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Abstract 

 

A small matrix decomposition of the path integral expression (SMatPI) that yields 

the reduced density matrix of a system interacting with a dissipative harmonic bath 

is obtained by recursively spreading the entangled influence functional terms over 

longer time intervals, while simultaneously decreasing their magnitude, until these 

terms become negligible. This allows summing over the path integral variables one 

by one through multiplication of small matrices with dimension equal to that of the 

bare system.  The theoretical framework of the decomposition is described using a 

diagrammatic approach. Analytical and numerical calculations show that the 

necessary time length for the temporal entanglement to become negligible is 

practically the same as the bath-induced memory.  The properties and structure of 

the propagator matrices are discussed, and applications to multistate systems are 

presented. 
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I.   Introduction 

 In spite of persistent efforts, solving without assumptions the quantum mechanical equations that 

govern the time evolution of physical observables in systems of many degrees of freedom remains a 

formidable task.  Among wavefunction-based approaches, the multiconfiguration time-dependent Hartree 

(MCTDH) method1 has shown impressive capabilities for molecular systems, and the density matrix 

renormalization group (DMRG) approach2 can successfully treat extended systems of a one-dimensional 

topology.  Nevertheless, methods based on wavefunctions are not naturally suited to condensed phase 

processes, where hundreds or thousands of molecular vibrations and/or phonons need to be treated at finite 

temperature, as the relevant Hilbert space is far too large.  Further, combining wavefunction-based methods 

with classical trajectories involves uncontrolled approximations.  A number of density matrix approaches 

have been investigated, which involve master equations (with or without perturbative or Markovian 

assumptions) and stochastic Schrödinger equation treatments.   

 Feynman’s path integral formulation,3, 4 which does not require wavefunction storage, offers a very 

attractive starting point which is ideally suited to the calculation of a system’s reduced density matrix 

(RDM).  Harmonic bath degrees of freedom (e.g. any number of phonons or normal mode vibrations), 

which are responsible for dissipative dynamics,5-7 can be integrated out analytically, at zero or finite 

temperature, giving rise to the well-known Feynman-Vernon influence functional.8  Many complex systems 

can be realistically treated only in combination with classical trajectory treatments, but the incompatibility 

of Schrödinger’s and Newton’s formulations necessitates major assumptions.9  However, because quantum 

paths are spatially local, their interaction with classical trajectories is straightforward and unambiguous 

within Feynman’s framework.  The quantum-classical path integral10-12 (QCPI) offers a rigorous approach 

that treats the interaction of a quantum system with its environment correctly and in full atomistic detail.13    

 The main practical issue with path integral methods is the introduction of two auxiliary variables 

per time step for each quantum degree of freedom, leading to exponential proliferation of the number of 

terms with the propagation time.  Monte Carlo methods14 generally fail to converge when applied to the 

real-time path integral because of a sign problem associated with the quantum mechanical phase.  Since the 

early 1990s, a number of algorithms have emerged that enable numerically exact evaluation of the path 

integral for systems coupled to harmonic environments.15-32  In particular, exploiting the finite length of 

nonlocal ‘memory’ interactions in the influence functional allows iterative evaluation of the path integral,17, 

18 which leads to linear scaling with the number of propagation steps.  

 Fully quantum mechanical real-time path integral methods are not necessarily restricted to 

harmonic baths.  Iterative decompositions (which allow linear scaling with propagation time) have been 

extended to fermionic baths,33, 34 and have been shown to be generalizable to arbitrary environments,35 as 

long as the influence functional is available (analytically or numerically).  Further, a modular 

decomposition of the path integral36, 37 (MPI) allows treatment of the dynamics in extended systems with a 

quasi-one-dimensional topology, where hundreds of vibrational coordinates that couple to the electronic 

states of each unit can be treated without a significant increase in computational cost. 

 Nevertheless, the main limitation of iterative path integral algorithms (even in the ideal case of a 

harmonic bath) continues to be their rather steep scaling with the number n of system states.  In general, 

one needs to construct and store an array which contains all relevant quantum mechanical paths that span 

the memory length maxk t  , where the parameter maxk  is the number of path integral time steps t  that 

span the bath-induced memory.  Since the paths have forward and backward components, they form an 
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array of  max2 k
n

  elements, and propagation involves max2 2k
n

   operations per iteration step.38  Because the 

influence functional fully couples the path variables at all time points within the memory length, the 

resulting structure is fully entangled and thus cannot be factored any further.  Fortunately, filtering 

techniques19-22 and singular matrix contraction32 can dramatically reduce these numbers (and in many cases 

significantly slow down the exponential scaling).  In the incoherent (high temperature and strong coupling 

to sluggish baths) regime, the blip decomposition28, 29 offers exponential acceleration of the path sum by 

exploiting blip density as a powerful filtering criterion and (most importantly) by decreasing the number of 

stored path configurations from max2 k
n

  to 2bn , where b is the number of blips (i.e. non-identical forward-

backward path regions) within the memory length.  While these acceleration techniques can lead to very 

substantial savings, it is clear that the availability of rigorous path integral methods which do not require 

the storage of large path arrays would expand the applicability of real-time path integral methods to 

multistate systems. 

 A recent Communication39 showed that it is possible to disentangle the path integral even within 

the memory length, by recursively shifting the entangled terms to longer time intervals while reducing their 

magnitude, until these terms become negligible.  This variable decoupling leads to a small matrix 

decomposition of the path integral (SMatPI), where the relevant propagator matrices have dimensions equal 

to that of the system’s RDM.  Each of these matrices contains all the entangled influence functional 

interactions up to a particular time length that in practice does not exceed the bath-induced memory, and is 

obtained through a non-iterative path integral calculation.  Once the SMatPI matrices have been computed, 

propagation to long times is extremely efficient.  If full path sum calculations are employed, the SMatPI 

matrices require the evaluation of max2 k
n

  terms, but as explained earlier filtering techniques can 

dramatically decrease this effort.  Because the SMatPI algorithm requires no array storage besides that of a 

few small matrices, it is realistically applicable to multistate systems.  Most importantly, the SMatPI 

decomposition involves a systematic procedure similar to the iterative decomposition (which relies on 

decreasing memory), which does not involve any approximations or assumptions, and which converges to 

the full path integral result.   

