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Abstract

A small matrix decomposition of the path integral expression (SMatPI) that yields
the reduced density matrix of a system interacting with a dissipative harmonic bath
is obtained by recursively spreading the entangled influence functional terms over
longer time intervals, while simultaneously decreasing their magnitude, until these
terms become negligible. This allows summing over the path integral variables one
by one through multiplication of small matrices with dimension equal to that of the
bare system. The theoretical framework of the decomposition is described using a
diagrammatic approach. Analytical and numerical calculations show that the
necessary time length for the temporal entanglement to become negligible is
practically the same as the bath-induced memory. The properties and structure of
the propagator matrices are discussed, and applications to multistate systems are
presented.
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I. Introduction

In spite of persistent efforts, solving without assumptions the quantum mechanical equations that
govern the time evolution of physical observables in systems of many degrees of freedom remains a
formidable task. Among wavefunction-based approaches, the multiconfiguration time-dependent Hartree
(MCTDH) method' has shown impressive capabilities for molecular systems, and the density matrix
renormalization group (DMRG) approach? can successfully treat extended systems of a one-dimensional
topology. Nevertheless, methods based on wavefunctions are not naturally suited to condensed phase
processes, where hundreds or thousands of molecular vibrations and/or phonons need to be treated at finite
temperature, as the relevant Hilbert space is far too large. Further, combining wavefunction-based methods
with classical trajectories involves uncontrolled approximations. A number of density matrix approaches
have been investigated, which involve master equations (with or without perturbative or Markovian
assumptions) and stochastic Schrodinger equation treatments.

Feynman’s path integral formulation,** which does not require wavefunction storage, offers a very
attractive starting point which is ideally suited to the calculation of a system’s reduced density matrix
(RDM). Harmonic bath degrees of freedom (e.g. any number of phonons or normal mode vibrations),
which are responsible for dissipative dynamics,>”
temperature, giving rise to the well-known Feynman-Vernon influence functional.® Many complex systems
can be realistically treated only in combination with classical trajectory treatments, but the incompatibility

can be integrated out analytically, at zero or finite

of Schrédinger’s and Newton’s formulations necessitates major assumptions.” However, because quantum
paths are spatially local, their interaction with classical trajectories is straightforward and unambiguous
within Feynman’s framework. The quantum-classical path integral'®!? (QCPI) offers a rigorous approach
that treats the interaction of a quantum system with its environment correctly and in full atomistic detail.'?

The main practical issue with path integral methods is the introduction of two auxiliary variables
per time step for each quantum degree of freedom, leading to exponential proliferation of the number of
terms with the propagation time. Monte Carlo methods'* generally fail to converge when applied to the
real-time path integral because of a sign problem associated with the quantum mechanical phase. Since the
early 1990s, a number of algorithms have emerged that enable numerically exact evaluation of the path
integral for systems coupled to harmonic environments.!>>? In particular, exploiting the finite length of
nonlocal ‘memory’ interactions in the influence functional allows iterative evaluation of the path integral,'”
18 which leads to linear scaling with the number of propagation steps.

Fully quantum mechanical real-time path integral methods are not necessarily restricted to
harmonic baths. Iterative decompositions (which allow linear scaling with propagation time) have been

extended to fermionic baths,?* 3

and have been shown to be generalizable to arbitrary environments,** as
long as the influence functional is available (analytically or numerically). Further, a modular
decomposition of the path integral*® *7 (MPI) allows treatment of the dynamics in extended systems with a
quasi-one-dimensional topology, where hundreds of vibrational coordinates that couple to the electronic
states of each unit can be treated without a significant increase in computational cost.

Nevertheless, the main limitation of iterative path integral algorithms (even in the ideal case of a
harmonic bath) continues to be their rather steep scaling with the number 7 of system states. In general,
one needs to construct and store an array which contains all relevant quantum mechanical paths that span
the memory length Ak Af, where the parameter Ak, ,

span the bath-induced memory. Since the paths have forward and backward components, they form an

is the number of path integral time steps A¢ that
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array of n*** elements, and propagation involves »’ operations per iteration step.’® Because the
influence functional fully couples the path variables at all time points within the memory length, the
resulting structure is fully entangled and thus cannot be factored any further. Fortunately, filtering
techniques!®?? and singular matrix contraction®? can dramatically reduce these numbers (and in many cases
significantly slow down the exponential scaling). In the incoherent (high temperature and strong coupling
to sluggish baths) regime, the blip decomposition?® 2 offers exponential acceleration of the path sum by
exploiting blip density as a powerful filtering criterion and (most importantly) by decreasing the number of
stored path configurations from n** to n*", where b is the number of blips (i.e. non-identical forward-
backward path regions) within the memory length. While these acceleration techniques can lead to very
substantial savings, it is clear that the availability of rigorous path integral methods which do not require
the storage of large path arrays would expand the applicability of real-time path integral methods to
multistate systems.

