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Abstract

We investigate the use of accurate path integral methods, namely the quasi-adiabatic propagator path
integral (QuAPI) and the quantum-classical path integral (QCPI), for generating the memory kernel
entering generalized quantum master equations (GQME). Our calculations indicate that the length of the
memory kernel in system-bath models is equal to the full length of time nonlocality encoded in the
Feynman-Vernon influence functional, and that the solution of the GQME with a QuAPI kernel is identical
to that obtained through an iterative QuAPI calculation with the same memory length. Further, we show
that the memory length in iterative QCPI calculations is always shorter than the GQME kernel memory
length. This stems from the ability of the QCPI methodology to pretreat all memory effects of a classical
nature (i.e. those associated with phonon absorption and stimulated emission), as well as some of the
quantum memory contributions (arising from spontaneous phonon emission). Further, trajectory based
iterative QCPI simulations can fully account for important structural/conformational changes that may
occur on very long time scales and which cannot be captured via master equation treatments.
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I. Introduction

Quantum mechanical effects, such as tunneling, zero-point energy and phase interference, play a
crucial role in the understanding of important processes in biology, catalysis, energy harvesting and
quantum computation. In recent years, theoretical efforts for developing simulation methods capable of
following the dynamics of such processes with sufficient accuracy have intensified. The dissipative two-
level system (TLS) (or spin-boson) model' continues to serve as the paradigm of tunneling in the condensed
phase. The iterative quasi-adiabatic propagator path integral methodology*® (QuAPlIl), along with its
various extensions,'%?!
long propagation times and without restrictions on the frequencies of the harmonic bath degrees of freedom
and their coupling to the system, and other methods are also available for low temperatures®* or for special
forms of the bath spectral density.?* By exploiting the Gaussian response approximation (which has been
put on a rigorous basis through a path integral analysis®*), a plethora of processes in complex environments
have been investigated by simulating system-bath Hamiltonians.

In sharp contrast to these advances in system-bath methodology, the quantum dynamics of more
complex processes continues to remain out of reach. Even the simple system-bath Hamiltonian has
parameter regimes that remain challenging, especially when the system involves many quantum states.
Further, while the harmonic bath mapping is justifiable in many situations, it is hard to know a priori
whether it provides a faithful description of a particular process with sufficient chemical complexity. Thus,
the development of accurate algorithms for simulating the quantum dynamics of condensed phase processes
is highly desirable.

Significant progress has been made in this direction, in particular in the context of quantum-
classical approximations for nonadiabatic dynamics, where a large number of degrees of freedom, which
correspond to the nuclei of a solvent or biological molecule and which are assumed to follow classical
dynamics, evolve on discrete Born-Oppenheimer or diabatic states that are coupled to each other.

enables fully quantum mechanical simulation of dissipative TLS dynamics over

Combining quantum and classical mechanics poses severe challenges, owing to the incompatibility between
local Newtonian trajectories and delocalized wavefunctions. The oldest mixed quantum-classical treatment
is the Ehrenfest mean-field model,® which is practical and appealing, but fails to yield physically correct

dynamics and product distributions. Surface hopping methods?® ?’

correct the major shortcomings of the
Ehrenfest model and have been used in many investigations, although they are not capable of capturing
decoherence and have been shown to lead to large error in some regimes. The Meyer-Miller (MM) mapping
Hamiltonian approach® ?° bypasses the quantum-classical dilemma by replacing the quantum states by
continuous degrees of freedom, which must then be described (along with the coordinates of the nuclei) by
linearized semiclassical®® (LSC) trajectory methods. Methods based on the mixed quantum-classical

3132 in particular its momentum-jump formulation®* ** (MJ-QCLE) offers a rigorous

Liouville equation,
solution, although the computational demands of the method increase exponentially with propagation time.
The quantum-classical path integral®>>37 (QCPI) methodology, which corresponds to the stationary phase
limit (with respect to the classical nuclei) of the path integral representation of the propagator in the space
of all particles, offers a rigorous formulation which — solely through phase interference — correctly captures
the decoherence induced by the classical degrees of freedom. The QCPI algorithm scales linearly with
propagation time and has been shown to be practical for simulating charge transfer processes in the
condensed phase®® without ad hoc assumptions or adjustable parameters. Last, our group has recently
developed a fully quantum mechanical modular decomposition of the path integral*®-*° (MPI), which allows

simulation of systems characterized by a quasi-one-dimensional topology with linear scaling. The MPI



formulation is ideally suited to exciton energy transfer in systems of many units, each with electronic states
coupled to arbitrary numbers of vibrational or phonon modes, at zero or finite temperature.*!

