpolating, evaluating derivatives and integrating the 

GQME adds to the computation time, although these operations are not very demanding.  Overall, the cost 

of the GQME approach seems comparable to that of an i-QuAPI calculation, which requires 2 2LN n   

operations for propagation to N time steps.  For very large values of N, the i-QuAPI calculation could 

become more expensive.  However, the i-QuAPI scheme is norm-conserving and thus stable, while the 

stability and accuracy of the GQME solution over very long times would need to be tested.  We also note 

that path filtering and the BSPI decomposition can dramatically reduce the computational effort required 

to generate the GQME kernel or to perform an iterative path integral calculation.  
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 In addition to the computational cost described above and the overhead of processing the RDM 

data to obtain the GQME memory kernel, we note that the GQME approach requires substantial care to 

guarantee derivative stability and accuracy.  The i-QuAPI matrix-vector procedure is simpler in this regard.  

Thus, the main appeal of the GQME approach is for situations of very long memory that does not permit 

storage of the array of path configurations that are needed in iterative path integral calculations.  With the 

BSPI decomposition, storage of path segments is replaced by storage of blip configurations, 44, 45 which 

reduces the RAM demands of path integral methods by many orders of magnitude.  Thus, the storage 

advantage of the GQME approach with a kernel computed by exact path integral methods may be more 

important for handling multi-state systems. Last, the use of GQME methods with time-dependent  

Hamiltonians, while possible in principle,85 would require a new kernel calculation at every time step.  

System-dependent driving terms present no difficulty to iterative path integral methods.   Since construction 

of the memory kernel is a tedious and time consuming process, the direct use of iterative path integral 

methods for propagation is much preferable in such cases.    

 Next, we focus on the more significant potential appeal of the GQME approach, in the context of 

simulating the dynamics of systems interacting with complex, anharmonic environments.  In this paper we 

examined the possibility of employing the rigorous QCPI formulation to generate the GQME memory 

kernel.  The findings of our calculations were summarized in Table 1.  We found that the memory length 

required for convergence of the i-QCPI methodology is always shorter than the GQME kernel length.  This 

fact stems from the two distinct contributions to the bath-induced memory, and the ability of the QCPI 

formulation to capture the entire classical component of this memory (which is associated with decoherence 

through absorption and stimulated emission of phonons),47   as well as a portion of the remaining quantum 

memory (which arises from spontaneous phonon emission) within effective propagators.37 This very 

attractive feature is lost once the QCPI kernel is inserted in the GQME, since the latter needs to be solved 

with the full memory.  An all-path i-QCPI calculation to the time N t  (without filtering) requires the 

manipulation of QCPI2 2L
N n


 terms from each trajectory initial condition, while a QCPI calculation of the 

GQME kernel would require the evaluation of GQME2 2
10

L
n


 terms (from each initial condition) with 

QCPI GQMEL L .  The direct, iterative i-QCPI evaluation is thus much more efficient than the solution of the 

GQME with a QCPI-generated kernel.  In addition, the direct i-QCPI calculation avoids the need for RDM 

smoothing that is required for derivative evaluation and which can be delicate because of unavoidable 

Monte Carlo error in the data.   

 Last, we note an additional advantage of the full i-QCPI approach.  QCPI calculations employ full 

classical trajectories of the system’s environment, which capture the true dynamical features of the medium 

that may include motions evolving over very long times.  For example, protein conformational changes 

occur on the time scale of nanoseconds or even microseconds.  Such structural changes, which can play a 

critical role in long-range biological electron transfer or isomerization reactions,86-88 are fully accounted for 

in i-QCPI calculations.  In order to capture the effects of such conformational rearrangements through a 

memory kernel, this kernel would need to span practically the entire time length of the process.  More 

importantly, a calculation based on a pre-constructed memory kernel might seem to converge over a 

relatively short memory time, entirely missing important dynamical effects on the quantum process of 

interest by failing to account for the effects of a structurally different environment that develops much later.  

The advantage of full trajectory-based methods is very significant in this regard.   