 The present paper fully develops the SMatPI decomposition, using a diagrammatic approach to 

illustrate the entanglement of the path integral variables and motivate its recursive removal, and discusses 

the structure of the SMatPI matrices and the behavior of the entangled ‘remainder’ term.  The description 

begins in section II with the necessary background on the path integral expression and the composition of 

the influence functional.  Section III develops the decomposition, using the simplest case of two-step 

memory to illustrate in detail the procedure algebraically, as well as in terms of a diagrammatic 

representation of the discretized influence functional.  Section IV discusses the entanglement length and its 

relation to the memory length using the zero-temperature spin-boson model as an analytical example, and 

also through numerical calculations.  The properties and structure of the SMatPI matrices are discussed in 

section V.  Applications of the algorithm on a dissipative two-level system in an interesting regime, as well 

as on an 11-state Hückel-type model (with and without next-nearest-neighbor couplings) are presented in 

section VI, and some concluding remarks are given in section VII. 

 

 

II.  Path integral and influence functional 

 The Hamiltonian describing a system interacting with dissipative harmonic bath has the form 
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Here the Hamiltonian sysH  describes a discrete system of n states, or a continuous system which has been 

discretized via a discrete variable representation (DVR) of the path integral.16  In either case, the system 

Hamiltonian, and also the coordinate operator ŝ , are given by n n  matrices,  

 

sys

1 1 1

ˆ ˆ,
n n n

i ij j i i i

i j i

H h s    
  

    ,                                        (2.2) 

 

and { , }j jx p  denote the coordinate and momentum variables of the bath degrees of freedom.  The focus is 

on observables pertaining to the system, which may be obtained from the RDM.  It is commonly assumed 

that the initial RDM is a product of system and bath components, sys b(0) (0) (0)   .    

 Consider the reduced propagator (RP) of the system at the time N t  (where t  is the path integral 

time step), which is defined as the matrix 
( 0)N

U  with elements 

 

 
0 00

ˆ ˆ( 0) / /
b b

ˆTr (0)
N NN

N iHN t iHN t

i i i ii i
U e e        

   . (2.3) 

 

The RDM for a general system initial condition 
0

(0)

i
   is easily obtained from Eq. (2.3), 

 

0 0

0

( ) ( 0) (0)
b

1

ˆTr ( )
N NN N

n
N N

i ii i i i
i

N t U        



    .                                          (2.4)     

 

Thus, the RP is the matrix of RDMs obtained with all possible single-term initial conditions. 

 Eq. (2.3) may be computed from a discretized path integral expression.  Using a Trotter-type40 

factorization of the short-time propagator and evaluating the trace with respect to the bath degrees of 

freedom expresses the discretized path integral in the form 

 

0 1 1 0 1 0

1 1

( 0)

, , , , ,
1 1

N N N N N

N

n n
N

i i i i i i i i i
i i

U G G F        
 

 
  

                                              (2.5) 

 

where  

 

0 0

1 1 1

ˆ ˆ/ /

,k k k k k k

iH t iH t

i i i i i i
G e e        

  

  
                                           (2.6) 

 

are forward-backward system propagators of the (bare or renormalized) system Hamiltonian and F is the 

discretized Feynman-Vernon influence functional.8  The influence functional is a complex exponential of 

the action that results from the force on the bath exerted by the system along a particular forward-backward 

path.  If the bath is initially at a temperature B1/ k  , the influence functional has the form8 
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where ,s s 
 are forward and backward paths of the system and  ( )t  is the force autocorrelation function 

of the bath.  The discretized form of the influence functional depends on the factorization of the short-time 

evolution operator.  For example, a crude asymmetric factorization leads to a rectangle-rule discretization 

of the two-dimensional integral, while a symmetric splitting produces a trapezoid rule discretization.  The 

quasi-adiabatic propagator path integral15 (QuAPI) employs a factorization based on the shifted system 

Hamiltonian along the adiabatic path, 
2 2 2
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ˆ ˆ ˆ /2j j jj

H H c s m   , i.e.  
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The QuAPI-discretized influence functional is given by the expression38  
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where the value of the system coordinate ks  at the time k t  on the forward path is 
ki

  , etc., and  k k    are 

coefficients17 related to integrals of the spectral density function,5  
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2
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2

j

j

j j j

c
J

m


   


   .                                                      (2.10) 

 

The influence functional coefficients may also be obtained directly from time correlation functions 

computed either quantum mechanically or via molecular dynamics simulations.41  If the bath is initially in 

equilibrium with a particular site of the system, as in charge transfer reactions where the solvent is in 

equilibrium with the donor state, the influence functional contains additional terms,42 but can be brought in 

the form of Eq. (2.9) through a system coordinate shift.43  Eq. (2.9) is a product of two-time factors:  
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*

1 1
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N k
k k k k

i i i i i i i i i i i
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k k k kF F F               
       
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 

   

 

  

 
     

 
 .                    (2.11)    

 

While the continuous-time influence functional expression, Eq. (2.7), is translationally invariant, the 

coefficients in the discretized form, Eq. (2.11), have been labeled with two indices, to indicate their different 

values near path endpoints.  In particular, 1,1 ,0k k k k k k            if 1 ,k k N   , and , ,0N k N k   . 

 The time nonlocality encoded in the double sum in Eq. (2.9) entangles the path integral variables, 

and Eq. (2.5) requires the full evaluation of a sum with 2Nn  terms.  However, the strength of these nonlocal 

interactions (i.e. the magnitude of the k k    coefficients) decays with increasing time separation k k k     

and becomes negligible beyond some maxk .  Taking advantage of the finite length of these correlations, 
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the path sum may be evaluated iteratively18 using a rank- maxk  propagator tensor to connect the path 

segment 
max 1, ,k k ks s 

   to 
max 1, ,k k ks s 

  .  Thus, the iterative (i-QuAPI) decomposition reduces the 

exponential scaling with propagation length N  to linear scaling.  In its simplest form, the algorithm 

requires the storage of max2 k
n

  path amplitudes at each step, and each iteration involves max2 2k
n

   operations, 

thus (in the absence of path elimination) the cost scales exponentially with the memory parameter maxk .  

