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Abstract—The robust optimization based dynamic economic
dispatch (DED) model has been extensively studied to address
uncertainties of net loads induced by renewable energy resource
variabilities and demand fluctuations. However, the robust DED
model is computationally expensive, when solved by the column-
and-constraint generation (CCG) approach that iterates between a
master problem and a max-min subproblem. This letter proposes
a feasible region projection-based approach to equivalently refor-
mulate the robust DED as a single-level linear programming (LP)
model that can be effectively solved while guaranteeing solution
optimality. Numerical studies show the proposed approach is one
order of magnitude faster than CCG.

Index Terms—Economical dispatch, feasible region projection,
Fourier-Motzkin elimination, robust optimization.

I. INTRODUCTION

RENEWABLE energy resources and flexible demand assets
are being proliferated in power systems within the last decade

to enhance energy sustainability and efficiency. However, because
these resources are volatile in nature, the associated uncertainties
could significantly deteriorate forecast accuracy of net loads (i.e.,
actual load minus renewable output), posing potential threats on
operation security of power systems. Robust optimization based
dynamic economic dispatch (DED) has been recently studied to
derive operation solutions that are immune against uncertainties.
Specifically, a robust DED model seeks for optimal generation
dispatches to meet forecast loads, while leveraging flexibilities of
generation resources to guarantee system security against net load
fluctuations. However, robust DED, as a semi-infinite programming
in nature, is computational expensive in general.
This letter discusses a feasible region projection-based approach

to solve the robust DED problem, with which the robust DED
problem is reformulated as a single-level linear programming (LP)
problem that can be solved efficiently. Indeed, the proposed ap-
proach could be one order of magnitude faster than the widely used
column-and-constraint generation (CCG) method [1], which has to
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compute a mixed-integer linear programming (MILP) counterpart
of a bi-level max-min subproblem and perform an iterative proce-
dure between the master problem and the subproblem [2], [3].
The rest of the paper is organized as follows. The robust DED

model is discussed in Section II. The proposed feasible region
projection based LP solution methodology is presented in Sec-
tion III. Numerical case studies are conducted in Section IV, and
the conclusions are drawn in Section V.
Throughout this letter, buses and lines are collected in setsIand

L, indexed byiandl;GandFdenote sets of generators and loads,
indexed bygandf;GiandFidenote sets of corresponding assets
connected at busi; scheduling time intervals are collected inT,
indexed bytandt.

II. ROBUSTDED MODEL

The robust DED model is formulated as in (1)–(12), adopting
the shift factor-based DC power flow calculation. The objective
is to minimize the total operating cost (1), constrained by system
active power balance (2), line flow limits (3), and ramping limits
(4) and dispatch ranges (5) of individual generators. Additionally,
generator dispatches are restricted within the feasible regionPtas
in (6), whilePtas defined in (7) describes that any load fluctuation
bounded in the box uncertainty setUf,t(8) can be handled by
adjusting dispatches of generators frompg,tto (pg,t+Δpg,t).
Dispatches after adjustment need to meet active power balance (9),
line flow limits (10), as well as adjustment ability limits of individual
generators (11)–(12).Cgis the energy price of generatorg;ΔTis
the duration of one time interval; the dispatch of generatorgat time
tis denoted aspg,t;Pf,trepresents forecast value of loadfat time

t;SFl,iis the shift factor of busito linel,andP
UB
l is the flow

limit of linel;RUBg ,P
LB
g /PUBg ,andΔPUBg are respectively the

ramping ability, the lower/upper power bound, and the adjustable
ability of generatorg.