 

  



20 
 

Acknowledgments 

This material is based upon work supported by the National Science Foundation under Award CHE-

1665281.  We thank Eitan Geva for useful discussions.  

 

  



21 
 

References 

1. Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, M., Dynamics 

of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1-85. 

2. Makri, N., Improved Feynman propagators on a grid and non-adiabatic corrections within the 

path integral framework. Chem. Phys. Lett. 1992, 193, 435-444. 

3. Makarov, D. E.; Makri, N., Path integrals for dissipative systems by tensor multiplication: 

condensed phase quantum dynamics for arbitrarily long time. Chem. Phys. Lett. 1994, 221, 482-491. 

4. Makri, N.; Makarov, D. E., Tensor multiplication for iterative quantum time evolution of reduced 

density matrices.  I. Theory. J. Chem. Phys. 1995, 102, 4600-4610. 

5. Makri, N.; Makarov, D. E., Tensor multiplication for iterative quantum time evolution of reduced 

density matrices.  II. Numerical methodology. J. Chem. Phys. 1995, 102, 4611-4618. 

6. Makri, N., Numerical path integral techniques for long-time quantum dynamics of dissipative 

systems. J. Math. Phys. 1995, 36, 2430-2456. 

7. Sim, E.; Makri, N., Tensor propagator with weight-selected paths for quantum dissipative 

dynamics with long-memory kernels. Chem. Phys. Lett. 1996, 249, 224-230. 

8. Sim, E.; Makri, N., Filtered propagator functional for iterative dynamics of quantum dissipative 

systems. Comp. Phys. Commun. 1997, 99, 335-354. 

9. Makri, N., Quantum dissipative systems: a numerically exact methodology. J. Phys. Chem. 1998, 

102, 4414-4427. 

10. Sim, E., Quantum dynamics for a system coupled to slow baths: on-the-fly filtered propagator 

method. J. Chem. Phys. 2001, 115, 4450-4456. 

11. Shao, J.; Makri, N., Iterative path integral calculation of quantum correlation functions for 

dissipative systems. Chem. Phys. 2001, 268, 1-10. 

12. Shao, J.; Makri, N., Iterative path integral formulation of equilibrium correlation functions for 

quantum dissipative systems. J. Chem. Phys. 2002, 116, 507-514. 

13. Weiss, S.; Eckel, J.; Thorwart, M.; Egger, R., Iterative real-time path integral approach to 

nonequilibrium quantum transport. Phys. Rev. B 2008, 77, 195316. 

14. Segal, D.; Millis, A. J.; Reichman, D. R., Numerically exact path integral simulation of 

nonequilibrium quantum transport and dissipation. Phys. Rev. B 2010, 82, 205323. 

15. Simine, L.; Segal, D., Path integral simulations with fermionic and bosonic reservoirs: Transport 

and dissipation in molecular electronic junctions. J. Chem. Phys. 2013, 138, 214111. 

16. Makri, N., Path integral renormalization for quantum dissipative dynamics with multiple 

timescales. Mol. Phys. 2012, 110, 1001-1007. 

17. Richter, M.; Fingerhut, B. P., Coarse-grained representation of the quasiadiabatic propagator path 

integral for the treatment of non-Markovian long-time bath memory. J. Chem. Phys. 2017, 146, 214101. 

18. Nalbach, P.; Palm, P., Quasi-adiabatic path integral approach for quantum systems under the 

influence of multiple non-commuting fluctuations. J. Chem. Phys. 2018, 149, 214103. 

19. Straatsma, T. P.; Lovett, B. W.; Kirton, P., Efficient real-time path integrals for non-Markovian 

spin-bosonmodels. New Journal of Physics 2017, 19, 093009. 

20. Strathearn, A.; Kirton, P.; Kilda, D.; Keeling, J.; Lovett, B. W., Efficient non-Markovian 

quantum dynamics using time-evolving matrix product operators. Nature Communications 2018, 9, 3322. 

21. Sato, Y., A scalable algorithm of numerical real-time path integral for quantum dissipative 

systems. J. Chem. Phys. 2019, 150, 224108. 

