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ABSTRACT

Domain adaptation methods have been introduced for auto-filtering disaster tweets to address the 
issue of lacking labeled data for an emerging disaster. In this article, the authors present and compare 
two simple, yet effective approaches for the task of classifying disaster-related tweets. The first 
approach leverages the unlabeled target disaster data to align the source disaster distribution to the 
target distribution, and, subsequently, learns a supervised classifier from the modified source data. 
The second approach uses the strategy of self-training to iteratively label the available unlabeled target 
data, and then builds a classifier as a weighted combination of source and target-specific classifiers. 
Experimental results using Naïve Bayes as the base classifier show that both approaches generally 
improve performance as compared to baseline. Overall, the self-training approach gives better results 
than the alignment-based approach. Furthermore, combining correlation alignment with self-training 
leads to better result, but the results of self-training are still better.
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INTRODUCTION

From user groups, online forums, to Facebook, Twitter, Instagram, YouTube, social media platforms 
have become ubiquitous. The use of social media is particularly prevalent during emergencies. 
For instance, the Federal Emergency Management Agency (FEMA) wrote in its 2013 National 
Preparedness report (Maron, 2013) that during and immediately following Hurricane Sandy in 2012 
“users sent more than 20 million Sandy-related Twitter posts, or tweets, despite the loss of cell phone 
service during the peak of the storm.” Such huge amounts of user-generated data contributed by disaster 
affected communities have become an important source of big crisis data for disaster response (Castillo, 
2016; Reuter & Kaufhold, 2018), and at the same time have been used by the public at large to make 
sense of an event from social media (Stefan, Deborah, Milad, & Christian, 2018). Many research and 
practical studies have proved the value of social media data on disseminating warning and response 
information, enhancing situational awareness, facilitating allocation of resources, informing disaster 
risk reduction strategies and risk assessments (Watson, Finn, & Wadhwa, 2017; Reuter, Hughes, & 
Kaufhold, 2018; National Research Council, 2013), as well as fostering community resilience (Zhang, 
Drake, Li, Zobel, & Cowell, 2015). Despite these benefits, the challenges presented by the volume 
of the data still preclude large emergency organizations from using them routinely (Meier, 2013).
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Manually sifting through voluminous streaming data to filter useful information in real time is 
inherently impossible. Machine learning techniques show promising results in automating the process 
of identifying useful, relevant and trustworthy information in big crisis data (Qadir et al., 2016), 
despite many practical challenges (Mendoza, Poblete, & Castillo, 2010). Many works have successfully 
used supervised learning algorithms to automatically classify tweets (Caragea, Squicciarini, Stehle, 
Neppalli, & Tapia, 2014; Imran, Elbassuoni, Castillo, Diaz, & Meier, 2013). Supervised algorithms 
require labeled training data to learn classifiers that can be further used to label new data of the 
same type (also called test data). The labels generated for the test data are usually accurate when the 
training and the test data are drawn from the same distribution.

The requirements above result in two main challenges that machine learning algorithms face 
when used to classify user-generated tweets about emerging disasters such as floods, hurricanes, 
and terrorist attacks. First, labeled data is not easily available for an emergent “target” disaster for 
which a classifier is needed to help disaster response teams identify relevant tweets, and ultimately 
information useful for situational awareness. Labeling data is an expensive and time-consuming 
process, which does not provide a real-time solution for disaster response. Labeled data from a 
prior “source” disaster can potentially be used to learn a supervised classifier for the target disaster 
(Starbird, Palen, Hughes, & Vieweg, 2010). However, another challenge is posed by the fact that 
data from the “source” disaster and data from the target disaster may not share the same distribution 
(or characteristics), and the classifier learned from the source may not perform well on the target.

We attempt to address these problems by leveraging domain adaptation approaches that use 
both labeled source data and unlabeled target data, which is accumulating quickly during a disaster. 
More specifically, we define our problem as follows: given labeled tweets from a source domain, and 
unlabeled tweets from the target domain, the goal is to train a domain adaptation classifier to label 
tweets from the target domain. There are several types of approaches to address this problem (Pan 
& Yang, 2010). Most relevant to this work, there are approaches that use the unlabeled target data 
to change the representation or the distribution of the source data in a way that makes it possible to 
use classifiers learned from source to predict the target accurately (Daumé III, 2007; Sun, Feng, & 
Saenko, 2016). We refer to this type of approach as feature-based domain adaptation. Furthermore, 
there are approaches that learn classifiers from labeled source data and unlabeled target data using 
an Expectation Maximization (EM) type strategy (Dai, Xue, Yang, & Yu, 2007). Such approaches 
can be seen as parameter-based domain adaptation as they use parameters from the source domain to 
inform the parameter selection for the target domain. Correlation alignment algorithm (CORrelation 
ALignment, CORAL) (Sun et al., 2016), originally designed for images, is a feature-based adaptation 
approach that aligns the distribution of the source domain with the distribution of the target domain to 
reduce the variance shift. Self-training (Yarowsky, 1995) is a parameter-based adaptation approach. 
Previous works on using CORAL (Sopova, 2017) or self-training (Li, Caragea, Caragea, & Herndon, 
2018) independently to identify disaster relevant tweets have shown promising results. In this paper, 
we have first compared CORAL with self-training to understand which approach benefits more from 
source adaptation based on unlabeled data. We have also designed a hybrid approach that combines 
CORAL with self-training, with the goal of improving the results obtained with each independent 
approach further. We have performed experimental evaluation of the task of identifying relevant tweets, 
which is the very first step in filtering disaster information. Our main contributions are as follows:

•	 We have compared a feature-based adaptation approach (specifically, CORAL) with a 
parameter-based adaptation approach (specifically, self-training), in the context of disaster tweet 
classification.

