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a b s t r a c t

Memory forensics is the examination of volatile memory (RAM) for artifacts related to a digital inves-
tigation. Memory forensics has become mainstream in recent years because it allows recovery of a wide
variety of artifacts that are never written to the file system and are therefore not available when per-
forming traditional filesystem forensics. To analyze memory samples, an investigator can use one of
several available memory analysis frameworks, which are responsible for parsing and presenting the raw
data in a meaningful way. A core task of these frameworks is the discovery and reordering of non-
contiguous physical pages in a memory sample into the ordered virtual address spaces used by the
operating system and running processes to organize their code and data. Commonly referred to as
address translation, this task requires a thorough understanding of the memory management mecha-
nisms of the hardware architecture and operating system version of the device from which the memory
sample was acquired. Given its critical role in memory analysis, there has been significant interest in
studying the operating system mechanisms responsible for allocating and managing physical pages so
that they can be accurately modeled by memory analysis frameworks. The more thoroughly the page
handling mechanisms are modeled in memory forensics tools, the more pages can be scrutinized during
memory analysis. This leads to more artifacts being reconstructed and made available to an investigator.
In this paper, we present the results of our analysis of the macOS page queues subsystem. macOS tracks
pages in a number of different states using a set of queues and as we will illustrate, the reconstruction of
data from these queues allows a significant number of memory pages to be analyzed that are currently
ignored by memory forensics tools. Through incorporation of these artifacts into analysis, memory
analysis frameworks can present an even richer set of artifacts and data to investigators than ever before.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of volatile memory analysis has become standard
practice in the fields of digital forensics and incident response.
Memory forensics allows investigators to analyze the entire state of
a system, including kernel code and data, as well as the code and
data of all running applications. Historical information can also be
recovered through the discovery and examination of deallocated
data structures. This crucial information is largely unavailable
when applying traditional forensics techniques, particularly when
malware is present and employing anti-forensics mechanisms. The

rise of memory-only code and data in real-world malware and
exploits has also contributed significantly to the popularity of
memory analysis. This includes open source attack frameworks,
such as Powershell Empire (PowerShell Empire, 2016) and Meta-
sploit (hdm, 2020), commercial products such as Cobalt Strike
(Mudge, 2020), and numerous exploits andmalware samples found
in the wild.

To perform memory analysis, investigators rely on memory fo-
rensics frameworks that translate the unordered set of physical
pages in a memory sample into the structured and ordered virtual
address spaces in which the operating system and all running ap-
plications operate. The process of associating virtual address spaces
with their corresponding physical pages is known as address
translation. Each hardware architecture defines the mechanism by
which the hardware state describes whether a page in virtual
memory is present in physical memory. Recovery of pages that are

* Corresponding author. Center for Computation and Technology, Louisiana State
University, USA.

E-mail addresses: andrew@dfir.org (A. Case), rmaggi2@lsu.edu (R.D. Maggio),
mmanna3@lsu.edu (M. Manna), golden@cct.lsu.edu (G.G. Richard).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi

https://doi.org/10.1016/j.fsidi.2020.301004
2666-2817/© 2020 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Forensic Science International: Digital Investigation 33 (2020) 301004

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrew@dfir.org
mailto:rmaggi2@lsu.edu
mailto:mmanna3@lsu.edu
mailto:golden@cct.lsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.301004&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.301004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2020.301004


present in physical memory is very straightforward as the hard-
ware state encodes the offset in the memory sample. For pages that
are notmarked as present in physical memory (i.e., ‘‘invalid’’ pages),
the operating system defines the hardware state to encode the
actual location of the page, such as in a paging file, a file on disk, in a
compressed data store, or elsewhere. The ability to decipher these
invalid states and recover the associated pages is a critical
component of a memory forensics framework. We will illustrate
later in the paper how relying solely on pages marked as present in
physical memory leaves a substantial number of pages behind and
negatively impacts results produced during analysis.