A recent Communication® showed that it is possible to disentangle the path integral even within
the memory length, by recursively shifting the entangled terms to longer time intervals while reducing their
magnitude, until these terms become negligible. This variable decoupling leads to a small matrix
decomposition of the path integral (SMatPI), where the relevant propagator matrices have dimensions equal
to that of the system’s RDM. Each of these matrices contains all the entangled influence functional
interactions up to a particular time length that in practice does not exceed the bath-induced memory, and is
obtained through a non-iterative path integral calculation. Once the SMatPI matrices have been computed,
propagation to long times is extremely efficient. If full path sum calculations are employed, the SMatPI

‘s terms, but as explained earlier filtering techniques can

matrices require the evaluation of n**
dramatically decrease this effort. Because the SMatPI algorithm requires no array storage besides that of a
few small matrices, it is realistically applicable to multistate systems. Most importantly, the SMatPI
decomposition involves a systematic procedure similar to the iterative decomposition (which relies on
decreasing memory), which does not involve any approximations or assumptions, and which converges to
the full path integral result.

The present paper fully develops the SMatPI decomposition, using a diagrammatic approach to
illustrate the entanglement of the path integral variables and motivate its recursive removal, and discusses
the structure of the SMatPI matrices and the behavior of the entangled ‘remainder’ term. The description
begins in section II with the necessary background on the path integral expression and the composition of
the influence functional. Section III develops the decomposition, using the simplest case of two-step
memory to illustrate in detail the procedure algebraically, as well as in terms of a diagrammatic
representation of the discretized influence functional. Section IV discusses the entanglement length and its
relation to the memory length using the zero-temperature spin-boson model as an analytical example, and
also through numerical calculations. The properties and structure of the SMatPI matrices are discussed in
section V. Applications of the algorithm on a dissipative two-level system in an interesting regime, as well
as on an 11-state Hiickel-type model (with and without next-nearest-neighbor couplings) are presented in
section VI, and some concluding remarks are given in section VIIL.

II. Path integral and influence functional

The Hamiltonian describing a system interacting with dissipative harmonic bath has the form
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Here the Hamiltonian H_ describes a discrete system of n states, or a continuous system which has been
discretized via a discrete variable representation (DVR) of the path integral.'® In either case, the system
Hamiltonian, and also the coordinate operator §, are given by nxn matrices,
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and {x,,p,} denote the coordinate and momentum variables of the bath degrees of freedom. The focus is
on observables pertaining to the system, which may be obtained from the RDM. It is commonly assumed
that the initial RDM is a product of system and bath components, p(0) = py(0)p,(0) .

Consider the reduced propagator (RP) of the system at the time NAf (where At is the path integral
time step), which is defined as the matrix UMY with elements
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The RDM for a general system initial condition A0 is easily obtained from Eq. (2.3),
o
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Thus, the RP is the matrix of RDMs obtained with all possible single-term initial conditions.

Eq. (2.3) may be computed from a discretized path integral expression. Using a Trotter-type*
factorization of the short-time propagator and evaluating the trace with respect to the bath degrees of
freedom expresses the discretized path integral in the form
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are forward-backward system propagators of the (bare or renormalized) system Hamiltonian and F is the
discretized Feynman-Vernon influence functional.® The influence functional is a complex exponential of
the action that results from the force on the bath exerted by the system along a particular forward-backward
path. If the bath is initially at a temperature 1/ k, /3 , the influence functional has the form®
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where 57,5~ are forward and backward paths of the system and «(¢) is the force autocorrelation function
of the bath. The discretized form of the influence functional depends on the factorization of the short-time
evolution operator. For example, a crude asymmetric factorization leads to a rectangle-rule discretization
of the two-dimensional integral, while a symmetric splitting produces a trapezoid rule discretization. The
quasi-adiabatic propagator path integral® (QuAPI) employs a factorization based on the shifted system
Hamiltonian along the adiabatic path, I:I0 = I—AlsyS - ch j2§2/2mja)]2‘ ,1.e.
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where the value of the system coordinate s; at the time kA on the forward path is o, ,etc,and 7, are
k
coefficients'” related to integrals of the spectral density function,’
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The influence functional coefficients may also be obtained directly from time correlation functions
computed either quantum mechanically or via molecular dynamics simulations.*! If the bath is initially in
equilibrium with a particular site of the system, as in charge transfer reactions where the solvent is in
equilibrium with the donor state, the influence functional contains additional terms,** but can be brought in
the form of Eq. (2.9) through a system coordinate shift.* Eq. (2.9) is a product of two-time factors:
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While the continuous-time influence functional expression, Eq. (2.7), is translationally invariant, the
coefficients in the discretized form, Eq. (2.11), have been labeled with two indices, to indicate their different
values near path endpoints. In particular, 77, =1, _o oo 1<K K"<N,and 17, o =17y 40 -