22. Wang, H., Basis set approach to the quantum dissipative dynamics: Application of the 

multiconfiguration time-dependent Hartree method to the spin-boson problem. J. Chem. Phys. 2000, 113, 

9948-9956. 

23. Ishizaki, A.; Tanimura, Y., Quantum dynamics of system strongly coupled to low-temperature 

colored noise bath: Reduced hierarchy equations approach. J. Phys. Soc. Jpn. 2005, 74, 3131-3134. 

24. Makri, N., The linear response approximation and its lowest order corrections: an influence 

functional approach. J. Phys. Chem. 1999, 103, 2823-2829. 



22 
 

25. Ehrenfest, P., Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb 

der Quantenmechanik. Z. Phys. 1927, 45, 455-457. 

26. Tully, J. C.; Preston, R. K., Trajectory surface hopping approach to nonadiabatic molecular 

collisions: the reaction of H+ with D2. J. Chem. Phys. 1971, 55, 562-572. 

27. Tully, J. C., Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061-1071. 

28. Meyer, H.-D.; Miller, W. H., A classical analog for electronic degrees of freedom in nonadiabatic 

collision processes. J. Chem. Phys. 1979, 70, 3214-3223. 

29. Stock, G.; Thoss, M., Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. 

Lett. 1997, 78, 578-581. 

30. Wang, H.; Sun, X.; Miller, W. H., Semiclassical approximations for the calculation of thermal 

rate constants for chemical reactions in complex molecular systems. J. Chem. Phys. 1998, 108, 9726-

9736. 

31. Donoso, A.; Martens, C. C., Simulation of coherent nonadiabatic dynamics using classical 

trajectories. J. Phys. Chem. A 1998, 102, 4291. 

32. Kapral, R.; Ciccotti, G., Mixed quantum-classical dynamics. J. Chem. Phys. 1999, 110, 8919-

8929. 

33. Mac Kernan, D.; Ciccotti, G.; Kapral, R., Sequential short-time propagation of quantum-classical 

dynamics. J. Phys. Cond. Matt. 2002, 14, 9069-9076. 

34. Mac Kernan, D.; Ciccotti, G.; Kapral, R., Trotter based simulation of quantum-classical 

dynamics. j . Phys. Chem. B 2008, 114. 

35. Lambert, R.; Makri, N., Quantum-classical path integral: Classical memory and weak quantum 

nonlocality. J. Chem. Phys. 2012, 137, 22A552. 

36. Lambert, R.; Makri, N., Quantum-classical path integral: Numerical formulation. J. Chem. Phys. 

2012, 137, 22A553. 

37. Makri, N., Quantum-classical path integral: A rigorous approach to condensed phase dynamics. 

International Journal of Quantum Chemistry 2015, 115, 1209-1214. 

38. Walters, P. L.; Makri, N., Quantum-classical path integral simulation of the ferrocene-

ferrocenium charge transfer in liquid hexane. J. Phys. Chem. Lett. 2015, 6, 4959-4965. 

39. Makri, N., Modular path integral methodology for real-time quantum dynamics. J. Chem. Phys. 

2018, 149, 214108. 

40. Makri, N., Modular path integral: Quantum dynamics via sequential necklace 

linking. J. Chem. Phys. 2018, 148, 101101. 

41. Kundu, S.; Makri, N., Modular path integral for discrete systems with non-diagonal couplings. J. 

Chem. Phys. 2019, 151, 074110. 

42. Feynman, R. P., Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 

1948, 20, 367-387. 

43. Feynman, R. P.; F. L. Vernon, J., The theory of a general quantum system interacting with a 

linear dissipative system. Ann. Phys. 1963, 24, 118-173. 

44. Makri, N., Blip decomposition of the path integral: Exponential acceleration of real-time 

calculations for quantum dissipative systems. J. Chem. Phys. 2014, 141, 134117. 

45. Makri, N., Iterative blip-summed path integral for quantum dynamics in strongly dissipative 

environments. J. Chem. Phys. 2017, 146, 134101. 

46. Lambert, R.; Makri, N., Memory path propagator matrix for long-time dissipative charge 

transport dynamics. Mol. Phys. 2012, 110, 1967-1975. 