In this paper, we discuss our research effort to study the page
queues of macOS to integrate analysis of the queue states into
memory forensics. We showcase the usefulness of the queues by
examining how prevalent the invalid page states are and how
analyzing the queues makes a significant amount of currently
inaccessible data available. To analyze these queues across a variety
of operating system versions and memory samples, we imple-
mented support into the Volatility framework (The Volatility
Framework:, 2017). Our code not only provides statistical analysis
of the queues, but also integrates analysis of the queues directly
into Volatility. Through use of our developed code, all existing and
future Volatility plugins automatically benefit from the queue
analysis. We plan to submit our developed code into the public
Volatility repository upon publication so that the entire memory
forensics community benefits.

2. Related work

Given the crucial role that address translation plays in the
memory forensics process, there have been many research efforts
to decipher the operating system-specific encoding of invalid pages
so that they can be located and incorporated into analysis.

In 2007, several papers were published that addressed a variety
of these sources for Windows, including the recovery of invalid
pages from paging files, transition pages, and prototype pages
(Petroni et al., 2006;Walters and Petroni, 2007; Jesse, 2007). Paging
files, also referred to as swap files, are used to store excess pages of
memory that have not been recently or frequently accessed to free
physical memory pages for more actively used data. Transition
pages are those marked to be written to disk, but that are still
currently in physical memory. They can simply be treated as valid
pages by a memory forensics framework. Prototype pages are those
shared between processes. Publications by Stimson in 2008 (Jared,
2008) and Iqbal in 2009 (Iqbal, 2009) deeply explored the incor-
poration of paging files into memory analysis.

In a blog post describing the incorporation of paging files into
the Rekall memory forensics framework (Google, 2016), Cohen also
describes how invalid pages that are stored within arbitrary, non-
paging files in the filesystem can be recovered during address
translation (Cohen, 2014). This is very useful, as the on-demand
loading strategy of operating systems only loads in pages from
files on disk intomemorywhen they are accessed (’‘on demand’‘) or
when they are part of a read-ahead set for applications that access
many portions of a file.

To evade Linux malware that maps regions with the PROT_-
NONE protection flag, Volatility specifically checks for pages
marked as not present but that have the 8th bit in the page table
entry set, which signifies a ‘‘global’’ page. The full explanation is
given in a blog post (Levy, 2015), and the end result is that these
pages are no longer hidden fromVolatility even though they are not
marked as present within the hardware state.

The addition of compressed paging stores has also driven
considerable interest in the address translation mechanisms of
operating systems. These stores are used to hold compressed pages

inside of memory to avoid the performance penalties of writing
them out to disk. The power of modern CPUs, combined with the
performance of modern compression algorithms, means that a
considerable number of pages can be efficiently compressed and
decompressed from one physical page inside the store. Case and
Richard analyzed these stores on Linux and Mac systems in a 2014
DFRWS paper (Case and Richard, 2014). Microsoft did not add
support for compressed stores until Windows 10, and recently a
team from FireEye presented their analysis of the Windows 10
stores. This included patches that enabled support for analyzing the
stores inside of Volatility and Rekall.

Although our research effort is focused on an entirely unex-
plored method to recover additional pages during macOS address
translation, we chose to cite these historical works as they show-
case the power of accurately modeling address translation and
inspired our effort.

3. Understanding macOS memory queues

Our effort began by studying the page fault handler of the
macOS kernel to determine the states that individual pages might
be in. Because many of the data structures used by the macOS
virtual memory system might be unfamiliar to many readers, we
suggest that readers who are committed to closely following the
discussion below consult two important sources. The first is an
authoritative text on macOS internals, which, while dated, remains
very useful for understanding the intricacies of the virtual memory
system (Amit, 2006). Of particular importance is Figure 8.6, which
illustrates the relationships between many important data struc-
tures. The second is the kernel source itself, as there is very little
additional documentation besides the kernel source. The macOS
(xnu) kernel source code is made available by Apple on its website
(Apple, 2020c) and Github (Apple, 2020a). We attempt to point out
locations within the source where important data structures and
functions are defined in the following.