P1: Robust DED Model

min

t∈Tg∈G

Cg·pg,t·ΔT (1)

g∈G

pg,t=
f∈F

Pf,t t∈T (2)

−PUBl ≤
i∈I

SFl,i·

⎛

⎝

g∈Gi

pg,t−
f∈Fi

Pf,t

⎞

⎠≤PUBl ;

l∈L,t∈T (3)

−RUBg ≤pg,t−pg,t−1≤R
UB
g ; g∈G,t∈T (4)
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PLBg ≤pg,t≤P
UB
g ; g∈G,t∈T (5)

{pg,t|g∈G}∈Pt; t∈T (6)

Pt:={pg,t|∀uf,t∈Uf,t,∃Δpg,tsuch that(9)–(12) are met;

f∈F, g∈G}; t∈T (7)

Uf,t:= uf,tU
LB
f,t ≤uf,t≤U

UB
f,t ;f∈F,t∈T (8)

g∈G

pg,t+Δpg,t =

f∈F

Pf,t+uf,t;t∈T (9)

−PUBl ≤
i∈I

SFl,i·
g∈Gi

pg,t+Δpg,t−

f∈Fi

Pf,t+uf,t ≤PUBl ; l∈L,t∈T

(10)

−ΔPUBg ≤Δpg,t≤ΔP
UB
g ; g∈G,t∈T (11)

PLBg ≤pg,t+Δpg,t≤P
UB
g ; g∈G,t∈T (12)

III. FEASIBLEREGIONPROJECTIONBASEDSOLUTION
METHODOLOGY FORROBUSTDED

A. Feasible Region Projection Method

We consider a system of linear constraints with respect to two
sets of variablesX andY as in (13), whereM X andM Y are
coefficient matrices andN is a vector of constants.

M X ·X+M Y·Y≤N (13)

Definition:The feasible region projection of (13) onto the space
ofX is to identify a set of linear constraints (14) that only involve
X,forwhichif̂X is feasible to (14), there must exist̂Y, such that
X̂ together witĥYis feasible to (13).

AX ·X ≤B (14)

In (14), coefficient matrixAX and constant vectorBare gener-
ated via the feasible region projection algorithm. Indeed, it is always
desirable to generate (14) as compact as possible, i.e., containing
as fewer redundant constraints as possible.
For the specified robust DED problem, with respect to a certain

pair of solutions topg,tanduf,t, constraints (9)–(12) focuses more
on the existence ofΔpg,tinstead of its exact solution. To this end,
we takeΔpg,tas variables to be projected off, namelyYin (13).
We perform the feasible region projection of (9)–(12) from the

space of{pg,t,Δpg,t,uf,t}to the space of{pg,t,uf,t}via two
steps: (i) equality constraint (9) is used to eliminate variableΔp̂g,t
of an arbitrarily selected unitĝ, by substitutingΔp̂g,tin (10)–
(12) via f∈F(Pf,t+uf,t)− g∈G/{̂g}(pg,t+Δpg,t)−p̂g,t;

(ii)Fourier-Motzkin elimination[4] is used to eliminate remaining
Δpg,tvariables. Finally, a set of linear constraints (15) can be

obtained, whereAGh,g,tandA
U
h,f,tare generated coefficients and

Δpg,tis eliminated. We collect all generated constraints inHt,
indexed byh.

g∈G

AGh,g,t·pg,t+
f∈F

AUh,f,t·uf,t≤Bh,t; h∈Ht (15)

With (15) being the projection of constraints (9)–(12) onto the
space of{pg,t,uf,t}, constraint (7) can be equivalently reformu-
lated as in (16), i.e., guaranteeing that for∀uf,t∈Uf,t,∃Δpg,t,

together with the givenpg,t, is feasible to (9)–(12). That is, (7) is
met. To this end, modelP1can be equivalently reformulated as
modelP1’.