The algorithm has been extended to multiple coupled baths,44 non-diagonal system-bath couplings,31 

Hamiltonians containing time-dependent fields45 and equilibrium correlation functions.46, 47 

 The path integral time step t  is to be made as large as allowed by the Trotter-type error in the 

factorization of the propagator.  This error is sufficiently small if the discretized influence functional 

coefficients k k    are small, i.e. 1k k   .  This restriction causes the influence functional factors ( )k kF
 

 to 

be of order 1.  The most important dissipative interactions are given by the diagonal factors ( )kkF , and 
( )k kF
 

 approach unity as k k   increases.  

 

 

III.  Recursive removal of path integral entanglement 

 The RP at the first time point is given by the matrix 
(10)

U  with elements 

 

1 0 1 0 1 1 0 0 1 0 1 0

(10) (10) (11) (10) (00) (10)

i i i i i i i i i i i i
U A F F F G M              .                                             (3.1) 

 

Memory and temporal entanglement effects appear at later times.  These effects are examined below.  

 

(a)  Single-step memory   

 If the bath-induced memory does not exceed a single path integral time step, i.e. max 1k  , then 

2 3

( 2, ) ( 3, ) 0
k k k k

k k k k

i i i i
F F   

 

    .  The RP at 2 t  is thus given by   

 

2 0 2 2 1 1 1 0 0 2 1 1 0 2 1 1 0

1 1

(20) (22) (21) (11) (10) (00) (21) (10)

1 1

n n

i i i i i i i i i i i i i i i i i
i i

U F F F F F G G M U                

  

   ,                              (3.2) 

 

where  

 

  
1 1 1 1

( 1, ) ( 1, ) ( 1, ) ( ) , 1,...
k k k k k k k k k

k k k k k k kk

i i i i i i i i i
M A F F G k        

   

                                           (3.3) 

 

Similarly, the RP at the next time point is given by 

 

3 0 3 3 2 3 2 2 2 1 2 1 1 0 3 2 2 0

2 1 2

(30) (33) (32) (22) (21) (10) (32) (20)

1 1 1

n n n

i i i i i i i i i i i i i i i i i i
i i i

U F F G F F G U M U                 

    

   .                             (3.4) 

 

The factorization of the double sum in Eq. (3.4) stems from the absence of influence functional couplings 

beyond adjacent time points.  This factorization can be performed at later time points as well, thus the 

dynamics is Markovian in this case and the RP can be propagated by sequential multiplication of 2 2n n

matrices, 
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( 1,0) ( 1, ) ( 0) , 1,k k k k k   U M U                                                       (3.5) 

 

However, even within the Markovian treatment, the propagator matrix ( 1, )k k
M  contains dissipative factors, 

and the corresponding RP eventually reaches its equilibrium value.   

 

(b)  Two-step memory 

 Next, consider the case of two-step memory, i.e. 
max 2k  .  The RP dynamics is no longer 

Markovian in this case, although its structure is still sufficiently simple.  Thus the case 
max 2k   illustrates 

the entanglement and decomposition idea very clearly and is described in detail.  The RP is given by  

 

2 0 2 0 2 2 1 1 1 0 0 2 1 1 0 2 0 2 1 1 0

1 1

(20) (20) (22) (21) (11) (10) (00) (20) (21) (10)

1 1

n n

i i i i i i i i i i i i i i i i i i i i i
i i

U F F F F F F G G F M U                    

  

   .                        (3.6) 

 

Eq. (3.6) involves a matrix product, as in the previous case, followed by multiplication of each element by 

the two-step influence functional factor.  While this expression is in the desired form in terms of 

computational cost, it is useful to examine whether the RP can be brought in the form of a simple matrix 

product.  Writing  

 

 
2 0 2 0

(20) (20)1 1
i i i i

F F      ,                                                            (3.7) 

 

Eq. (3.6) becomes  

 

2 0 2 1 1 0 2 0

1

(20) (21) (10) (20)

1

n

i i i i i i i i
i

U M U M       

 

  ,                                                     (3.8) 

 

where 

 
2 0 2 0 2 1 1 0

1

(20) (20) (21) (10)

1

1
n

i i i i i i i i
i

M F A A       

 

   .                                                   (3.9) 

 

Eq. (3.9) suggests that the RP at 2 t  differs from the matrix product (21) (10)M U  by the “remainder” matrix 
(20)

M .  The elements of this matrix are small, because the influence functional factors 
(20)F  do not differ 

significantly from unity.   

 A graphical illustration of the RP matrix decomposition is shown in Figure 1.  Each shaded shape 

corresponds to the two-time integrated region of the bath correlation function that gives rise to a particular 

influence functional factor.  The three regions shaded in blue correspond to the influence functional factors 

included in (10)
M , while the two regions shaded in yellow correspond to (21)

M .  The regions next to an 

endpoint have smaller areas because of the symmetric factorization of the short-time propagator. 

 The top panel illustrates the decomposition at 2 t .  The matrix product (21) (10)M U  is obtained by 

linking the blue and orange regions.  Subtraction of this product from (20)
U  produces the remainder term 

where the reduced factor (20) 1F   is indicated as a patterned yellow region.   
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Fig. 1.   Schematic illustration of the influence functional factors and matrix decomposition for the case 

of two-step memory.  The path integral time step is equal to the length of a square.  Each 

shaded region corresponds to the area included in an influence functional factor.  Triangles 

correspond to 
( )kk

F  and solid-shaded squares correspond to 
( )kk

F


.  The blue group 

corresponds to the factors included in 
(10)

M , the orange regions corresponds to those included 

in 
( 21)

M , the yellow rectangle corresponds to 
(20)

M , the saturated green regions correspond 

to 
(32)

M , and the pale green square shows 
(31)

M .  Hatched squares and rectangles correspond 

to 
( 2, ) 1k k

F
   factors.  Top: decomposition of 

( 20)
U  according to Eq. (3.8).  Bottom: 

decomposition of 
(30)

U  according to Eq. (3.14). 
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 At the next time step 3 t , the RP with 
max 2k   is given by the expression 

 

3 0 3 1 2 0 3 2 2 1 1 0

2 1

(30) (31) (20) (32) (21) (10)

1 1

n n

i i i i i i i i i i i i
i i

U F F A A A           

  

 .                                             (3.10) 

 

Eq. (3.10) contains a double sum that cannot be factored into single sums, which is a manifestation of the 

two-step influence functional entanglement.   