The page fault handler is called when code inside the kernel or
inside of a process tries to access a virtual address whose backing
physical page is not currently present. This makes the page fault
handler responsible for dealing with the situations mentioned
previously, such as accessed pages being held in paging files,
compressed stores, and other invalid states. Our goal was to
determine which, if any, states were viable candidates for memory
forensics tools to use even though the hardware state has them
marked as non-present.

3.1. The page fault handler

The vm_fault_internal function (defined in vm_fault.c) performs
the bulk of the operating system's page fault handling duties.
vm_fault_internal begins by locating the memory map associated
with the virtual address that caused the fault through use of the
vm_map_lookup_locked (vm_map.c). vm_map_lookup_locked
returns the _vm_map data structure (associated with the faulting
address as well as the vm_object and vm_object_offset values.

The _vm_map data structure in macOS is the equivalent of the
VAD structure in Windows (Dolan-Gavitt, 2007), and holds meta-
data about a memory region of process, such as the starting and
ending address, permissions, and mapped file, if any. vm_map is
defined in the vm_map.h header file in the kernel source. The
vm_object data structure (vm_object.h) tracks the physical pages of
a particular object and defines how to find the associated pages. For
pages in physical memory, there is a list of pointers to vm_page data
structures (defined in vm_page.h), one for each page, and for non-
resident pages, the object tracks the pager responsible for gathering
the pages. Pagers exist for data stored in locations such as the
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compressed store or files on disk. vm_object_offset is simply an
integer value that holds a particular page's offset into its host
object.

3.2. vm_page_lookup and vm_page_buckets

Once the map, object, and offset are found, the page fault
handler then uses the vm_page_lookup (defined in vm_resident.c)
function by passing it the object and offset to find the associated
vm_page. vm_page_lookup first checks the per-object cache to
locate the object/offset pair, and if that fails it then relies on the use
of vm_page_buckets. The remainder of this section and paper will
focus on vm_page_buckets as during memory analysis we often
want to recover all the data associated with an object, not just that
which happens to have been stored in a look-aside cache during
acquisition.

vm_page_buckets is a hash table, defined in source file vm_re-
sident.c, that maps object/offset pairs to their corresponding
vm_page structures. This hash table has an entry for each physical
page currently tracked by the operating system, and it plays a
similar role to that of the page frame number (PFN) database of
Windows (Karvandi, 2018) and the mem_map data structure of
Linux (Gorman, 2014).

Through our analysis of the page fault handler, we discovered
that by analyzing vm_page_buckets, a memory forensics framework
can derive the physical offset of any virtual address, even when the
virtual address is marked as not present. The only exceptions to this
are when the virtual address truly has no backing physical page or
when the page is in an error state.

3.3. vm_page and page states

In macOS, each physical page is associated with a vm_page
structure, as mentioned above, which tracks its associated object
and offset, its current state, its PFN, and a few other pieces of
metadata. The physical offset of a page can be calculated by
multiplying its PFN by 4096, which is the size of a hardware
memory page on modern Intel processors. Before accessing a page,
its state must first be examined. Scrutiny of vm_ fault_internal, as
well as the vm_ fault_page helper function, illustrated that several
problematic page states are skipped when the operating system
attempts to recover a non-present page. The page states that are
skipped are unusual, error, busy, absent, fictitious, and restart. These
states and others are enumerated in the kernel source in vm_page.h
(at line 245 in the Mojave source tree). For pages that are not in one
or more of these problematic states, the particular memory queue
that the page is on is then checked for suitability of recovery.

3.4. Memory queues and queue states

The queue that a page is currently on is tracked inside of its
vm_page structure. The queues used by the macOS kernel to track
pages are:

! Wired: pages that cannot be swapped. Similar to the non-paged
pool of Windows.

! Compressed: pages that are being used by the compressed
swap subsystem. They must be decompressed before use.

! Free: several queues hold free pages.
! Throttled: previously busy pages eligible to be made active.
! Page Out: pages prepared to be paged out.
! Active: pages active in memory.
! Inactive External: queue of anonymous (non-file backed)
pages.

! Inactive Internal: queue of file-backed pages.

! Inactive Cleaned: pages that were previously dirty but have
since been written to a backing store.

