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Abstract

We use the quantum-classical path integral (QCPI) methodology to report numerically
exact, fully quantum mechanical results for the exciton-vibration dynamics in the
bacteriochlorophyll dimer, including all 50 coupled vibrational normal modes of each
bacteriochlorophyll explicitly with parameters obtained from spectroscopic Huang-Rhys
factors. We present a coordinate transformation that maps the dimer on a spin-boson
Hamiltonian with a single collective bath. We consider two vibrational initial conditions
which correspond to a Franck-Condon excitation or to modes initially equilibrated with
the excited monomer. Our calculations reveal persistent, underdamped oscillations of the
electronic energy between the two pigments at room temperature. Static disorder leads to
additional damping, but the population dynamics remains oscillatory. The population
curves exhibit atypical, nonsmooth features that arise from the complexity of the
bacteriochlorophyll vibrational spectrum and which cannot be captured by simple
analytical spectral density functions.



I. Introduction

The fascinating details of photosynthesis'? continue to attract intense theoretical and
experimental efforts. Besides the desire to fully understand the mechanistic pathways of this intriguing
process, much of this work is driven by technological interest, namely the prospect of mimicking nature
to design highly efficient energy harvest and storage devices.

In particular, the specifics of excitation energy transfer (EET) following the absorption of a
photon by the light harvesting pigment-protein complexes of plants and photosynthetic bacteria continues
to pose a number of questions. At the central focus of current investigations is the inter-pigment energy
transfer dynamics in the B850 ring of the light harvesting complex II, and also in the Fenna—Matthews—
Olson (FMO) complex.** In purple bacteria, the former (LH2 complex) consists of 16 or 18 dimerized
bacteriochlorophyll (BChl) a units, which are strongly coupled to their nearest neighbors. In the perfectly
symmetric ring, the electronic eigenstates are coherently delocalized among all dimers. Static disorder
from the ring’s environment introduces a variation of the site energies. If strong, this asymmetry can lead
to partially or fully localized eigenstates. The FMO complex is a trimer composed of seven BChl
molecules. The near-unity quantum yield of the energy transfer process has prompted much discussion
regarding the nature of EET in these systems.

The optical and vibronic properties of individual BChl molecules and of light harvesting
complexes have been studied extensively using absorption/emission, spectral hole burning, fluorescence
line narrowing, resonant Raman and time-resolved techniques.’!* Experimental studies of the light
harvesting BChl aggregates have reported intriguing patterns. In the late 1990s, fluerescence anisotropy
experiments reported quantum beating in FMO.'"" In recent years, time-resolved two-dimensional
spectroscopic techniques'>'® have revealed long-lived oscillatory patterns in FMO and LH2
complexes.!”!® The origin of these oscillations continues to be hotly debated.->’

Theoretical studies of EET in light harvesting complexes!®!-222628-41 have focused on obtaining
electroning coupling parameters and calculating population evolution or nonlinear spectra through third-
order response functions* in model Hamiltonians. The majority of the time-dependent calculations
employ a tight-binding Hamiltonian describing the singly excited BChl electronic states that participate in
the energy transfer process, while the vibrational modes of the chromophores and surrounding medium
are typically included as a harmonic bath characterized by a model spectral density. In the past, the
majority of simulations on FMO or LH2 aggregates have focused on investigating the behaviors resulting
from various parameter choices.

However, even with the harmonic bath simplification, accurate treatment of quantum dynamical
evolution of is all but straightforward. @ Beyond perturbative and Markovian master equation

treatments,*>*

simulations of system-bath dynamics typically follow one of two avenues. The first is
based on the Meyer-Miller mapping Hamiltonian approach,*-*® which replaces the discrete electronic
states by continuous degrees of freedom. This approach allows a unified treatment of the electronic and
nuclear coordinates via classical trajectories within linearized semiclassical initial value methods.*” The
second avenue retains the discrete nature of the electronic states and treats the harmonic bath degrees of
freedom via real-time path integral methods or hierarchical equations of motion. The latter approach® is
restricted to a model spectral density of the Drude form, which represents a Brownian oscillator and thus

is unable to treat the complex spectral characteristics of the chlorophyll vibrations.