 Motivated by the matrix product decomposition in the case of 
max 1k   and the typically smaller 

magnitude of two-step influence functional memory, one realizes that the product form of Eq. (3.4) must 

constitute the dominant contribution to Eq. (3.10).  Following the previous procedure, this matrix product 

appears by decomposing the two-step influence functional factor as 
3 1

(31)1 ( 1)
i i

F    .  This procedure brings 

the RP to the form 

 

 
3 0 3 2 2 0 3 1 2 0 3 2 2 1 1 0

2 2 1

(30) (32) (20) (31) (20) (32) (21) (10)

1 1 1

1
n n n

i i i i i i i i i i i i i i i i
i i i

U M U F F A A A               

    

    .                              (3.11) 

 

 Next, the factor 
2 0

(20)

i i
F    in the second term of Eq. (3.11) prevents its factorization.  In the absence of 

this factor, this term would become a matrix product,  

 

 
3 1 3 2 2 1 1 0 3 1 1 0

2 1 1

(31) (32) (21) (10) (31) (10)

1 1 1

1
n n n

i i i i i i i i i i i i
i i i

F A A A M U           

    

   ,                                        (3.12) 

 

where (31)
M  is an 2 2n n  two-step propagator matrix analogous to (20)

M .  The elements of this matrix are 

given by 

 

 
3 1 3 1 3 2 2 1

2

(31) (31) (32) (21)

1

1
n

i i i i i i i i
i

M F A A       

 

   .                                                   (3.13) 

 

To achieve the factorization of Eq. (3.12), the other two-step influence functional factor is written as 

2 0

(20)1 ( 1)
i i

F    .  This leads to the decomposition 

 

3 0 3 2 2 0 3 1 1 0 3 0

2 1

(30) (32) (20) (31) (10) (30)

1 1

n n

i i i i i i i i i i i i
i i

U M U M U M           

  

    ,                                        (3.14) 

 

where 

 

  
3 0 3 1 2 0 3 2 2 1 1 0

2 1

(30) (31) (20) (32) (21) (10)

1 1

1 1
n n

i i i i i i i i i i i i
i i

M F F A A A           

  

   .                                    (3.15) 

 

The matrix decomposition at 3 t  for the case max 2k   is illustrated in the bottom panel of Fig. 1. 
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 The matrix (30)
M  is the remainder of the RP factorization at 3 t .  Its structure is similar to that of 

the full path sum for the RP, Eq. (3.10), and evaluation of this term requires a double sum.  However, the 

magnitude of (30)
M  is significantly diminished, since 

 

   
* *

3 0

3 1 2

1 31 2 203 1 2 03 1 2 0

0

(31) (2

1 1

0)1 1 1 1
i i i i i i i i

i i i i
F F e e

               

 











      
         

     



  
      
  
  

                 (3.16) 

 

and the two-step influence functional coefficients have small values. 

 Continuing to the fourth time step, the full path sum with 
max 2k   influence functional terms has 

the form 

 

4 0 4 2 3 1 2 0 3 2 3 2 2 1 1 0

3 2 1

(40) (42) (31) (20) (43) (32) (21) (10)

1 1 1

n n n

i i i i i i i i i i i i i i i i
i i i

U F F F A A A A               

    

                                       (3.17) 

 

Proceeding as before, it is straightforward to show that Eq. (3.17) can be factored in the form 

 

4 0 4 3 3 0 4 2 2 0 4 1 1 0 4 0

3 2 1

(40) (43) (30) (42) (20) (41) (10) (40)

1 1 1

n n n

i i i i i i i i i i i i i i i i
i i i

U M U M U M U M               

    

                                     (3.18) 

 

where (42) (31)M M ,  

 

  
4 1 4 2 3 1 4 3 3 2 2 1

3 2

(41) (42) (31) (43) (32) (21)

1 1

1 1
n n

i i i i i i i i i i i i
i i

M F F A A A           

  

                                           (3.19) 

 

and the remainder matrix has elements  

 

   
4 0 4 2 3 1 2 0 4 3 3 2 2 1 1 0

3 2 1

(40) (42) (31) (20) (43) (32) (21) (10)

1 1 1

1 1 1
n n n

i i i i i i i i i i i i i i i i
i i i

M F F F A A A A               

    

    .                         (3.20) 

 

 Eq. (3.18) is an exact decomposition of the RP at 4 t .  It is written in terms of single- and multi-

step propagator matrices, as well as the RP at the earlier time points.  The single-step propagators are given 

by Eq. (3.3).  The two-step propagator matrices (42) (31)M M  have the same form as the 2 t  remainder 

matrix (20)
M , but the values of their elements differ, because (21) (10)A A .  Similarly, the three-step 

propagator matrix (41)
M  has a form that is similar to the 3 t  remainder matrix (30)

M .  The entanglement 

of the original path integral expression is buried in these matrices.   Because of the exact nature of Eq. 

(3.20), the path integral variable at the time point 4 t  is (indirectly) coupled to (i.e. entangled with) the 

variable at 0t   in the remainder matrix (40)
M , and one needs to evaluate the full triple sum in order to 

compute its elements, even though the memory length has been assumed equal to two time steps.    

 One can proceed along the same lines to obtain an exact decomposition of the RP at subsequent 

time points.  In each case, an exact evaluation of the remainder term would require the same number of 

operations as the original path integral expression.  However, the decreasing magnitude of the remainder 
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terms, Equations (3.9), (3.15) and (3.20) suggests that these terms will quickly become negligible, allowing 

truncation of the hierarchy.  This behavior is discussed extensively in the next section. 

