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ABSTRACT

Domain adaptation methods have been introduced for auto-filtering disaster tweets to address the
issue of lacking labeled data for an emerging disaster. In this article, the authors present and compare
two simple, yet effective approaches for the task of classifying disaster-related tweets. The first
approach leverages the unlabeled target disaster data to align the source disaster distribution to the
target distribution, and, subsequently, learns a supervised classifier from the modified source data.
The second approach uses the strategy of self-training to iteratively label the available unlabeled target
data, and then builds a classifier as a weighted combination of source and target-specific classifiers.
Experimental results using Naive Bayes as the base classifier show that both approaches generally
improve performance as compared to baseline. Overall, the self-training approach gives better results
than the alignment-based approach. Furthermore, combining correlation alignment with self-training
leads to better result, but the results of self-training are still better.
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INTRODUCTION

From user groups, online forums, to Facebook, Twitter, Instagram, YouTube, social media platforms
have become ubiquitous. The use of social media is particularly prevalent during emergencies.
For instance, the Federal Emergency Management Agency (FEMA) wrote in its 2013 National
Preparedness report (Maron, 2013) that during and immediately following Hurricane Sandy in 2012
“users sent more than 20 million Sandy-related Twitter posts, or tweets, despite the loss of cell phone
service during the peak of the storm.” Such huge amounts of user-generated data contributed by disaster
affected communities have become an important source of big crisis data for disaster response (Castillo,
2016; Reuter & Kaufhold, 2018), and at the same time have been used by the public at large to make
sense of an event from social media (Stefan, Deborah, Milad, & Christian, 2018). Many research and
practical studies have proved the value of social media data on disseminating warning and response
information, enhancing situational awareness, facilitating allocation of resources, informing disaster
risk reduction strategies and risk assessments (Watson, Finn, & Wadhwa, 2017; Reuter, Hughes, &
Kauthold, 2018; National Research Council, 2013), as well as fostering community resilience (Zhang,
Drake, Li, Zobel, & Cowell, 2015). Despite these benefits, the challenges presented by the volume
of the data still preclude large emergency organizations from using them routinely (Meier, 2013).
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Manually sifting through voluminous streaming data to filter useful information in real time is
inherently impossible. Machine learning techniques show promising results in automating the process
of identifying useful, relevant and trustworthy information in big crisis data (Qadir et al., 2016),
despite many practical challenges (Mendoza, Poblete, & Castillo, 2010). Many works have successfully
used supervised learning algorithms to automatically classify tweets (Caragea, Squicciarini, Stehle,
Neppalli, & Tapia, 2014; Imran, Elbassuoni, Castillo, Diaz, & Meier, 2013). Supervised algorithms
require labeled training data to learn classifiers that can be further used to label new data of the
same type (also called test data). The labels generated for the test data are usually accurate when the
training and the test data are drawn from the same distribution.

The requirements above result in two main challenges that machine learning algorithms face
when used to classify user-generated tweets about emerging disasters such as floods, hurricanes,
and terrorist attacks. First, labeled data is not easily available for an emergent “target” disaster for
which a classifier is needed to help disaster response teams identify relevant tweets, and ultimately
information useful for situational awareness. Labeling data is an expensive and time-consuming
process, which does not provide a real-time solution for disaster response. Labeled data from a
prior “source” disaster can potentially be used to learn a supervised classifier for the target disaster
(Starbird, Palen, Hughes, & Vieweg, 2010). However, another challenge is posed by the fact that
data from the “source” disaster and data from the target disaster may not share the same distribution
(or characteristics), and the classifier learned from the source may not perform well on the target.

We attempt to address these problems by leveraging domain adaptation approaches that use
both labeled source data and unlabeled target data, which is accumulating quickly during a disaster.
More specifically, we define our problem as follows: given labeled tweets from a source domain, and
unlabeled tweets from the target domain, the goal is to train a domain adaptation classifier to label
tweets from the target domain. There are several types of approaches to address this problem (Pan
& Yang, 2010). Most relevant to this work, there are approaches that use the unlabeled target data
to change the representation or the distribution of the source data in a way that makes it possible to
use classifiers learned from source to predict the target accurately (Daumé III, 2007; Sun, Feng, &
Saenko, 2016). We refer to this type of approach as feature-based domain adaptation. Furthermore,
there are approaches that learn classifiers from labeled source data and unlabeled target data using
an Expectation Maximization (EM) type strategy (Dai, Xue, Yang, & Yu, 2007). Such approaches
can be seen as parameter-based domain adaptation as they use parameters from the source domain to
inform the parameter selection for the target domain. Correlation alignment algorithm (CORrelation
ALignment, CORAL) (Sun et al., 2016), originally designed for images, is a feature-based adaptation
approach that aligns the distribution of the source domain with the distribution of the target domain to
reduce the variance shift. Self-training (Yarowsky, 1995) is a parameter-based adaptation approach.
Previous works on using CORAL (Sopova, 2017) or self-training (Li, Caragea, Caragea, & Herndon,
2018) independently to identify disaster relevant tweets have shown promising results. In this paper,
we have first compared CORAL with self-training to understand which approach benefits more from
source adaptation based on unlabeled data. We have also designed a hybrid approach that combines
CORAL with self-training, with the goal of improving the results obtained with each independent
approach further. We have performed experimental evaluation of the task of identifying relevant tweets,
which is the very first step in filtering disaster information. Our main contributions are as follows:

e We have compared a feature-based adaptation approach (specifically, CORAL) with a
parameter-based adaptation approach (specifically, self-training), in the context of disaster tweet
classification.

e  We have proposed a hybrid feature-parameter based approach that combines CORAL and self-
training adaptation approaches. The goal is to understand if the combined approach can improve
the adaptation ability further by retaining the advantages of each individual approach.
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e  We have evaluated the combined feature-parameter based approach on pairs of source-target
disasters from the CrisisLexT6 datasets (Olteanu, Castillo, Diaz, & Vieweg, 2014), and compared
it with adaptation approaches that use the feature-based approach (CORAL) or the parameter-
based adaptation (self-training) independently.