The time nonlocality encoded in the double sum in Eq. (2.9) entangles the path integral variables,
and Eq. (2.5) requires the full evaluation of a sum with #»*" terms. However, the strength of these nonlocal
interactions (i.e. the magnitude of the 7,,. coefficients) decays with increasing time separation Ak =" —k"
and becomes negligible beyond some Ak, . Taking advantage of the finite length of these correlations,



the path sum may be evaluated iteratively'® using a rank-Ak_, propagator tensor to connect the path
segment s, j,..,8, O Sy -8, . Thus, the iterative (i-QuAPI) decomposition reduces the
exponential scaling with propagation length N to linear scaling. In its simplest form, the algorithm
requires the storage of n** path amplitudes at each step, and each iteration involves n****> operations,
thus (in the absence of path elimination) the cost scales exponentially with the memory parameter Ak, .
The algorithm has been extended to multiple coupled baths,* non-diagonal system-bath couplings,’!
Hamiltonians containing time-dependent fields*® and equilibrium correlation functions.*® 4’

The path integral time step A¢ is to be made as large as allowed by the Trotter-type error in the
factorization of the propagator. This error is sufficiently small if the discretized influence functional
coefficients 7,,. are small, i.e. |77,,k~| < 1. This restriction causes the influence functional factors F**” to
be of order 1. The most important dissipative interactions are given by the diagonal factors F** and

F* approach unity as k' —k" increases.

III. Recursive removal of path integral entanglement
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The RP at the first time point is given by the matrix U"" with elements
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Memory and temporal entanglement effects appear at later times. These effects are examined below.

(a) Single-step memory

If the bath-induced memory does not exceed a single path integral time step, i.e. Ak, =1, then

Fl_i"f’“ = Fii"lf"" =..-=0. The RP at 2A¢ is thus given by
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Similarly, the RP at the next time point is given by
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The factorization of the double sum in Eq. (3.4) stems from the absence of influence functional couplings
beyond adjacent time points. This factorization can be performed at later time points as well, thus the
dynamics is Markovian in this case and the RP can be propagated by sequential multiplication of »n* x n*
matrices,
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However, even within the Markovian treatment, the propagator matrix M“™* contains dissipative factors,
and the corresponding RP eventually reaches its equilibrium value.

(b) Two-step memory

Next, consider the case of two-step memory, i.e. Ak, =2. The RP dynamics is no longer
Markovian in this case, although its structure is still sufficiently simple. Thus the case Ak, =2 illustrates
the entanglement and decomposition idea very clearly and is described in detail. The RP is given by
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Eq. (3.6) involves a matrix product, as in the previous case, followed by multiplication of each element by
the two-step influence functional factor. While this expression is in the desired form in terms of
computational cost, it is useful to examine whether the RP can be brought in the form of a simple matrix
product. Writing
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Eq. (3.9) suggests that the RP at 2A¢ differs from the matrix product M?" - U"? by the “remainder” matrix
M® . The elements of this matrix are small, because the influence functional factors F*” do not differ
significantly from unity.

A graphical illustration of the RP matrix decomposition is shown in Figure 1. Each shaded shape
corresponds to the two-time integrated region of the bath correlation function that gives rise to a particular
influence functional factor. The three regions shaded in blue correspond to the influence functional factors
included in M"” | while the two regions shaded in yellow correspond to M" . The regions next to an
endpoint have smaller areas because of the symmetric factorization of the short-time propagator.

The top panel illustrates the decomposition at 2A¢ . The matrix product M@ - U"? is obtained by

(20)

linking the blue and orange regions. Subtraction of this product from U™ produces the remainder term

where the reduced factor F*” —1 is indicated as a patterned yellow region.



Fig. 1.
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Schematic illustration of the influence functional factors and matrix decomposition for the case
of two-step memory. The path integral time step is equal to the length of a square. Each
shaded region corresponds to the area included in an influence functional factor. Triangles
correspond to F"™ and solid-shaded squares correspond to F“’. The blue group
corresponds to the factors included in M"” | the orange regions corresponds to those included
in M®, the yellow rectangle corresponds to M | the saturated green regions correspond
to M“ , and the pale green square shows M"" . Hatched squares and rectangles correspond
to F“*" —1 factors. Top: decomposition of U™ according to Eq. (3.8). Bottom:
decomposition of U™ according to Eq. (3.14).