•	 We have proposed a hybrid feature-parameter based approach that combines CORAL and self-
training adaptation approaches. The goal is to understand if the combined approach can improve 
the adaptation ability further by retaining the advantages of each individual approach.
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•	 We have evaluated the combined feature-parameter based approach on pairs of source-target 
disasters from the CrisisLexT6 datasets (Olteanu, Castillo, Diaz, & Vieweg, 2014), and compared 
it with adaptation approaches that use the feature-based approach (CORAL) or the parameter-
based adaptation (self-training) independently.

RELATED WORK

Domain adaptation has attracted significant attention during the last decade. Domain adaptation has 
been studied both theoretically (Ben-David, Blitzer, Crammer, & Pereira, 2007; Blitzer, Crammer, 
Kulesza, Pereira, & Wortman, 2008) and in applications such as NLP tasks (Daumé III, 2007; Jiang & 
Zhai, 2007a), sentiment analysis (Blitzer, Dredze, & Pereira, 2007; Tan, Cheng, Wang, & Xu, 2009), 
text classification (Dai et al., 2007), Wifi location (Pan, Tsang, Kwok, & Yang, 2009), computer 
vision and object recognition (Sun, Feng, & Saenko, 2015), disaster tweets classification (Li et al., 
2015; Li, Caragea, et al., 2018; Li et al., 2017; Mazloom, Li, Caragea, Imran, & Caragea, 2018). We 
review some simple but efficient and effective methods here, which can potentially be applied in real 
time, as applying domain adaptation on disaster-related data is time-critical.

Domain adaptation methods can be categorized into several classes based on different criteria. 
Methods in one class work by changing the representation of the source data to make it more similar 
to the representation of the target data (a.k.a., feature-based adaptation). For example, Daumé III 
(2007) proposed a very simple way to represent the source and target with duplicate features consisting 
of three versions: general version, source specific version and target specific version, under the 
assumption that some target labeled data D

Tl
 is available, in addition to source labeled data D

S
. A 

two-stage domain adaptation method was proposed by Jiang and Zhai (2007b): in the first stage a set 
of features generalizable across domains was identified, and in the second adaptation stage, a set of 
features specific to the target domain were selected. Structural correspondence learning (SCL) was 
proposed in (Blitzer et al., 2007), where the goal is to select pivot features based on common frequencies 
and also mutual information. Sun et al. (2015) also proposed a simple feature-adaptation method, the 
CORrelation ALignment (CORAL), to align the source with the target domain. CORAL performs 
the alignment by re-coloring whitened source features with the covariance of target distribution. 
Despite the simplicity of this method, the results were comparable with those of more complex, 
state-of-the-art algorithms, and this motivated us to use this approach for classifying disaster-related 
tweets.

Another class of methods is focused on classifiers that combine source labeled data with target 
unlabeled data, or even some small amounts of target labeled data, with different weights (a.k.a., 
instance-based adaptation). Jiang and Zhai (2007a) introduced an instance weighting framework 
for domain adaptation for use in NLP tasks. When the weighting is done at the parameter classifier 
level, domain adaptation approaches can be classified as parameter-based adaptation approaches. In 
this category, Dai et al. (2007) proposed a domain adaptation algorithm called Transfer Naïve Bayes 
classifier (NBTC) based on the Naïve Bayes algorithm and Expectation-maximization (EM), and 
used it to classify text documents. Tan et al. (2009) proposed a weighted version of the multinomial 
Naïve Bayes classifier combined with EM for sentiment analysis of text classification.

In recent years, several studies have focused on classifying disaster related/informative tweets with 
the goal of helping disaster response and recovery. Imran et al. (2016) researched the performance 
of the classifiers trained using different combinations of datasets obtained from past disasters. They 
performed extensive experimentation on real crisis datasets and showed that the past labels are useful 
when both source and target events are of the same type (e.g., two earthquakes). Li et al. (2015) 
proposed an unsupervised domain adaptation algorithm based on Expectation Maximization (EM) to 
classify disaster tweets. This approach made use of source labeled data together with target unlabeled 
data to build a weighted Naïve Bayes Classifier in an iterative way. The self-training procedure is run 
for a fixed number of iterations, or until convergence. Li, Caragea, et al. (2018) extended the EM-type 
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approach with a self-training strategy and showed that self-training generally performs better. Li et 
al. (2017) also performed extensive experiments to provide practical guideline for the self-training 
domain adaptation. Mazloom et al. (2018) proposed a hybrid feature-instance adaptation approach, 
based on matrix factorization and the K-Nearest Neighbors algorithm. The proposed hybrid adaptation 
approach first applied matrix factorization to reduce the dimensionality of the data, and then used 
K-Nearest Neighbors algorithm to select a subset of the source disaster data that is representative for 
the target disaster. The selected subset was subsequently used to learn accurate Naïve Bayes classifiers 
for the target disaster. Experimental results showed that the approach could significantly improve the 
performance as compared with a baseline Naïve Bayes classifier.

As deep learning approaches become dominant in many NLP tasks, there are also studies that 
apply deep learning approaches to the area of disaster response. Caragea, Silvescu, and Tapia (2016) 
explored supervised Convolutional Neural Networks (CNN) to classify informative tweets from six 
flood events. Nguyen et al. (2016) used Convolutional Neural Networks (CNN) to classify crisis 
related tweets. They assumed that some target labeled data is available and used two simple supervised 
domain adaptation techniques to combine prior source disasters data with current disaster labeled data 
during training. One was weighting the prior source disasters data, while regularizing the modified 
model. The other was simply selecting a subset of the prior source disaster tweets, specifically those 
that were correctly labeled by a target-based classifier. Their experimental results showed that CNNs 
with simple instance selection domain adaptation technique gave better results. One drawback of 
these approaches is the requirement that some target labeled data is available. Li, Li, Caragea, and 
Caragea (2018) explored three types of word embeddings, as well as three sentence-encoding models 
to understand what embeddings/encodings are more suitable for use in crisis tweet classification 
tasks. The experimental results suggested that, for the traditional supervised learning setting, GloVe 
embeddings worked better than other approaches. Furthermore, GloVe embeddings trained on crisis 
data produce better results on more specific crisis tweet classification tasks (e.g., tweets informative 
versus non-informative), while GloVe embeddings pretrained on a large collection of general tweets 
produce better results on more general classification tasks (tweets relevant or not relevant to a crisis).