In many situations the object of interest is the reduced density matrix (RDM) of the discrete
quantum system, or a time correlation function of system operators, and some formulations directly target
these properties. In the path integral formulation,*? the effects of the environment are captured through the
influence functional, which can be evaluated exactly in the case of a harmonic bath (giving rise to the
Feynman-Vernon expression®®). In the QCPI methodology, a semiclassical approximation of the influence
functional captures the effects of the nuclei via classical trajectories subject to forces specified by the state
of the quantum system along a forward-backward path.>> The influence functional contains nonlocal
interactions, commonly referred to as memory effects, which prevent the subsequent reduction of the
problem to that of a single quantum particle. Exploiting the memory-quenching effects of condensed phase
environments allows an iterative tensor product decomposition of these path integral-based algorithms (i-
QuAPP and i-QCPI*¢), which leads to linear scaling with propagation length. Since the influence functional
needs to be included along all path segments within the memory length, the crudest form of these methods
scales exponentially with the number of time steps necessary to span the memory. However, dramatic
savings are possible through additional decompositions***> and path filtering.” %4 Further, it has been
shown that the most prominent (“classical memory”) component of the influence functional is automatically
accounted for in QCPI through the classical trajectories,*’ that some of the residual “quantum memory”
component can also be removed,*® and the time step can be increased,* thereby significantly shortening the
memory length.

30-31 which lump the effects

An alternative approach is used in quantum master equation approaches,
of the environment into a two-time memory kernel. The storage requirements of these approaches are
considerably lower, as they do not need to store quantum paths over several time steps. However, obtaining
the kernel requires knowledge of the system dynamics under the influence of the environment over the
kernel memory length. Evaluation of the kernel using perturbation theory and the Markovian
approximation leads to the well-known Bloch-Redfield equations.”® In the absence of such assumptions,
Geva and coworkers have shown that the kernel in the Nakajima-Zwanzig generalized quantum master
equation®”>! (GQME) can be obtained from time correlation functions.>® Recent work based on either the
Nakajima-Zwanzig or the Mori formalism> has demonstrated that the kernel may be obtained from
knowledge of the RDM for all possible initial conditions.>>-** Thus, if one could reliably obtain the GQME
kernel over its memory length, solution the GQME would yield the RDM dynamics over longer times.

Several approximate methods have been investigated toward this goal, including Ehrenfest
dynamics,> © LSC approximations to the MM mapping Hamiltonian,®® and truncated MJ-QCLE
methods.®' These methods were found to reproduce the true GQME kernel reasonably well for some spin-
boson models, while the resulting GQME dynamics was very good in some regimes. The key to the success
of these approaches may lie in the relatively weak coupling and short memory length of these models,
which allows approximate methods to yield relatively good results, since errors tend to grow with increasing
propagation time. Still, it is not possible to know the accuracy of GQME results with approximate kernels
unless numerically exact results for the system of interest are available.

An intriguing possibility is to compute the GQME kernel using methods capable of producing
numerically exact or at least highly accurate results. In some cases of interest, real-time path integral Monte
Carlo methods can be converged over the time span of the memory kernel.®* ® 1In the case of system-bath
Hamiltonians, numerically exact kernel calculations have been reported based on the correlation function
approach in conjunction with QuAPI calculations,® and also with the RDM approach using the
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multiconfiguration time-dependent Hartree methodology.’’ In addition to full-path (non-iterative) QuAPI
calculations, numerically exact results on system bath Hamiltonians may also be obtained using QCPI
(which is also exact for a system coupled to a harmonic bath). While both QuAPI and QCPI can produce
long-time dynamics, with effort that scales linearly with propagation time, the GQME array storage
requirements are considerably more modest. It is thus important to assess the advantages and drawbacks
of the GQME with path integral-generated kernels, and to compare the effort required for obtaining the
exact long-time dynamics of a system-bath Hamiltonian via i-QuAPIL i-QCPI, or the GQME approach. A
key question in this regard is the memory length required for convergence of the GQME, compared to the
memory required in each of the two path integral-based methods. While various conjectures have been
discussed, it appears that no consensus has been reached on this question.”* 3 Further, in the case of a
complex anharmonic environment, it appears that QCPI offers the most rigorous and robust formulation
that converges with relatively modest effort in several regimes of interest, thus it may be the best candidate
for computing the memory kernel for use in the GQME.

In this paper we address these questions by performing QuAPI and QCPI calculations to generate
the GQME kernel and solving the GQME equation to obtain long-time dynamics on dissipative TLSs in
several parameter regimes. We also compare the relevant memory lengths, i.e., the Feynman-Vernon
influence functional memory that enters the i-QuAPI formulation, the quantum memory length entering the
QCPI methodology and its dynamically enhanced versions, and the GQME kernel length. We find that the
latter is always equal to the full Feynman-Vernon influence functional memory length, but considerably
longer than the quantum memory length relevant to QCPI. We also compare the effort required to obtain
converged long-time dynamics with these methods.

We follow the direct approach to generate the kernel from information contained in the RDM. *7- %
This approach necessitates the numerical evaluation of RDM derivatives, which increases the
computational effort and in some cases requires some care. Alternatively, the kernel may be obtained from
information contained in system-bath correlation functions.>* 3% This approach also requires a substantial
amount of additional effort, as well as additional work to code the appropriate correlation function
expressions, and has already been explored in the context of constructing the GQME kernel from Ehrenfest
dynamics.%

In section II we review the two path integral based approaches (QuAPI and QCPI) we employ to
either obtain the memory kernel for use in the GQME, or to independently propagate the RDM to long
times, and their computational costs. In section III we summarize the GQME approach and discuss the
numerical procedure we employ. Section IV specializes to the spin-boson model, for which we give the
kernel elements and discuss computational details. Our results for four sets of parameters are presented in
section V, along with a discussion of the convergence characteristics and required effort of the various
methods. Our conclusions are discussed in section VL.

