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Abstract  

 

We use the quantum-classical path integral (QCPI) methodology to report numerically 

exact, fully quantum mechanical results for the exciton-vibration dynamics in the 

bacteriochlorophyll dimer, including all 50 coupled vibrational normal modes of each 

bacteriochlorophyll explicitly with parameters obtained from spectroscopic Huang-Rhys 

factors. We present a coordinate transformation that maps the dimer on a spin-boson 

Hamiltonian with a single collective bath.  We consider two vibrational initial conditions 

which correspond to a Franck-Condon excitation or to modes initially equilibrated with 

the excited monomer. Our calculations reveal persistent, underdamped oscillations of the 

electronic energy between the two pigments at room temperature.  Static disorder leads to 

additional damping, but the population dynamics remains oscillatory. The population 

curves exhibit atypical, nonsmooth features that arise from the complexity of the 

bacteriochlorophyll vibrational spectrum and which cannot be captured by simple 

analytical spectral density functions. 
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I.  Introduction 

 The fascinating details of photosynthesis1,2 continue to attract intense theoretical and 

experimental efforts.  Besides the desire to fully understand the mechanistic pathways of this intriguing 

process, much of this work is driven by technological interest, namely the prospect of mimicking nature 

to design highly efficient energy harvest and storage devices.   

 In particular, the specifics of excitation energy transfer (EET) following the absorption of a 

photon by the light harvesting pigment-protein complexes of plants and photosynthetic bacteria continues 

to pose a number of questions.  At the central focus of current investigations is the inter-pigment energy 

transfer dynamics in the B850 ring of the light harvesting complex II, and also in the Fenna–Matthews–

Olson (FMO) complex.3,4  In purple bacteria, the former (LH2 complex) consists of 16 or 18 dimerized 

bacteriochlorophyll (BChl) a units, which are strongly coupled to their nearest neighbors.  In the perfectly 

symmetric ring, the electronic eigenstates are coherently delocalized among all dimers.  Static disorder 

from the ring’s environment introduces a variation of the site energies.  If strong, this asymmetry can lead 

to partially or fully localized eigenstates.  The FMO complex is a trimer composed of seven BChl 

molecules.  The near-unity quantum yield of the energy transfer process has prompted much discussion 

regarding the nature of EET in these systems.    

 The optical and vibronic properties of individual BChl molecules and of light harvesting 

complexes have been studied extensively using absorption/emission, spectral hole burning, fluorescence 

line narrowing, resonant Raman and time-resolved techniques.5-13 Experimental studies of the light 

harvesting BChl aggregates have reported intriguing patterns.  In the late 1990s, fluerescence anisotropy 

experiments reported quantum beating in FMO.14  In recent years, time-resolved two-dimensional 

spectroscopic techniques15,16 have revealed long-lived oscillatory patterns in FMO and LH2 

complexes.17,18  The origin of these oscillations continues to be hotly debated.19-27 

 Theoretical studies of EET in light harvesting complexes13,19-22,26,28-41  have focused on obtaining 

electroning coupling parameters and calculating population evolution or nonlinear spectra through third-

order response functions42 in model Hamiltonians.  The majority of the time-dependent calculations 

employ a tight-binding Hamiltonian describing the singly excited BChl electronic states that participate in 

the energy transfer process, while the vibrational modes of the chromophores and surrounding medium 

are typically included as a harmonic bath characterized by a model spectral density.  In the past, the 

majority of simulations on FMO or LH2 aggregates have focused on investigating the behaviors resulting 

from various parameter choices.  

 However, even with the harmonic bath simplification, accurate treatment of quantum dynamical 

evolution of is all but straightforward.  Beyond perturbative and Markovian master equation 

treatments,43,44 simulations of system-bath dynamics typically follow one of two avenues.  The first is 

based on the Meyer-Miller mapping Hamiltonian approach,45,46 which replaces the discrete electronic 

states by continuous degrees of freedom.  This approach allows a unified treatment of the electronic and 

nuclear coordinates via classical trajectories within linearized semiclassical initial value methods.47  The 

second avenue retains the discrete nature of the electronic states and treats the harmonic bath degrees of 

freedom via real-time path integral methods or hierarchical equations of motion.  The latter approach48 is 

restricted to a model spectral density of the Drude form, which represents a Brownian oscillator and thus 

is unable to treat the complex spectral characteristics of the chlorophyll vibrations.   
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 The path integral formulation of time-dependent quantum mechanics49,50 offers an elegant and 

intuitive approach, which is ideally suited to system-bath Hamiltonians.51  This is so because the 

contributions from a harmonic bath to the reduced density matrix of the system can be integrated out 

exactly within the path itnegral framework, giving rise to the Feynman-Vernon influence functional.52  