 

(c)  Three-step memory 

 Next, consider the inclusion of 
max 3k   terms in the path integral, which enter at 3 t  and beyond.  

The RP at 3 t  is now given by  

 

3 0 3 0 3 1 2 0 3 2 2 1 1 0

2 1

(30) (30) (31) (20) (32) (21) (10)

1 1

n n

i i i i i i i i i i i i i i
i i

U F F F A A A             

  

  .                                         (3.21) 

 

Its decomposition is again given by Eq. (3.14).   Since the three-step influence functional factor cannot 

enter in the one- and two-step propagators, it should only affect the remainder term.  Adding and subtracting 

unity as done earlier, one finds 

 

    
3 0 3 1 2 0 3 0 3 1 2 0 3 2 2 1 1 0

2 1

(30) (31) (20) (30) (31) (20) (32) (21) (10)

1 1

1 1 1
n n

i i i i i i i i i i i i i i i i i i
i i

M F F F F F A A A                 

  

     
   .                   (3.22) 

 

One now observes two contributions to the remainder matrix (30)
M : the contribution from the entangled 

two-step influence functional factors, Eq. (3.15), and a new term that includes the three-step memory factor 
(30)F .  Since this second term contains a single factor where unity is subtracted, while the first term contains 

two such factors, it is evident that the three-step memory term is the dominant contribution to the remainder 

matrix (30)
M . 

 The decomposition of (40)
U  has the form of Eq. (3.18), with the three-step propagator given by an 

expression analogous to Eq. (3.22), i.e.,  

 

    
4 1 4 2 3 1 4 1 4 2 3 1 4 3 3 2 2 1

3 2

(41) (42) (31) (41) (42) (31) (43) (32) (21)

1 1

1 1 1
n n

i i i i i i i i i i i i i i i i i i
i i

M F F F F F A A A                 

  

     
   .                  (3.23) 

 

Proceeding as at the previous time point, one can obtain the new remainder matrix (40)
M , modified through 

the inclusion of three-step influence functional factors: 

 

   

  

4 0 4 3 3 2 2 1 1 0 4 2 3 1 2 0

3 2 1

4 2 3 1 4 1 2 0 3 1 2 0 3 0

(40) (43) (32) (21) (10) (42) (31) (20)

1 1 1

(42) (31) (41) (20) (31) (20) (3

1 1 1

1 1

n n n

i i i i i i i i i i i i i i i i
i i i

i i i i i i i i i i i i i i

M A A A A F F F

F F F F F F F

               

  

             

  

   


   



  

  
4 2

4 2 3 1 2 0 4 1 3 0

0) (42)

(42) (31) (20) (41) (30)

1 1

1 1

i i

i i i i i i i i i i

F

F F F F F

 

         

 

  


                        (3.24) 

 

Again, the remainder (40)
M  is expected to be smaller than (30)

M , since each term in Eq. (3.24) contains two 

or more small ( )( 1)k kF
 

  factors.  Further, the only term in Eq. (3.24) that does not include three-step 

influence functional terms (i.e. the term given by Eq. (3.20)) contains three small factors, while the other 

terms contain only two such factors.   Thus the dominant contribution to (40)
M  arises from the three-step 

memory and not from the leftover two-step entanglement term.   
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 By proceeding along these lines, one can decompose the RP for any number of time steps and any 

memory length. 

 

IV.  Decay of entanglement and hierarchy truncation 

 The previous section showed that the RP at the time r t  can be decomposed in the following form, 

 
1

( 0) ( ) ( 0) ( 0)

1

, 1,
r

r rm m r

m

r




   U M U M                                          (4.1)                               

 

where ( )rm
M  are 2 2n n  matrices obtainable in terms of sums that involve the system propagator as well 

as influence functional factors.    

 Each term in Eq. (4.1) couples the two endpoints through a single path integral variable, i.e. the 

entanglement present in the original path integral expression is now buried in the ( )rm
M  matrices.  Since 

( )rm
M  involves an ( 1)r m  -dimensional sum, there is partial entanglement encoded in these matrices.  

The remainder matrix contains the full variable entanglement of the original RDM expression, and the effort 

required for its exact evaluation is identical to the effort required for computing the original discretized path 

integral. 

 However, for a fixed memory length, the magnitude of the remainder term decays rapidly with r.  

This trend is born out of the analytical forms obtained for small r values in the previous section, where it 

was seen that for fixed 
maxk  the elements of ( 0)r

M  are multiplied by more small factors as r increases. 

This decreasing nature of ( 0)r
M , which is further analyzed below and in subsequent sections, invites 

truncation of the hierarchy in Eq. (4.1).  One can define a temporal entanglement length 
maxr , such that the 

elements of the remainder matrix ( 0)r
M  are negligible for 

maxr r .  This value can be thought of as the 

length of entangled interactions that must be accounted for to recover (within the desired accuracy) the full 

path integral result.  In analogy to the memory parameter maxk , the entanglement length maxr  can be treated 

as a convergence parameter.  Nevertheless, it is of interest to obtain an estimate of the entanglement length 

that must be treated for accurate results.   

 A useful suggestion is given by the forms given and discussed in the previous section, where it was 

seen that the dominant contribution to ( 0)r
M  arises from maxk r   influence functional factors, and that 

the entangled contribution of maxk r   terms tends to be small and decreases rapidly with increasing r.  

Thus, one suspects that the choice max maxr k   may generally be sufficiently accurate.   

 Additional useful insights can be obtained analytically using the spin-boson ( 2n  ) model.6  At 

zero temperature the bath autocorrelation function is given by  

 

  1

0
( ) i tt J e d   


                                                             (4.2) 

 

and for an Ohmic spectral density,5 

 

  c

2

/2

2
J e

 
 



 
  

 
                                                      (4.3) 
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(where 
1 2n      ), the influence functional coefficients can be evaluated analytically.  Using the 

expressions for the influence functional coefficients in terms of double time integrals of the bath 

autocorrelation function,41 one finds 

 

 
  

 

222
c c

2

c

1 2 11 2
ln

2 1
k k

i k t k t

i k t

 
 

 
 

       
  

    
                                    (4.4) 

 

where 1k k k     , as long as ,k k  are not path endpoints.   