At the next time step 3Az, the RP with Ak__ =2 is given by the expression

max
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Eq. (3.10) contains a double sum that cannot be factored into single sums, which is a manifestation of the
two-step influence functional entanglement.
Motivated by the matrix product decomposition in the case of Ak, =1 and the typically smaller

magnitude of two-step influence functional memory, one realizes that the product form of Eq. (3.4) must
constitute the dominant contribution to Eq. (3.10). Following the previous procedure, this matrix product

appears by decomposing the two-step influence functional factor as 1+ (F ©D _1). This procedure brings
the RP to the form
ZM“”U?‘P + ZZ(FE%‘ —1FCDACD 420 400 (3.11)
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Next, the factor F, fzf’ ) in the second term of Eq. (3.11) prevents its factorization. In the absence of
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this factor, this term would become a matrix product,
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where M©" is an n* xn? two-step propagator matrix analogous to M*” . The elements of this matrix are
given by

n
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To achieve the factorization of Eq. (3.12), the other two-step influence functional factor is written as
1+ (F” —1). This leads to the decomposition

(30) _ (32)r 7(20) By Q0) (30)
Uy = ZM% U +ZM JUSY A MED (3.14)
iy =1 i =1
where
(30) _ 3D (20) _ (32) 4(21) 4(10)
Miziig ZZ(F;T )(F;§i§ I)Aifizi Al';if Aiﬁig : (3.15)

iy =1i =1

The matrix decomposition at 3A¢ for the case Ak, =2 is illustrated in the bottom panel of Fig. 1.



The matrix M“” is the remainder of the RP factorization at 3Az. Its structure is similar to that of
the full path sum for the RP, Eq. (3.10), and evaluation of this term requires a double sum. However, the
magnitude of M®” is significantly diminished, since
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and the two-step influence functional coefficients have small values.
Continuing to the fourth time step, the full path sum with Ak, =2 influence functional terms has
the form

n n
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Proceeding as before, it is straightforward to show that Eq. (3.17) can be factored in the form
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and the remainder matrix has elements
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Eq. (3.18) is an exact decomposition of the RP at 4Ar. It is written in terms of single- and multi-
step propagator matrices, as well as the RP at the earlier time points. The single-step propagators are given
by Eq. (3.3). The two-step propagator matrices M“*? = M®" have the same form as the 2A¢ remainder
matrix M®”, but the values of their elements differ, because A" = A"?. Similarly, the three-step
propagator matrix MY has a form that is similar to the 3A¢ remainder matrix M“®” . The entanglement
of the original path integral expression is buried in these matrices. Because of the exact nature of Eq.
(3.20), the path integral variable at the time point 4A¢ is (indirectly) coupled to (i.e. entangled with) the
variable at =0 in the remainder matrix M“” | and one needs to evaluate the full triple sum in order to
compute its elements, even though the memory length has been assumed equal to two time steps.

One can proceed along the same lines to obtain an exact decomposition of the RP at subsequent
time points. In each case, an exact evaluation of the remainder term would require the same number of
operations as the original path integral expression. However, the decreasing magnitude of the remainder
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terms, Equations (3.9), (3.15) and (3.20) suggests that these terms will quickly become negligible, allowing
truncation of the hierarchy. This behavior is discussed extensively in the next section.

(c) Three-step memory
Next, consider the inclusion of Ak, =3 terms in the path integral, which enter at 3A¢ and beyond.
The RP at 3A¢ is now given by

(30) _ =~ (30) (31) 17(20) 4(32) 4(21) 4(10)
Uifig F:;z;' Z Z F; 11 F;Z 10 A13 12 Alz 11 Alrlg : (3 2 1)
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Its decomposition is again given by Eq. (3.14). Since the three-step influence functional factor cannot
enter in the one- and two-step propagators, it should only affect the remainder term. Adding and subtracting
unity as done earlier, one finds
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One now observes two contributions to the remainder matrix M“”: the contribution from the entangled
two-step influence functional factors, Eq. (3.15), and a new term that includes the three-step memory factor
F®” _ Since this second term contains a single factor where unity is subtracted, while the first term contains
two such factors, it is evident that the three-step memory term is the dominant contribution to the remainder
matrix M®”

The decomposition of U*” has the form of Eq. (3.18), with the three-step propagator given by an

expression analogous to Eq. (3.22), i.e.,
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Proceeding as at the previous time point, one can obtain the new remainder matrix M*”, modified through
the inclusion of three-step influence functional factors:
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Again, the remainder M“” is expected to be smaller than M“” | since each term in Eq. (3.24) contains two
or more small (F**) —1) factors. Further, the only term in Eq. (3.24) that does not include three-step
influence functional terms (i.e. the term given by Eq. (3.20)) contains three small factors, while the other
terms contain only two such factors. Thus the dominant contribution to M“” arises from the three-step
memory and not from the leftover two-step entanglement term.
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By proceeding along these lines, one can decompose the RP for any number of time steps and any
memory length.

IV. Decay of entanglement and hierarchy truncation

The previous section showed that the RP at the time At can be decomposed in the following form,

r=1
U = ZM(rm) U MY, =1, 4.1)

m=1

where M are n* xn® matrices obtainable in terms of sums that involve the system propagator as well
as influence functional factors.