The quasiadiabatic propagator path integral (QuAPI) methodology53-55 is a numerically exact algorithm 

that can treat baths of arbitrary spectral densities.  It involves an iterative algorithm which treats explicitly 

only the system path segments within the bath-induced memory length, leading to linear scaling with the 

number of time steps.  However, the path array that spans the memory length can become very large when 

multistate systems are involved or if the memory is very long.  A number of techniques have been 

developed56-61 for reducing the size of this array, and the resulting size reduction can be dramatic in some 

regimes.  In the incoherent regime (i.e. at high temperature and with strong system-bath coupling), the 

blip decomposition62,63 offers exponential acceleration of the path sum, offering an efficient approach in 

situations of very long memory.  Most recently, it was shown that the path integral variables can be 

disentangled even within the memory length, leading to a small matrix path integral64 (SMatPI) algorithm 

which requires storage of matrices whose size is that of the bare system.  As a result, the SMatPI 

decomposition allows fully quantum mechanical calculations in systems with multiple states.   

 Recent efforts have led to the development of algorithms suitable for simulating processes in 

anharmonic media.  The mixed quantum-classical Liouville equation,65,66 in particular its momentum-

jump formulation,67,68 is a rigorous approach, but the computational demands of the method increase 

exponentially with propagation time.  Unlike quantum-classical methods based on wavefunctions, which 

involve ad hoc assumptions dictated by the need to correct the shortcomings of the Ehrenfest mean field 

model,69 the path integral representation allows a consistent treatment of a discrete quantum system and 

the classical degrees of freedom that constitute its environment.  This is a consequence of the local, 

trajectory-like nature of quantum paths, which allows the treatment of the interaction between quantum 

and classical degrees of freedom without approximation and in full atomistic detail.  The quantum-

classical path integral70-72 (QCPI) methodology offers a rigorous formulation that correctly captures the 

decoherence induced by the classical degrees of freedom through destructive interference of quantum-

semiclassical phase factors.  The algorithm scales linearly with propagation length and has been shown to 

be practical for simulating nonadiabatic processes in solution73 without ad hoc assumptions or adjustable 

parameters.  Last, the modular decomposition of the path integral74,75 offers linear scaling with system 

size in extended systems characterized by a one-dimensional topology.   

 The QCPI expression becomes exact in the case of a harmonic bath, and thus offers yet another 

alternative to influence functional-based methods.  Because the classical component of the bath-induced 

memory is captured automatically in the QCPI propagator,76 the algorithm needs to account only for the 

residual quantum memory effects, which are much weaker.  For this reason, the QCPI methodology 

converges faster, thus allowing simulations in more challenging regimes. 

 The EET dynamics of biological antenna complexes involves electronic and vibrational motions 

of comparable timescales, couplings of intermediate strength, and vibrational modes that induce long 

memory.  As a result, simulation of the time evolution with the true molecular parameters that 

characterize these systems face serious challenges.  In this work we report QCPI simulations of the 

energy transfer dynamics in BChl dimers, including the normal mode vibrations of each unit with highly 

accurate parameters obtained from spectroscopic Huang-Rhys factors that have been obtained from Qy 

fluorescence emission spectra of Rhodobacter sphaeroides using difference fluorescence line narrowing.13  



 

 

4 

 

 In section II we describe the BChl dimer Hamiltonian.  Starting from the ground and excited 

states of a single BChl, which are expressed in terms of the normal mode coordinates with parameters 

given in terms of Huang-Rhys factors, we perform a transformation that brings the dimer to the 

conventional spin-boson form.  In section III we discuss two possible initial conditions for the vibrational 

modes, and describe its transformation to the new coordinates.  In section IV we extend the description to 

include the effects of static disorder mimicking a sluggish protein environment.  An overview of the 

QCPI algorithm, along with the various parameters we consider, are given in section V.  The results of 

our simulations are presented and discussed in section VI.  Section VII concludes with a disucssion and 

additional remarks. 