RELATED WORK

Domain adaptation has attracted significant attention during the last decade. Domain adaptation has
been studied both theoretically (Ben-David, Blitzer, Crammer, & Pereira, 2007; Blitzer, Crammer,
Kulesza, Pereira, & Wortman, 2008) and in applications such as NLP tasks (Daumé III, 2007; Jiang &
Zhai, 2007a), sentiment analysis (Blitzer, Dredze, & Pereira, 2007; Tan, Cheng, Wang, & Xu, 2009),
text classification (Dai et al., 2007), Wifi location (Pan, Tsang, Kwok, & Yang, 2009), computer
vision and object recognition (Sun, Feng, & Saenko, 2015), disaster tweets classification (Li et al.,
2015; Li, Caragea, et al., 2018; Li et al., 2017; Mazloom, Li, Caragea, Imran, & Caragea, 2018). We
review some simple but efficient and effective methods here, which can potentially be applied in real
time, as applying domain adaptation on disaster-related data is time-critical.

Domain adaptation methods can be categorized into several classes based on different criteria.
Methods in one class work by changing the representation of the source data to make it more similar
to the representation of the target data (a.k.a., feature-based adaptation). For example, Daumé I1I
(2007) proposed a very simple way to represent the source and target with duplicate features consisting
of three versions: general version, source specific version and target specific version, under the
assumption that some target labeled data D, is available, in addition to source labeled data D . A
two-stage domain adaptation method was proposed by Jiang and Zhai (2007b): in the first stage a set
of features generalizable across domains was identified, and in the second adaptation stage, a set of
features specific to the target domain were selected. Structural correspondence learning (SCL) was
proposed in (Blitzer et al., 2007), where the goal is to select pivot features based on common frequencies
and also mutual information. Sun et al. (2015) also proposed a simple feature-adaptation method, the
CORrelation ALignment (CORAL), to align the source with the target domain. CORAL performs
the alignment by re-coloring whitened source features with the covariance of target distribution.
Despite the simplicity of this method, the results were comparable with those of more complex,
state-of-the-art algorithms, and this motivated us to use this approach for classifying disaster-related
tweets.

Another class of methods is focused on classifiers that combine source labeled data with target
unlabeled data, or even some small amounts of target labeled data, with different weights (a.k.a.,
instance-based adaptation). Jiang and Zhai (2007a) introduced an instance weighting framework
for domain adaptation for use in NLP tasks. When the weighting is done at the parameter classifier
level, domain adaptation approaches can be classified as parameter-based adaptation approaches. In
this category, Dai et al. (2007) proposed a domain adaptation algorithm called Transfer Naive Bayes
classifier (NBTC) based on the Naive Bayes algorithm and Expectation-maximization (EM), and
used it to classify text documents. Tan et al. (2009) proposed a weighted version of the multinomial
Naive Bayes classifier combined with EM for sentiment analysis of text classification.

In recent years, several studies have focused on classifying disaster related/informative tweets with
the goal of helping disaster response and recovery. Imran et al. (2016) researched the performance
of the classifiers trained using different combinations of datasets obtained from past disasters. They
performed extensive experimentation on real crisis datasets and showed that the past labels are useful
when both source and target events are of the same type (e.g., two earthquakes). Li et al. (2015)
proposed an unsupervised domain adaptation algorithm based on Expectation Maximization (EM) to
classify disaster tweets. This approach made use of source labeled data together with target unlabeled
data to build a weighted Naive Bayes Classifier in an iterative way. The self-training procedure is run
for a fixed number of iterations, or until convergence. Li, Caragea, et al. (2018) extended the EM-type
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approach with a self-training strategy and showed that self-training generally performs better. Li et
al. (2017) also performed extensive experiments to provide practical guideline for the self-training
domain adaptation. Mazloom et al. (2018) proposed a hybrid feature-instance adaptation approach,
based on matrix factorization and the K-Nearest Neighbors algorithm. The proposed hybrid adaptation
approach first applied matrix factorization to reduce the dimensionality of the data, and then used
K-Nearest Neighbors algorithm to select a subset of the source disaster data that is representative for
the target disaster. The selected subset was subsequently used to learn accurate Naive Bayes classifiers
for the target disaster. Experimental results showed that the approach could significantly improve the
performance as compared with a baseline Naive Bayes classifier.

As deep learning approaches become dominant in many NLP tasks, there are also studies that
apply deep learning approaches to the area of disaster response. Caragea, Silvescu, and Tapia (2016)
explored supervised Convolutional Neural Networks (CNN) to classify informative tweets from six
flood events. Nguyen et al. (2016) used Convolutional Neural Networks (CNN) to classify crisis
related tweets. They assumed that some target labeled data is available and used two simple supervised
domain adaptation techniques to combine prior source disasters data with current disaster labeled data
during training. One was weighting the prior source disasters data, while regularizing the modified
model. The other was simply selecting a subset of the prior source disaster tweets, specifically those
that were correctly labeled by a target-based classifier. Their experimental results showed that CNN's
with simple instance selection domain adaptation technique gave better results. One drawback of
these approaches is the requirement that some target labeled data is available. Li, Li, Caragea, and
Caragea (2018) explored three types of word embeddings, as well as three sentence-encoding models
to understand what embeddings/encodings are more suitable for use in crisis tweet classification
tasks. The experimental results suggested that, for the traditional supervised learning setting, GloVe
embeddings worked better than other approaches. Furthermore, GloVe embeddings trained on crisis
data produce better results on more specific crisis tweet classification tasks (e.g., tweets informative
versus non-informative), while GloVe embeddings pretrained on a large collection of general tweets
produce better results on more general classification tasks (tweets relevant or not relevant to a crisis).