4930 offers an elegant and

The path integral formulation of time-dependent quantum mechanics
intuitive approach, which is ideally suited to system-bath Hamiltonians.’® This is so because the
contributions from a harmonic bath to the reduced density matrix of the system can be integrated out
exactly within the path itnegral framework, giving rise to the Feynman-Vernon influence functional.*

53-55 is a numerically exact algorithm

The quasiadiabatic propagator path integral (QuAPI) methodology
that can treat baths of arbitrary spectral densities. It involves an iterative algorithm which treats explicitly
only the system path segments within the bath-induced memory length, leading to linear scaling with the
number of time steps. However, the path array that spans the memory length can become very large when
multistate systems are involved or if the memory is very long. A number of techniques have been
developed®®°! for reducing the size of this array, and the resulting size reduction can be dramatic in some
regimes. In the incoherent regime (i.e. at high temperature and with strong system-bath coupling), the
blip decomposition®*®* offers exponential acceleration of the path sum, offering an efficient approach in
situations of very long memory. Most recently, it was shown that the path integral variables can be
disentangled even within the memory length, leading to a small matrix path integral® (SMatPI) algorithm
which requires storage of matrices whose size is that of the bare system. As a result, the SMatPI
decomposition allows fully quantum mechanical calculations in systems with multiple states.

Recent efforts have led to the development of algorithms suitable for simulating processes in

anharmonic media. The mixed quantum-classical Liouville equation,®

in particular its momentum-
jump formulation,®”® is a rigorous approach, but the computational demands of the method increase
exponentially with propagation time. Unlike quantum-classical methods based on wavefunctions, which
involve ad hoc assumptions dictated by the need to correct the shortcomings of the Ehrenfest mean field
model,* the path integral representation allows a consistent treatment of a discrete quantum system and
the classical degrees of freedom that constitute its environment. This is a consequence of the local,
trajectory-like nature of quantum paths, which allows the treatment of the interaction between quantum
and classical degrees of freedom without approximation and in full atomistic detail. The quantum-
classical path integral’®’* (QCPI) methodology offers a rigorous formulation that correctly captures the
decoherence induced by the classical degrees of freedom through destructive interference of quantum-
semiclassical phase factors. The algorithm scales linearly with propagation length and has been shown to
be practical for simulating nonadiabatic processes in solution’ without ad hoc assumptions or adjustable
parameters. Last, the modular decomposition of the path integral’*’> offers linear scaling with system
size in extended systems characterized by a one-dimensional topology.

The QCPI expression becomes exact in the case of a harmonic bath, and thus offers yet another
alternative to influence functional-based methods. Because the classical component of the bath-induced
memory is captured automatically in the QCPI propagator,’® the algorithm needs to account only for the
residual quantum memory effects, which are much weaker. For this reason, the QCPI methodology
converges faster, thus allowing simulations in more challenging regimes.

The EET dynamics of biological antenna complexes involves electronic and vibrational motions
of comparable timescales, couplings of intermediate strength, and vibrational modes that induce long
memory. As a result, simulation of the time evolution with the true molecular parameters that
characterize these systems face serious challenges. In this work we report QCPI simulations of the
energy transfer dynamics in BChl dimers, including the normal mode vibrations of each unit with highly
accurate parameters obtained from spectroscopic Huang-Rhys factors that have been obtained from Q,
fluorescence emission spectra of Rhodobacter sphaeroides using difference fluorescence line narrowing.'?
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In section II we describe the BChl dimer Hamiltonian. Starting from the ground and excited
states of a single BChl, which are expressed in terms of the normal mode coordinates with parameters
given in terms of Huang-Rhys factors, we perform a transformation that brings the dimer to the
conventional spin-boson form. In section III we discuss two possible initial conditions for the vibrational
modes, and describe its transformation to the new coordinates. In section IV we extend the description to
include the effects of static disorder mimicking a sluggish protein environment. An overview of the
QCPI algorithm, along with the various parameters we consider, are given in section V. The results of
our simulations are presented and discussed in section VI. Section VII concludes with a disucssion and
additional remarks.