 

Equation Chapter 1 Section 2 

II.  The chlorophyll dimer Hamiltonian 

 Each BChl pigment is modeled in terms of two electronic states 0  and 1  describing the 

0 1S S  transition that corresponds to the  Qy  band.  Thus the electronic Hamiltonian for a single BChl 

molecule is 0 10 0 1 1E E , where 
0 1,E E  are the electronic eigenvalues.  When vibrational degrees 

of freedom are considered, the Hamiltonian for BChl   becomes 

 

   0 0,vib 1 1,vib
ˆ ˆˆ 0 0 1 1H E h E h            ,                                        (2.1) 

 

where identity operators in the electronic and vibrational subspaces have been omitted for notational 

simplicity.  Within the normal mode approximation, the vibrational Hamiltonians 0,vibh
 and 1,vibh

 are 

given by quadratic forms.  If the minimum energy geometry of the ground state is set to zero, the 

vibrational Hamiltonian has the usual quadratic form 

 

 
 

2

2
2

0,vib

1

ˆ 1ˆ ˆ
2 2

n
j

j j

j

p
h m q

m



 


                                                         (2.2) 

 

where 1m   and 
jq ,

jp  denote the normal mode coordinates and momenta of monomer  .  The ground 

and excited state geometries are very similar, leading to very similar normal mode frequencies on the two 

electronic states and a very small Duschinskin rotation,13 which typically is neglected.  Thus the excited 

state Hamiltonian has the form 

 

 
 

2

2
2 2 2 2

1,vib 0,vib

1

ˆ 1 1ˆ ˆˆ ˆ
2 2 2

n
j

j j j j j j j j

j

p
h m q d h m d q m d

m



     


      .                            (2.3) 

 

While each BChl pigment has it own vibrational coordinates, the normal mode frequencies j  and 

displacements jd  are the same for both BChl molecules.  Accurate parameters for the BChl vibrational 

modes of Rhodobacter sphaeroides have been determined from Qy fluorescence emission spectra.13  The 

displacement distances jd   of the 50n   normal modes that have non-negligible couplings13 are related 

to the Huang-Rhys factors, 
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2

2

j

j j

m
D d


 .                                                                   (2.4) 

 

 Consider a BChl dimer consisting of two monomers, labeled A and B.  Energy transfer in 

molecular aggregates77 is often conveniently described by the well-known Frenkel exciton Hamiltonian,78  

 
AB A B ABˆ ˆ ˆ ˆH H H V   .                                                           (2.5) 

 

Here the two monomers are coupled via the term 

 

 AB A B A B A B A Bˆ 0 1 1 0 1 0 0 1V J   ,                                                (2.6)                                          

 

where 0J   is the exciton coupling parameter.    

Upon simplifying, the Hamiltonian can be written as a sum of zero-excitation, single excitation 

and double excitation terms.  In fact, these subspaces are completely uncoupled from each other.  At 

ordinary light intensities, it is sufficient to restrict attention to the single excitation Frenkel subspace, 

whose Hamiltonian is 

 

 
   

 

A A B B A B A B A A B B A B A B

single 1 1,vib 0 0,vib 0 0,vib 1 1,vib

A B A B A B A B

ˆ ˆ ˆ ˆˆ 1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1

H E h E h E h E h

J

       

 
     (2.7) 

 

Defining the state with chlorophyll A excited as ‘right’, and that with chlorophyll B excited as ‘left’, i.e., 

 
A B A B1 0 , 0 1R L  ,                                                           (2.8) 

dropping additive constants and simplifying the expression, the single excitation Hamiltonian becomes 

 

  A B 2 A B

single 0 0,vib 0,vib

1

ˆ ˆˆ ˆ ˆ ˆ
n

j j j j

j

H H h h m d q R R q L L


       (2.9) 

with 

 

       A B A B

0 1 0 0 1Ĥ E E R R E E L L J R L L R J R L L R         ,           (2.10) 

 

where the second equality follows by noting that for the isolated dimer A B A B

0 1 1 0E E E E   , and 

readjusting the zero of energy. 