CORRELATION ALIGNMENT ALGORITHM OVERVIEW

We adopt a simple, yet effective feature-based domain adaptation method, CORrelation ALignment
(CORAL), introduced in Sun et al. (2016). CORAL works by aligning the distributions of the source
and target data in an unsupervised manner. More specifically, CORAL minimizes the domain shift
by aligning the second-order statistics of source and target distributions, namely, the covariance,
without requiring any target labels. As stated in Sun et al. (2016), CORAL aligns the distributions
by re-coloring whitened source features with the covariance of the target features. The approach
involves the following steps:

1. compute covariance statistics in each domain
2. apply the whitening and re-coloring linear transformations to the source features.

After the source distribution is aligned to the target distribution, supervised learning proceeds
as usual — a classifier is trained using the transformed source features and used to classify the target
data. As the correlation alignment algorithm only changes the source features only, it can be used
with any base classifier.

Formally, we are given source-domain training examples D, = {xi | z, € RPi= 1,-~-,|S|},
withlabels L, = {yi |i= 1|S|}y {1, -+, L} .andtargetdata D, = {ui |u € R”,i= 1|T|}

Here both {;7:'} and {ﬂ} are D -dimensional feature representations <p([ ) of input instances I .
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Suppose fig, i1, and C,C, are the feature vector means and covariance matrices for source S and

target T, respectively. According to Sun et al. (2016), to minimize the distance between the second-
order statistics (covariance) of the source and target features, one can apply a linear transformation
A to the original source features. This transformation can be obtained as a solution to the following
minimization problem:

mAin C; — CTr; = mjn ATCSA — CTr‘; e))

where C s is the covariance of the transformed source features DSA ,and 2F denotes the Frobenius
norm of a matrix, used as a distance metric. Let D, = U £ quT be the Singular Value Decomposition
(SVD) of the matrix corresponding to the source data D, . Similarly, let D, = U £ TVTT be the SVD

decomposition of the matrix corresponding the target data D, . Furthermore, let £ ) U ) VT[ 1]

be the largest r singular values and the corresponding left and right singular vectors of D,

respectively. As proven in CORAL, the optimal solution for the above minimization problem can be
found as:

* *% T *% T
A =\UL U Uy 081U 2)

which can be interpreted as follows: the first part is used to whiten the source data, while the
second part is used to re-color it with the target covariance.
As Sun et al. (2016) suggest, after CORAL transforms the source features according to the target

space, a classifier f, parametrized by w can be trained on the adjusted source features and directly
applied to target features. In this work, we run experiments using Naive Bayes Classifier. The CORAL

algorithm is summarized in Algorithm 1.
Algorithm 1: Correlation Alignment Algorithm

Input: Target unlabeled data T', source labeled data S
Output: Adjusted source labeled data S

import numpy as np
from scipy.linalg import fractional_matrix_power

ncolsS = S‘shape[l]
ncolsT = T.shape[l}
C, = np.cov (S, rowvar = O) + np.eye (ncolsS)

T
S = np.dot (S, fractional _matriz _ power (CS, 70.5))

C_. = np.cov (T, rowvar = O) + np.eye (ncolsT)

Sl N o e

S" = np.dot (S, fractional _matriz _ power (CT, 0.5))
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OVERVIEW OF THE NAIVE BAYES DOMAIN ADAPTATION
ALGORITHM WITH SELF-TRAINING

The Naive Bayes domain adaptation with self-training builds a weighted Naive Bayes (Manning,
Raghavan, & Schiitze, 2008) classifier, which linearly combines source and target data in an iterative

fashion, to simultaneously estimate the prior P (Q) and the likelihood P(wj | c,), as follows:

Ple)= (1R fe) 432, [c) ®

P(w, | c)=1=7)P(w, |c)+7P,(w, |c) @)

In the equations above, c, represents a class label, w, is a feature in the feature set or vocabulary
V', the probability subscript (S or T') denotes the type of data used to estimate that probability, i.e.
S denotes source labeled data, T' denotes target unlabeled data, and 6 is a parameter that controls
how fast we shift the weight from source to target data. This parameter is defined as v = min(¢*
6,1), where t = {O, 1, 2,-~-} is the iteration number. Initially, ¢ = 0, v = 0, which means that only
source labeled data is used. Then, according to the Bayes Theorem, we estimate the posterior class
label ¢, for a new instance d as:

P(c,|d) x P(c )HP (5)

/6“

At each iteration, the current classifier (originally trained only from source labeled data) is used
to classify the remaining target unlabeled data (originally all the target unlabeled data). The most
confidently classified unlabeled instances (e.g., top k instances in each class) are moved to the
training set, with hard (e.g., 0/1) labels, to be used in subsequent iterations. By default, the algorithm
runs until convergence, where “convergence” means that the labels of the remaining target unlabeled
instances don’t change in between two consecutive iterations (Yarowsky, 1995). The domain adaptation
approach with self-training is summarized in Algorithm 2.