! Speculative: read-ahead pages from objects recently accessed.
! Secluded: memory reserved for the Camera application.

A set of macros and constants in vm_page.h (line 162 in the
Mojave source tree) is used to associate pages with these queues.
There is also a transient state of ‘‘not in a queue’’ for pages that were
recently allocated but not yet used. By comparing a page's state to
its current queue, the kernel can decide if its eligible to be retrieved
during a page fault. Along with the previously mentioned macOS
kernel functions, we also studied the memory_object_lock_page
(memory_object.c) and vm_pageout_scan (vm_pageout.c) functions
to determine the full relationship between pages, page states, and
the page queues.

4. Memory analysis of the page queues

After studying the kernel source related to the page fault
handler and the paging subsystem, we were able to develop a
memory forensics algorithm that successfully recovers pages that
are still in memory but marked as being non-present in the hard-
ware page state. This algorithm involves several steps. First, for a
given virtual address in an address space, it must be determined if
there is a corresponding vm_page structure. If the corresponding
structure exists, it must be checked for eligibility to be recovered
based on its state and current memory queue. Finally, its physical
offset must be extracted so that the corresponding data can be used
during analysis.

4.1. Locating vm_page instances

The first step of the developed algorithm is to locate vm_page
instances. We developed two methods for this, one to aid with
testing and the other for integration into Volatility's macOS page
fault handler.

4.1.1. Enumerating vm_page_buckets
To aid our understanding of the page queues and to provide

statistical analysis, we first developed a Volatility plugin, mac_-
walkqs, that enumerates every page tracked by vm_page_buckets
and reports each page's metadata. This plugin begins by creating an
array of vm_ page_bucket_t typed elements and with an array size
determined by the vm_page_bucket_count global variable. Each
bucket of the array references a list of vm_page instances. For each
instance eligible for recovery, the plugin prints the vm_ page
address, its PFN, the address of the page's corresponding object, its
offset in the object, and which queue the page is stored in. As
discussed, understanding the distribution of these states helped us
to understand what types of data we should expect to recover
during structured analysis. Section 6 presents analysis of the states
of each page for our test samples.

4.1.2. Indexing vm_page_buckets
The second Volatility plugin that we developed,mac_ find_ page,

replicates the macOS page fault handler's ability to locate vm_page
instances for specific non-present virtual addresses in specific
contexts. This plugin begins by locating the map data structure
(vm_map_entry) instance corresponding to the given virtual
address. This is accomplished by leveraging the Volatility get_-
proc_maps function. Next, the plugin discovers the object corre-
sponding to the map and the map's offset into that object.
Extracting the offset is straightforward as it is simply an integer
field in the map data structure. Extracting the object requires
several steps, however. The first step is to access the object
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structure. The pointer to this structure inside of the map is
embedded inside a union, as a map can represent either an actual
object or a sub_map (see vm_map.h). Our plugin checks for maps
that are submaps by examining the is_sub_mapmember and bailing
out if it is set. For actual objects, after getting the initial object
structure, it must then be checked to see if it has a shadow object
(Apple, 2020b). Shadow objects are created when an object is
copied, such as during a process fork. Changes (writes) to the object
are propagated to the shadow object by other objects that shadow
it. To use the correct object structure, our code uses the shadow
object of map objects when they are present.

After finding the map corresponding to a given virtual address
and extracting the correct offset and object, our plugin is able to
calculate an index into the vm_page_ buckets hash table. This is the
same operation performed by the macOS page fault handler and
its use of the vm_ page_hash macro, defined in vm_resident.c. By
indexing the table directly, we can quickly narrow our search to
just a single bucket list of vm_page instances. In our testing, these
lists are generally very small, usually less than ten elements. To
determine the matching vm_ page instance, we use the same al-
gorithm as the page fault handler, which matches the extracted
object and offset with those embedded in the vm_page. Through
use of this algorithm, our plugin is able to quickly determine,
which, if any, vm_page instance references our given virtual
address and context.