47. Makri, N., Exploiting classical decoherence in dissipative quantum dynamics: Memory, phonon 

emission, and the blip sum. Chem. Phys. Lett. 2014, 593, 93-103. 

48. Walters, P. L.; Makri, N., Iterative quantum-classical path integral with dynamically consistent 

state hopping. J. Chem. Phys. 2016, 144, 044108. 

49. Banerjee, T.; Makri, N., Quantum-classical path integral with self-consistent solvent-driven 

propagators. J. Phys. Chem. 2013, 117, 13357-13366. 

50. Nakajima, S., On quantum theory of transport phenomena. Prog. Theor. Phys 1958, 20, 948. 



23 
 

51. Zwanzig, R., Ensemble method in the theory of irreversibility. J. Chem. Phys. 1960, 33, 1338-

1341. 

52. Redfield, A. G., On the theory of relaxation processes. IBM Journal of Research and 

Development 1957, 1, 19-31. 

53. Shi, Q.; Geva, E., A new approach to calculating the memory kernel in the generalized quantum 

master equation for an arbitrary system-bath coupling. J. Chem. Phys. 2003, 119, 12063. 

54. Mori, H., Prog. Theor. Phys. 1965, 33, 423. 

55. Montoya-Castillo, A.; Reichman, D. R., Approximate but accurate quantum dynamics from the 

Mori formalism:  I. Nonequilibrium dynamics. J. Chem. Phys. 2016, 144, 184104. 

56. Kelly, A.; Montoya-Castillo, A.; Wang, L.; Markland, T. E., Generalized quantum master 

equations in and out of equilibrium: When can one win? J. Chem. Phys. 2016, 144, 184105. 

57. Kidon, L.; Wang, H.; Thoss, M.; Rabani, E., On the memory kernel and the reduced system 

propagator. J. Chem. Phys. 2018, 149, 104105. 

58. Mulvihill, E.; Gao, X.; Liu, Y.; Schubert, A.; Dunietz, B. D.; Geva, E., Combining the mapping 

Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate 

electronically nonadiabatic molecular dynamics. J. Chem. Phys. 2019, 151, 074103. 

59. Pfalzgraff, W. C.; Kelly, A.; Markland, T. E., Nonadiabatic dynamics in atomistic environments: 

Harnessing quantum-classical theory with generalized quantum master equations. J. Phys. Chem. Lett. 

2015, 6, 4743−4748. 

60. Kelly, A.; Brackbill, N.; Markland, T. E., Accurate nonadiabatic quantum dynamics on the cheap: 

Making the most of mean field theory with master equations. J. Chem. Phys. 2015, 142, 094110. 

61. Kelly, A.; Markland, T. E., Efficient and accurate surface hopping for long time nonadiabatic 

quantum dynamics. J. Chem. Phys. 2013, 139, 014104. 

62. Cohen, G.; Rabani, E., Memory effects in nonequilibrium quantum impurity models. Phys. Rev. B 

2011, 84, 075150. 

63. Cohen, G.; Gull, E.; Reichman, D. R.; Millis, A. J.; Rabani, E., Numerically exact long-time 

magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model. Phys. 

Rev B 2013, 87, 195108. 

64. Mulvihill, E.; Schubert , A.; Sun, X.; Dunietz, B. D.; Geva, E., A modified approach for 

simulating electronically nonadiabatic dynamics via the generalized quantum master equation. J. Chem. 

Phys. 2019, 150, 034101. 

65. Pfalzgraff, W. C.; Montoya-Castillo, A.; Kelly, A.; Markland, T. E., Efficient construction of 

generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical 

dynamics. The Journal of Chemical Physics 2019, 150, 244109. 

66. Caldeira, A. O.; Leggett, A. J., Path integral approach to quantum Brownian motion. Physica A 

1983, 121, 587-616. 

67. Walters, P. L.; Banerjee, T.; Makri, N., On iterative path integral calculations for a system 

interacting with a shifted dissipative bath. J. Chem. Phys. 2015, 143, 074112. 