The estimation of the priors P (07) and likelihoods P(w, | c,) is based on the Naive Bayes
classifier. Two variants of the Naive Bayes classifier are used in the study. For binary bag-of-word
representations (Mitchell, 1997), where the values of the features are discrete 0/1 values, Bernoulli
Naive Bayes (Manning et al. 2008) is used. After the CORAL transformation, the values of the features
become continuous, and the Gaussian Naive Bayes classifier (Mitchell, 2017) is used in that case.
Specifically, Bernoulli Naive Bayes algorithm estimates the class priors and likelihoods from the
training data, using the add-1 smoothing strategy (to avoid zero probabilities), as follows:

Algorithm 2: Naive Bayes Domain Adaptation algorithm with self-training
Input: Target unlabeled data 7', source labeled data S, target test data Tt
Output: A Naive Bayes classifier for target data and labels for instances in T,

Let 7, = ¢ and Tleﬁ =T ,where T, . is the set of instances with hard labels assigned by

self-training, and T}, 0 is the set of unlabeled instances left in 7'
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While (labels assigned to instances in 1, " change) or (maximum number of iteration not reached)

do
[M-step:] Simultaneously compute the prior and likelihood using Equations 3 and 4, respectively,

hard
number; at the first iteration, only S is used

using a combination of S and 7, , weighted based on v = min (t*é,l) , where ¢ is the iteration

[E-step:] Compute the posterior class probability of target instances still unlabeled, T, oo with

Equation 5 and select the & most confidently labeled instances from each class ¢, based on probability

ranking, move them to 7, . (to use for training in the next iteration) and remove them from 7 "

3. Use the final classifier to predict the labels of the target test instances T,

Nic|+1
ple) =T
©)
p 0 7N(wj:O,ci)—|—1 .
(w, =0]c) Vo) +2 @)
N(w, =1c)+1 ©
o =) ==y oy

where N is the total number of documents in the collection D, N (cj) is the number of
documents in class c,, N (w], =0, ci) is the number of documents in class ¢, that don’t contain the

word w,, and N (wj =1, cl) is the number of documents in class ¢, that contain the word w, .

For Gaussian Naive Bayes, the estimation of priors is same as Equation 6, likelihood is assumed
to Gaussian and is estimated with:

P 2
)
1 26

Plw, |¢)= e )

where I is the mean of feature j of class c,, 6; is the corresponding variance. Both of I and

6}21. are also estimated from the training set using maximum likelihood.

FEATURE SELECTION

Sun et al. (2016) used a sentiment analysis dataset, where the dimensionality was reduced based on
the information gain criterion. As we are interested in identifying informative target features and the
information gain criterion requires labeled data, we use a different criterion for feature selection,
specifically, an unsupervised feature selection algorithm called “Variance Threshold” (Scikit-Learn,
2016). Essentially, we remove all low-variance features from the target data. The low-variance features
are defined as those that are either O or 1 in more than & % of the samples, which corresponds to the

Variance Threshold equal to 0.k * (1 — O.k) . The Variance Threshold looks only at the features of

X , but not at the class labels y . In order to select features, we first concatenate labeled source data
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S and unlabeled target data T . Once a subset of the features is selected, we represent S and T
using the selected features.

DATA DESCRIPTION AND PREPROCESSING

We use the dataset CrisisLexT6 (Olteanu et al., 2014) in our experiments. The dataset consists of
approximately 60,000 tweets posted during 6 crisis events in 2012 and 2013. The 60,000 tweets (about
10,000 in each disaster) have been labeled by crowdsourcing workers according to relatedness (as
on-topic or off-topic). On-topic tweets are labeled as 1, and off-topic tweets as 0.

The

The tweets are preprocessed before they are used in training, domain adaptation and testing stages.
cleaning steps are the same as those used in (Li et al., 2015). For completeness, we summarize

them in what follows:

Non-printable, ASCII characters are removed, as they are regarded as noise rather than useful
information.

Printable HTML entities are converted into their corresponding ASCII equivalents

URLs, email addresses, and usernames are replaced with a URL/email/username placeholder
for each type of entity, respectively, under the assumption that those features could be predictive
Numbers, punctuation signs and hashtags are kept under the assumption that numbers could
be indicative of an address, while punctuation/emoticons and hashtags could be indicative of
emotions

RT (i.e., retweet) are removed under the assumptions that they are not informative for our
classification tasks

Duplicate tweets and empty tweets (that have no characters left after the cleaning) are removed

The numbers of tweets per class for each disaster, before and after cleaning, are presented in Table

1. After preprocessing, the source tweets are expressed via target features, i.e. via words that occur
in the target tweets. The bag-of-words binary representation (Mitchell, 1997) is used to represent
tweets as vectors of features.

EXPERIMENTAL SETUP

We design our experiments to answer the following questions:

Table 1. CrisisLeXT6 dataset
Data Before Cleaning After Cleaning
Abbreviation Crisis On-topic 8{){; Total | On-topic 8 [f)f-c Total
SH 2012 Sandy Hurricane 6138 3870 10008 5261 3752 9013
QF 2013 Queensland Floods 5414 4619 10033 3236 4550 7786
BB 2013 Boston Bombings 5648 4364 10012 4441 4309 8750
WT 2013 West Texas Explosion 5246 4760 10006 4123 4733 8856
oT 2013 Oklahoma Tornado 4827 5165 9992 3209 5049 8258
AF 2013 Alberta Floods 5189 4842 10031 3497 4714 8211
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How does the performance of the domain adaptation approaches compare with the performance
of the supervised baselines?

Do the domain adaptation approaches studied perform better with all features or with a reduced
set of features?

How does the feature-based adaptation (CORAL) perform compared to the parameter-based
adaptation (self-training)?

How does the hybrid feature-parameter adaptation approach compare with the individual feature-
based and parameter-based approaches?

We perform the following experiments:

Run Bernoulli Naive Bayes classifier on the source with the original features. This is the baseline
for all experiments. We refer to this baseline as NB.