4.2. Determining eligibility for recovery

Once a vm_page instance is found, we then must verify that the
data at its referenced PFN is suitable for recovering. The suitability
of an instance is first determined by examining its unusual, error,
absent, and fictitious state members. Although the macOS handler
also skips the busy and restart states, these are states our code can
work around. As mentioned previously, if the page is in any of the
error states then the corresponding physical page must be ignored.
After examining its state, the queue onwhich the page resides must
be examined. Our code considers pages in the wired, throttled, page
out, active, inactive internal, inactive external, internal cleaned,
speculative, and secluded states to be suitable for recovery. All of
these reference pages that are still in memory, but that are marked
as non-present in the particular address space being examined. We
skip pages in the compressed state as previous work incorporated
recovery of these (Case and Richard, 2014). We also skip pages on
any the free queues as we do not currently believe that these pages
are in a suitable state for recovery based on our reading of the
kernel source code. We plan to revisit our assessment of each free
queue as part of our future work effort.

4.3. Full integration into volatility

To allow all existing and future macOS Volatility plugins to
benefit from our memory queue analysis algorithm, we needed to
add the support inside of Volatility's page fault handler and not just
as an individual plugin. Volatility implements per-architecture
address translation in classes known as address spaces. There are
currently implementations for AMD64, 32-bit Intel, 32-bit Intel
with PAE, and 32-bit ARM. These classes implement an interface
that supports translating virtual addresses to their physical offset,
reading from virtual addresses, and more. Beyond the hardware-
specific classes, there are also additional classes for Windows and
Linux that add the operating-system specific address translation
features discussed in Section 2. To begin our integration effort, we
created an macOS-specific address space that inherited from the
existing AMD64 class. We then implemented our own versions of
the vtop and get_paddr functions.

vtop, which stands for virtual to physical, translates a virtual
address to its physical offset. Our custom implementation first
checks if the AMD64 address space considers it present. If so, we
return this result. If the AMD64 address space considers the page
non-present, we re-use our algorithm described in Section 4.1.2 to
find the corresponding map, extract the object and offset, and
leverage vm_page_buckets. The get_paddr function is also used to
get the physical offset of a virtual address, and we provide a custom
implementation that also leverages the memory queues to locate
pages for virtual addresses the hardware state considers non-
present.

For performance reasons, our address space uses a cache of the
process mappings to avoid having to enumerate the maps on each
translation. This cache stores the start and end address, actual
object, and object offset for each memory region. The cache is
generated on the first address translation and then re-used for all
future translations inside a particular address space. Section 7
demonstrates the data recovered by our algorithm as well as the
performance statistics.

5. Testing environment and data set

To test our algorithms for completeness, robustness, and
reasonable performance, we generated a corpus of memory sam-
ples with diverse operating system version and hardware config-
urations. In this section we list the memory samples generated as
well as the system used to test our Volatility integration.

5.1. Memory samples

Table 1 lists the memory samples generated for testing our
integration. Using VMware, we created 2 GB and 4 GB samples
covering every version of macOS from the latest Catalina all theway
back to Mavericks, which is the same version coverage provided by
Volatility itself. The use of small memory sizes was simply for
expedience and to illustrate that pages are present in the queues for
a variety of versions of macOS. Obviously, the number of pages for
the 2 GB systems, which were booted and then immediately
analyzed, will be small, but pages are still present in the queues.
The 16 GB and 64 GB samples were taken from aMacBook Pro and a
Mac Pro. These are the daily use systems of two members of the
research team and were used to provide real world data sets.

Memory snapshots of the virtual machines were acquired using
VMWare's built in facilities (Volatility Foundation, 2014). Memory
snapshots of the physical systems were acquired using Surge
Collect Pro (Volexity, 2020). All of the virtual machine systemswere
acquired within an hour of being booted. The MacBook Pro had an
uptime of 41 days when acquired and the Mac Pro 30 days. If sys-
tems with 64gB and 128 GB had been recently rebooted, the
number of pages present in the queues would be much smaller,
mirroring the 2 GB VM cases more closely. The point is that pages

Table 1
Memory samples used for testing.