 Eq. (2.9) is a Hamiltonian for two states coupled to a doubly degenerate harmonic bath, but it is 

not in the usual spin-boson form.  Instead, the R state corresponds to a surface centered about 
A B, 0j j jq d q  , while the L state corresponds to a parabolic potential surface centered about 
A B0,j j jq q d  .  These surfaces are illustrated in Figure 1 for same-frequency normal modes of the two 

monomers.  This arrangement of the vibrational potential surfaces suggests the transformation 
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Fig. 1.   Schematic illustration of normal mode potential surfaces and coordinate transformation for a 

single vibrational mode of the ground (blue) and the two singly excited (red) monomers in the 

chlorophyll dimer.  The shaded blue and red circles illustrate the vibrational density for initial 

conditions (i) and (ii). The shaded green ellipse (the projection of the blue circle) indicates the 

vibrational density in the space of the coupled difference normal mode coordinate for initial 

condition (i).  

 

    A B A B1 1
,

2 2
j j j j j jQ q q q q q    .      (2.11) 

In these new coordinates, the single excitation Hamiltonian becomes 

 

 

 

2

2 2 2

single 0

1

2

2 2 2

1

ˆ 1 ˆ ˆˆ ˆ
2 2 2

ˆ 1
ˆ ˆ

2 2 2

n
j j

j j j j

j

n
j j

j j j j

j

P d
H H m Q m Q

m

p d
m q m q R R L L

m

 

 





 
    

 
 

 
     

 





  (2.12) 

where jP  and jp  are the corresponding conjugate momenta.   

As can be seen in Fig. 1, the sum coordinate jQ  is not coupled to the electronic states.  Thus this 

coordinate does not play a role in the energy transfer and can be removed from the dimer Hamiltonian.  

The potential minima of the singly excited states lie along the jq  coordinate and are shifted by / 2jd  

when the dimer is in the R state, and by / 2jd  when the dimer is in the L state.  After dropping the 

uncoupled jQ  terms, the chlorophyll dimer Hamiltonian takes the familiar spin-boson form 

 

2 2 2

0 env

1

1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2

n

x j j j j j z

j

H J p m q c q H H  


 
       

 
  ,                                   (2.13) 

where 0
ˆ ˆ

xH J   is the electronic part, 2 / 2j j jc d m , and ,x z   are the usual Pauli spin matrices.  

In this Hamiltonian, the couplings to the “bath” are reduced from those in a single chlorophyll by a factor 

of 2 .  The reason for this decrease is the increase in the actual distance between the vibrational 
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potential minima, which (as seen from Fig. 1) is given by the hypotenuse of the triangle, while the 

distance of the coordinates corresponding to left and right states in Eq. (2.13) remains equal to 2.  The 

chlorophyll dimer Hamiltonian is similar to the form employed by Tiwari et. al., 24 which was suggested 

based on physical arguments pertaining to symmetric and antisymmetric vibrations.  

 

Equation Section (Next) 

III.  Initial conditions 

 We assume that at 0t  , BChl A is placed in the excited electronic state, i.e., the initial density 

matrix is given by 

 
AB A B A B AB

vib
ˆ ˆ(0) 1 0 1 0 (0)  ,                                                      (3.1) 

 

and consider the following two possibilities for the vibrational degrees of freedom: 

  

(i)  Franck-Condon excitation. The vibrational modes of each BChl are initially in equilibrium with the 

ground electronic state of that monomer,  

 
A B
0,vib 0,vib

ˆ ˆAB

vib
ˆ (0)

h h
e e

 


 
 ,                                                               (3.2) 

 

where 
B1/ k T   is the reciprocal temperature.  This initial condition is consistent with a Franck-Condon 

transition.  The matrix element of the Boltzmann operator for the quadratic vibrational modes of BChl   

in its ground electronic state has the form79  

 

   0,vib
2 2ˆ

1

exp
n

h

j j j j j j j

j

e q q q q
        





      
  q q                                 (3.3) 

 

where  , j  and j  are constants that depend on the mode frequencies and the temperature.  Using the 

coordinate transformation relations of section II, we obtain 

 

    
2 2

A B 2 2

j j j jq q Q q   ,     A A B B

j j j j j j j jq q q q Q Q q q      .                                (3.4) 

 