Run Bernoulli Naive Bayes on the source represented using the features selected with VT. We
refer to as NB+VT.

Run CORAL with the original features and transform the source labeled data according to the
target unlabeled data. Use the transformed source to learn a Gaussian Naive Bayes classifier.
We refer to this experiment as NB+CORAL.

Run Variance Threshold (VT) on the combined dataset of S and 7" to select a subset of features.
Run CORAL with the selected features to transform the source. Use the transformed source to
learn a Gaussian Naive Bayes classifier. We refer to this experiment as NB+CORAL+VT.
Run Bernoulli Naive Bayes with self-training on the source with the original features. We refer
to these experiments as NBST.

Run Variance Threshold (VT) on the combined dataset of .S and 7" to select a subset of features.
Run Bernoulli Naive Bayes with self-training on the source represented using the features selected
with VT. We refer to these experiments as NBST+VT.

Run Variance Threshold (VT) on the combined dataset of .S and 7' to select a subset of features.
Run CORAL with the selected features to transform the source. Run Gaussian Naive Bayes with
self-training on the transformed source. We refer to this experiment as NBST+CORAL+VT.

We setup the experiments as follows:

Following the prior work in (Li et al., 2018a), we use 11 source-target pairs, as shown in Table
3. The pairs are formed by following the chronological order of the events in a pair (i.e., the
source disaster happened before the target disaster).

We perform 5-fold cross-validation over target and report the average accuracy over the 5 folds.
With CORAL, each source is “aligned” with three target unlabeled folds, one target fold is used
for testing, and one target fold is kept for future use as potential target labeled data. Similarly,
NBST uses three target unlabeled folds in the training process, and one fold for testing.

We varied the number of instances in the sources to see how the performance vary with different
numbers of source instances. Concretely, in addition to the whole source labeled data, which
we denote as Total, we also selected 500, 1000, 2000 instances from each class (on-topic or
off-topic), respectively.

The number of features selected varies from one experiment/split to another. For example, for
one pair, the original dataset has 1334 features, and the VT approach selects anywhere from 160
to 176 features (for different splits), thus resulting in significant dimensionality reduction. In
preliminary work, we varied the value of the threshold k in VT. Precisely, we experimented with
k =0.95,k =0.90, k = 0.80. The highest accuracy was obtained when the threshold is equal to
0.99, and this is the value used in the experiments.
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Features Selected

To illustrate the features selected by the VT approach, Table 2 shows a subset of words/features
that were kept after feature selection for 5 pairs, corresponding to the 5 target disasters used in our
experiments. For each target disaster, the source disaster was chosen arbitrarily among the sources
corresponding to that particular target. A source and target pair (S—T) is denoted using the source
and target disaster abbreviations introduced in Table 1. All these five pairs use 1000 source instances
(i.e., 500 instances per class). Table 2 shows selected features that are appear both in source and target
tweets (second column), and also selected features that are specific to the target tweets (third column).

RESULTS AND DISCUSSION

The evaluation of the classifiers is based on accuracy as the dataset is relatively balanced. The results
of the experiments that are used to compare NB, with NB+VT, and with NB+CORAL and
NB+CORAL+VT are presented in Table 3. The results of the experiments that are used to compare
NBST, NBST+VT, and NB+CORAL+VT and NBST+CORAL+VT are shown in Table 4. In addition
to accuracy, we also show the precision and recall scores for the NBST+CORAL+VT experiments
in Table 5. In these tables, a source and target pair (S — T") is denoted using the source and target
disaster abbreviations introduced in Table 1. The numbers 500, 1000, 2000 in the header denote how
many source instances from each class (on-topic or off-topic) are used for training, and Total means
that all source instances are used. The highlighted values are the best values for each pair with a
certain number of source instances across different experiments/approaches. The more highlighted
values one approach has, the better that approach performs. We also show the results using graphs
for visual analysis. Specifically, Figure 1 shows the averaged accuracy over the 11 pairs used (with
standard variation bars), and Figure 2 shows accuracy results obtained with the approaches considered
for each pair separately. We use the results in these tables and figures to answer the research questions
as follows.

How does the performance of the domain adaptation approaches compare with the performance
of the supervised baselines?

Self-training with Naive Bayes (NBST) has been shown to improve the performance of Naive
Bayes (NB) classifier in prior works ((Li, Caragea, et al., 2018; Li, Caragea, & Caragea, 2017). As
can be seen in Table 4 and Figure 2, our results are consistent with what was found in prior works.
Thus, our discussion regarding this question will focus more on the feature-based domain adaptation
approach, i.e., CORAL. Specifically, in Table 3, we can compare the experimental results of
NB+CORAL with the results of its NB baseline. Furthermore, we can perform a similar comparison
when doing feature selection with VT, namely, the results of NB+CORAL+VT with the results of
the baseline NB+VT. In general, it can be seen that applying CORAL contributes to an improvement
in accuracy. NB+CORALA4VT gives the best results overall, regardless of the amount of source data
used, although the NB baseline is better in a few cases. Naive Bayes used with VT features only or
with CORAL only does not perform well overall, as compared to the corresponding baselines.

Do the domain adaptation approaches studied perform better with all features or with a reduced
set of features?

Specifically, we want to see whether CORAL and self-training perform better with the original
features or with a reduced set of features obtained with VT. As can be seen in Table 3, when comparing
the results of NB and NB+VT, overall, feature selection doesn’t improve the results of the supervised
Naive Bayes used on the original features. Based on the results in Table 4, we investigate the usefulness
of the VT feature selection in the context of NBST.