Each term in Eq. (4.1) couples the two endpoints through a single path integral variable, i.e. the
entanglement present in the original path integral expression is now buried in the M"" matrices. Since
M involves an (7 —m —1)-dimensional sum, there is partial entanglement encoded in these matrices.
The remainder matrix contains the full variable entanglement of the original RDM expression, and the effort
required for its exact evaluation is identical to the effort required for computing the original discretized path
integral.

However, for a fixed memory length, the magnitude of the remainder term decays rapidly with 7.
This trend is born out of the analytical forms obtained for small » values in the previous section, where it
was seen that for fixed Ak, the elements of M"” are multiplied by more small factors as 7 increases.
This decreasing nature of M"”, which is further analyzed below and in subsequent sections, invites
such that the
elements of the remainder matrix M"” are negligible for »>r_ . This value can be thought of as the

truncation of the hierarchy in Eq. (4.1). One can define a temporal entanglement length r,

ax o

length of entangled interactions that must be accounted for to recover (within the desired accuracy) the full

path integral result. In analogy to the memory parameter Ak can be treated

max ?

the entanglement length 7
as a convergence parameter. Nevertheless, it is of interest to obtain an estimate of the entanglement length
that must be treated for accurate results.

A useful suggestion is given by the forms given and discussed in the previous section, where it was

seen that the dominant contribution to M"”

arises from Ak, =r influence functional factors, and that
the entangled contribution of Ak, <7 terms tends to be small and decreases rapidly with increasing r.
Thus, one suspects that the choice 7, = Ak, may generally be sufficiently accurate.

Additional useful insights can be obtained analytically using the spin-boson (7 =2) model.® At

zero temperature the bath autocorrelation function is given by

a(t)= ﬂ’ljo J(w)e™dw (4.2)
and for an Ohmic spectral density,’
J(0)= f(ijz ho& e (4.3)
2\ Ao

12



(where Ao =0, —0, =2), the influence functional coefficients can be evaluated analytically. Using the
expressions for the influence functional coefficients in terms of double time integrals of the bath
autocorrelation function,*! one finds

2 14 2i Ak At — (AR —1)(w At)’
1(2jhfln i ( )(w“ ) (4.4)

T =5 Ao (1+iAkw,Ar)’

where Ak=k"—k" >1, as long as k', k" are not path endpoints.

If the time step is small compared to the bath relaxation time given by @,', one may expand the
influence functional factors in the small parameter w,A¢. Suppose the memory is truncated at Ak, =2.
For £=1 and s, —s,. =2, the leading term (i.e. the real part of the exponent) in the two-step (r=2)
propagator matrix M “" that appears in Eq. (3.13) is e ¥ —1=—(@,At)’, while the corresponding term in
the three-step (7 =3) propagator M“" is (e ™= —1)(e™*™ —1)=(w,At)*. Thus, the contribution of the
r =3 term is small for Ak, =2. Retaining the Ak, =3 factors adds to the M“*" (r =3) element a term
of order e —1=—(w,At)*, which is comparable to the Ak__ =2, r =2 matrix element. However, the
r =4 terms contained in M“" are again reduced by a factors e —1 or e " —1=—(w,At)*, so they are
again of order (w,Af)*. One sees that with Ak, =3, inclusion of the »=4 term makes a negligible

—4173,

contribution.

Further evidence is offered by numerical calculations on spin-boson models. The SMatPI matrices
for a symmetric TLS with ‘typical’ parameters (a moderate memory length) were presented in Ref. °. The
present paper employs an asymmetric TLS described by the Hamiltonian

H, :_hQ(|O'1><O'2|+|°'2><°'1|)+‘9(|O'1><°'1|_|°'2><°'2|) (4.5)

with coordinates o, =1, o, =—1 and asymmetry parameter ¢ =/Q . The TLS is coupled to a dissipative
harmonic bath as in Eq. (2.8) with an Ohmic spectral density characterized by o, =2 and £ =2 atalow
temperature corresponding to #Q3 =5. The peak of the bath spectral density is resonant with the left-right
coupling matrix element and smaller than the TLS level splitting (which is equal to 2210 ). The strongly
coupled sluggish bath gives rise to interesting modulations of the RDM elements, as well as interesting
memory effects. As shown in the results presented in the next section, converged results for the RDM are
obtained with QAf=0.125 and Ak, =15. ForaTLS, the SMatPI decomposition involves 4 x 4 matrices.