II. Real-time path integral methods

Our focus is on the dynamical properties of a quantum mechanical system, described by the
coordinate s and conjugate momentum p_, which is in contact with an environment composed of d degrees
of freedom with phase space variables (,p . The total Hamiltonian may be written as

A
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where H and H,, describe the system and environment, respectively, and V,
interaction.

In many situations, the Hamiltonian of the environment is (or is assumed to be) quadratic, giving
rise to the common system-bath Hamiltonian,
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where @, and ¢, are the bath frequencies and system-bath coupling coefficients.
The dynamical properties of the system can be obtained from the RDM,

ﬁ(sﬂ’s!’t) = <Sﬂ|5(t)|sr> =Tr,, <Sn|e—i151r/hﬁ(0) ift/h |s > (2.3)

In the limit d — o the RDM of the system-bath Hamiltonian exhibits dissipative dynamics. The collective
parameters of the harmonic bath are captured in the spectral density function,

J(w)zzz ! 5(w—a)j). (2.4)

The dynamics of the RDM for the system-bath Hamiltonian can be obtained via the numerically
exact QuAPI algorithm,>® which is derived using the quasi-adiabatic splitting of the system-bath
propagator’ with a time step Atz =¢/ N . The QuAPI expression of the system-bath RDM has the form
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where F is the QuAPI-discretized Feynman-Vernon influence functional.** If the initial density operator is
a product of system and equilibrium bath components, the influence functional is given by®

F(s(f,sli,...,sfv;At) exp{——ZAs D Ren,As,, +2ilmn,, s, } (2.6)

k=0 k'=0

where As, =5/ —s, and 5 =1(s; +s,) and the superscripts denote forward and backward path
coordinates. A bath which initially is in equilibrium with a specific state of the system (e.g. the donor state
in an electron transfer process) leads to a modified influence functional.®” The 7, coefficients introduce
time-nonlocal interactions between the kand k' time points, which constitute the path integral
manifestation of the bath-induced memory. These coefficients are available in terms of spectral density
integrals,® and can also be obtained directly from the force autocorrelation function of the bath.®

In real-time path integral calculations the system coordinate is also discretized into » grid values
using a system-specific discrete variable representation® (DVR). All integrals in Eq. (2.5) are then
replaced by sums, and the influence functional is evaluated at the DVR eigenvalues.”® For a given initial
condition, there are n" forward paths and an equal number of backward paths, such that evaluation of the
discretized path integral expression requires summing n*" terms.



The finite memory of dissipative environments allows a tensor decomposition of the path sum,
which leads to the iterative i-QuAPI scheme.* > The basic i-QuAPI algorithm requires the storage of n
discrete system path segments, where L, is the maximum value of k—k" in Eq. (2.6); this parameter

equals the number of time steps required to span the influence functional memory length. Each step in the
2Lguapi +2

2Lguapt

operations. For propagation of the RDM to N path integral steps,

2L, 2 .
@S AT calculations.
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i-QuAPI procedure involves n
the i-QuAPI methodology requires a total of »

However, a large fraction (and often the majority) of the »
contribution and may be dropped. There are several ways of filtering out unimportant path segments.
4 One very efficient such scheme is based on ‘blips’,! i.e. As, #0 terms. In fact, a restructuring of the
forward-backward sum in Eq. (2.5) in terms of blips and sojourns (time points where the coordinates of
forward and backward paths are identical) leads to an exponential reduction of the number of operations

paths make an exponentially small
7,8, 10,

even without dropping any paths, and the contribution of path pairs with many blips is exponentially small
in the incoherent regime, allowing elimination of multi-blip segments.** The blip-summed path integral
(BSPI) reduces the number of integrand evaluations of the full path sum to M < n****" | allowing efficient
evaluation of the path integral in cases of very long memory. A very efficient, iterative version of the BSPI
algorithm is also available.*

In the case of anharmonic environments, the evolution of the RDM may be obtained using the QCPI
formulation.’**” The QCPI expression is identical to Eq. (2.5), but the influence functional is now evaluated
within a stationary phase approximation to the forward-backward bath propagator.”’"”* This procedure leads
to an expression that involves classical trajectories and thus may be used with general, anharmonic
environments. In the special case of a harmonic bath, stationary phase procedures are exact and reproduce
the Feynman-Vernon influence functional.® 77> After rearranging the path sum and the integral with
respect to the phase space variables that specify trajectory initial conditions, the QCPI expression takes the
form

P(sx;NAt) = [da, [dp,P(a,,p, )| ds; -+ [dsy | (s} U (NAL(N =DA)|s7 )
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where P(q,,p,) is the phase space distribution of the environment (i.e. either the classical Boltzmann
factor or the quantized Wigner distribution™), U, is the time evolution operator for a time-dependent
system Hamiltonian augmented by the system-environment interaction along a chosen reference
trajectory,” and A® is the difference of action integrals along the forward and backward system paths.
This phase contains all dynamical effects due to the interaction of the system with its environment. The
numerical evaluation of the Wigner distribution involves a multidimensional Fourier-type integral, but
several approximations as well as path integral-based methods are available for this task.”®!