CORRELATION ALIGNMENT ALGORITHM OVERVIEW

We adopt a simple, yet effective feature-based domain adaptation method, CORrelation ALignment 
(CORAL), introduced in Sun et al. (2016). CORAL works by aligning the distributions of the source 
and target data in an unsupervised manner. More specifically, CORAL minimizes the domain shift 
by aligning the second-order statistics of source and target distributions, namely, the covariance, 
without requiring any target labels. As stated in Sun et al. (2016), CORAL aligns the distributions 
by re-coloring whitened source features with the covariance of the target features. The approach 
involves the following steps:

1. 	 compute covariance statistics in each domain
2. 	 apply the whitening and re-coloring linear transformations to the source features.

After the source distribution is aligned to the target distribution, supervised learning proceeds 
as usual – a classifier is trained using the transformed source features and used to classify the target 
data. As the correlation alignment algorithm only changes the source features only, it can be used 
with any base classifier.

Formally, we are given source-domain training examples D x x R i S
S i i

D= ∈ ={ }
�� ��

�| , , ,1 , 

with labels L y i S
S i
= ={ }| , ,1� , y L

i
∈ { }1, ,� , and target data D u u R i T

T i i
D= ∈ ={ }

�� ��
�| , , ,1 . 

Here both �
x{ }  and �

u{ }  are D -dimensional feature representations ϕ I( )  of input instances I . 
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Suppose µ µ
S T
,  and C C

S T
,  are the feature vector means and covariance matrices for source S  and 

target T , respectively. According to Sun et al. (2016), to minimize the distance between the second-
order statistics (covariance) of the source and target features, one can apply a linear transformation 
A  to the original source features. This transformation can be obtained as a solution to the following 
minimization problem:

min min
A S TF A

T
S TF

C C A C A Cˆ − = −2 2 	 (1)

where C
Ŝ

 is the covariance of the transformed source features D A
S

, and ⋅
F
2  denotes the Frobenius 

norm of a matrix, used as a distance metric. Let D U V
S S S S
= £ Τ  be the Singular Value Decomposition 

(SVD) of the matrix corresponding to the source data D
S

. Similarly, let D U V
T T T T
= £ Τ  be the SVD 

decomposition of the matrix corresponding the target data D
T

. Furthermore, let £
T r T r T r

U V
1 1 1: : :
, ,
















 

be the largest r  singular values and the corresponding left and right singular vectors of D
T

, 
respectively. As proven in CORAL, the optimal solution for the above minimization problem can be 
found as:

A U U U U
S S S T r T r T r

* =











+













+




£ £
1

2
1 1

1

2
1

Τ
: : : 













Τ 	 (2)

which can be interpreted as follows: the first part is used to whiten the source data, while the 
second part is used to re-color it with the target covariance.

As Sun et al. (2016) suggest, after CORAL transforms the source features according to the target 
space, a classifier f

w
�  parametrized by ω  can be trained on the adjusted source features and directly 

applied to target features. In this work, we run experiments using Naïve Bayes Classifier. The CORAL 
algorithm is summarized in Algorithm 1.

Algorithm 1: Correlation Alignment Algorithm
Input: Target unlabeled data T , source labeled data S

Output: Adjusted source labeled data S *

1. 	 import numpy as np
2. 	 from scipy.linalg import fractional_matrix_power
3. 	 ncolsS S shape= 



. 1

4. 	 ncolsT T shape= 


. 1

5. 	 C npcov S rowvar npeye ncolsS
S
= =( )+ ( ). , .0

6. 	 C npcov T rowvar npeye ncolsT
T
= =( )+ ( ). , .0

7. 	 S npdot S fractional matrix power C
S

= −( )( ). , _ _ , .0 5

8. 	 S npdot S fractional matrix power C
T

* = ( )( ). , _ _ , .0 5
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Overview of the Naïve Bayes Domain Adaptation 
Algorithm with Self-Training

The Naïve Bayes domain adaptation with self-training builds a weighted Naïve Bayes (Manning, 
Raghavan, & Schütze, 2008) classifier, which linearly combines source and target data in an iterative 
fashion, to simultaneously estimate the prior P c

i( )  and the likelihood P w c
j i

( | ) , as follows:

P c P c P c
i S i T i( ) = −( ) ( )+ ( )1 γ γ 	 (3)

P w c P w c P w c
j i S j i T j i

( | ) ( | ) ( | )= −( ) +1 γ γ 	 (4)

In the equations above, c
i
 represents a class label, w

j
 is a feature in the feature set or vocabulary 

V , the probability subscript (S  or T ) denotes the type of data used to estimate that probability, i.e. 
S  denotes source labeled data, T  denotes target unlabeled data, and δ  is a parameter that controls 
how fast we shift the weight from source to target data. This parameter is defined as γ = min *(t

δ, )1 , where t = { }0 1 2, , ,�  is the iteration number. Initially, t = 0 , γ = 0 , which means that only 
source labeled data is used. Then, according to the Bayes Theorem, we estimate the posterior class 
label c

i
 for a new instance d  as:

P c d P c P w c
i i

j V
j i

( | ) ( | )∝ ( )
∈
∏ 	 (5)

At each iteration, the current classifier (originally trained only from source labeled data) is used 
to classify the remaining target unlabeled data (originally all the target unlabeled data). The most 
confidently classified unlabeled instances (e.g., top k  instances in each class) are moved to the 
training set, with hard (e.g., 0/1) labels, to be used in subsequent iterations. By default, the algorithm 
runs until convergence, where “convergence” means that the labels of the remaining target unlabeled 
instances don’t change in between two consecutive iterations (Yarowsky, 1995). The domain adaptation 
approach with self-training is summarized in Algorithm 2.