P̃t:={pg,t|∀uf,t∈Uf,t,(15)is met;f∈F,g∈G};
t∈T

(16)

P1’: Robust DED Model With Feasible Region Projection

Objective: (1)
Subject to: Constraints (2)–(5), (8), (15)–(16)

{pg,t|g∈G}∈P̃t;t∈T (17)

B. LP Based Solution Methodology

Solving modelP1’remains challenging, as it still involves an
infinite number of constraints as described in (16). Indeed, accord-
ing to the definition ofP̃t, as constraint (15) must be satisfied
for∀uf,t∈Uf,twhilepg,tis independent ofuf,t,P̃tcan be
equivalently reformulated via a finite number of constraints as in
(18), whereDh,f,tis defined as in (19). The basic idea is that
constraint (15) is satisfied for∀uf,t∈Uf,tif and only if it is
satisfied against the worst-case realizations ofuf,t[5]. In fact, at
each timet, for each constrainthin (15), the worst-case realization
ofuf,tfor positive/negativeA

U
h,f,tis its upper/lower bound, namely

UUBf,t/U
LB
f,t, while the corresponding maximum possible value is

f∈FDh,f,t.
Finally, the robust DED model with feasible region projection

P1’can be equivalently reformulated as modelP2by identifying the
worst-case situation of individual constraints referring [5]. Model
P2is an LP problem that can be solved efficiently via commercial
solvers.

P2: LP Based Robust DED Model

Objective: (1)
Subject to: Constraints (2)–(5)

g∈G

AGh,g,t·pg,t+
f∈F

Dh,f,t≤Bh,t;h∈Ht, t∈T (18)

Dh,f,t=
AUh,f,t·U

UB
f,t;A

U
h,f,t≥0

AUh,f,t·U
LB
f,t;A

U
h,f,t<0

;f∈F,h∈Ht,t∈T

(19)

Theorem 1:P1andP2are equivalent, i.e., the optimal solution
toP2is also optimal toP1.
Proof:We first claim that P1andP1’are equivalent, which

can be naturally proved via Theorem 1 of reference [6]. Next,
we show the equivalence ofP1’andP2. The difference be-
tweenP1’andP2is that constraints (8) and (15)–(17) are re-
placed by (18)–(19). Based on the reformulation approach in
[5], we can obtain that (15) is met for∀uf,t∈Uf,tif and only

ifmaxuf,t∈Uf,t( g∈GA
G
h,g,t·pg,t+ f∈FA

U
h,f,t·uf,t)is met,

while the maximum value can be calculated via (18)–(19). This
concludes thatP1andP2are equivalent. Q.E.D.

C. Discussions on Computational Burden and Practical
Applicability of Feasible Region Projection

A well-known weakness of theFourier-Motzkin eliminationis
its theoretically exponential complexity. The Imbert’s acceleration
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theorems [4] can be used to accelerate computational performance
by filtering out redundant inequality constraints generated during an
iterative elimination process, thereby mitigating the rapid growth of
constraints. Beyond that, we apply a strategy to identify non-binding
constraints by leveraging known boundaries of variablespg,t,uf,t,
andΔpg,t. That is, for a constraint in the standard “≤” form, its
maximum possible value can be calculated by substituting a variable
with a positive/negative coefficient via its upper/lower bound. If the
maximum possible value is strictly less than the right-hand-side, this
constraint is redundant and can be dropped. In this letter, we refer
to this computationally inexpensive strategy as boundary filtering.
More details about boundary filtering can be seen in [7]. Other
advanced filtering strategies with stronger filtering ability could be
applied to further squeeze redundancy as needed [8], at the cost of
higher computational complexity.
Moreover, in practice, the number of line flow constraints (10)

to be monitored is limited, and the number of generators that are
able to provide adjustment (11)–(12) against uncertainties is also
limited. This could further contribute to reducing computational
burden of feasible region projection.
As the robust DED is executed in a rolling manner by leveraging

the most recent load forecastsPf,tto instruct real-time operation,
the robust DED execution, including model building and solving,
is time restricted. Therefore, it is preferable to construct̃Ptoffline
and apply it online to repeatedly solve robust DED in real-time.
To achieve this, we further pickPf,tas retained variables in the
projection, which further modifies (15) as (20). In this way, (20)
can be prepared offline without knowing exact values ofPf,t,and
becomes reusable in multiple executions of the robust DED in real-
time. To apply the boundary filtering, boundaries ofPf,tanduf,t
can be enlarged to enclose all possible forecast values. In each
execution of robust DED,Pf,tin (20) can be substituted by the
most recent load forecast value, after which (20) degenerates to the
form of (15).