II. The chlorophyll dimer Hamiltonian

Each BChl pigment is modeled in terms of two electronic states |0> and |1> describing the
S, — S, transition that corresponds to the Qy band. Thus the electronic Hamiltonian for a single BChl
molecule is £ |O> <0| +E, |1><1|, where E,,E, are the electronic eigenvalues. When vibrational degrees
of freedom are considered, the Hamiltonian for BChl & becomes

A

A =(E§ + )

Oa><0a

(B + i )

1)(17, (2.1)
where identity operators in the electronic and vibrational subspaces have been omitted for notational
simplicity. Within the normal mode approximation, the vibrational Hamiltonians #;,, and A, are
given by quadratic forms. If the minimum energy geometry of the ground state is set to zero, the
vibrational Hamiltonian has the usual quadratic form

~a\?
ﬁ(ivfi(p’) +omar (i) (2.2)

J=1

2m

where m=1 and g7, p] denote the normal mode coordinates and momenta of monomer ¢ . The ground
and excited state geometries are very similar, leading to very similar normal mode frequencies on the two
electronic states and a very small Duschinskin rotation,'® which typically is neglected. Thus the excited
state Hamiltonian has the form

)2
B, = ; (Z;n) + %ma)f (‘}7 —d, )2 =I5 = mayd g7 + %mwfdf ' (23)
While each BChl pigment has it own vibrational coordinates, the normal mode frequencies @, and
displacements d; are the same for both BChl molecules. Accurate parameters for the BChl vibrational
modes of Rhodobacter sphaeroides have been determined from Qy fluorescence emission spectra.'> The
displacement distances d, of the n =50 normal modes that have non-negligible couplings'® are related
to the Huang-Rhys factors,
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Consider a BChl dimer consisting of two monomers, labeled A and B. Energy transfer in
molecular aggregates’’ is often conveniently described by the well-known Frenkel exciton Hamiltonian,”

H"® = g* +H® + VA® (2.5)
Here the two monomers are coupled via the term

P® =—J (|07 (1%0° [ +]1%0 ) (0M1®

), (2.6)

where J >0 is the exciton coupling parameter.

Upon simplifying, the Hamiltonian can be written as a sum of zero-excitation, single excitation
and double excitation terms. In fact, these subspaces are completely uncoupled from each other. At
ordinary light intensities, it is sufficient to restrict attention to the single excitation Frenkel subspace,
whose Hamiltonian is

e =B + Iy + B+ o |0 Y100 | (B By + B + B2, )|011°) (017

2.7)
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Defining the state with chlorophyll A excited as ‘right’, and that with chlorophyll B excited as ‘left’, i.e.,

|R)=[1"0"),

Ly=[01°), (2.8)
dropping additive constants and simplifying the expression, the single excitation Hamiltonian becomes

A

H

single

Jj=1
with

Hy=(E" + ) R)(R|+ (3 + B7 )| L)(L| = (|R)(L|+[L)(R) == (|R)(L|+|L)(R

) (2.10)

where the second equality follows by noting that for the isolated dimer E} +E°=E}+E}, and
readjusting the zero of energy.

Eq. (2.9) is a Hamiltonian for two states coupled to a doubly degenerate harmonic bath, but it is
not in the usual spin-boson form. Instead, the R state corresponds to a surface centered about
qf =d,, qf =0, while the L state corresponds to a parabolic potential surface centered about
qf =0, qf’ =d,. These surfaces are illustrated in Figure 1 for same-frequency normal modes of the two
monomers. This arrangement of the vibrational potential surfaces suggests the transformation



Fig. 1. Schematic illustration of normal mode potential surfaces and coordinate transformation for a
single vibrational mode of the ground (blue) and the two singly excited (red) monomers in the
chlorophyll dimer. The shaded blue and red circles illustrate the vibrational density for initial
conditions (i) and (ii). The shaded green ellipse (the projection of the blue circle) indicates the
vibrational density in the space of the coupled difference normal mode coordinate for initial
condition (i).
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In these new coordinates, the single excitation Hamiltonian becomes
I 3| AR /)
=H,+) | L+ +-—mw me:;
single 0 = m 2 j \/—
(2.12)
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where P, and p; are the corresponding conjugate momenta.