Specifically, we compare the results of NBST (which uses all the features) with the results of
NBST+VT (which uses only the features selected based on VT). As can be seen, only for a small
number of pairs, the results of NBST+VT are consistently better than the results of NBST, regardless
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Table 2. Examples of features selected by the VT approach

S >T Features that appear both in source and target Features that appear only in target

SH — Q [ | username, url, like, get, power, right, lol, people, new, queensland, bundaberg, #flood,
everyone, one, go, know, love, see, time, stay, want, really, brisbane, wales, #queensland,
hope, good, safe, even, way, much, think, still, house, today, | waters, #bigwet, australia, #brisbane,
last, us, day, feel, home, via, affected, please, back, help, ‘australia\’s’, qld, #qldfloods,
night, well, first, need, water,:(, thanks, oh, say, rain, haha, australian, braces, rises, #australia, toll,
live,:), follow, news, fire, victims, two, south, river, floods, queensland’s
death, crisis, flood

Q F —> BB | username, url, new, get, like, people, victims, good, one, #boston, boston, explosions, tragedy,
love, really, time, news, two, back, go, still, see, via, affected, | bomb, suspect, marathon, bombings,
last, please, day, think, right, live, would, us, everyone, help, | #prayforboston, fbi, bombing, suspects,
need, want, even, home, heart, thoughts, world, shit, know, #bostonmarathon, explosion
fuck, dead, today, says, old, city, prayers, man, video, never,
lol, made, first, police, killed, died

SH —> WT | username, url, sandy, like, get, right, lol, people, new, waco, explosion., #prayfortexas,
everyone, one, go, love, know, see, time, want, good, really, bombing, tx, #westexplosion, #texas,
even, school, way, praying, would, still, bad, think, today, reported, injured, texas., #westtx,
last, make, day, home, affected, back, via, please, god, need, | fertilizer, boston,
help, first, prayers, say, man, never, live, pray, news, dead,
victims, thoughts, many, fire, near, town, killed, video,
another, texas, #west, plant, explosion, caught, west, massive

SH — OT | username, hurricane, url, sandy, like, get, right, people, lol, oklahoma,#prayforoklahoma,tornado,#o
new, everyone, one, go, love, know, see, time, stay, want, hit, | klahoma,oklahoma.,moore,#moore
going, hope, really, good, even, school, much, way, think,
still, praying, today, last, take, make, day, home, feel, please,
via, back, god, affected, come, help, first, need, thank, say,
prayers, watch, city, relief, ok, never, victims, thoughts, lost,
disaster, heart, dog

SH — AF | username, url, like, get, right, power, people, lol, new, edmonton, calgary, canada, alberta,
everyone, one, go, know, love, see, time, stay, want, good, #yyc, #yycflood, #calgary, ab, #abflood
really, hope, even, safe, much, way, still, better, think, today,
last, make, take, day, home, affected, please, friends, back,
well, need, night, help, first, come, water, thanks, high, say,
work, thank, never, relief, city, great,:), two, many, email,
red, river, flooding, best, floods, flood, #job, downtown

of the number of source training instances used. Concretely, for 2 out of 11 pairs (SH - WT, BB
— WT). It can also be observed that VT feature selection helps especially when smaller numbers of
source labeled instances are used. When larger numbers of source labeled instances are available,
NBST without feature selection performs better. Intuitively, larger datasets lead to better estimates for
the likelihood probabilities of less frequent features, and, in effect, including those features results in
better performance. However, the feature-based domain adaptation approach CORAL benefits from
using feature selection. By comparing the results of NB+CORAL with the results of NB, we see that
CORAL can improve the classification accuracy results, but not significantly. However, when we apply
CORAL after doing feature selection, the accuracy improvements become much more significant,
as can be seen from the comparison of the results of NB+VT with the results of NB+CORAL+VT.
Thus, we can claim that performing VT feature selection, to remove low variance features, benefits
CORAL. This may due to the fact that low variance features act as noise for both source and target,
and therefore degrade the source whitening and recoloring effects.

How does the feature-based adaptation (CORAL) perform compared to the parameter-based
adaptation (self-training)?
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Based on results in Table 4 and Figure 2, we compare two domain adaptation methods, self-
training and CORAL with Naive Bayes as a base classifier, i.e., NB+CORAL+VT and NBST+VT.
As can be seen, NBST+VT performs better than NB+CORAL+VT overall, and implicitly better than
the baselines (NB, NB+VT). Furthermore, NBST is better than CORAL, as NBST benefits from
using all features, while CORAL works better with a selected set of features.

How does the hybrid feature-parameter adaptation approach compare with the individual feature-
based and parameter-based approaches?

To answer this question, we compare the results of NBST+CORAL+VT with the results of
NBST and NBST+VT, and also with the results of NB+CORAL+VT in Table 4. As can be seen in
Figures 1 and 2, overall the self-training approach performs better than the hybrid feature-parameter
variant NBST+CORAL+VT. However, for some specific source-target pairs, the combined self-
training and CORAL approach is better than either self-training or CORAL alone. More concretely,
in Figure 2, we can see that for pairs SH — QF, QF — BB, SH — AF, the hybrid approach achieves
the best performance. We can also see that NBST+CORAL+VT can improve the performance of
NB+CORALA4+VT for almost all pairs, regardless of the number of source instances used. As last,
from Table 5, we can see that NBST+CORAL+VT performs well also in terms of precision and recall
metrics, with an average precision of 0.836 and average recall of 0.827 when all source instances
are used for training.

CONCLUSION

Domain adaptation has become crucial for many machine learning applications, as it enables the use
of unlabeled data in domains where labeled data is not available. This is especially true in the case
of social media analysis in the context of emerging disasters. Therefore, in this paper, we compared
different domain adaptation approaches that make use of labeled tweets from a prior source disaster
and unlabeled tweets from the target disaster to train a classifier for the target disaster. We used 11
source and target disaster pairs to evaluate these approaches.