Figure 2 shows the magnitude of M }," for r = Ak,

max

r=Ak, . +1and r=Ak_+2 forseveral
values of the memory length parameter Ak_, . It is seen that for each value of Ak,

max max

the element of this
matrix drops rapidly when 7 is increased from Ak to Ak, +1, and is further decreased when
r=Ak,, +2. Itisalso seen that the value of M;}) jumps to a larger value upon increasing Ak, from
r—1 to r, confirming again the dominant nature of influence functional memory compared to the smaller
memory entangled remainder contribution. (A small irregularity is observed at » = Ak, =4, where the
matrix element is unexpectedly small; this arises because the bath correlation function and the influence
functional coefficient change from positive to negative values around that time, causing the false impression

of almost vanishing memory contribution.)
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Fig. 2. Absolute value of M;" for r=Ak,,, Ak, +1 and Ak +2 as a function of r for the

asymmetric TLS described in section IV. The lines connect values corresponding to the same
Ak_ . From left to right, the curves correspondto Ak =23,....8.

‘max ‘max

The properties of a matrix are best understood by examining its eigenvalues. The properties of the
SMatPI matrices are discussed in the next section, where it is shown that for a TLS, the 4 x4 propagator
matrices M"” with »>2 have two nonzero eigenvalues which are either real or complex conjugates of
each other. Figure 3 shows the largest (in absolute value) eigenvalue of M“=*"" (r=Ak_ ) and of

M &m0 (= Ak

max

+1). One observes again that the matrix with »=Ak___ has considerably larger
eigenvalues compared to that with » =Ak_, +1. The non-monotonic behavior observed at r =Ak, =4
and 10 is again a consequence of the oscillatory nature of the bath correlation function, which causes the
influence functional coefficients to change sign around these values of memory length. Thus, truncating

the SMatPI hierarchy at 7, = Ak,

max

should generally lead to error that is smaller than the error due to
memory truncation. (One could, of course, use a somewhat larger value of r __ in order to verify
convergence.) Eventually, as the necessary memory length is reached, both contributions from
entanglement and memory truncation become negligible, and the remainder term can be omitted.

Dropping the negligible multistep propagator matrices beyond the entanglement length »__ allows
truncation of Eq. (4.1),

Tmax

U(N()) :ZM(N,N—r) 'U(N_r’O), N:rmax +1"“ (46)

r=1

The SMatPI matrices are evaluated recursively from Eq. (4.1), noting that MV =M""™" would be
obtained from the expression for M if the influence functional coefficients 7,, are replaced by Mt -
Adopting this substitution and starting with M*" and the RP values U"” and U®”, one obtains M“” by
subtraction according to Eq. (3.8), which is equal to the required propagation matrix M“®" . Next, using

14



this matrix and M“®? =M®" | along with the RP matrix U®” , one obtains from Eq. (3.14) the remainder
©% "which (again by virtue of the proper influence functional coefficients) is the SMatPI matrix
M“Y . This procedure is extremely straightforward and may be performed numerically to generate all
SMatPI matrices required for propagation beyond the entanglement length according to Eq. (4.6). The most
time consuming part in this process is the calculation of M""7m) = M"=*"D "which is obtained by
evaluating M with midpoint influence functional coefficients, and thus involves a single (r —1)-

matrix M

max

dimensional sum for each of the »n* elements. Once these matrices have been computed, propagation
according to Eq. (4.6) scales linearly with time and is extremely fast, as it involves just ordinary
multiplications and additions of n° x»n* matrices.
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Fig.3.  Absolute value of the largest eigenvalue of M for r,_ =Ak__ and r, =Ak_ +1 as

a function of Ak, for the asymmetric TLS described in the section IV.

V. Structure and properties of SMatPI matrices

Each column of Eq. (4.6) gives the RDM for a particular initial condition, thus the M“" matrices
couple the RDM at the time NAt¢ to the RDM at the earlier times. This structure is reminiscent of the
Nakajima-Zwanzig generalized master equation*® (GQME), where the time derivative of the RDM depends
on the RDM history through a simple time integral. In fact, Eq. (4.6) bears a close resemblance to the
transfer tensor scheme* (TTM), which in the Az — 0 limit is equivalent to the GQME.

However, the hierarchy obtained through the SMatPI decomposition differs in important ways from
the TTM/GQME hierarchy. The latter employs translationally invariant matrices TV =T"” . Such a
form appears compatible with the path integral only through a crude, unsymmetrized Trotter splitting of the
propagators, which is accurate in the limit Az — 0. The influence functional structure shown in Fig. 1 and
the SMatPI derivation given in section III show clearly that the small matrix decomposition of the RP must
employ different matrices at endpoints, i.e. M"™" #M"” . The TTM/GQME matrices, which lack this
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flexibility, have a different structure and larger elements than the SMatPI matrices, i.e. they include a
spurious memory and decay slower.

The eigenvalue analysis of the propagator matrices can offer useful insights. The information
contained in the set of » = Ak__ SMatPI matrices is equivalent to that contained in the i-QuAPI propagator

max
tensor.'” '8 The latter has p*m*D

eigenvectors and eigenvalues, although the majority of i-QuAPI tensor
eigenvalues are zero. The eigenvalue analysis is much more conveniently and economically performed
through the small SMatPI matrices.