68. Allen, T. C.; Walters, P. L.; Makri, N., Direct computation of influence functional coefficients 

from numerical correlation functions. J. Chem. Theory and Comput. 2016, 12, 4169-4177. 

69. Echave, J.; Clary, D. C., Potential optimized discrete variable representation. J. Chem. Phys. 

1992, 190, 225-230. 

70. Topaler, M.; Makri, N., System-specific discrete variable representations for path integral 

calculations with quasi-adiabatic propagators. Chem. Phys. Lett. 1993, 210, 448. 

71. Thompson, K.; Makri, N., Influence functionals with semiclassical propagators in combined 

forward-backward time. J. Chem. Phys. 1999, 110, 1343-1353. 

72. Makri, N.; Thompson, K., Semiclassical influence functionals for quantum systems in 

anharmonic environments. Chem. Phys. Lett. 1998, 291, 101-109. 

73. Shi, Q.; Geva, E., A derivation of the mixed quantum-classical Liouville equation from the 

influence functional formalism. J. Chem. Phys. 2004, 121, 3393-3404. 

74. Wigner, E. J., Calculation of the Rate of Elementary Association Reactions. Chem. Phys. 1937, 5, 

720. 



24 
 

75. Shi, Q.; Geva, E., Semiclassical theory of vibrational energy relaxation in the condensed phase. J. 

Phys. Chem. A 2003, 107, 9059-9069. 

76. Poulsen, J. A.; Nyman, G.; Rossky, P. J., Practical evaluation of condensed phase quantum 

correlation functions: A Feynman--Kleinert variational linearized path integral method. J. Chem. Phys. 

2003, 119, 12179-12193. 

77. Liu, J.; Miller, W. H., Using the thermal Gaussian approximation for the Boltzmann operator in 

semiclassical initial value time correlation functions. The Journal of Chemical Physics 2006, 125, 

224104. 

78. Shao, J.; Pollak, E., A new time evolving Gaussian series representation of the imaginary time 

propagator. J. Chem. Phys. 2006, 125, 133502. 

79. Bose, A.; Makri, N., Evaluation of the Wigner distribution via classical adiabatic switching. J. 

Chem. Phys. 2015, 143, 114114. 

80. Bose, A.; Makri, N., Wigner Distribution by Adiabatic Switching in Normal Mode or Cartesian 

Coordinates and Molecular Applications. J. Chem. Theory and Comput. 2018, 14, 5446–5458. 

81. Bose, A.; Makri, N., Coherent state-based path integral methodology for computing the Wigner 

phase space distribution. J. Phys. Chem. A 2019, 123, 4284-4294. 

82. Makri, N., Dynamics of reduced density matrices: classical memory vs. quantum nonlocality. J. 

Chem. Phys. 1998, 109, 2994-2998. 

83. Walters, P. L.; Allen, T. C.; Makri, N., Direct determination of harmonic bath parameters from 

molecular dynamics simulations. J. Comput. Chem. 2017, 38, 110-115. 

84. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, H.; Teller, E., Equation of state 

calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087-1092. 

85. Liang Zhang, M.-L.; Ka, B. J.; Geva, E., Nonequilibrium quantum dynamics in the condensed 

phase via the generalized quantum master equation J. Chem. Phys. 2006, 125, 044106. 

86. Onuchic, J. N.; Beratan, D. N.; Winkler, J. R.; Gray, H. B., Pathway analysis of protein electron 

transfer reactions. Ann. Rev. Biophys. Biom. Struc. 1992, 21, 349. 

87. Priyadarshy, S.; Risser, S. M.; Beratan, D. N., DNA is not a molecular wire:  Protein-like 

electron-transfer predicted for an extended π-electron system. J. Phys. Chem. 1996, 100. 

88. Hedison, T. M.; Hay, S.; Scrutton, N. S., Real-time analysis of conformational control in electron 

transfer reactions of human cytochrome P450 reductase with cytochrome c. FEBS J. 2015, 282, 4357–

4375. 

 

 

 

 

 

 

  



25 
 

 

 

 

 

 

 

quantum memory 

full memory 

iQCPI, quantum memory 

GQME,  
quantum memory 

GQME, full memory 

TOC Graphic 