 If the time step is small compared to the bath relaxation time given by 1

c
 , one may expand the 

influence functional factors in the small parameter 
c t  .  Suppose the memory is truncated at 

max 2k  .  

For 1
2

   and 2k ks s   ,  the leading term (i.e. the real part of the exponent) in the two-step ( 2r  ) 

propagator matrix (31)M  that appears in Eq. (3.13) is 314 2

c1 ( )e t
 

   , while the corresponding term in 

the three-step ( 3r  ) propagator (41)M  is 3142 44 4

c( 1)( 1) ( )e e t
     .  Thus, the contribution of the 

3r   term is small for max 2k  .  Retaining the max 3k   factors adds to the (41)M  ( 3r  ) element a term  

of order 414 2

c1 ( )e t     , which is comparable to the max 2k  , 2r   matrix element.  However, the 

4r   terms contained in (51)M  are again reduced by a factors 314
1e


  or 414 2

c1 ( )e t     , so they are 

again of order 4

c( )t  .  One sees that with max 3k  , inclusion of the 4r   term makes a negligible 

contribution. 

 Further evidence is offered by numerical calculations on spin-boson models.  The SMatPI matrices 

for a symmetric TLS with ‘typical’ parameters (a moderate memory length) were presented in Ref. 39.  The 

present paper employs an asymmetric TLS described by the Hamiltonian  

 

   0 1 2 2 1 1 1 2 2Ĥ                                                 (4.5) 

 

with coordinates 1 21, 1     and asymmetry parameter    .  The TLS is coupled to a dissipative 

harmonic bath as in Eq. (2.8) with an Ohmic spectral density characterized by c 2    and 2   at a low 

temperature corresponding to 5  .  The peak of the bath spectral density is resonant with the left-right 

coupling matrix element and smaller than the TLS level splitting (which is equal to 2 2  ).  The strongly 

coupled sluggish bath gives rise to interesting modulations of the RDM elements, as well as interesting 

memory effects.  As shown in the results presented in the next section, converged results for the RDM are 

obtained with 0.125t   and max 15k  .  For a TLS, the SMatPI decomposition involves 4 4  matrices. 

 Figure 2 shows the magnitude of ( 1.1)

12,12

rM   for 
maxr k  ,  max 1r k    and max 2r k    for several 

values of the memory length parameter maxk .  It is seen that for each value of maxk , the element of this 

matrix drops rapidly when r is increased from maxk  to max 1k  , and is further decreased when 

max 2r k   .  It is also seen that the value of ( 0)

12,12

rM  jumps to a larger value upon increasing maxk  from 

1r   to r, confirming again the dominant nature of influence functional memory compared to the smaller 

memory entangled remainder contribution.  (A small irregularity is observed at max 4r k   , where the 

matrix element is unexpectedly small; this arises because the bath correlation function and the influence 

functional coefficient change from positive to negative values around that time, causing the false impression 

of almost vanishing memory contribution.)   
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Fig. 2.   Absolute value of 
( 1,1)

12,12

rM 
 for 

max max, 1r k k     and
max 2k   as a function of r for the 

asymmetric TLS described in section IV.  The lines connect values corresponding to the same 

maxk .  From left to right, the curves correspond to 
max 2,3, ,8k  . 

 

 

 

 The properties of a matrix are best understood by examining its eigenvalues.  The properties of the 

SMatPI matrices are discussed in the next section, where it is shown that for a TLS, the 4 4  propagator 

matrices ( 0)r
M  with 2r   have two nonzero eigenvalues which are either real or complex conjugates of 

each other.  Figure 3 shows the largest (in absolute value) eigenvalue of max( 1,1)k 
M  (

maxr k  ) and of 
max( 2,1)k 

M  ( max 1r k   ).  One observes again that the matrix with 
maxr k   has considerably larger 

eigenvalues compared to that with max 1r k   .  The non-monotonic behavior observed at max 4r k    

and 10 is again a consequence of the oscillatory nature of the bath correlation function, which causes the 

influence functional coefficients to change sign around these values of memory length.  Thus, truncating 

the SMatPI hierarchy at max maxr k   should generally lead to error that is smaller than the error due to 

memory truncation.  (One could, of course, use a somewhat larger value of maxr  in order to verify 

convergence.)  Eventually, as the necessary memory length is reached, both contributions from 

entanglement and memory truncation become negligible, and the remainder term can be omitted. 

 Dropping the negligible multistep propagator matrices beyond the entanglement length maxr  allows 

truncation of Eq. (4.1),  

 
max

( 0) ( , ) ( ,0)

max

1

, 1,
r

N N N r N r

r

N r 



   U M U                                       (4.6) 

 

The SMatPI matrices are evaluated recursively from Eq. (4.1), noting that ( , ) ( 1,1)N N r r M M  would be 

obtained from the expression for ( 0)r
M  if the influence functional coefficients 0k  are replaced by 1,1k  .  

Adopting this substitution and starting with (21)
M and the RP values (10)

U  and (20)
U , one obtains (20)

M  by 

subtraction according to Eq. (3.8), which is equal to the required propagation matrix (31)
M .  Next, using 
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this matrix and (32) (21)M M , along with the RP matrix (30)
U , one obtains from Eq. (3.14) the remainder 

matrix (30)
M , which (again by virtue of the proper influence functional coefficients) is the SMatPI matrix 

(41)
M .  This procedure is extremely straightforward and may be performed numerically to generate all 

SMatPI matrices required for propagation beyond the entanglement length according to Eq. (4.6).  The most 

time consuming part in this process is the calculation of max max( , ) ( 1,1)N N r r 
M M , which is obtained by 

evaluating max( ,0)r
M  with midpoint influence functional coefficients, and thus involves a single  max 1r  -

dimensional sum for each of the 4n  elements.  Once these matrices have been computed, propagation 

according to Eq. (4.6) scales linearly with time and is extremely fast, as it involves just ordinary 

multiplications and additions of 2 2n n  matrices.   