A classical trajectory in the QCPI expression is integrated subject to the sequence of forces exerted
by the system along each discrete path. This dependence leads to exponential proliferation of classical
trajectories with the number of path integral time steps. This seemingly peculiar feature is the quantum-
classical manifestation of influence functional memory.*> 32 Just as in the case of the QuAPI expression,
the memory quenching effects of the environment may be exploited to obtain at the i-QCPI decomposition,
which maintains a constant number of trajectories.*®



The incorporation of the action along reference trajectories in the system propagator® is equivalent
to including the real part of the influence functional, that is, the reference propagators completely account
for the “classical” memory.*” Thus, the path-specific “back-reaction” A® needs to capture only the
“quantum” memory,? which is often considerably shorter than the classical memory. Further, the reference
propagator is accurate over larger time steps. The combination of a shorter memory length and a larger
time step enables convergence of the i-QCPI expression with L values that are considerably shorter than
those in an i-QuAPI calculation.

Further, the reference trajectory is allowed to hop between the system states at each successive time
step by a dynamically consistent state hopping (DCSH) scheme.*® This procedure captures some of the
quantum memory into the effective system propagators, rendering the i-QCPI memory length LA¢ even
shorter.

III. Generalized quantum master equation

50, 51

The Nakajima-Zwanzig GQME for propagation of the RDM is formally exact and is given by

ih% pty= L, p(t)~ih jo dt' K (t—t)p(t") +ih 7 (), (3.1)

where the system Liouvillian superoperator is defined as £ .-=| H,, ,-] , KX is the memory kernel which
contains all the effects arising from the system-environment interaction, and the inhomogeneous term /7
vanishes for a separable initial condition p(0) = p(0)p,,.(0). Since the kernel generally tends to be short-
lived in comparison with the desired dynamics, Eq. (3.1) offers an avenue for obtaining the evolution of the
RDM over time lengths much longer than the environment-induced memory. However, the memory kernel
generally is not known. Here we explore the use of real-time path integral methods to generate the short-
time kernel, for use in the GQME.

Since the system is described in terms of discrete states, we switch to matrix notation. We observe
that

ﬁjk (t) _ Trenv <j|e—il:lt/hﬁ(0)ei]:1t/h k>
= Y Tr, (e [1)(1] 50)|m) B, () m| ™" | ) (32)

I,m

= Z /szklm (Z)ﬁ]m (0)
I,m

where U(¢) is the n> xn” time evolution matrix for the RDM, with elements

U =T, (€™ |1) por, (0) (m|e™" k), (3.3)

The RDM evolution

57, 64

€., szk,m (7) is the RDM element p, () for the initial condition p,,,(0)=3,6,

e
nm

matrix may be used as input for obtaining the memory kernel according to the equation



ih K (1) = ~inU(e)+ U(t)- L, ~in [ U(r 1) K (") (34)

If the kernel memory is equal to 7, , the lower limit in the time integral of Eq. (3.1) may be
replaced by ¢ — 7. » and the GQME for the RDM becomes

d ~ _ t
L S5(N=L 5(1)—ih
: d[p(t) ‘£SYS p(l‘) ! 1=TGQuE

dt' K(t—1")-p(') . (3.5)
Thus the RDM evolution operator ’l](t) , along with its first and second derivatives, can be used to construct
the GQME kernel over the memory time length, which can subsequently be used within the GQME to
generate the long-time evolution of the RDM.

Earlier work®® showed that the GQME kernel can be obtained in terms of self-consistent equations
that involve time correlation functions of the system-bath coupling operator, and several other similar
expressions are possible.” The approach given by Eq. (3.4) is simpler and convenient, as it requires only
RDM elements, which are the target of all dynamics methods. However, Eq. (3.4) requires the numerical
calculation of first and second derivatives, which requires a dense time grid and can be problematic if the
RDM values contain statistical noise.

The RDM elements required to obtain the exact GQME kernel at the time points Af, 2Af,...,
Loy At using a path integral method (without path filtering and without utilizing symmetry properties)
with time step Az involve the following calculations: Generating the n° elements of the RDM at the time
At requires n® terms from each initial condition; obtaining the RDM elements at the time 2A¢ requires

2 Lgome

summing the amplitudes along n* paths; for the final time point L, Af one needs to sum M =n

'GQME
path amplitudes. Thus, obtaining all elements of the RDM up t(f the GQME kernel memory length
Toome = Loous At for  the n> possible initial conditions involves evaluating a total of
n® o (n® +nt e+ ptoor) = rz“(nuGQME ~1)/(n* - 1) integrand terms.

The time derivatives are evaluated numerically. However, since the path integral time step Af is
chosen as large as possible, a much finer spacing of the data values is required to ensure smooth and stable
first and second derivatives of the RDM evolution matrix. For this reason, path integral calculations must
be run to generate 7 =10 data points per path integral time step. Thus, a total of 77 (n*"® —1)/(n* -1)
integrand evaluations must be performed to obtain the GQME kernel matrix over the necessary memory

length.