The estimation of the priors P c
i( )  and likelihoods P w c

j i
( | )  is based on the Naïve Bayes 

classifier. Two variants of the Naïve Bayes classifier are used in the study. For binary bag-of-word 
representations (Mitchell, 1997), where the values of the features are discrete 0/1 values, Bernoulli 
Naive Bayes (Manning et al. 2008) is used. After the CORAL transformation, the values of the features 
become continuous, and the Gaussian Naive Bayes classifier (Mitchell, 2017) is used in that case. 
Specifically, Bernoulli Naïve Bayes algorithm estimates the class priors and likelihoods from the 
training data, using the add-1 smoothing strategy (to avoid zero probabilities), as follows:

Algorithm 2: Naïve Bayes Domain Adaptation algorithm with self-training
Input: Target unlabeled data T , source labeled data S , target test data Tt

Output: A Naïve Bayes classifier for target data and labels for instances in T
test

Let T
hard

= φ  and T T
left

= , where T
hard

 is the set of instances with hard labels assigned by 
self-training, and T

left
 is the set of unlabeled instances left in T
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While (labels assigned to instances in T
left

 change) or (maximum number of iteration not reached) 
do

[M-step:] Simultaneously compute the prior and likelihood using Equations 3 and 4, respectively, 
using a combination of S  and T

hard
 weighted based on γ δ= ( )min *t ,1 , where t  is the iteration 

number; at the first iteration, only S  is used
[E-step:] Compute the posterior class probability of target instances still unlabeled, T

left
, with 

Equation 5 and select the k  most confidently labeled instances from each class c
i
 based on probability 

ranking, move them to T
hard

 (to use for training in the next iteration) and remove them from T
left

3. Use the final classifier to predict the labels of the target test instances T
test

P c
N c

Ni

i( ) = ( )+
+

1

1 	 (6)

P w c
N w c

N cj i

j i

i

( | )
,

= =
=( )+
( )+

0
0 1

2
	 (7)

P w c
N w c

N cj i

j i

i

( | )
,

= =
=( )+
( )+

1
1 1

2
	

(8)

where N  is the total number of documents in the collection D , N c
i( )  is the number of 

documents in class c
i
, N w c

j i
=( )0,  is the number of documents in class c

i
 that don’t contain the 

word w
j
, and N w c

j i
=( )1,  is the number of documents in class c

i
 that contain the word w

i
.

For Gaussian Naïve Bayes, the estimation of priors is same as Equation 6, likelihood is assumed 
to Gaussian and is estimated with:

P w c
j i

ji

wj ji

ji( | )

( )

=
−

−

1

2 2

2

2

2

πδ

µ

δ
�e 	 (9)

where µ
ji

 is the mean of feature j  of class c
i
, δ

ji
2  is the corresponding variance. Both of µ

ji
 and 

δ
ji
2  are also estimated from the training set using maximum likelihood.

Feature Selection

Sun et al. (2016) used a sentiment analysis dataset, where the dimensionality was reduced based on 
the information gain criterion. As we are interested in identifying informative target features and the 
information gain criterion requires labeled data, we use a different criterion for feature selection, 
specifically, an unsupervised feature selection algorithm called “Variance Threshold” (Scikit-Learn, 
2016). Essentially, we remove all low-variance features from the target data. The low-variance features 
are defined as those that are either 0 or 1 in more than k % of the samples, which corresponds to the 
Variance Threshold equal to 0 1 0. * .k k−( ) . The Variance Threshold looks only at the features of 
X , but not at the class labels y . In order to select features, we first concatenate labeled source data 
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S  and unlabeled target data T . Once a subset of the features is selected, we represent S  and T  
using the selected features.

DATA DESCRIPTION And PREPROCESSING

We use the dataset CrisisLexT6 (Olteanu et al., 2014) in our experiments. The dataset consists of 
approximately 60,000 tweets posted during 6 crisis events in 2012 and 2013. The 60,000 tweets (about 
10,000 in each disaster) have been labeled by crowdsourcing workers according to relatedness (as 
on-topic or off-topic). On-topic tweets are labeled as 1, and off-topic tweets as 0.

The tweets are preprocessed before they are used in training, domain adaptation and testing stages. 
The cleaning steps are the same as those used in (Li et al., 2015). For completeness, we summarize 
them in what follows:

•	 Non-printable, ASCII characters are removed, as they are regarded as noise rather than useful 
information.

•	 Printable HTML entities are converted into their corresponding ASCII equivalents
•	 URLs, email addresses, and usernames are replaced with a URL/email/username placeholder 

for each type of entity, respectively, under the assumption that those features could be predictive
•	 Numbers, punctuation signs and hashtags are kept under the assumption that numbers could 

be indicative of an address, while punctuation/emoticons and hashtags could be indicative of 
emotions

•	 RT (i.e., retweet) are removed under the assumptions that they are not informative for our 
classification tasks

•	 Duplicate tweets and empty tweets (that have no characters left after the cleaning) are removed

The numbers of tweets per class for each disaster, before and after cleaning, are presented in Table 
1. After preprocessing, the source tweets are expressed via target features, i.e. via words that occur 
in the target tweets. The bag-of-words binary representation (Mitchell, 1997) is used to represent 
tweets as vectors of features.

EXPERIMENTAL SETUP

We design our experiments to answer the following questions:

Table 1. CrisisLeXT6 dataset

Data Before Cleaning After Cleaning

Abbreviation Crisis On-topic Off-
topic Total On-topic Off-

topic Total

SH 2012 Sandy Hurricane 6138 3870 10008 5261 3752 9013

QF 2013 Queensland Floods 5414 4619 10033 3236 4550 7786

BB 2013 Boston Bombings 5648 4364 10012 4441 4309 8750

WT 2013 West Texas Explosion 5246 4760 10006 4123 4733 8856

OT 2013 Oklahoma Tornado 4827 5165 9992 3209 5049 8258

AF 2013 Alberta Floods 5189 4842 10031 3497 4714 8211
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•	 How does the performance of the domain adaptation approaches compare with the performance 
of the supervised baselines?