As can be seen in Fig. 1, the sum coordinate Q; is not coupled to the electronic states. Thus this
coordinate does not play a role in the energy transfer and can be removed from the dimer Hamiltonian.
The potential minima of the singly excited states lie along the ¢; coordinate and are shifted by dj/\/z
when the dimer is in the R state, and by —d j/ﬁ when the dimer is in the L state. After dropping the
uncoupled Q; terms, the chlorophyll dimer Hamiltonian takes the familiar spin-boson form

A A

——JO' +Z( p +— ma)q —cqaj H,+H,, , (2.13)

where I:I0 =—Jo, is the electronic part, c; = dj.ma)f. /2, and o, ,o, are the usual Pauli spin matrices.
In this Hamiltonian, the couplings to the “bath” are reduced from those in a single chlorophyll by a factor
of /2. The reason for this decrease is the increase in the actual distance between the vibrational



potential minima, which (as seen from Fig. 1) is given by the hypotenuse of the triangle, while the
distance of the coordinates corresponding to left and right states in Eq. (2.13) remains equal to 2. The
chlorophyll dimer Hamiltonian is similar to the form employed by Tiwari et. al., ** which was suggested
based on physical arguments pertaining to symmetric and antisymmetric vibrations.

II1. Imitial conditions

We assume that at =0, BChl A is placed in the excited electronic state, i.e., the initial density
matrix is given by

M (0)=[1°07) (10| 53 (0). 3.1

and consider the following two possibilities for the vibrational degrees of freedom:

(i) Franck-Condon excitation. The vibrational modes of each BChl are initially in equilibrium with the
ground electronic state of that monomer,

rA

ﬁéf (0) — e’ﬁho,»ib e’ﬂh}ﬁwh , (32)

where f=1/k,T is the reciprocal temperature. This initial condition is consistent with a Franck-Condon
transition. The matrix element of the Boltzmann operator for the quadratic vibrational modes of BChl «
in its ground electronic state has the form”

<qla e—ﬁ’;&vm

qa> = Kﬁexp[_’l.f (q;a )2 —4 (q.7 )2 B “fq-;aq-ﬂ )
j=1

where x, A, and u; are constants that depend on the mode frequencies and the temperature. Using the
coordinate transformation relations of section II, we obtain

2 2 ! ’ r r
(47) +(4}) =0 +a}, d}*a) +4}4 =00, +d}q;. (3.4)

Multiplying the Boltzmann operator matrix elements for the two monomers and using Eq. (3.4), we arrive
at the result

< q* | o Pt qA>< q”® | o P

qB> =K’ eXP[_ﬂj (0 +4;+ 0 +47 )~ 1,(0/0, + 44, )] (3.3)

Since only the difference coordinates contribute to the dynamics, the vibrational component of the initial
density is

wexp[~2, (a7 +4}) - mda, |=(ae" ). (3.6)



i.e. the density operator for the bath is given by

_ ﬁ’ funshitied

Pun (0) ——7 prE (3.7)

where

“;;h‘ﬂ“‘ Z[—'f' ma)j 12] (3.8)
is the Hamiltonian for the bath degrees of freedom in Eq. (2.13). The density of Eq. (3.6) is shown
schematically in Fig. 1.
(ii) Equilibrated excited state. As a second possibility, the vibrational modes of the initially excited
BChl are assumed to have equilibrated with the excited electronic state of that pigment prior or the onset
of dynamics on the singly excited Hamiltonian, i.e.,

’eﬁf (0) — e*ﬁ/;ﬁmh e*ﬂf‘r‘ﬁvih . (39)

In this case the Boltzmann matrix element for pigment A is given

_piA
<q/A |e Bhi iy qA
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=

while for pigment B it still has the form of Eq. (3.3). Using again the coordinate transformations of the
previous section and performing some straightforward algebra, we find
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One sees that the contribution of the coupled difference coordinate is

, d,Y d, Y d; d, | g
xexp| =4, | 4; VA ~A 4= \/5 | 4 - N qj_ﬁ =(q'[e”™ |q), (3.12)

i.e. the density operator for the bath is given by
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i.e. the initial state is in this case the Boltzmann distribution for the effective bath modes in equilibrium
with the initially excited R-localized electronic state.

IV. Static disorder

Chlorophyll molecules are integral components of the photosynthesic apparatus of plants and
bacteria, where they are embedded in light harvesting chrlorophyll-protein complexes. The present
treatment of the BChl vibrations in terms of normal modes, with parameters obtained from experimental
Huang-Rhys factors, does not allow embedding the BChl dimer in its protein scaffold. The slow motions
of the protein (those which occur on time scales much longer than those of EET dynamics) are commonly
modeled as a static disorder, which affects the energies of the two exciton states by varying amounts. In
addition to presenting accurate quantum mechanical results for the symmetric dimer, in the next section
we report a qualititave picture of the effects of sluggish protein motion by accounting for static disorder in
the exciton-vibration dynamics. We emphasize that the static treatment of disorder cannot account for the
dissipative effects of phonon-like protein degrees of freedom on the population dynamics of the BChl
dimer. If protein fluctuations were to be included, the dephasing effects from a large number of modes
with characteristic times of the order of the EET would lead to additional quenching of the oscillatory
patterns observed in our calculations.