We first compared a feature-based adaptation approach, CORAL, with a parameter-based
adaptation approach, self-training, in the context of disaster-related tweet classification. Naive Bayes
was used as a base classifier for both adaptation approaches. CORAL is a simple yet effective domain
adaptation method based on unsupervised feature alignment between source and target data. Naive
Bayes self-training (NBST) builds a weighted Naive Bayes classifier iteratively by combining source
labeled data and target unlabeled data. To understand if the two approaches have complementary
strengths that can be combined, we also designed a hybrid feature-parameter adaptation approach,
which combines CORAL with self-training, and compared it with the individual CORAL and self-
training adaptation approaches. Experimental results showed that the domain shift with CORAL, from
source data to target data, generally improves the performance of the classifiers trained on source.
More specifically, CORAL combined with VT feature selection results in classifiers that have higher
performance when compared with the classifiers learned from the original source data. The comparison
between CORAL and Naive Bayes self-training showed that the later approach performs better than
CORAL in many cases, especially when leveraging more features. It can be hypothesized that the
gradual labeling and usage of the target data in NBST can potentially capture more knowledge from
the target unlabeled data, as compared to the one-shot use of the target unlabeled data in CORAL (to
shift the distribution of the source data). The comparison of the hybrid feature-parameter adaptation
approach with the individual feature-based and parameter-based adaptation approaches supports this
hypothesis. Specifically, when comparing the hybrid approach with the individual feature-based and
parameter-based approaches, no significant gains are observed from the combination. Furthermore, the
results of the hybrid are overall similar with the results of the NBST approach itself. This suggests that
the CORAL approach, while useful on its own, does not have complementary strengths as compared
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with NBST, which is a better approach overall. Nevertheless, there are some specific pairs where the
hybrid approach performs better than the self-training approach.

As part of future work, it is of interest to extend the proposed feature-parameter adaptation
into a feature-instance-parameter adaptation, by including an additional instance selection step as
in (Mazloom et al., 2018). It is also of interesting to explore deep domain adaptation approaches
on disaster tweet classification tasks, for example, marginalized Stacked Denoising Auto-encoders
(mSDA) (Chen, Xu, Weinberger, & Sha, 2012) and domain adversarial neural networks (Ajakan,
Germain, Larochelle, Laviolette, & Marchand, 2014; Ganin et al., 2015), and other similar models
proposed for NLP tasks or computer vision tasks. Furthermore, we plan to explore an approach closely
related to CORAL, specifically Deep CORAL (Sun & Saenko, 2016), which extends CORAL to
learn a nonlinear transformation that aligns correlations of layer activations in deep neural networks.
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Table 3. Accuracy results of CORAL with the original features (NB+CORAL) and CORAL with the Variance Threshold (VT)
features selection (NB+CORAL+VT), together with accuracy results for baselines Naive Bayes (NB) and Naive Bayes with VT
features selection (NB+VT).

S ->T 500 1000 2000 Total S ->T 500 1000 2000 | Total
SH = QF | 0692 | 0787 | 0810 | 0772 SH — QF | 0695 | 0749 | 0800 | 0827
SH — BB | 0.6% 0.763 0.723 0.695 SH — BB | 0.692 0.742 0.769 0.780
QF > BB | o714 | 0728 | 0731 | 0747 QF — BB | o614 | o611 | 0603 | 0571
SH > W1 0.679 0.754 0.755 0.774 SH > WT | 0702 0.767 0.800 0.848
BB > W1 0.922 0.931 0.934 0.948 BB >WT | 0770 0.816 0.869 0.908
NB SH — OT | 0773 0.805 0.836 0.815 N+B SH — OT | 0.6% 0.756 0.807 0.812
CORAL
OF > OT | o811 | 0821 | 0833 | 0838 OF - OT | 0630 | 0639 | 0647 | 0.628
BB —> OT | 0819 0.813 0.834 0.846 BB — OT | 0684 | 0627 0.700 0.801
SH —> AF | 069 | 0737 | 0748 0.714 SH — AF | 0670 | 0733 | 0772 | 079
OF > AF | 0759 | 0764 | 0781 | 0788 OF — AF | 0666 | 0645 | 0.684 | 0.657
BB — AF | o710 0.716 0.734 0.742 BB —> AF | 0643 0.573 0.599 0.650
Average 0.752 0.784 0.793 0.789 Average 0678 | 0696 | 0732 | 0.753
S—>T 500 1000 2000 Total S—>T 500 1000 2000 Total
SH - QF | 0645 | 0763 | 0773 | 0724 SH — QF | 0751 | 0851 | 0852 | 03838
SH — BB | 0694 0.766 0.703 0.686 SH —> BB | 078 | 0764 | 0827 0.766
QF > BB | o712 | 0703 | 0716 | 0717 QOF — BB | 0834 | 0819 | 0804 | 0680
SH > W1 0.682 0.735 0.714 0.738 SH > WT | 0802 0.738 0.674 0.836
BB —>WT | 0923 0.931 0.931 0.942 I\LB BB > WT | 0888 0.945 0.945 0.949
NB+ CORAL
VT SH —> OT | 0763 0.768 0.795 0.762 + SH —> OT | 0853 0.858 0.857 0.753
VT
QF > OT | 079 | o801 | 0815 | 0815 OF — OT | o827 | 0867 | 0873 | 0815
BB —> OT | 07% 0.791 0.806 0.808 BB —> OT | 07192 0.853 | 0.827 0.823
SH —> AF | 0669 0.701 0.715 0.651 SH —> AF | o0.770 0.843 0.857 0.846
OF — AF | o740 | 0740 | 0742 | 0748 OF —> AF | o732 | 0807 | 0813 | 0.802
BB —> AF | 0685 0.694 0.697 0.695 BB —> AF | 0m2 0.713 0.744 0.791
Average 0.737 0.763 0.764 0.753 Average 0.795 0.823 0.825 0.809
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Table 4. Accuracy results of domain adaptation approaches, Naive Bayes with self-training (NBST), and Naive Bayes with self-
training and Variance Threshold (VT) feature selection (NBST+VT), CORAL with VT feature selection (NB+CORAL+VT), and the
hybrid feature-parameter based approach (self-training on top of CORAL) with VT feature selection (NBST+CORAL+VT).