•	 Do the domain adaptation approaches studied perform better with all features or with a reduced 
set of features?

•	 How does the feature-based adaptation (CORAL) perform compared to the parameter-based 
adaptation (self-training)?

•	 How does the hybrid feature-parameter adaptation approach compare with the individual feature-
based and parameter-based approaches?

We perform the following experiments:

1. 	 Run Bernoulli Naïve Bayes classifier on the source with the original features. This is the baseline 
for all experiments. We refer to this baseline as NB.

2. 	 Run Bernoulli Naïve Bayes on the source represented using the features selected with VT. We 
refer to as NB+VT.

3. 	 Run CORAL with the original features and transform the source labeled data according to the 
target unlabeled data. Use the transformed source to learn a Gaussian Naïve Bayes classifier. 
We refer to this experiment as NB+CORAL.

4. 	 Run Variance Threshold (VT) on the combined dataset of S  and T  to select a subset of features. 
Run CORAL with the selected features to transform the source. Use the transformed source to 
learn a Gaussian Naïve Bayes classifier. We refer to this experiment as NB+CORAL+VT.

5. 	 Run Bernoulli Naïve Bayes with self-training on the source with the original features. We refer 
to these experiments as NBST.

6. 	 Run Variance Threshold (VT) on the combined dataset of S  and T  to select a subset of features. 
Run Bernoulli Naïve Bayes with self-training on the source represented using the features selected 
with VT. We refer to these experiments as NBST+VT.

7. 	 Run Variance Threshold (VT) on the combined dataset of S  and T  to select a subset of features. 
Run CORAL with the selected features to transform the source. Run Gaussian Naïve Bayes with 
self-training on the transformed source. We refer to this experiment as NBST+CORAL+VT.

We setup the experiments as follows:

•	 Following the prior work in (Li et al., 2018a), we use 11 source-target pairs, as shown in Table 
3. The pairs are formed by following the chronological order of the events in a pair (i.e., the 
source disaster happened before the target disaster).

•	 We perform 5-fold cross-validation over target and report the average accuracy over the 5 folds. 
With CORAL, each source is “aligned” with three target unlabeled folds, one target fold is used 
for testing, and one target fold is kept for future use as potential target labeled data. Similarly, 
NBST uses three target unlabeled folds in the training process, and one fold for testing.

•	 We varied the number of instances in the sources to see how the performance vary with different 
numbers of source instances. Concretely, in addition to the whole source labeled data, which 
we denote as Total, we also selected 500, 1000, 2000 instances from each class (on-topic or 
off-topic), respectively.

•	 The number of features selected varies from one experiment/split to another. For example, for 
one pair, the original dataset has 1334 features, and the VT approach selects anywhere from 160 
to 176 features (for different splits), thus resulting in significant dimensionality reduction. In 
preliminary work, we varied the value of the threshold k in VT. Precisely, we experimented with 
k = 0.95, k = 0.90, k = 0.80. The highest accuracy was obtained when the threshold is equal to 
0.99, and this is the value used in the experiments.
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Features Selected
To illustrate the features selected by the VT approach, Table 2 shows a subset of words/features 
that were kept after feature selection for 5 pairs, corresponding to the 5 target disasters used in our 
experiments. For each target disaster, the source disaster was chosen arbitrarily among the sources 
corresponding to that particular target. A source and target pair (S→T) is denoted using the source 
and target disaster abbreviations introduced in Table 1. All these five pairs use 1000 source instances 
(i.e., 500 instances per class). Table 2 shows selected features that are appear both in source and target 
tweets (second column), and also selected features that are specific to the target tweets (third column).

RESULTS AND DISCUSSION

The evaluation of the classifiers is based on accuracy as the dataset is relatively balanced. The results 
of the experiments that are used to compare NB, with NB+VT, and with NB+CORAL and 
NB+CORAL+VT are presented in Table 3. The results of the experiments that are used to compare 
NBST, NBST+VT, and NB+CORAL+VT and NBST+CORAL+VT are shown in Table 4. In addition 
to accuracy, we also show the precision and recall scores for the NBST+CORAL+VT experiments 
in Table 5. In these tables, a source and target pair ( S T→ ) is denoted using the source and target 
disaster abbreviations introduced in Table 1. The numbers 500, 1000, 2000 in the header denote how 
many source instances from each class (on-topic or off-topic) are used for training, and Total means 
that all source instances are used. The highlighted values are the best values for each pair with a 
certain number of source instances across different experiments/approaches. The more highlighted 
values one approach has, the better that approach performs. We also show the results using graphs 
for visual analysis. Specifically, Figure 1 shows the averaged accuracy over the 11 pairs used (with 
standard variation bars), and Figure 2 shows accuracy results obtained with the approaches considered 
for each pair separately. We use the results in these tables and figures to answer the research questions 
as follows.

How does the performance of the domain adaptation approaches compare with the performance 
of the supervised baselines?

Self-training with Naïve Bayes (NBST) has been shown to improve the performance of Naïve 
Bayes (NB) classifier in prior works ((Li, Caragea, et al., 2018; Li, Caragea, & Caragea, 2017). As 
can be seen in Table 4 and Figure 2, our results are consistent with what was found in prior works. 
Thus, our discussion regarding this question will focus more on the feature-based domain adaptation 
approach, i.e., CORAL. Specifically, in Table 3, we can compare the experimental results of 
NB+CORAL with the results of its NB baseline. Furthermore, we can perform a similar comparison 
when doing feature selection with VT, namely, the results of NB+CORAL+VT with the results of 
the baseline NB+VT. In general, it can be seen that applying CORAL contributes to an improvement 
in accuracy. NB+CORAL+VT gives the best results overall, regardless of the amount of source data 
used, although the NB baseline is better in a few cases. Naïve Bayes used with VT features only or 
with CORAL only does not perform well overall, as compared to the corresponding baselines.