Multiplying the Boltzmann operator matrix elements for the two monomers and using Eq. (3.4), we arrive 

at the result 

 

    
A B
0,vib 0,vib

ˆ ˆA A B B 2 2 2 2 2exp
h h

j j j j j j j j j je e Q q Q q Q Q q q
 

  
              

 
q q q q .         (3.5) 

 

Since only the difference coordinates contribute to the dynamics, the vibrational component of the initial 

density is 

 

 
unshifted
bath

ˆ2 2exp
h

j j j j j jq q q q e
         

 
q q ,                                           (3.6) 
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i.e. the density operator for the bath is given by 

 
unshifted
bath

unshifted
bath

ˆ

(i)

vib ˆ
ˆ (0)

Tr

h

h

e

e









                                                                 (3.7) 

where 

2

unshifted 2 2

bath

1

ˆ 1ˆ ˆ
2 2

n
j

j j

j

p
h m q

m




 
   

 
                                                          (3.8) 

 

is the Hamiltonian for the bath degrees of freedom in Eq. (2.13).  The density of Eq. (3.6) is shown 

schematically in Fig. 1.  

 

(ii)  Equilibrated excited state.  As a second possibility, the vibrational modes of the initially excited 

BChl are assumed to have equilibrated with the excited electronic state of that pigment prior or the onset 

of dynamics on the singly excited Hamiltonian, i.e., 

 
A B
1,vib 0,vib
ˆ ˆAB

vib
ˆ (0)

h h
e e

 


 
 .                                                             (3.9) 

 

In this case the Boltzmann matrix element for pigment A is given  

 

      
A
1,vib

2 2ˆA A

1

exp
n

h

j j j j j j j j j j j

j

e q d q d q d q d
       





          
  q q ,           (3.10) 

 

while for pigment B it still has the form of Eq. (3.3).  Using again the coordinate transformations of the 

previous section and performing some straightforward algebra, we find 

 
A B
1,vib 0,vib
ˆ ˆA A B B

2 2 2 2

2 exp
2 2 2 2

exp
2 2 2 2

h h

j j j j

j j j j j j j j

j j j j

j j j j j j

e e

d d d d
Q Q q q

d d d d
Q Q q q

 

    

 

 
 

        
                 

         

      
             

      

q q q q

                 (3.11) 

 

One sees that the contribution of the coupled difference coordinate is 

 

shifted
bath

2 2

ˆ
exp

2 2 2 2

j j j j h

j j j j j j j

d d d d
q q q q e

    
       

                
        

q q ,           (3.12) 

 

i.e. the density operator for the bath is given by 
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shifted
bath

shifted
bath

ˆ

(ii)

vib ˆ
ˆ (0)

Tr

h

h

e

e









                                                                   (3.13) 

where 

 
22

shifted 2

bath

1

ˆ 1ˆ ˆ
2 2 2

n
j j

j j

j

p d
h m q

m




  
    
   

  ,                                             (3.14) 

 

i.e. the initial state is in this case the Boltzmann distribution for the effective bath modes in equilibrium 

with the initially excited R-localized electronic state.  

 

Equation Section (Next) 

IV.  Static disorder 

Chlorophyll molecules are integral components of the photosynthesic apparatus of plants and 

bacteria, where they are embedded in light harvesting chrlorophyll-protein complexes.  The present 

treatment of the BChl vibrations in terms of normal modes, with parameters obtained from experimental 

Huang-Rhys factors, does not allow embedding the BChl dimer in its protein scaffold.  The slow motions 

of the protein (those which occur on time scales much longer than those of EET dynamics) are commonly 

modeled as a static disorder, which affects the energies of the two exciton states by varying amounts.  In 

addition to presenting accurate quantum mechanical results for the symmetric dimer, in the next section 

we report a qualititave picture of the effects of sluggish protein motion by accounting for static disorder in 

the exciton-vibration dynamics.  We emphasize that the static treatment of disorder cannot account for the 

dissipative effects of phonon-like protein degrees of freedom on the population dynamics of the BChl 

dimer.  If protein fluctuations were to be included, the dephasing effects from a large number of modes 

with characteristic times of the order of the EET would lead to additional quenching of the oscillatory 

patterns observed in our calculations.  