IV. Application to dissipative two-level systems and numerical procedures

We apply the QuAPI and QCPI methods to obtain the memory kernel and GQME dynamics for
two-level systems coupled to harmonic dissipative baths. The system Hamiltonian is

Hy, ==hQ(|R)(L|+|L)(R])+ &(|R)(R|=[ L){L]) S

where |R),
from a specific initial condition to a 4-component vector. The system Liouvillian becomes

L) are the ‘right” and ‘left’ TLS states. For notational clarity, we unfold the RDM developing
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The memory kernel for the dissipative TLS satisfies the symmetry relations® K, .p =K | gpr »
KRLRL = “’]C:RLR > KRLLR = KL*RRL and "](RLLL = KL*RLL Further, KRR:‘j = KLLt'j =0, thus there Ol’lly four
independent kernel elements: Ky, Kyres Kierr s Kerr -

The TLS RDM propagator U is given by the 4 x4 matrix,
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where the subscripts on the RDM elements correspond to the states at the final time, while the superscripts
label the initial conditions, i.e.,

Bl (1) =Tr,,, ((a|O@)]i)(i| 50)] /){J|T" @)]B)). (4.4)

In order to compare results obtained with QuAPI and QCPI, we employ harmonic baths described
in terms of spectral densities that have the common Ohmic form,

J(w)=1rhéwe '™ (4.5)

where the dimensionless Kondo parameter ¢ quantifies the TLS-bath coupling strength and @, is the cutoff
frequency. We evaluate the kernel for the four possible initial conditions by performing non-iterative
QuAPI or QCPI calculations. Each of these involves summing the path integral amplitudes over the GQME
memory length, and (in the case of QCPI) integrating classical trajectories with initial conditions sampled
by a Monte Carlo process. Implementation of the QCPI methodology requires discretization of the bath in
terms of d frequencies and coupling constants. We have followed the logarithmic discretization® with
d =60. The QCPI results presented in the next section were performed with solvent-driven reference
propagators,* utilizing the DCSH branching scheme,*® and employed a total of 60,000 initial conditions
sampled by Monte Carlo® from the thermal Wigner distribution of the harmonic bath (which is available
analytically). We have found that using » =10 RDM values within each path integral time step generates
a sufficient number of data points for derivative evaluation. Thus the total number of amplitudes over the
GQME memory length is 160(4" —1)/3 .

In the case of QuAPI, one could alternatively interpolate the RMD results to obtain  points in each
At interval, avoiding additional QuAPI runs. We have found interpolation procedures can introduce some
error, in particular in cases where the RDM exhibits oscillatory behavior, which is undesirable when using
an exact method. Since such error would depend on the choice of interpolation function (as well as the
spacing of the input RDM data), checking the accuracy of the results would require additional effort.



Once the path integral results for all initial conditions have been obtained, we further fit them to
cubic splines, to generate time points on a still finer time grid, with a time spacing of 0.0005Q", for
derivative evaluation. In the case of QCPI, smoothing the RDM results is necessary because of the
unavoidable Monte Carlo error. Generally, we find that obtaining QCPI RDM derivatives requires some
care: different choices of the smoothing algorithm affect the accuracy of the kernel, and can even alter the
GQME results in some regimes. Finally, we integrate the GQME using a first order forward finite
difference procedure to obtain the RDM elements for longer times. To this end, we approximate the
derivative of p as its first order forward finite difference. Our integration procedure is different from the
self-consistent scheme employed in Ref. %,

For each of the calculations, numerically exact results were obtained using the i-QuAPI (or its blip
decomposition, i-BSPI) and the i-QCPI methods. We present the population dynamics and report the time
step and memory length required for convergence of each method (to within 0.01 in the monitored state
population). We also compare these results to those obtained by integrating the GQME with a memory
kernel obtained using QuAPI and, when possible, QCPL

V. Results

(a) Model 1: Symmetric TLS with moderate dissipation at low temperature

The first model involves a symmetric TLS linearly coupled to a harmonic bath with @, =5Q,
£=0.3 at alow temperature corresponding to 723 =5. The bath is initially in Boltzmann equilibrium,
isolated from the TLS. With these parameters the population of the initial state exhibits strongly damped
oscillations.*> Numerically exact results were obtained using the i-QuAPI method (without path filtering)
with a time step of QA7=0.2 and L,,,; =6, thus the QuUAPI memory (i.e. the span of the Feynman-
ouart = 1.2 . Our i-QCPI calculations with QA#=0.25 and
Lycp =3 reproduced (within 0.01) the converged i-QuAPI results, so the QCPI memory length is
QTQCPI
bath dynamics into effective system propagators, which automatically capture at the very least all classical

Vernon influence functional nonlocality) is Qr,
=0.75. The reason for the much shorter memory requirements of i-QCPI is the incorporation of

memory (the real part of the exponent of the influence functional), and (through DCSH branching) even a
portion of the quantum nonlocality, leaving just the remaining quantum memory to be accounted for via
the path integral. The use of reference propagators also allows a larger time step in QCPI. In fact, QCPI
calculations with QA¢,.,, =0.3 produced indistinguishable results. Through a combination of shorter
memory and larger time step, the i-QCPI calculations converged with a much smaller value of L compared
to that required in i-QuAPI, which employs the full Feynman-Vernon influence functional.
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Fig 1. Population dynamics of model 1. Green hollow circles: unconverged i-QuAPI results with
7 =0.4. Green line: unconverged QuAPI-GQME results with = = 0.4. Red filled squares:
converged i-QuAPI results with Q7. =1.2, Ly, \p; = 6. Red line: converged QuAPI-
GQME results with Qz,\ =1.2. Black hollow squares: i-QCPI results with Qz,., =0.75,
Locpy =3 - Blue line: QCPI-GQME results with Q7o =1.2.