To this end, we return to Eq. (2.10) and allow the ground and excited state energies of the two
BChl monomers to differ. Defining the parameter & = %[(EIA -E} ) - (EIB -E} )] (i.e. half the excitation
energy of the two molecules) and adjusting the zero of energy, the singly excited electronic Hamiltonian
becomes

H,y=&(|R)(R|-|L){(L|) - J (|R){L|+|L)(R|)=-Jo, + 0, . (4.1)
In the calculations presented in the next two sections we assume that the excitation energy difference is

normally distributed around its mean value & , with a standard deviation o .

V. Parameters and methods

Ritsep et. al."® have reported Huang-Rhys factors for the electron-phonon couplings for the 50
most strongly coupled BChl vibrational modes. These parameters were used to determine the ground-



excited state mode displacements and thus the coupling coefficients in Eq. (2.13). The collective effects
of the bath are captured in the spectral density function,

2
C

J(a)):%zm;} 5(0-a)) (5.1)

The spectral density of the bath corresponding to the transformed BChl dimer Hamiltonian of Eq. (2.13)
is shown if Figure 2. It is clear that the intricate structure of the BChl spectral density cannot be
accounted for by simple analytical models.

J(o)

bl ‘\II.M IIM‘. ‘ ‘
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Fig. 2. Spectral density for the bacteriochlorophyll dimer (in arbitrary units).

For the isolated BChl dimer, the only other parameter needed is the electronic coupling J. A
number of methods have been used to compute this parameter in the antenna complexes of photosynthetic
bacteria. For LH2, most reported values are in the range 200-400 cm™ range. In this work we present
results with the intra-dimer coupling parameter J =363 cm™ obtained by Tretiak and Mukamel® and
also for the intra- and inter-dimer coupling values 315 and 245 cm™' reported by Freiberg et al. ** We also
present calculations for a smaller value of the electronic coupling, J=181cm™. The standard deviation
for the static disorder parameter is o =220cm™".%

The reduced density matrix that corresponds to Eq. (2.13) is given by

Py (1) =To (e " p(0)* ), ij=R.1 62)

The diagonal elements of Eq. (5.2) give the populations of the two BChl excited states, the population
P(t) of the excited state of BChl A is given by

P(t) = Pre (Z) (5.3)
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For an initial state corresponding to the excitation localized on monomer A, the initial density operator
has the form

e - ﬂ ﬁbath

p(0)=|R)(R| (5.4)

Tre_ﬁﬁbarh

where, according to the results of section III, the bath Hamiltonian is either unshifted or shifted.

The populations of the two exciton states are obtained using the quantum-classical path integral
methodology. The QCPI formulation’®"? involves summing the amplitudes of the quantum paths of the
two-state system, which are augmented by semiclassical phases obtained along classical trajectories.
Each classical trajectory hops between the two electronic states as dictated by a particular quantum path,
thus the number of trajectories from each phase space initial condition is equal to the number of paths of
the electronic system. The memory quenching effects of the environment are exploited to prevent the
exponential proliferation of trajectories.”®*!#2 Once converged with respect to the path integral time step
and the memory time, the QCPI expression produces rigorous quantum-classical results, which are free of
any assumptions or adjustable parameters. The integration with respect to trajectory initial conditions is
performed using Metropolis sampling®® with 35,000 initial conditions.

In the particular case of a harmonic bath, the QCPI formulation reverts to the full quantum
mechanical expression.” Since the BChl vibrations are treated in terms of normal modes which involve a
quadratic potential function, the QCPI calculations on the BChl dimer produce numerically exact results.
Further acceleration of the calculation for this harmonic environment is possible by exploiting the
cumulative treatment of the harmonic bath back-reaction.’*35 The phase space average with respect to
trajectory initial conditions is performed via Metropolis sampling.®

The QCPI results presented in the next section converged with a time step equal to 4.84 fs. The
QCPI calculations were performed with a memory length equal to 48.38 fs in the case of initial condition
(i), and 29.04 fs for initial condition (ii).