Do the domain adaptation approaches studied perform better with all features or with a reduced 
set of features?

Specifically, we want to see whether CORAL and self-training perform better with the original 
features or with a reduced set of features obtained with VT. As can be seen in Table 3, when comparing 
the results of NB and NB+VT, overall, feature selection doesn’t improve the results of the supervised 
Naïve Bayes used on the original features. Based on the results in Table 4, we investigate the usefulness 
of the VT feature selection in the context of NBST.

Specifically, we compare the results of NBST (which uses all the features) with the results of 
NBST+VT (which uses only the features selected based on VT). As can be seen, only for a small 
number of pairs, the results of NBST+VT are consistently better than the results of NBST, regardless 
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of the number of source training instances used. Concretely, for 2 out of 11 pairs (SH → WT, BB 
→ WT). It can also be observed that VT feature selection helps especially when smaller numbers of 
source labeled instances are used. When larger numbers of source labeled instances are available, 
NBST without feature selection performs better. Intuitively, larger datasets lead to better estimates for 
the likelihood probabilities of less frequent features, and, in effect, including those features results in 
better performance. However, the feature-based domain adaptation approach CORAL benefits from 
using feature selection. By comparing the results of NB+CORAL with the results of NB, we see that 
CORAL can improve the classification accuracy results, but not significantly. However, when we apply 
CORAL after doing feature selection, the accuracy improvements become much more significant, 
as can be seen from the comparison of the results of NB+VT with the results of NB+CORAL+VT. 
Thus, we can claim that performing VT feature selection, to remove low variance features, benefits 
CORAL. This may due to the fact that low variance features act as noise for both source and target, 
and therefore degrade the source whitening and recoloring effects.

How does the feature-based adaptation (CORAL) perform compared to the parameter-based 
adaptation (self-training)?

Table 2. Examples of features selected by the VT approach

S T→ Features that appear both in source and target Features that appear only in target

SH QF→ username, url, like, get, power, right, lol, people, new, 
everyone, one, go, know, love, see, time, stay, want, really, 
hope, good, safe, even, way, much, think, still, house, today, 
last, us, day, feel, home, via, affected, please, back, help, 
night, well, first, need, water,:(, thanks, oh, say, rain, haha, 
live,:), follow, news, fire, victims, two, south, river, floods, 
death, crisis, flood

queensland, bundaberg, #flood, 
brisbane, wales, #queensland, 
waters, #bigwet, australia, #brisbane, 
‘australia\’s’, qld, #qldfloods, 
australian, braces, rises, #australia, toll, 
queensland’s

QF BB→ username, url, new, get, like, people, victims, good, one, 
love, really, time, news, two, back, go, still, see, via, affected, 
last, please, day, think, right, live, would, us, everyone, help, 
need, want, even, home, heart, thoughts, world, shit, know, 
fuck, dead, today, says, old, city, prayers, man, video, never, 
lol, made, first, police, killed, died

#boston, boston, explosions, tragedy, 
bomb, suspect, marathon, bombings, 
#prayforboston, fbi, bombing, suspects, 
#bostonmarathon, explosion

SH WT→ username, url, sandy, like, get, right, lol, people, new, 
everyone, one, go, love, know, see, time, want, good, really, 
even, school, way, praying, would, still, bad, think, today, 
last, make, day, home, affected, back, via, please, god, need, 
help, first, prayers, say, man, never, live, pray, news, dead, 
victims, thoughts, many, fire, near, town, killed, video, 
another, texas, #west, plant, explosion, caught, west, massive

waco, explosion., #prayfortexas, 
bombing, tx, #westexplosion, #texas, 
reported, injured, texas., #westtx, 
fertilizer, boston,

SH OT→ username, hurricane, url, sandy, like, get, right, people, lol, 
new, everyone, one, go, love, know, see, time, stay, want, hit, 
going, hope, really, good, even, school, much, way, think, 
still, praying, today, last, take, make, day, home, feel, please, 
via, back, god, affected, come, help, first, need, thank, say, 
prayers, watch, city, relief, ok, never, victims, thoughts, lost, 
disaster, heart, dog

oklahoma,#prayforoklahoma,tornado,#o
klahoma,oklahoma.,moore,#moore

SH AF→ username, url, like, get, right, power, people, lol, new, 
everyone, one, go, know, love, see, time, stay, want, good, 
really, hope, even, safe, much, way, still, better, think, today, 
last, make, take, day, home, affected, please, friends, back, 
well, need, night, help, first, come, water, thanks, high, say, 
work, thank, never, relief, city, great,:), two, many, email, 
red, river, flooding, best, floods, flood, #job, downtown

edmonton, calgary, canada, alberta, 
#yyc, #yycflood, #calgary, ab, #abflood
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Based on results in Table 4 and Figure 2, we compare two domain adaptation methods, self-
training and CORAL with Naïve Bayes as a base classifier, i.e., NB+CORAL+VT and NBST+VT. 
As can be seen, NBST+VT performs better than NB+CORAL+VT overall, and implicitly better than 
the baselines (NB, NB+VT). Furthermore, NBST is better than CORAL, as NBST benefits from 
using all features, while CORAL works better with a selected set of features.

How does the hybrid feature-parameter adaptation approach compare with the individual feature-
based and parameter-based approaches?

To answer this question, we compare the results of NBST+CORAL+VT with the results of 
NBST and NBST+VT, and also with the results of NB+CORAL+VT in Table 4. As can be seen in 
Figures 1 and 2, overall the self-training approach performs better than the hybrid feature-parameter 
variant NBST+CORAL+VT. However, for some specific source-target pairs, the combined self-
training and CORAL approach is better than either self-training or CORAL alone. More concretely, 
in Figure 2, we can see that for pairs SH → QF, QF → BB, SH → AF, the hybrid approach achieves 
the best performance. We can also see that NBST+CORAL+VT can improve the performance of 
NB+CORAL+VT for almost all pairs, regardless of the number of source instances used. As last, 
from Table 5, we can see that NBST+CORAL+VT performs well also in terms of precision and recall 
metrics, with an average precision of 0.836 and average recall of 0.827 when all source instances 
are used for training.