# Name Version Build Size (GB)

1 Mavericks 10.9.5 13F1712 2
2 Yosemite 10.10.5 14F1021 2
3 ElCapitan 10.11.4 15E65 2
4 Sierra 10.12.5 16F73 2
5 HighSierra 10.13.5 17F77 2
6 Mojave 10.14.5 18F132 2
7 Catalina 10.15.2 19C57 2
8 Mojave 10.14.4 18E226 4
9 Catalina 10.15.1 19B88 16
10 Catalina 10.15.2 19C57 64
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are definitely present in the queues across a wide variety of system
configurations and uptimes and therefore it is clearly necessary to
introduce measures to ensure this data is acquired.

5.2. Hardware configuration

We used one bare-metal system for final correctness and per-
formance testing our Volatility integration. It has a 6 core/12 thread
Intel CPU, 64 GB of RAM, and runs Ubuntu 18.04.

We note that Volatility is not a multi threaded application so the
number of cores has little impact on performance. The amount of
RAM of the analyst's system can have a significant impact though
as, if enough RAM is available, then an entire sample will be cached
inmemory once it is accessed. This will save a significant number of
disk accesses and substantially improve performance compared to
systems with smaller amounts of RAM.

6. Page state statistics

Before leveraging vm_page_buckets to aid in address translation,
we first wanted to understand the state and purpose of pages that
are actively tracked by the buckets. Through use of the previously
mentioned mac_walkqs plugin, we were able to determine the
relationship between RAM size and the number of tracked pages,
how many pages are in a state suitable for use in address trans-
lation, and the distribution of pages across the various queues.
Table 2 lists the distribution of page states for each sample in our
data set. The number of pages in the file cache are separated from
the other recoverable pages as their exact purpose is known just
from being in that queue. Unfortunately, identification of pages in
the file cache is only possible starting with Sierra so the samples
from older versions have the file cachedmarked asN/A. Pages in the
file cache queue always correspond to portions of cached files from
disk, regardless of whether any processes are actively mapping the
file. The pages that are in a recoverable state, but not in the file
cache, are counted in the Other column. This includes pages
belonging to anonymous memory, stacks, heaps, and other non-file
backed regions. Only a relatively small number of pages were kept
in the various free page queues, which constitute the Invalid col-
umn count. Analysis of the distribution showed that a significant
percentage of physical pages in each sample were tracked in the
page buckets and directly recoverable through examination of the
corresponding vm_page instance.

7. Address space evaluation

After understanding the distribution of pages across physical
memory, we thenwanted to test and leverage our newly developed
address space to examine process memory. We started with ex-
amination of two process memory regions critical to memory
analysis. This was performed to determine precisely how much of

previously unavailable critical process data could be recovered
through analysis of the queues. Our first experiment was the ex-
amination of the stacks and heaps. We then deeply examined the
recovery of the contents of process executables.

7.1. Recovery of stack and heap data

The process runtime stack holds metadata and data related to
function calls. Depending on the compiler, programming language
used, and the calling convention, this information can include re-
turn values, return addresses, function parameters, and local vari-
ables to functions. Analysis of stack data has a long history in
memory forensics to uncover call stacks, parameters passed to
sensitive APIs, and more. A process’ heaps are what hold the
dynamically generated data processed by the application and its
associated libraries, frequently including artifacts such as key-
strokes, images viewed or downloaded, HTTP requests and re-
sponses, copy/paste buffers, and other valuable forensic artifacts.

Due to the forensic value of the contents of stacks and heaps, we
wanted to determine how many pages belonging to these regions
could be recovered through the use of the queues. To start this
analysis, we developed a new Volatility plugin that walked each
process’ set of memory mappings and then filtered for only those
related to stacks and heaps and only those of 50 MB or less. The
50 MB restriction is to eliminate issues with data smear. It then
attempted to translate the virtual address of each pagewithin these
regions and kept a count of howmany pages translated to a physical
offset and how many did not. This plugin was run twice against
every sample in our data set. The first run was with an unaltered
version of Volatility, and the secondwaswith a version that had our
new address space installed. Table 3 documents the result of this
experiment. As illustrated, a substantial number of critical pages
are made available through analysis of the queues.