0.35 T T T T T T T T T T T T

Fig. 3. Weights corresponding to various different asymmetries obtained using a Gauss-Hermite
discretization.
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The effects of static disorder are included by averaging the QCPI population results with respect
to the excitation energy difference ¢, assuming® that the energy of the excited state of each of the
chlorophyll monomers follows a Gaussian distribution with mean equal to & and standard deviation
o =220cm™" .3 Therefore the excitation energy difference 2& is sampled from a Gaussian with standard
deviation v/2 x220 cm™ .

The average over the asymmetry parameter is performed using a Gauss-Hermite quadrature with
41 grid points. Figure 3 shows a histogram of the points, along with their weights. It is seen that only 13
grid points have a weight greater than 0.001. We have performed calculations for these points and
averaged the obtained populations.

VI. Exciton population dynamics

In this section we present the results of our calculations. Figure 4 shows the population dynamics
of the BChl A excited state for a symmetric dimer (i.e., € =0) at 7=300K for the electronic coupling
values J =363,315,245,181 cm™ .>*% The tunneling splitting of the electronic state doublet is equal to
2J, which for J=363cm™ corresponds to an oscillation with period ~54 fs. The coupled vibrations
introduce dissipative effects, and the electronic populations exhibit underdamped oscillations. Decreasing
the value of J slows down the population oscillations and leads to faster damping, as the coupling to the
decohering vibrations is effectively stronger for a smaller value of the electronic coupling.

The two initial conditions discussed in section III are seen to lead to small differences in the
dynamics, which are more prominent at short times. With the Franck-Condon initial condition (i), the
density of the vibrational modes is initially in between the potential minima of the R and L states, thus it
has more energy compared to the case of initial condition (ii). As a result, the vibrational bath has a
slighty higher effective temperature in this case, causing faster damping of the oscillatory population
dynamics. The slower dynamics that arise with smaller J values are less susceptible to effects brought
about by the initial distribution of the vibrational modes, as the bath equilibrates on a time scale faster
than the electronic motion in this case.

The population curves in Fig. 4 do not have the familiar smooth curvature commonly seen in
spin-boson dynamics with model spectral densities. (For example, the red data points in Fig. 4a have the
appearance of a hand-drawn curve.) As evidenced by the small size of the error bars, these features are
not a consequence of Monte Carlo noise, and they are not the result of numerical error. Rather, they are a
manifestation of the richness of the true BChl normal mode spectral density, which is characterized by
wildly varying Huang-Rhys factors. These characteristics cannot be captured by simple, analytic spectral
density functions defined in terms of just two or three parameters, and thus they have not been observed
in previous theoretical calculations. The complexity of time scales in the BChl dimer vibrational bath is
more prominent in the early time dynamics, in particular in the case of initial condition (i) which
corresponds to an initially unrelaxed (i.e. more energetic) bath. As time progresses, relaxation of the bath
leads to smoother dynamics. The population curves obtained with smaller J values exhibit slower
oscillations, and the early effects of the unrelaxed multimode bath are less noticeable.

Upon close examination, the envelop of the oscillations in P(¢) obtained with the higher J values
is seen to follow an unusual nonexponential pattern, i.e. the population at the second recurrence is only
slightly diminished compared to that at the first recurrence. Again, this trend is different from that
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observed in typical spin-boson calculations with analytical spectral densities. The observed behavior is a
consequence of the very long memory of the BChl vibrational bath. As the value of J is decreased, the
normal mode frequency distribution is effectively higher, leading to less dramatic memory effects.

Next, we examine the effects of static disorder for the calculated electronic coupling value
J =315cm™" *® In Figure 5 we show the excited state population of pigment A for the asymmetric dimer
Hamiltonian modeling static disorder. The energy splitting is now given by 2vJ> +&° . As expected,
strongly asymmetric configurations give rise to localized eigenstates of the singly excited Hamiltonian,
which disrupt the tunneling dynamics, leading to only mildly oscillatory evolution.