CONCLUSION

Domain adaptation has become crucial for many machine learning applications, as it enables the use 
of unlabeled data in domains where labeled data is not available. This is especially true in the case 
of social media analysis in the context of emerging disasters. Therefore, in this paper, we compared 
different domain adaptation approaches that make use of labeled tweets from a prior source disaster 
and unlabeled tweets from the target disaster to train a classifier for the target disaster. We used 11 
source and target disaster pairs to evaluate these approaches.

We first compared a feature-based adaptation approach, CORAL, with a parameter-based 
adaptation approach, self-training, in the context of disaster-related tweet classification. Naïve Bayes 
was used as a base classifier for both adaptation approaches. CORAL is a simple yet effective domain 
adaptation method based on unsupervised feature alignment between source and target data. Naïve 
Bayes self-training (NBST) builds a weighted Naïve Bayes classifier iteratively by combining source 
labeled data and target unlabeled data. To understand if the two approaches have complementary 
strengths that can be combined, we also designed a hybrid feature-parameter adaptation approach, 
which combines CORAL with self-training, and compared it with the individual CORAL and self-
training adaptation approaches. Experimental results showed that the domain shift with CORAL, from 
source data to target data, generally improves the performance of the classifiers trained on source. 
More specifically, CORAL combined with VT feature selection results in classifiers that have higher 
performance when compared with the classifiers learned from the original source data. The comparison 
between CORAL and Naïve Bayes self-training showed that the later approach performs better than 
CORAL in many cases, especially when leveraging more features. It can be hypothesized that the 
gradual labeling and usage of the target data in NBST can potentially capture more knowledge from 
the target unlabeled data, as compared to the one-shot use of the target unlabeled data in CORAL (to 
shift the distribution of the source data). The comparison of the hybrid feature-parameter adaptation 
approach with the individual feature-based and parameter-based adaptation approaches supports this 
hypothesis. Specifically, when comparing the hybrid approach with the individual feature-based and 
parameter-based approaches, no significant gains are observed from the combination. Furthermore, the 
results of the hybrid are overall similar with the results of the NBST approach itself. This suggests that 
the CORAL approach, while useful on its own, does not have complementary strengths as compared 
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with NBST, which is a better approach overall. Nevertheless, there are some specific pairs where the 
hybrid approach performs better than the self-training approach.

As part of future work, it is of interest to extend the proposed feature-parameter adaptation 
into a feature-instance-parameter adaptation, by including an additional instance selection step as 
in (Mazloom et al., 2018). It is also of interesting to explore deep domain adaptation approaches 
on disaster tweet classification tasks, for example, marginalized Stacked Denoising Auto-encoders 
(mSDA) (Chen, Xu, Weinberger, & Sha, 2012) and domain adversarial neural networks (Ajakan, 
Germain, Larochelle, Laviolette, & Marchand, 2014; Ganin et al., 2015), and other similar models 
proposed for NLP tasks or computer vision tasks. Furthermore, we plan to explore an approach closely 
related to CORAL, specifically Deep CORAL (Sun & Saenko, 2016), which extends CORAL to 
learn a nonlinear transformation that aligns correlations of layer activations in deep neural networks.
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Table 3. Accuracy results of CORAL with the original features (NB+CORAL) and CORAL with the Variance Threshold (VT) 
features selection (NB+CORAL+VT), together with accuracy results for baselines Naïve Bayes (NB) and Naïve Bayes with VT 
features selection (NB+VT).