Figure 1 shows the converged population dynamics of an initially right-localized state, along with
shorter memory results. The memory length required to converge the GQME calculation with the QuAPI
kernel, Q7 =1.2, is exactly the same as the memory required in the i-QuAPI calculation for the same
accuracy. Further, we find that the results obtained from the GQME using the exact kernel with any chosen
memory length are identical to those of the i-QuAPI calculation with the same memory length. Also shown
in Fig. 1 are GQME results with a memory kernel generated from the QCPI calculations with Q7 =1.2
. While these results are converged with respect to the GQME memory, small deviations from the exact i-
QCPI and i-QuAPI results are seen. These arise from numerical error in the smoothing procedure and
derivative evaluation.

Figure 2 shows the independent elements of the GQME kernel obtained from our QuAPI
calculations. Some numerical noise is observed, which arises (even in the absence of Monte Carlo error)
from the numerical derivative evaluations and is most pronounced in the imaginary part. Still, the imaginary
part is rather small, and this noise does not prevent the integration of the GQME. It is seen that the kernel
elements decay to almost zero within the memory time interval. Extending the memory time in order for
the kernel to attain values closer to zero does not lead to a noticeable change of the population dynamics.
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Fig. 2. Real (red) and imaginary (blue) parts of the kernel elements for model 1.

(b) Model 2: Symmetric TLS with strong dissipation at high temperature

The second model employs a symmetric TLS coupled to a strongly dissipative bath with @, = 2.5
and £ =1.2 at a high temperature corresponding to #Qf =0.2. In this regime, the coherent oscillations of
the bare system are completely quenched and the populations show monotonic relaxation.> The TLS is
initially in the R state, while the bath is in thermal equilibrium, isolated from the system.

Figure 3 shows the population of the R state as obtained through i-QuAPI calculations with
QAto,p =0.15 and also from the GQME with the QuAPI kernel. Again, unconverged i-QuAPI and
QuAPI-GQME results with €27 =0.3 are practically indistinguishable, and the GQME kernel memory
Qrgoue =1.2 18 equal to the converged i-QuAPI memory (i.e. the influence functional nonlocality),
Qroap =1.2, which spans L., =8 path integral time steps.

For this model, in which the population follows a simple, monotonic decay, we found it easier to
obtain stable GQME results with a kernel computed via QCPI calculations. While the i-QuAPI and QuAPI-
GQME formulations require the same memory to converge, i-QCPI calculations are again seen to converge
considerably faster. This trend is illustrated in Figure 4, which shows the memory requirements of i-QCPI
in comparison to the GQME. It is seen that the i-QCPI results with memory length equal to Q7 =0.3
are in quantitative agreement with the converged i-QuAPI results. Again, the reason for the much shorter
memory requirements of i-QCPI is the need to account for only some of the quantum memory. The

12



reduction of required memory length in the i-QCPI calculation is even more pronounced in the case of
model 2, because the quantum memory is less significant in the incoherent regime. The QCPI-GQME
results with the same memory length are rather poor, as a fourfold increase in memory is required to
converge the GQME. Further, the inclusion of much of the bath dynamics into reference QCPI propagators
allows again a twofold increase of the path integral time step, and results obtained with QA =0.3 are
indistinguishable. The i-QCPI results obtained with L., =1 are indistinguishable from the converged i-
QuAPI results. Thus, the use of QCPI leads to a dramatic gain in convergence in this regime compared to
i-QuAPI. However, the QCPI advantage is lost when the method is combined with the GQME, as the
GQME kernel spans the full influence functional memory.

pRR

0.7 - -

0.6 i

05

Fig 3. Population dynamics of model 2. Green hollow circles: unconverged i-QuAPI
results with Q7 =0.3. Green line: unconverged QuAPI-GQME results with
Q7=0.3. Red filled circles: converged i-QuAPI results with QAz,,, =0.15,
Layaprr =8 QTgp =1.2. Red line: converged QuAPI-GQME results with
Qrgome =1.2.

The independent elements of the memory kernel obtained from the QuAPI calculations are
presented in Figure 5.
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Fig 4. Population dynamics of model 2. Black line: converged i-QuAPI results. The full memory is

Q7om =QTgoue =1.2 . Red filled circles: converged i-QCPI results with Q7.
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Fig. 5. The independent elements of the kernel for model 2. Red lines: real part. Blue lines: imaginary part.
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(c) Model 3: Asymmetric TLS weakly coupled to high-frequency bath at low temperature

The third model is an asymmetric TLS with & = 2} , weakly coupled to a fast bath with @, =7.5Q
and £=0.1. This regime shows pronounced quantum mechanical behavior characterized by persistent
oscillations in the populations.®® The bath is initially in thermal equilibrium at a very low temperature of
hQpB=5. Since hw,f =37.5, this bath is highly quantum mechanical.