1 — . — 1 — — .
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06 | * 086 - b
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04 ] 04 - b
02| 7 02 1
0 1 1 ‘ 1 ‘ 1 1 0 1 1 ‘ 1 1 | 1
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
t, ps t, ps
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0.8 - 08 r b
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g X
04 g 04 i
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0 T . [ 0 L \ L [
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Fig. 4. Excited state population of pigment A in a symmetric dimer as a function of time at T = 300
K. Red and black correspond to vibrational initial conditions (i) and (ii), respectively. Top
left: J=363cm™. Top right: J=315cm™. Bottom left: J=245cm™ . Bottom right:
J =181cm™ . The Monte Carlo error bars indicate one standard deviation.

Figure 6 shows the averaged population with respect to the Gaussian distribution with mean
asymmetry parameter £ =0, and compares to the population of the symmetric dimer. It is seen that static
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disorder leads to a slight blue shift of the central frequency and considerable damping of the oscillation.
Similar results are presented in Figure 7 for asymmetry distributions with mean z =+151.8cm™. In all
cases, the effects of different bath initial conditions are still noticeable in the averaged population

dynamics.
Our results show no evidence of EET enhancement by a vibrational mode resonant with the

electronic transition energy.?® Instead, the change in the population dynamics is the collective result of all
coupled vibrational modes, and the main effect is damping of the oscillations.
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Fig. 5. Excited state population of pigment A as a function of time at 7= 300 K for various value
of the disorder parameter with J =315 em™ . Black, £=0; blue, £ =+151.8cm™; red:
£=74303.7cm"; green: &=+456.1cm’'; orange: &=2609.2cm". Lines with dots

correspond to positive values of ¢ . Left: initial condition (i). Right: initial condition (ii).
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Fig. 6. Excited state population of pigment A with J =315 cm 'at T=300 K. Black: symmetric
dimer, ¢ =0. Red: population averaged with respect to the static disorder parameter with
mean value & =0. Left: initial condition (i). Right: initial condition (ii).
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Fig. 7. Excited state population of pigment A, averaged with respect to the static disorder parameter,
with J =315cm 'at T=300 K. Black: mean of static disorder distribution at &£ =0. Blue: :
mean of static disorder distribution at £=-151.8cm™. Red: mean of static disorder
distribution at £ =151.8cm™'. Left: initial condition (i). Right: initial condition (ii).

VII. Discussion and concluding remarks

In this paper we have presented numerically exact, fully quantum mechanical simulations of EET
dynamics in BChl dimers, where all 50 coupled vibrational modes of each BChl accounted for with the
precise parameters obtained from experimental Huang-Rhys factors. To our knowledge, the present study
is the first to treat all BChl normal modes explicitly with spectroscopic accuracy. By avoiding the use of
model spectral densities, which can alter significantly the characteristics of the vibrational modes, our
results provide a quantitative picture of exciton-vibration dynamics in BChl dimers. The population
curves exhibit characteristics that are not present in earlier calculations employing model spectral
densities. These features stem from the complexity of the BChl vibrational bath.

The transformation presented in sections II and III shows that the Hamiltonian for the BChl
dimer, where the electonic states are coupled by Frenkel exciton terms, and each electronic state includes
the vibrational normal modes of each pigment, can be mapped exactly on the familiar spin-boson
Hamiltonian where the two sites are coupled to a common bath of modes with rescaled parameters. Initial
conditions reflecting a Franck-Condon excitation or a vibrational state pre-equilibrated with the excited
BChl are mapped, respectively, to unshifted and shifted bath initial conditions.

The work presented here focuses on an isolated BChl dimer, for which the QCPI results presented
in section VI show that the excitation energy oscillates persistently between the two pigments under
physiological conditions. Static disorder arises from @ — 0 degrees of freedom of the environment,
whose slow modulation compared to the TLS dynamics is equivalent to an ensemble of asymmetric TLS
configurations. Asymmetry tends to cause a suppression of tunneling, leading to some damping of the
oscillations. We emphasize that the static disorder treament of the medium is incapable of accounting for
the dissipative role of phonon-like modes in the actual protein enviroment. Thus, if the dimer were to be
embedded in its protein scaffold, the additional dynamic disorder from the dephasing effects of sluggish
protein motion would lead to further suppression of the oscillatory features in the population dynamics.
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Calculations investigating the effects of the protein enviroment found in light harvesting systems,
monitoring the relaxation following excitation of an electronic eigenstate of the dimer, and also exploring
the EET dynamics in longer BChl chains and rings, will be reported in future papers by our group.
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