 

 

 
 

Fig. 3.   Absolute value of the largest eigenvalue of ( 0)r
M  for 

max maxr k   and 
max max 1r k    as 

a function of 
maxk  for the asymmetric TLS described in the section IV. 

 

  

V.  Structure and properties of SMatPI matrices 

 Each column of Eq. (4.6) gives the RDM for a particular initial condition, thus the ( )Nm
M  matrices 

couple the RDM at the time N t  to the RDM at the earlier times.  This structure is reminiscent of the 

Nakajima-Zwanzig generalized master equation48 (GQME), where the time derivative of the RDM depends 

on the RDM history through a simple time integral.  In fact, Eq. (4.6) bears a close resemblance to the 

transfer tensor scheme49 (TTM), which in the 0t   limit is equivalent to the GQME.   

 However, the hierarchy obtained through the SMatPI decomposition differs in important ways from 

the TTM/GQME hierarchy.  The latter employs translationally invariant matrices ( , ) ( 0)N N r r T T .  Such a 

form appears compatible with the path integral only through a crude, unsymmetrized Trotter splitting of the 

propagators, which is accurate in the limit 0t  .  The influence functional structure shown in Fig. 1 and 

the SMatPI derivation given in section III show clearly that the small matrix decomposition of the RP must 

employ different matrices at endpoints, i.e. ( 1,1) ( 0)r r M M .  The TTM/GQME matrices, which lack this 
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flexibility, have a different structure and larger elements than the SMatPI matrices, i.e. they include a 

spurious memory and decay slower.   

 The eigenvalue analysis of the propagator matrices can offer useful insights.  The information 

contained in the set of 
maxr k  SMatPI matrices is equivalent to that contained in the i-QuAPI propagator 

tensor.17, 18  The latter has max2( 1)k
n

   eigenvectors and eigenvalues, although the majority of i-QuAPI tensor 

eigenvalues are zero.  The eigenvalue analysis is much more conveniently and economically performed 

through the small SMatPI matrices. 

 The single step SMatPI matrices (10)
M  and ( 1, )k k

M  have only nonzero eigenvalues, of which one 

equals unity.  From Eq. (2.11), one sees that  ( ) 1
k k

k k

i i
F  

 

 
  if k ki i 

  .  Because of the ( , )( 1)
N N r

N N r

i i
F  



   factors, the 

matrix elements of ( , )N N r
M  for 1r   have n rows equal to zero.  Thus the only direct contribution to ( 0)

,0N

N

i
U  

(i.e. to the diagonal elements of the RDM) comes from the single-step matrix ( , 1)N N
M .  The presence of n 

rows with vanishing elements in the SMatPI matrices ( , )N N r
M  for 1r   implies that these matrices have n 

zero eigenvalues.  The remaining 2n n  eigenvalues are either real-valued of form complex conjugate 

pairs.   

 

 

VI.  Representative applications  

 This section illustrates the SMatPI decomposition by simulating the dynamics of several model 

dissipative systems.   

 The first model system is given by the Hamiltonian of Eq. (4.5).  Figure 4 shows the time evolution 

of the diagonal and off-diagonal elements of the RDM with the initial condition initial condition 

1 1    (and the bath initially at thermal equilibrium).  Shown are converged full-memory results 

obtained with 
max 15k  , as well as results obtained with the Markovian-like, single-step memory 

treatment max 1k  .   

 

 

 
 

Fig. 4.  Reduced density matrix elements for the asymmetric TLS discussed in section VI (with 

parameters given in section IV).  The solid lines and filled markers show converged results 

obtained with 
max 15k  , while the dashed lines show results with 

max 1k  .  Black: 

diagonal RDM element corresponding to population of state 1.  Red and blue: real and 

imaginary parts of off-diagonal element 
21 .   
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 As seen in the figure, the Markovian results are very poor.  The population exhibits quenched 

oscillations and reaches and incorrect long-time value.   Strong oscillatory patterns are observed in the off-

diagonal element as well, whose real part also reaches an incorrect long-time value.  This behavior can be 

traced to the propagator matrix (21)
M , which is responsible for the time evolution after the first time step.  

This matrix has a unit eigenvalue, a pair of complex conjugate eigenvalues and a single real eigenvalue 

smaller than unity.  The complex eigenvalues are responsible for the oscillatory pattern, while the real 

eigenvalue is associated with the observed decay.   

 Upon including more memory through ( , )N N k
M  matrices with 2k  , the RDM elements become 

less oscillatory.  The shoulder regions observed in the converged results are remnants of the 
max 1k   

oscillatory behavior.  The multi-step propagator matrices modify the dynamics in two ways, by modulating 

the frequency components of the 
max 1k   result and through gradual damping.  These effects are encoded 

in the eigenvalues and eigenvectors of these matrices.  With the given parameters, approximately the first 

half of these matrices has two small complex eigenvalues, which alter slightly the oscillatory pattern, while 

the rest have small real eigenvalues, which modify the decay characteristics.   

 Figure 5 investigates the effect of the entanglement length on the RDM dynamics.  Shown are the 

values of the diagonal and off-diagonal RDM elements obtained with 
max 5k   and 10, with entanglement 

lengths given by 
max maxr k   and 

max max 1r k   .  In the case of 
max 5k  , for which the memory is 

truncated very early, the 
max maxr k   results exhibit a small error at long times which is about 0.006.  The 

max 10k  , which include most of the memory, are very well converged with 
max maxr k  , with the error 

in the fourth decimal place in this case.  The SMatPI results with up to 
max 10k   are indistinguishable 

from those obtained through i-QuAPI calculations. 

 

 

 

Fig. 5.  SMatPI results showing the RDM elements for the asymmetric TLS with parameters 

described in the section IV.  Dashed lines: 
max max 5r k   .  Hollow circles: 

max max5, 6k r   .  Solid lines: 
max max 10r k   .  Solid markers: 

max max10, 11k r   .  