The single step SMatPI matrices M"” and M“*"* have only nonzero eigenvalues, of which one

equals unity. From Eq. (2.11), one sees that F( *10 =1 if i}, - i;, . Because of the (L WN=) 1) factors, the
NO)
5.0
(i.e. to the diagonal elements of the RDM) comes from the single-step matrix M- | The presence of n

rows with vanishing elements in the SMatPI matrices M">"™" for  >1 implies that these matrices have n

matrix elements of MY for r>1 have n rows s equal to zero. Thus the only direct contribution to U

zero eigenvalues. The remaining n° —n eigenvalues are either real-valued of form complex conjugate
pairs.

VI. Representative applications

This section illustrates the SMatPI decomposition by simulating the dynamics of several model
dissipative systems.

The first model system is given by the Hamiltonian of Eq. (4.5). Figure 4 shows the time evolution
of the diagonal and off-diagonal elements of the RDM with the initial condition initial condition
p=|0,){(c,| (and the bath initially at thermal equilibrium). Shown are converged full-memory results
obtained with Ak =15, as well as results obtained with the Markovian-like, single-step memory
treatment Ak =

05 | . Yo e _

Py Poy

05 ] 1 1 1 1

Fig.4. Reduced density matrix elements for the asymmetric TLS discussed in section VI (with
parameters given in section IV). The solid lines and filled markers show converged results
obtained with Ak, =15, while the dashed lines show results with Ak, =1. Black:

diagonal RDM element corresponding to population of state 1. Red and blue: real and
imaginary parts of off-diagonal element p,, .
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As seen in the figure, the Markovian results are very poor. The population exhibits quenched
oscillations and reaches and incorrect long-time value. Strong oscillatory patterns are observed in the off-
diagonal element as well, whose real part also reaches an incorrect long-time value. This behavior can be
traced to the propagator matrix M*", which is responsible for the time evolution after the first time step.
This matrix has a unit eigenvalue, a pair of complex conjugate eigenvalues and a single real eigenvalue
smaller than unity. The complex eigenvalues are responsible for the oscillatory pattern, while the real
eigenvalue is associated with the observed decay.

Upon including more memory through M“""~* matrices with Ak > 2, the RDM elements become
less oscillatory. The shoulder regions observed in the converged results are remnants of the Ak, =1
oscillatory behavior. The multi-step propagator matrices modify the dynamics in two ways, by modulating
the frequency components of the Ak, =1 result and through gradual damping. These effects are encoded
in the eigenvalues and eigenvectors of these matrices. With the given parameters, approximately the first
half of these matrices has two small complex eigenvalues, which alter slightly the oscillatory pattern, while
the rest have small real eigenvalues, which modify the decay characteristics.

Figure 5 investigates the effect of the entanglement length on the RDM dynamics. Shown are the
values of the diagonal and off-diagonal RDM elements obtained with Ak, =5 and 10, with entanglement
lengths given by r»=Ak,_ and r, =Ak, +1. In the case of Ak, =5, for which the memory is
truncated very early, the r = Ak results exhibit a small error at long times which is about 0.006. The
Ak, =10, which include most of the memory, are very well converged with » _=Ak ., with the error
in the fourth decimal place in this case. The SMatPI results with up to Ak, =10 are indistinguishable

from those obtained through i-QuAPI calculations.
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Fig.5. SMatPI results showing the RDM elements for the asymmetric TLS with parameters
described in the section IV.  Dashed lines: »_=Ak_=5. Hollow circles:

max max

Ak, =5, 1, =6. Solid lines: r, =Ak, =10. Solid markers: Ak =10, 7,  =11I.

Black: diagonal element corresponding to initially populated state. Red and blue: real and
imaginary parts of off-diagonal element p,, .
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The last calculation examines the consequences of non-nearest neighbor coupling in a model
system that involves n =11 sites with, whose Hamiltonian is given by

n n—1 n-2
Ho :_hQZ(|O-i><O-i+1|+|O-i+1><o-i|)_V (|O-i><o-i+2|+|o-i+2><o-i|)= (6.1)
i=1 i=1
where again Ao =2 is the outermost site distance, and
o, =-1, 0,.=0'1+i;A0'. (6.2)

n—

In addition to nearest neighbor coupling, Eq. (6.1) contains next-nearest neighbor interactions. The 11-site
system is coupled to a harmonic bath described by the spectral density given in Eq. (4.3) with parameters
&=2,and @, =4€Q . The bath is initially at a temperature #Q =0.2. The SMatPI calculations converged
t0 0.01 with QA¢=0.1 and r,, = Ak, =5, and the convergence was verified by increasing r, . and Ak,
to 6. The site populations reached their long-time equilibrium values around Q¢ =12. To test the stability
of the SMatPI method, the site populations were followed for 400 iteration steps, up to Q¢ =40 . The trace
of the RDM remained equal to 1 within 8 decimal places over the entire propagation.
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Fig. 6. Site populations for the 11-site Hamiltonian of Eq. (6.1) with parameters described in the
text, computed via the SMatPI decomposition with 7, = Ak =6. Initially only the first