Figure 6 shows population dynamics for an initially right-localized state obtained by i-QuAPI, as
well as using the GQME with QuAPI kernels. The converged i-QuAPI results with QA ., =0.2 and
Lo =10, 1., Q74,5 =2, are identical with the QuAPI-GQME results obtained with the same memory
length, Q7 =2. Also, unconverged i-QuAPI and QuAPI-GQME results using a much shorter memory
length Q7 =0.4 are indistinguishable, confirming once again that memory dependence of the GQME is
exactly the same as in the i-QuAPI algorithm. Also shown are results obtained through i-QCPI calculations,
which converge with the time step QAz,., =0.25 and a shorter memory, Qz,, =1.25. The QCPI
reduction of memory length is less dramatic in this case compared to that observed in model 2, because the
highly quantum mechanical nature of the bath implies that the quantum mechanism of decoherence is quite
significant. Yet, through the increased time step and shorter memory, the QCPI calculations converged
with L., =5, reducing the number of forward-backward paths required to span the memory length from
4" =10° in i-QuAPI to 4’ =10’ . In this case we were unable to obtain stable and accurate GQME kernels
from QCPI calculations, because the oscillatory nature of the populations complicated the smoothing
procedure. However, we note again that QCPI calculations to generate the GQME kernel would require
the L =28 to span the full GQME memory. Representative kernel elements for this model are given in

Figure 7.

Fig 6. Population dynamics of model 3. Green hollow circles: unconverged i-QuAPI results
with Q7 =0.4. Green line: unconverged QuAPI-GQME results with Q7 =0.4. Red
filled squares: converged i-QuAPlI results with QAf, \p =0.2, L, 4pr =10,

Q74am =2 . Red line: converged QuAPI-GQME results with Q7 =2. Black
hollow triangles: i-QCPI results with Q7o =1.25, Lyep =5 -
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(d) Model 4: Symmetric TLS strongly coupled to slow bath at an intermediate temperature

The last model uses a symmetric TLS coupled to a strongly dissipative, sluggish bath with @, =Q
and £=2 at an intermediate temperature corresponding to 7Q8 =1.* The TLS is initially in the R state,
while the bath is equilibrated with respect to the initial TLS state. These parameters correspond to a
challenging regime, and calculations require small time steps as well as a long memory.

Figure 8 displays the time evolution of the population. Converged i-QCPI results are shown with
QA =0.25 and L, =8, i.e. the QCPI memory length is Q7. =2 . QuAPI calculations converged

with a similar time step, QA?, =0.125; however, the full memory exceeds the time length displayed in

uAPI
Fig. 8, Qryup >3, thus ravs i-QUAPI calculations are comfortably feasible for about half of the time
shown. The blip decomposition extends the feasibility of path integral calculations with the full Feynman-
Vernon influence functional to much longer times, reproducing the QCPI results. It is again seen that the
unconverged GQME results are identical to the i-QuAPI results with the same memory length. Also shown
in Fig. 8 are GQME results with the kernel generated from QCPI calculations with Qz,.,, =2. The small
deviations from the exact results even before the memory time is exceeded are the results of the smoothing

procedures to compute derivatives.
The independent elements of the memory kernel obtained by QuAPI are presented in Figure 9.
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Fig. 8. Population dynamics of model 4. Red filled markers: converged i-QCPI results with QAtGepr =025,
Locp =8 (QTQCPI =2). Black circles: full QuAPI results (no memory truncation) with
QAtGapr = 0.125 . Hollow squares: full BSPI results (no memory truncation) with three blips and
QAt = 0.125 . Dashed green and blue lines and solid black line: unconverged GQME results with
QuAPI kernels, L =6,8 and 11. Orange line: QCPI-GQME results with Loepr =8 (Qrgome =2)-
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Fig. 9. Memory kernel elements for model 4. Red line: real part. Blue line: imaginary part.
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The findings of our calculations on models 1-4, i.e. the memory times and numbers of path integral
time steps required to span the memory time in each case, are summarized in Table 1. In all cases, we
found that the GQME solution based on a numerically exact memory kernel reproduces the converged
iterative path integral results with the same memory length. Further, we found that when the kernel memory
is prematurely truncated, the unconverged GQME results agree exactly with the unconverged i-QuAPI
results. This observation is another manifestation of the exact manner in which both formulations handle
the dissipative effects of a bath on a quantum system. It is also in line with one’s expectation of the
properties of the GQME solution with a numerically exact kernel.>®

We also found that the memory required to converge i-QCPI calculations is always shorter than the
GQME kernel memory. This is a consequence of the ability of the QCPI methodology to incorporate the
classical memory in its entirety, and also some of the remaining quantum memory, into effective system
propagators that satisfy the closure property and need no path integral slicing. Because the classical
memory is the dominant component of the influence functional nonlocality, its removal from the explicit
path integral operations implies dramatic savings. However, these savings cannot be transferred to the
GQME solution with a QCPI kernel. To use the GQME, one would need to run QCPI calculations with
path segments longer than necessary in order to obtain the GQME kernel over its full memory length. The
direct application of the i-QCPI algorithm is thus much more efficient. The i-QCPI propagator for each
trajectory initial condition (the “quantum influence function”) is also norm conserving®® and thus stable
over long propagation lengths.