Black: diagonal element corresponding to initially populated state.  Red and blue: real and 

imaginary parts of off-diagonal element 
21 .   
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 The last calculation examines the consequences of non-nearest neighbor coupling in a model 

system that involves 11n   sites with, whose Hamiltonian is given by  

 

   
1 2

0 1 1 2 2

1 1

ˆ
n n

i i i i i i i i

i i

H V       
 

   

 

       ,                         (6.1) 

 

where again 2   is the outermost site distance, and 

 

1 1   , 1

1

1
i

i

n
  


  


.                                                      (6.2) 

 

In addition to nearest neighbor coupling, Eq. (6.1) contains next-nearest neighbor interactions.  The 11-site 

system is coupled to a harmonic bath described by the spectral density given in Eq. (4.3) with parameters 

2  , and c 4   .  The bath is initially at a temperature 0.2  .  The SMatPI calculations converged 

to 0.01 with 0.1t   and max max 5r k   , and the convergence was verified by increasing maxr  and maxk  

to 6.  The site populations reached their long-time equilibrium values around 12t  .  To test the stability 

of the SMatPI method, the site populations were followed for 400 iteration steps, up to 40t  .  The trace 

of the RDM remained equal to 1 within 8 decimal places over the entire propagation.   

 

 

 

       

 
Fig. 6.   Site populations for the 11-site Hamiltonian of Eq. (6.1) with parameters described in the 

text, computed via the SMatPI decomposition with 
max max 6r k   .  Initially only the first 

site is populated.  The curve that starts at 1 is the population of site 1, while curves rising 

from zero correspond (from left to right) to the populations of sites 2-11.  (a) Nearest 

neighbor interactions only.  (b) Nearest and next-nearest neighbor interactions. 
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 With these parameters, direct computation of the full forward-backward path sum for the same final 

time has 80211  terms.   The i-QuAPI algorithm would require the storage of a tensor with 10 1011 2.6 10  

complex-valued amplitudes, and 12400 11  operations, and is impractical.  By comparison, the SMatPI 

code involves storage of just ten 121 121  matrices (about 51.4 10  elements), reducing the required array 

storage by a factor of 52 10 .  The most demanding step of the SMatPI calculation required a single sum 

of 1211  terms, i.e. the required CPU time is reduced by a factor of 400.  These gains allow previously 

challenging calculations to be performed even on a laptop.   

 Figure 6a shows the results of SMatPI calculations with 0V  , for which the system contains only 

nearest neighbor couplings, while Figure 6b presents similar results for a Hamiltonian that includes next-

nearest neighbor terms obtained with 1
2

V    .  In both cases, the site populations exhibit at long times 

a small spread about the value 1 / n , which is a consequence of the non-uniform contribution of the site 

coefficients to the system eigenstates.  A comparison of the two figures reveals the role of next-nearest-

neighbor couplings in the population dynamics.  In the case of only nearest-neighbor terms, the populations 

approach their long time values with weak oscillatory components which are most clearly seen in sites near 

the edges.  When the Hamiltonian includes next-nearest neighbor couplings, the decay of the initially 

populated and neighboring sites is more oscillatory, and population transfer to distant sites occurs faster.    

 

VII.  Concluding remarks  

 Iterative real-time path integral methods for non-Markovian quantum dissipative systems take 

advantage of the decay of temporal correlations to explicitly treat path segments that span only the bath-

induced memory length of maxk  time steps, leading to linear scaling with the number N of propagation 

steps.  The resulting i-QuAPI algorithm17, 18 requires the storage of a path array of size max2 k
n

 , while 

propagation to the final time involves max 12( )
k

N n
 

 operations.  Even though various array compression 

techniques (such as path filtering,19-22 singular value tensor contraction32 or the blip decomposition28, 29) can 

dramatically reduce the required storage, the contracted path array still exceeds (typically by several orders 

of magnitude) the size of the bare system’s RDM, and often is prohibitively large.   

 The disentanglement of the path integral variables offers a powerful, numerically exact alternative 

to system-bath dynamics.  Construction of the SMatPI matrices requires evaluation of a path sum that spans 

the entanglement length, which is practically equal to the bath-induced memory and thus involves (in the 

absence of filtering) max 12( )
k

n
 

 operations.  The SMatPI decomposition eliminates the need for storing an 

array of max2 k
n


 system paths and the max 12( )

k
N n

 
 operations required for propagation to N time steps.  The 

code required to evaluate the path sum is simple and straightforwardly parallelizable.  Further, the 

disentanglement of the path integral variables – even within the memory length - offers new, valuable 

conceptual insights into the dynamics of quantum dissipative systems.  The diagrammatic approach 

illustrated in Fig. 1 offers an intuitive justification of the SMatPI decomposition.   

 A number of techniques may be used to accelerate the calculation of the single max 12( )
k

n
 

-term sum 

required to obtain the SMatPI matrices.  For example, path filtering19-22 often leads to exponential reduction 

of the number of terms, and the blip decomposition24 may be employed to eliminate the vast majority of 

forward-backward path pairs in regimes of incoherent dynamics.  One could also resort to approximate 

procedures, such as the use of influence functional coarse graining techniques,27, 30 for calculating the 

SMatPI matrices for the largest r values, which are the most costly but make small contribution.   
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 By eliminating the need for storing and manipulating large arrays makes the SMatPI algorithm 

ideal for use with multistate systems, while retaining the rigorous, fully quantum mechanical real-time path 

integral approach.  Because of their computational difficulty, numerically exact calculations on discrete 

systems have been limited to short-time dynamics or simplified system-bath models.  The preliminary 

exploration of an 11-state model presented in section VI revealed interesting effects that warrant additional 

investigation.  The SMatPI methodology can be used to provide definitive answers to questions related to 

the interplay between tunneling and thermal fluctuations in Caldeira-Leggett models,5 to investigate 

quantum coherence in energy transfer through extended systems,50, 51 and to quantify the role of competing 

pathways in bridge-mediated electron transfer.52, 53  Further, by using traditional Cartesian reaction path54 

expansions of polyatomic potential surfaces and discretizing the system coordinate, one should be able to 

apply the SMatPI algorithm to the treatment of chemical reaction dynamics in polyatomic molecular 

systems.  Some of these explorations are in progress in our group. 
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