g∈G

AGh,g,t·pg,t+
f∈F

AUh,f,t·uf,t+Pf,t ≤Bh,t;

h∈Ht (20)

IV. CASESTUDIES

The robust DED with a 5-minute time interval at a 2-hour
look-ahead timeframe (i.e., 24 time intervals) is implemented on a
modified IEEE 30-bus system, to evaluate the proposed approach in
terms of solution quality and computational performance. Modifica-
tions on this system include increasing the load level and reducing
line flow limits. In the test system, all generators are considered
adjustable, and 29 out of the 41 lines are monitored with line flow
limits (10). Uncertainty boundaries are set as symmetrical (i.e.,
−ULBf,t =U

UB
f,t ) and proportional to the corresponding load of each

time interval. The detailed test system data can be found in [7].
The feasible region projection program, includingFourier-

Motzkin eliminationand boundary filtering strategies, is imple-
mented via Python. Robust DED models are implemented in MAT-
LAB, and solved by Gurobi 8.0.1. Furthermore, MILP problems
are solved to the zero MIP gap for fair comparison. All numerical
simulations are executed on a PC with i7-3.6 GHz CPU and 16 GB
RAM.
Constraints (9)–(12) are projected to eliminate variablesΔpg,t

and obtain constraint (15)/(20), which further derives constraint
(18). Specifically, adopting (15) to individual time intervals leads

TABLE I
COMPARISON OFCOMPUTATIONALPERFORMANCE

to different sets of constraints (18). For instance, the number of
constraints (18) att=1 is 2,577; while adopting (20) and treating
Pf,tas variables, the same set of 3,457 constraints is generated for
individual time intervals. Indeed, feasible region projection only
needs to be executed once to generate (20), while it is conducted
multiple times to generate (15) for individual time intervals. How-
ever, more constraints are generated when (20) is used, because in
order to fully cover variation ranges ofPf,tanduf,tfor all time
intervals, their upper and lower bounds have to be enlarged and the
performance of boundary filtering is weakened.
The average processing time to generate (15) for each time

interval is about 60.62 seconds, and is about 78.74 seconds to
generate (20). However, since (15) and (20) can be prepared offline
beforeP2is executed, it is reasonable to exclude this processing time
from the execution time of robust DED in the following comparison
analysis.
We solve the proposed LP-based robust DED model P2with

constraints (15) and (20), respectively, and compare them with
modelP1solved via the CCG approach, which employs an iterative
procedure between an LP master problem and an MILP subproblem
that reformulates the bi-level max-min problem [2]. We note that
computational cost of repeatedly solving MILP subproblems is
dramatically high, especially when seeking for small MIP gaps.
In addition, LP/MILP models have to be built repeatedly during the
iterative procedure, which also increases the actual execution time.
Table I shows that the proposed approach for solvingP2, either

through (15) or (20), and the CCG approach, yield the identical op-
timal solution. However, computational efficiency of the proposed
approach dramatically outperforms the CCG approach. The major
saving in execution time comes from avoiding repeatedly building
and solving MILP subproblems involved in the CCG approach.
To be more specific, execution time of the proposed approach by
adopting (20) includes the model building time of 0.95 seconds
and the model solving time of 0.32 seconds. By contrast, for the
CCG approach, the average model building and solving time of
subproblems are 1.27 and 0.98 seconds, and the total time spent on
subproblems over 5 iterations is about 11.25 seconds, representing
67% of the whole execution time. In addition, it can be seen from
Table I that (15) shows negligible improvement over (20) in terms
of computational performance, although it has around 25% fewer
constraints.

V. CONCLUSION

This paper proposes a feasible region projection based approach
to reformulate the robust DED model as a single-level LP problem
that can be solved effectively while guaranteeing the same solution
optimality. Numerical studies show the proposed approach is one
order of magnitude faster than CCG, by avoiding solving the MILP
counterpart of bi-level max-min subproblems as well as the iterative
procedure between the master problem and subproblem.
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