7.2. Process executable recovery

Our second test involved attempting to recover the process
executable for every running process in the data set of memory
samples. This is a very common operation during analysis as
recovering the executable from process memory provides several
extremely beneficial advantages, but there are also several im-
pediments to successful recovery.

7.2.1. Benefits and impediments
The benefits to process executable recovery include, but are not

limited to, the following:

! Defeating Packers Upon execution, unpackers will usually
decrypt/decompress/de-obfuscate strings and code from disk
into their plaintext forms in memory. Recovery of these plain

Table 2
Physical page queue distribution.

# File Other Invalid

1 N/A 229,591 364
2 N/A 396,138 1568
3 N/A 400,618 1001
4 34,674 214,979 693
5 37,581 446,832 3
6 67,574 387,421 14
7 27,874 460,329 12
8 88,104 686,018 0
9 361,541 1,976,958 4386
10 747,269 14,138,592 103,475

Table 3
Analysis of stacks and heaps pages.

# Total Valid without AS Valid with AS

1 231,508 8248 11,565
2 452,008 50,024 54,849
3 442,254 61,366 66,679
4 588,739 59,538 76,055
5 518,504 66,299 68,248
6 220,230 24,458 25,533
7 776,664 69,889 79,377
8 2,999,337 106,712 220,213
9 11,216,197 49,750 479,436
10 17,411,435 17,604 383,827
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text versions saves substantial reverse engineering time and
effort (Ligh et al., 2010).

! Recovering Injected Code Code injecting malware replaces
legitimate code in the address space of running processes with
malicious alternatives. These changes to the code are not re-
flected back to the file on the file system and require memory
forensics to detect. Common examples of such techniques are
API hooks (Ligh et al., 2014) and process hollowing (Monnappa,
2016).

! Recovery of Command and Control Data Malware will often
dynamically load configuration data from a remote command
and control server. These configuration options can include a list
of servers to exfiltrate information to, commands to run on the
local system, and more. Such data is not available in the
executable on the file system, but is available in the address
spaces of actively executing malware.

These benefits cannot be fully realized when any of the im-
pediments that hinder the ability to fully recover the executable or
to recover it at all are present. The largest issue is that, to fully and
properly recover an executable, its metadata must be available. This
metadata encodes the layout and size of all of the file's sections and
tells the memory forensics framework how to reconstruct the
executable. The majority of this metadata is in the file's header,
which will be mapped into the first page of the executable's
memory region.

Unfortunately, since the header is never or rarely referenced
after initial process loading, it is often a target of the swap manager
since it will be not have been recently accessed. This will then
remove the header's page from the process' address space, andwith
the header gone the memory forensics framework will produce an
empty file when attempting to recover the executable.

Even when the header is present, analysis is still hindered in
situations where many of the executable's pages are not present.
Particularly in situations where an analyst wants to perform full
static analysis of an executable frommemory, it is very important to
recover as much original data as possible as most reverse engi-
neering tools are intolerant of corrupted executables.

We note that these issues related to recovering process exe-
cutables affect analysis of all operating systems and not just macOS.

7.2.2. Executable headers and the queues
Our goal in testing process executable recovery was two-fold.

First, we wanted to test whether incorporation of the queues
could allow for recovery of the executable header for more pro-
cesses than traditional translation provided. Second, we wanted to
test howmuchmore data inside of executables we could recover by
processing the queues. To recover process executables, we relied on
the existing mac_procdump Volatility plugin, which examines
Mach-O files in memory and uses the metadata to properly
reconstruct each section. We then ran the plugin twice as with
mac_walk_stack_heap, once in an unaltered version of Volatility and
once in a version with our address space installed.

The results of this experiment showed that there were 1893
active processes in total across our data set. Without our address
space being active, 749 of these were recovered and 1144 were
written as empty files. This produced 419 MB of data. With our
address space active, 1366 executables were recovered and only
527 were written as empty files. This produced 943 MB of data in
total. Table 4 lists the number of processes recovered with and
without our address space active for each sample.