S —->T 500 1000 2000 | Total S —->T 500 1000 | 2000 | Total

SH — QF | 0824 | 0843 | 0855 | 0824 SH — QF | 0751 | 0851 | 0852 | 0838

SH — BB 0.828 0.832 0.846 0.841 SH — BB | 0789 | 0764 | 0827 0.766

QF — BB | o787 | 0792 | 0814 | 0819 QF — BB | 083 | 0819 | 0804 | 0.680

SH — WT 0.923 0.924 0.923 0.908 SH — WT | 0802 | 0738 | 0674 | 0836

BB —-WT 0.929 0.928 0.939 | 0.948 NB BB — WT | 088 | 0945 | 0945 | 0.949

N | SH — OT | 0858 0.879 0.887 | 0.878 CO;AL SH — OT | 0853 | 0858 | 0857 | 0.753
St QF — OT | 0853 | 0850 | 0855 | 0855 \;rT QF — OT | 0827 | 0867 | 0873 | 0815
BB — OT 0.848 0.848 0.865 0.869 BB — OT | 0792 | 0853 | 0.827 0.823

SH — AF 0.793 0.799 0.840 0.826 SH — AF 0.770 | 0.843 | 0.857 0.846

QF — AF | o824 | 0830 | 0852 | 0.860 QF — AF | 0732 | 0807 | 0813 | 0.802

BB — AF 0.802 0.824 0.839 0.840 BB — AF | 0712 | 0713 | 0.744 0.791
Average 0.843 0.850 0.865 | 0.861 Average 0.795 | 0.823 | 0825 | 0.809

S —-T 500 1000 2000 Total S—-T 500 1000 | 2000 | Total

SH — QF | 0844 | 0845 | 0839 | 0806 SH — QF | o815 | 0891 | 0.880 | 0877

SH — BB 0.827 0.830 0.845 0.815 SH — BB | 0756 | 0765 | 0.824 0.763

QF — BB | 0798 | 0805 | 0812 | 0819 QF — BB | 0845 | 0859 | 0848 | 0743

SH - WT 0.936 0.936 0.928 0.923 SH — WT | 0805 | 0881 | 0.791 0.906

x| BB— WT | o094 | 0946 | 0950 | 0953 N‘iST BB — WT | 0875 | 0921 | 0945 | 0936
S\f;r SH — OT | 0868 0.874 0.875 | 0.866 COEAL SH — OT | 0863 | 0878 | 0880 | 0735
QF — OT | o8%2 | 0835 | 0843 | 0842 | VT | QF — OT | 0821 | 0887 | 0878 | 0815

BB — OT 0.845 0.840 0.844 0.843 BB — OT | 0828 0.823 | 0.854 0.821

SH — AF 0.815 0.818 0.818 0.797 SH — AF | 0849 | 0876 | 0.879 | 0.861

QF — AF | 0827 | 0832 | 0846 | 0851 QF — AF | 0751 | 0824 | 0830 | 0835

BB — AF 0.805 0.805 0.817 0.822 BB — AF | 0747 0.797 | 0.757 0.811
Average 0.849 0.851 0.856 | 0.849 Average 0.814 | 0.855 | 0851 | 0.828
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Table 5. Precision and recall scores of the experiments with the hybrid feature-parameter based approach (self-training on top
of CORAL) with VT feature selection (NBST+CORAL+VT)

So>T Precision Recall

500 1000 2000 Total 500 1000 2000 Total

NBST | SH — OF

+ 0.828 | 0.896 | 0.886 0.880 0.816 | 0.890 | 0.880 0.876
CORAL
‘j’T SH — BB | 0172 0.774 0.828 0.776 0.754 0.764 0.824 0.762

QF — BB 0.846 0.862 0.852 0.752 0.846 0.858 0.848 0.742

SH —> W1 0.820 0.884 0.790 0.910 0.806 0.880 0.792 0.906

BB —>WT 0.878 0.924 0.944 0.936 0.876 0.922 0.944 0.936

SH — OT 0.870 0.884 0.882 0.748 0.862 0.880 0.880 0.734

QOF - OT

0.836 0.888 0.880 0.834 0.820 0.886 0.878 0.816

BB — OT 0.832 0.848 0.858 0.828 0.826 0.822 0.854 0.820

SH — AF 0.860 0.882 0.892 0.876 0.848 0.876 0.878 0.862

OF —»> AF

0.782 0.826 0.838 0.840 0.754 0.824 0.828 0.834

BB — AF 0.748 0.842 0.760 0.814 0.748 0.796 0.758 0.810
Average| 0825 0.865 0.855 0.836 0.814 0.854 0.851 0.827

Figure 1. Average accuracy results (with standard derivation) over all pairs, for all approaches studied, across different numbers
of source training instances
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Figure 2. Accuracy results for all 11 pairs and all approaches compared, across different amounts of source training data
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