Table 1. Summary of results for models 1-4.

Parameters Q7oue = Qg Loome = Louar Q74 Locp
Model 1 e=0,nQL =50, =50,£=0.3 1.2 6 0.75 3
Model2 | £=0, Q0B =02, =250 =12 12 8 03 I
Model3 | =i hQp =5, =7.5Q, E=0.1 2 10 125 5
Model 4 e=0,IQB=10,=Q,&=2 >3 >24 2 8

VI. Discussion and concluding remarks

The numerical calculations presented in section V indicate that in the case of system-bath
Hamiltonians, the memory length of the GQME kernel is the same as the full memory required to converge
QME — LQuAPI
evaluations required to generate the GQME memory kernel from full path integral calculations is

i-QuAPI calculations with the same parameters. Setting L, = L, the number of integrand
ra*(n®* =1)/(n* —=1) =10n*"**. The procedure of interpolating, evaluating derivatives and integrating the
GQME adds to the computation time, although these operations are not very demanding. Overall, the cost
of the GQME approach seems comparable to that of an i-QuAPI calculation, which requires N n***"
operations for propagation to N time steps. For very large values of N, the i-QuAPI calculation could
become more expensive. However, the i-QuAPI scheme is norm-conserving and thus stable, while the
stability and accuracy of the GQME solution over very long times would need to be tested. We also note
that path filtering and the BSPI decomposition can dramatically reduce the computational effort required

to generate the GQME kernel or to perform an iterative path integral calculation.
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In addition to the computational cost described above and the overhead of processing the RDM
data to obtain the GQME memory kernel, we note that the GQME approach requires substantial care to
guarantee derivative stability and accuracy. The i-QuAPI matrix-vector procedure is simpler in this regard.
Thus, the main appeal of the GQME approach is for situations of very long memory that does not permit
storage of the array of path configurations that are needed in iterative path integral calculations. With the
BSPI decomposition, storage of path segments is replaced by storage of blip configurations, *** which
reduces the RAM demands of path integral methods by many orders of magnitude. Thus, the storage
advantage of the GQME approach with a kernel computed by exact path integral methods may be more
important for handling multi-state systems. Last, the use of GQME methods with time-dependent
Hamiltonians, while possible in principle,® would require a new kernel calculation at every time step.
System-dependent driving terms present no difficulty to iterative path integral methods. Since construction
of the memory kernel is a tedious and time consuming process, the direct use of iterative path integral
methods for propagation is much preferable in such cases.

Next, we focus on the more significant potential appeal of the GQME approach, in the context of
simulating the dynamics of systems interacting with complex, anharmonic environments. In this paper we
examined the possibility of employing the rigorous QCPI formulation to generate the GQME memory
kernel. The findings of our calculations were summarized in Table 1. We found that the memory length
required for convergence of the i-QCPI methodology is always shorter than the GQME kernel length. This
fact stems from the two distinct contributions to the bath-induced memory, and the ability of the QCPI
formulation to capture the entire classical component of this memory (which is associated with decoherence
through absorption and stimulated emission of phonons),*’ as well as a portion of the remaining quantum
memory (which arises from spontaneous phonon emission) within effective propagators.’” This very
attractive feature is lost once the QCPI kernel is inserted in the GQME, since the latter needs to be solved
with the full memory. An all-path i-QCPI calculation to the time NA¢ (without filtering) requires the

Lacp +2

manipulation of N n’ terms from each trajectory initial condition, while a QCPI calculation of the

GQME kernel would require the evaluation of ~ 1077 o2
Locpy < Lo - The direct, iterative i-QCPI evaluation is thus much more efficient than the solution of the
GQME with a QCPI-generated kernel. In addition, the direct i-QCPI calculation avoids the need for RDM

smoothing that is required for derivative evaluation and which can be delicate because of unavoidable

terms (from each initial condition) with

Monte Carlo error in the data.

Last, we note an additional advantage of the full i-QCPI approach. QCPI calculations employ full
classical trajectories of the system’s environment, which capture the true dynamical features of the medium
that may include motions evolving over very long times. For example, protein conformational changes
occur on the time scale of nanoseconds or even microseconds. Such structural changes, which can play a

critical role in long-range biological electron transfer or isomerization reactions, 6%

are fully accounted for
in i-QCPI calculations. In order to capture the effects of such conformational rearrangements through a
memory kernel, this kernel would need to span practically the entire time length of the process. More
importantly, a calculation based on a pre-constructed memory kernel might seem to converge over a
relatively short memory time, entirely missing important dynamical effects on the quantum process of
interest by failing to account for the effects of a structurally different environment that develops much later.

The advantage of full trajectory-based methods is very significant in this regard.
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