To this end, we return to Eq. (2.10) and allow the ground and excited state energies of the two 

BChl monomers to differ.  Defining the parameter    A A B B1
1 0 1 02

E E E E     
 

 (i.e. half the excitation 

energy of the two molecules) and adjusting the zero of energy, the singly excited electronic Hamiltonian 

becomes 

 

   0
ˆ

x zH R R L L J R L L R J          .                               (4.1) 

 

In the calculations presented in the next two sections we assume that the excitation energy difference is 

normally distributed around its mean value  , with a standard deviation  .   

 

Equation Section (Next) 

V.  Parameters and methods 

Rätsep et. al.13 have reported Huang-Rhys factors for the electron-phonon couplings for the 50 

most strongly coupled BChl vibrational modes.  These parameters were used to determine the ground-
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excited state mode displacements and thus the coupling coefficients in Eq. (2.13).  The collective effects 

of the bath are captured in the spectral density function,  

 

   
2

2

j

j

j j j

c
J

m


   


                                                        (5.1) 

The spectral density of the bath corresponding to the transformed BChl dimer Hamiltonian of Eq. (2.13) 

is shown if Figure 2.  It is clear that the intricate structure of the BChl spectral density cannot be 

accounted for by simple analytical models.   

 

 

Fig. 2.  Spectral density for the bacteriochlorophyll dimer (in arbitrary units).   

 

For the isolated BChl dimer, the only other parameter needed is the electronic coupling J.  A 

number of methods have been used to compute this parameter in the antenna complexes of photosynthetic 

bacteria.  For LH2, most reported values are in the range 200-400 cm-1 range.  In this work we present 

results with the intra-dimer coupling parameter 1363 cmJ   obtained by Tretiak and Mukamel29 and 

also for the intra- and inter-dimer coupling values 315 and 245 cm-1 reported by Freiberg et al. 80  We also 

present calculations for a smaller value of the electronic coupling, 1181cmJ  .  The standard deviation 

for the static disorder parameter is 1220cm  .80   

The reduced density matrix that corresponds to Eq. (2.13) is given by 

 

    
ˆ ˆ/ /

vib
ˆTr 0 , , ,iHt iHt

ij t i e e j i j R L                                              (5.2) 

 

The diagonal elements of Eq. (5.2) give the populations of the two BChl excited states, the population 

( )P t  of the excited state of BChl A is given by 

 

 ( ) RRP t t .                                                                     (5.3) 
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For an initial state corresponding to the excitation localized on monomer A, the initial density operator 

has the form  

 
bath

bath

ˆ

ˆ
ˆ 0

Tr

h

h

e
R R

e









                                                               (5.4) 

where, according to the results of section III, the bath Hamiltonian is either unshifted or shifted.   

The populations of the two exciton states are obtained using the quantum-classical path integral 

methodology.  The QCPI formulation70-72 involves summing the amplitudes of the quantum paths of the 

two-state system, which are augmented by semiclassical phases obtained along classical trajectories.  

Each classical trajectory hops between the two electronic states as dictated by a particular quantum path, 

thus the number of trajectories from each phase space initial condition is equal to the number of paths of 

the electronic system.  The memory quenching effects of the environment are exploited to prevent the 

exponential proliferation of trajectories.76,81,82  Once converged with respect to the path integral time step 

and the memory time, the QCPI expression produces rigorous quantum-classical results, which are free of 

any assumptions or adjustable parameters.  The integration with respect to trajectory initial conditions is 

performed using Metropolis sampling83 with 35,000 initial conditions.   

In the particular case of a harmonic bath, the QCPI formulation reverts to the full quantum 

mechanical expression.70  Since the BChl vibrations are treated in terms of normal modes which involve a 

quadratic potential function, the QCPI calculations on the BChl dimer produce numerically exact results.  

Further acceleration of the calculation for this harmonic environment is possible by exploiting the 

cumulative treatment of the harmonic bath back-reaction.84,85  The phase space average with respect to 

trajectory initial conditions is performed via Metropolis sampling.83 

The QCPI results presented in the next section converged with a time step equal to 4.84 fs.  The 

QCPI calculations were performed with a memory length equal to 48.38 fs in the case of initial condition 

(i), and 29.04 fs for initial condition (ii). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.    Weights corresponding to various different asymmetries obtained using a Gauss-Hermite 

discretization.   