S T→ 500 1000 2000 Total S T→ 500 1000 2000 Total

NB

SH QF→ 0.692 0.787 0.810 0.772

NB﻿
+﻿

CORAL

SH QF→ 0.695 0.749 0.800 0.827

SH BB→ 0.696 0.763 0.723 0.695 SH BB→ 0.692 0.742 0.769 0.780

QF BB→ 0.714 0.728 0.731 0.747 QF BB→ 0.614 0.611 0.603 0.571

SH WT→ 0.679 0.754 0.755 0.774 SH WT→ 0.702 0.767 0.800 0.848

BB WT→ 0.922 0.931 0.934 0.948 BB WT→ 0.770 0.816 0.869 0.908

SH OT→ 0.773 0.805 0.836 0.815 SH OT→ 0.696 0.756 0.807 0.812

QF OT→ 0.811 0.821 0.833 0.838 QF OT→ 0.630 0.639 0.647 0.628

BB OT→ 0.819 0.813 0.834 0.846 BB OT→ 0.684 0.627 0.700 0.801

SH AF→ 0.699 0.737 0.748 0.714 SH AF→ 0.670 0.733 0.772 0.796

QF AF→ 0.759 0.764 0.781 0.788 QF AF→ 0.666 0.645 0.684 0.657

BB AF→ 0.710 0.716 0.734 0.742 BB AF→ 0.643 0.573 0.599 0.650

Average 0.752 0.784 0.793 0.789 Average 0.678 0.696 0.732 0.753

NB+﻿
VT

S T→ 500 1000 2000 Total

NB﻿
+﻿

CORAL﻿
+﻿

VT

S T→ 500 1000 2000 Total

SH QF→ 0.645 0.763 0.773 0.724 SH QF→ 0.751 0.851 0.852 0.838

SH BB→ 0.694 0.766 0.703 0.686 SH BB→ 0.789 0.764 0.827 0.766

QF BB→ 0.712 0.703 0.716 0.717 QF BB→ 0.834 0.819 0.804 0.680

SH WT→ 0.682 0.735 0.714 0.738 SH WT→ 0.802 0.738 0.674 0.836

BB WT→ 0.923 0.931 0.931 0.942 BB WT→ 0.888 0.945 0.945 0.949

SH OT→ 0.763 0.768 0.795 0.762 SH OT→ 0.853 0.858 0.857 0.753

QF OT→ 0.796 0.801 0.815 0.815 QF OT→ 0.827 0.867 0.873 0.815

BB OT→ 0.796 0.791 0.806 0.808 BB OT→ 0.792 0.853 0.827 0.823

SH AF→ 0.669 0.701 0.715 0.651 SH AF→ 0.770 0.843 0.857 0.846

QF AF→ 0.740 0.740 0.742 0.748 QF AF→ 0.732 0.807 0.813 0.802

BB AF→ 0.685 0.694 0.697 0.695 BB AF→ 0.712 0.713 0.744 0.791

Average 0.737 0.763 0.764 0.753 Average 0.795 0.823 0.825 0.809
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Table 4. Accuracy results of domain adaptation approaches, Naïve Bayes with self-training (NBST), and Naïve Bayes with self-
training and Variance Threshold (VT) feature selection (NBST+VT), CORAL with VT feature selection (NB+CORAL+VT), and the 
hybrid feature-parameter based approach (self-training on top of CORAL) with VT feature selection (NBST+CORAL+VT).

S T→ 500 1000 2000 Total S T→ 500 1000 2000 Total

NB﻿
ST

SH QF→ 0.824 0.843 0.855 0.824

NB﻿
+﻿

CORAL﻿
+﻿

VT

SH QF→ 0.751 0.851 0.852 0.838

SH BB→ 0.828 0.832 0.846 0.841 SH BB→ 0.789 0.764 0.827 0.766

QF BB→ 0.787 0.792 0.814 0.819 QF BB→ 0.834 0.819 0.804 0.680

SH WT→ 0.923 0.924 0.923 0.908 SH WT→ 0.802 0.738 0.674 0.836

BB WT→ 0.929 0.928 0.939 0.948 BB WT→ 0.888 0.945 0.945 0.949

SH OT→ 0.858 0.879 0.887 0.878 SH OT→ 0.853 0.858 0.857 0.753

QF OT→ 0.853 0.850 0.855 0.855 QF OT→ 0.827 0.867 0.873 0.815

BB OT→ 0.848 0.848 0.865 0.869 BB OT→ 0.792 0.853 0.827 0.823

SH AF→ 0.793 0.799 0.840 0.826 SH AF→ 0.770 0.843 0.857 0.846

QF AF→ 0.824 0.830 0.852 0.860 QF AF→ 0.732 0.807 0.813 0.802

BB AF→ 0.802 0.824 0.839 0.840 BB AF→ 0.712 0.713 0.744 0.791

Average 0.843 0.850 0.865 0.861 Average 0.795 0.823 0.825 0.809

NB﻿
ST+﻿
VT

S T→ 500 1000 2000 Total

NBST﻿
+﻿

CORAL﻿
+﻿

VT

S T→ 500 1000 2000 Total

SH QF→ 0.844 0.845 0.839 0.806 SH QF→ 0.815 0.891 0.880 0.877

SH BB→ 0.827 0.830 0.845 0.815 SH BB→ 0.756 0.765 0.824 0.763

QF BB→ 0.798 0.805 0.812 0.819 QF BB→ 0.845 0.859 0.848 0.743

SH WT→ 0.936 0.936 0.928 0.923 SH WT→ 0.805 0.881 0.791 0.906

BB WT→ 0.944 0.946 0.950 0.953 BB WT→ 0.875 0.921 0.945 0.936

SH OT→ 0.868 0.874 0.875 0.866 SH OT→ 0.863 0.878 0.880 0.735

QF OT→ 0.832 0.835 0.843 0.842 QF OT→ 0.821 0.887 0.878 0.815

BB OT→ 0.845 0.840 0.844 0.843 BB OT→ 0.828 0.823 0.854 0.821

SH AF→ 0.815 0.818 0.818 0.797 SH AF→ 0.849 0.876 0.879 0.861

QF AF→ 0.827 0.832 0.846 0.851 QF AF→ 0.751 0.824 0.830 0.835

BB AF→ 0.805 0.805 0.817 0.822 BB AF→ 0.747 0.797 0.757 0.811

Average 0.849 0.851 0.856 0.849 Average 0.814 0.855 0.851 0.828
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Table 5. Precision and recall scores of the experiments with the hybrid feature-parameter based approach (self-training on top 
of CORAL) with VT feature selection (NBST+CORAL+VT)

S T→ Precision Recall

500 1000 2000 Total 500 1000 2000 Total

NBST
+

CORAL
+

VT

SH QF→ 0.828 0.896 0.886 0.880 0.816 0.890 0.880 0.876

SH BB→ 0.772 0.774 0.828 0.776 0.754 0.764 0.824 0.762

QF BB→ 0.846 0.862 0.852 0.752 0.846 0.858 0.848 0.742

SH WT→ 0.820 0.884 0.790 0.910 0.806 0.880 0.792 0.906

BB WT→ 0.878 0.924 0.944 0.936 0.876 0.922 0.944 0.936

SH OT→ 0.870 0.884 0.882 0.748 0.862 0.880 0.880 0.734

QF OT→ 0.836 0.888 0.880 0.834 0.820 0.886 0.878 0.816

BB OT→ 0.832 0.848 0.858 0.828 0.826 0.822 0.854 0.820

SH AF→ 0.860 0.882 0.892 0.876 0.848 0.876 0.878 0.862

QF AF→ 0.782 0.826 0.838 0.840 0.754 0.824 0.828 0.834

BB AF→ 0.748 0.842 0.760 0.814 0.748 0.796 0.758 0.810

A v e r a g e 0.825 0.865 0.855 0.836 0.814 0.854 0.851 0.827

Figure 1. Average accuracy results (with standard derivation) over all pairs, for all approaches studied, across different numbers 
of source training instances
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Figure 2. Accuracy results for all 11 pairs and all approaches compared, across different amounts of source training data
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