As shown in the table, a substantial number of previously un-
available executable headers become available with the use of our
new queue-aware address space. This is exemplified in samples
9e10 as they were acquired on long running systems with

substantially more processes and real-world work loads, all of
which contribute to headers being made not-present over time by
the swap manager. These results show that our developed address
space has the potential for significant real-world benefits during
investigations.

7.2.3. Executable data recovery with the queues
As mentioned previously, it is not just the headers of execut-

ables that can be made not present, but also any other portion of
the executables as well. To maintain alignment, memory forensics
will fill these missing pages with zeroes (NULL bytes). This can have
severe, negative effects on the reverse engineering process as well
as other types of forensics analysis. To further test the usefulness of
our address space, we calculated howmany pages of data belonging
to executables were successfully recovered by mac_procdump in
both runs. Table 5 lists the number of pages in executables that
mac_procdumpwithout our address space accessed as it attempted
to recover executables. The table also lists the number of those
pages that were previously non-present, but made present
(recovered) by use of our address space. Processes that produced
zero byte files without our address space, but that were recovered
with our address space, are not included in this table's calculations
as all of those pages were missing in the output without the queue
analysis support.

As shown in the results, our address space provided the ability
to recover a substantial number of pages belonging to process ex-
ecutables that otherwise would have been missed. Through use of
our address space, analysts will be provided with much richer and
complete data sets and artifacts to perform their investigations.

7.2.4. Performance impact
To assess the performance impact of our address space on

analysis, we timed the execution of the previously described
mac_procdump based analysis as well as monitored memory usage
during the plugin's execution. The memory usage is based on the
caching the address space does to avoid repeated calculations
related to enumerating process mappings and object/offset

Table 4
Number of processes recovered.

# Active Processes Without AS By AS

1 46 45 1
2 85 84 1
3 90 90 N/A
4 112 103 1
5 116 115 1
6 56 53 3
7 128 116 10
8 240 127 104
9 466 12 238
10 554 4 259

Table 5
Process Executable Data Recovered by our AS.

# Total Recovered Recovered %

1 3679 908 24.68
2 11,325 3260 28.79
3 12,251 2584 21.09
4 12,181 4064 33.36
5 13,857 4958 35.78
6 6340 481 7.58
7 15,522 1895 12.20
8 20,238 3647 18.02
9 11,613 271 2.33
10 102 66 64.71
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calculations and lookups. Even on the large samples, these caches
combined for only a few MBs of extra memory usage. Table 6 lists
the runtime formac_procdumpwith and without the address space
installed.

Of course this minimal performance hit is far outweighed by the
forensic information that is gained. The only samples that experi-
enced substantial runtime spikes were samples #9 and #10. As
shown previously in Table 4, sample #9 is the sample for which the
address space recovered a further 238 processes compared to the
non-queue aware Volatility. As a result of these 238 extra processes,
the amount of data produced by the plugin for that sample grew
from 46 MB to 234 MB. For sample #10, a further 259 processes
were recovered, and the amount of data recovered went from
444 KB (kilobytes) to 291 MB. The few extra minutes these in-
vocations take to run are well worth the substantial amount of
extra forensic data.

8. Conclusion

Memory forensics will continue to be a critical technique in the
fields of digital forensics, incident response, and malware analysis.
Given the rise of memory only malware and exploits across all
platforms, there is a strong need for memory forensics to recover as
much structured data as possible from analyzed samples. In this
paper, we have documented our effort to incorporate analysis of the
macOS page queues into memory forensics. We chose Volatility as
our research framework given its popularity in the industry as well
as academia. The result of our work is the seamless integration of
page queue analysis into all existing and future macOS plugins. As
demonstrated in the results of analysis of stacks, heaps, and process
executables, a substantial number of pages that were previously
inaccessible are now made readily available. This will allow in-
vestigators to gather a much richer and more complete set of data
and artifacts to perform thorough analysis. We plan to submit our

new address space and associated research plugins to the Volatility
project upon publication of this paper.
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