 

1, cm    
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The effects of static disorder are included by averaging the QCPI population results with respect 

to the excitation energy difference  , assuming36 that the energy of the excited state of each of the 

chlorophyll monomers follows a Gaussian distribution with mean equal to   and standard deviation 
1220cm  .80  Therefore the excitation energy difference 2  is sampled from a Gaussian with standard 

deviation 
-12 220 cm .   

The average over the asymmetry parameter is performed using a Gauss-Hermite quadrature with 

41 grid points.  Figure 3 shows a histogram of the points, along with their weights.  It is seen that only 13 

grid points have a weight greater than 0.001.  We have performed calculations for these points and 

averaged the obtained populations. 

 

 

VI.  Exciton population dynamics 

In this section we present the results of our calculations.  Figure 4 shows the population dynamics 

of the BChl A excited state for a symmetric dimer (i.e., 0  ) at 300 KT   for the electronic coupling 

values 1363, 315, 245,181cmJ  .30,80  The tunneling splitting of the electronic state doublet is equal to 

2J , which for 1363 cmJ   corresponds to an oscillation with period ~54 fs.  The coupled vibrations 

introduce dissipative effects, and the electronic populations exhibit underdamped oscillations.  Decreasing 

the value of J  slows down the population oscillations and leads to faster damping, as the coupling to the 

decohering vibrations is effectively stronger for a smaller value of the electronic coupling. 

The two initial conditions discussed in section III are seen to lead to small differences in the 

dynamics, which are more prominent at short times.  With the Franck-Condon initial condition (i), the 

density of the vibrational modes is initially in between the potential minima of the R and L states, thus it 

has more energy compared to the case of initial condition (ii).  As a result, the vibrational bath has a 

slighty higher effective temperature in this case, causing faster damping of the oscillatory population 

dynamics.  The slower dynamics that arise with smaller J  values are less susceptible to effects brought 

about by the initial distribution of the vibrational modes, as the bath equilibrates on a time scale faster 

than the electronic motion in this case.   

The population curves in Fig. 4 do not have the familiar smooth curvature commonly seen in 

spin-boson dynamics with model spectral densities.  (For example, the red data points in Fig. 4a have the 

appearance of a hand-drawn curve.)  As evidenced by the small size of the error bars, these features are 

not a consequence of Monte Carlo noise, and they are not the result of numerical error.  Rather, they are a 

manifestation of the richness of the true BChl normal mode spectral density, which is characterized by 

wildly varying Huang-Rhys factors. These characteristics cannot be captured by simple, analytic spectral 

density functions defined in terms of just two or three parameters, and thus they have not been observed 

in previous theoretical calculations.  The complexity of time scales in the BChl dimer vibrational bath is 

more prominent in the early time dynamics, in particular in the case of initial condition (i) which 

corresponds to an initially unrelaxed (i.e. more energetic) bath.  As time progresses, relaxation of the bath 

leads to smoother dynamics.  The population curves obtained with smaller J values exhibit slower 

oscillations, and the early effects of the unrelaxed multimode bath are less noticeable. 

Upon close examination, the envelop of the oscillations in ( )P t  obtained with the higher J  values 

is seen to follow an unusual nonexponential pattern, i.e. the population at the second recurrence is only 

slightly diminished compared to that at the first recurrence.  Again, this trend is different from that 
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observed in typical spin-boson calculations with analytical spectral densities.  The observed behavior is a 

consequence of the very long memory of the BChl vibrational bath.  As the value of J  is decreased, the 

normal mode frequency distribution is effectively higher, leading to less dramatic memory effects. 

Next, we examine the effects of static disorder for the calculated electronic coupling value 
1315 cmJ  .36  In Figure 5 we show the excited state population of pigment A for the asymmetric dimer 

Hamiltonian modeling static disorder. The energy splitting is now given by 
2 22 J  .  As expected, 

strongly asymmetric configurations give rise to localized eigenstates of the singly excited Hamiltonian, 

which disrupt the tunneling dynamics, leading to only mildly oscillatory evolution.   

 

 

     

     

Fig. 4.  Excited state population of pigment A in a symmetric dimer as a function of time at T = 300 

K.  Red and black correspond to vibrational initial conditions (i) and (ii), respectively. Top 

left: 1363 cmJ  .  Top right: 1315 cmJ  .  Bottom left: 1245 cmJ  .  Bottom right:  
1181cmJ  .  The Monte Carlo error bars indicate one standard deviation. 