site is populated. The curve that starts at 1 is the population of site 1, while curves rising

from zero correspond (from left to right) to the populations of sites 2-11. (a) Nearest

neighbor interactions only. (b) Nearest and next-nearest neighbor interactions.
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With these parameters, direct computation of the full forward-backward path sum for the same final
time has 11*” terms. The i-QuAPI algorithm would require the storage of a tensor with 11" =2.6x10"
complex-valued amplitudes, and 400x11" operations, and is impractical. By comparison, the SMatPI
code involves storage of just ten 121x121 matrices (about 1.4x10° elements), reducing the required array
storage by a factor of 2x10°. The most demanding step of the SMatPI calculation required a single sum
of 11" terms, i.e. the required CPU time is reduced by a factor of 400. These gains allow previously
challenging calculations to be performed even on a laptop.

Figure 6a shows the results of SMatPI calculations with V' =0, for which the system contains only
nearest neighbor couplings, while Figure 6b presents similar results for a Hamiltonian that includes next-
nearest neighbor terms obtained with ' =—17€Q . In both cases, the site populations exhibit at long times
a small spread about the value 1/n, which is a consequence of the non-uniform contribution of the site
coefficients to the system eigenstates. A comparison of the two figures reveals the role of next-nearest-
neighbor couplings in the population dynamics. In the case of only nearest-neighbor terms, the populations
approach their long time values with weak oscillatory components which are most clearly seen in sites near
the edges. When the Hamiltonian includes next-nearest neighbor couplings, the decay of the initially
populated and neighboring sites is more oscillatory, and population transfer to distant sites occurs faster.

VII. Concluding remarks

Iterative real-time path integral methods for non-Markovian quantum dissipative systems take
advantage of the decay of temporal correlations to explicitly treat path segments that span only the bath-
induced memory length of Ak_ _ time steps, leading to linear scaling with the number N of propagation

max
2 Mk

steps. The resulting i-QuAPI algorithm!” !® requires the storage of a path array of size n , while

propagation to the final time involves N(n®)"m*'

19-22

operations. Even though various array compression
techniques (such as path filtering,'*?? singular value tensor contraction’? or the blip decomposition®® ) can
dramatically reduce the required storage, the contracted path array still exceeds (typically by several orders
of magnitude) the size of the bare system’s RDM, and often is prohibitively large.

The disentanglement of the path integral variables offers a powerful, numerically exact alternative
to system-bath dynamics. Construction of the SMatPI matrices requires evaluation of a path sum that spans
the entanglement length, which is practically equal to the bath-induced memory and thus involves (in the

1

absence of filtering) (n°)*™"' operations. The SMatPI decomposition eliminates the need for storing an

array of n**™ system paths and the N(n*)"*'

operations required for propagation to N time steps. The
code required to evaluate the path sum is simple and straightforwardly parallelizable. Further, the
disentanglement of the path integral variables — even within the memory length - offers new, valuable
conceptual insights into the dynamics of quantum dissipative systems. The diagrammatic approach
illustrated in Fig. 1 offers an intuitive justification of the SMatPI decomposition.

A number of techniques may be used to accelerate the calculation of the single (7*)*™ "' -term sum

required to obtain the SMatPI matrices. For example, path filtering'®-?

often leads to exponential reduction
of the number of terms, and the blip decomposition®* may be employed to eliminate the vast majority of
forward-backward path pairs in regimes of incoherent dynamics. One could also resort to approximate
procedures, such as the use of influence functional coarse graining techniques,?” *° for calculating the

SMatPI matrices for the largest » values, which are the most costly but make small contribution.
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By eliminating the need for storing and manipulating large arrays makes the SMatPI algorithm
ideal for use with multistate systems, while retaining the rigorous, fully quantum mechanical real-time path
integral approach. Because of their computational difficulty, numerically exact calculations on discrete
systems have been limited to short-time dynamics or simplified system-bath models. The preliminary
exploration of an 11-state model presented in section VI revealed interesting effects that warrant additional
investigation. The SMatPI methodology can be used to provide definitive answers to questions related to
the interplay between tunneling and thermal fluctuations in Caldeira-Leggett models,’ to investigate
quantum coherence in energy transfer through extended systems,*® ! and to quantify the role of competing
pathways in bridge-mediated electron transfer.’> > Further, by using traditional Cartesian reaction path>*
expansions of polyatomic potential surfaces and discretizing the system coordinate, one should be able to
apply the SMatPI algorithm to the treatment of chemical reaction dynamics in polyatomic molecular
systems. Some of these explorations are in progress in our group.
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