 

 

Figure 6 shows the averaged population with respect to the Gaussian distribution with mean 

asymmetry parameter 0  , and compares to the population of the symmetric dimer.  It is seen that static 
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disorder leads to a slight blue shift of the central frequency and considerable damping of the oscillation.  

Similar results are presented in Figure 7 for asymmetry distributions with mean 1151.8 cm   .  In all 

cases, the effects of different bath initial conditions are still noticeable in the averaged population 

dynamics.   

Our results show no evidence of EET enhancement by a vibrational mode resonant with the 

electronic transition energy.23  Instead, the change in the population dynamics is the collective result of all 

coupled vibrational modes, and the main effect is damping of the oscillations. 

 

 
 

    

Fig. 5.   Excited state population of pigment A as a function of time at T = 300 K for various value 

of the disorder parameter with 
1

315 cmJ


 .  Black, 0  ;  blue, 1151.8 cm   ; red: 
1303.7 cm   ; green: 1456.1cm   ; orange: 1609.2 cm   . Lines with dots 

correspond to positive values of  .  Left: initial condition (i). Right: initial condition (ii).   

 

     

Fig. 6.   Excited state population of pigment A with 
1

315 cmJ


 at T = 300 K.  Black: symmetric 

dimer, 0  .  Red: population  averaged with respect to the static disorder parameter with 

mean value 0  .  Left: initial condition (i). Right: initial condition (ii).   
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Fig. 7.  Excited state population of pigment A, averaged with respect to the static disorder parameter, 

with 
1

315 cmJ


 at  T = 300 K.  Black: mean of static disorder distribution at 0  .  Blue: : 

mean of static disorder distribution at 1151.8 cm   .  Red: mean of static disorder 

distribution at 1151.8 cm  .  Left: initial condition (i). Right: initial condition (ii).   

 

 

VII.  Discussion and concluding remarks 

 In this paper we have presented numerically exact, fully quantum mechanical simulations of EET 

dynamics in BChl dimers, where all 50 coupled vibrational modes of each BChl accounted for with the 

precise parameters obtained from experimental Huang-Rhys factors. To our knowledge, the present study 

is the first to treat all BChl normal modes explicitly with spectroscopic accuracy.  By avoiding the use of 

model spectral densities, which can alter significantly the characteristics of the vibrational modes, our 

results provide a quantitative picture of exciton-vibration dynamics in BChl dimers. The population 

curves exhibit characteristics that are not present in earlier calculations employing model spectral 

densities.  These features stem from the complexity of the BChl vibrational bath. 

 The transformation presented in sections II and III shows that the Hamiltonian for the BChl 

dimer, where the electonic states are coupled by Frenkel exciton terms, and each electronic state includes 

the vibrational normal modes of each pigment, can be mapped exactly on the familiar spin-boson 

Hamiltonian where the two sites are coupled to a common bath of modes with rescaled parameters.  Initial 

conditions reflecting a Franck-Condon excitation or a vibrational state pre-equilibrated with the excited 

BChl are mapped, respectively, to unshifted and shifted bath initial conditions.  

 The work presented here focuses on an isolated BChl dimer, for which the QCPI results presented 

in section VI show that the excitation energy oscillates persistently between the two pigments under 

physiological conditions.  Static disorder arises from 0   degrees of freedom of the environment, 

whose slow modulation compared to the TLS dynamics is equivalent to an ensemble of asymmetric TLS 

configurations.  Asymmetry tends to cause a suppression of tunneling, leading to some damping of the 

oscillations.  We emphasize that the static disorder treament of the medium is incapable of accounting for 

the dissipative role of phonon-like modes in the actual protein enviroment.  Thus, if the dimer were to be 

embedded in its protein scaffold, the additional dynamic disorder from the dephasing effects of sluggish 

protein motion would lead to further suppression of the oscillatory features in the population dynamics.  
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Calculations investigating the effects of the protein enviroment found in light harvesting systems, 

monitoring the relaxation following excitation of an electronic eigenstate of the dimer, and also exploring 

the EET dynamics in longer BChl chains and rings, will be reported in future papers by our group. 
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